Deep Learning Based Inertial Tracking
Inertial measurement units have emerged as an essential component in many of today's indoor navigation solutions thanks to their low cost and ease of use. However, despite many attempts for reducing the error growth of navigation systems based on commercial-grade inertial sensors, there is still no satisfactory solution that produces navigation estimates with long-time stability in widely differing conditions. This project aims to break the cycle of continuous integration used in traditional inertial algorithms, formulates it as an optimization problem, and explores the use of deep recurrent neural networks for estimating the displacement of a user over a specified time window. By training the deep neural network using inertial measurements and ground truth displacement data, it is possible to learn both motion characteristics and systematic error drift. As opposed to established context-aided inertial solutions, the proposed method is not dependent on either fixed sensor positions or periodic motion patterns. It can reconstruct accurate trajectories directly from raw inertial measurements, and predict the corresponding uncertainty to show model confidence. Extensive experiments are conducted in our project to demonstrate that the neural network produces position estimates with high accuracy for several different attachments, users, sensors, and motion types. As a particular demonstration of its flexibility, our deep inertial solutions can estimate trajectories for non-periodic motion, such as the shopping trolley tracking. Further, it works in highly dynamic conditions, such as running, remaining extremely challenging for current techniques.
Faculty
Past Members
Selected Publications
-
GANVO: Unsupervised Deep Monocular Visual Odometry and Depth Estimation with Generative Adversarial Networks
Y. Almalioglu M. R. U. Saputra P. P. de Gusmao A. Markham and N. Trigoni
In IEEE International Conference on Robotics and Automation (ICRA). 2019.
Details about GANVO: Unsupervised Deep Monocular Visual Odometry and Depth Estimation with Generative Adversarial Networks | BibTeX data for GANVO: Unsupervised Deep Monocular Visual Odometry and Depth Estimation with Generative Adversarial Networks | Download (pdf) of GANVO: Unsupervised Deep Monocular Visual Odometry and Depth Estimation with Generative Adversarial Networks
-
MotionTransformer: Transferring Neural Inertial Tracking Between Domains
Changhao Chen‚ Yishu Miao‚ Chris Xiaoxuan Lu‚ Linhai Xie‚ Phil Blunsom‚ Andrew Markham and Niki Trigoni
In The Thirty−Third AAAI Conference on Artificial Intelligence (AAAI−19). 2019.
Details about MotionTransformer: Transferring Neural Inertial Tracking Between Domains | BibTeX data for MotionTransformer: Transferring Neural Inertial Tracking Between Domains | Download (pdf) of MotionTransformer: Transferring Neural Inertial Tracking Between Domains
-
Transferring Physical Motion Between Domains for Neural Inertial Tracking
Changhao Chen‚ Yishu Miao‚ Chris Xiaoxuan Lu‚ Phil Blunsom‚ Andrew Markham and Niki Trigoni
In NIPS 2018 workshop on Modelling the Physical world: Perception‚ Learning and Control. 2018.
Details about Transferring Physical Motion Between Domains for Neural Inertial Tracking | BibTeX data for Transferring Physical Motion Between Domains for Neural Inertial Tracking | Download (pdf) of Transferring Physical Motion Between Domains for Neural Inertial Tracking