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Abstract. We recently developed a new benchmark for steganography,
underpinned by the square root law of capacity, called Steganographic
Fisher Information (SFI). It is related to the multiplicative constant for
the square root capacity rate and represents a truly information theoretic
measure of asymptotic evidence. Given a very large corpus of covers
from which the joint histograms can be estimated, an estimator for SFI
was derived in [1], and certain aspects of embedding and detection were
compared using this benchmark.

In this paper we concentrate on the evidence presented by various
spatial-domain embedding operations. We extend the technology of [1]
in two ways, to convex combinations of arbitrary so-called independent
embedding functions. We then apply the new techniques to estimate,
in genuine sets of cover images, the spatial-domain stego noise shape
which optimally trades evidence – in terms of asymptotic KL divergence
– for capacity. The results suggest that smallest embedding changes are
optimal for cover images not exhibiting much noise, and also for cover
images with significant saturation, but in noisy images it is superior to
embed with more stego noise in fewer locations.

1 Introduction

A particular challenge, for the design of better steganographic embedding algo-
rithms, is the lack of universal benchmarks. When a new method is proposed,
just about the best that can be done is to test it against leading steganalysis
algorithms, and if their detection accuracy is diminished then the steganography
method is considered an advance. In practice, new embedding methods usually
turn out to be easily broken by a modified detector. The root of the problem is
that the metric was really one for novelty, not security.

Information theoretic models of stego systems [2] provide the foundation for
an alternative: the Kullback-Leibler (KL) divergence between cover and stego
distributions can bound secure embedding capacity, but such distributions are
arguably incognisable [3] and certainly infeasible to estimate in full. However,
in [1] we argued that the asymptotic KL divergence is sufficient, and that this is
determined by so-called Steganographic Fisher Information (SFI). Furthermore,
SFI can indeed be estimated for small groups of pixels, and it was argued that
this is highly relevant for practical steganalysis which almost inevitably takes
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evidence from small groups. Some experimental results, in [1], used the estimator
to compare a few simple embedding functions’ security, but mainly focused on
lessons for steganalysis.

This is a sequel to [1], using SFI to evaluate spatial-domain embedding func-
tions. We extend the SFI estimator to remove some of the limitations in [1] and
to convex combinations of different embedding functions. Then we apply the
new estimator to find the optimal combination of certain simple spatial-domain
embedding functions. We may have confidence in the true optimality of these
combinations because the metric has well-founded information theoretic roots.
Our results are not surprising – in noisy covers it is better to embed with larger
stego noise – but allow, for the first time, calculation of an optimized embedding
function for real-world cover sources.

This paper contains: (Sect. 2) a brief recapitulation of the argument and
results of [1], and an explanation of why slightly different notation must be
adopted for the present work; (Sect. 3) an extension of the estimator of [1], both
to arbitrary embedding functions and to convex combinations thereof; (Sect. 4)
some experiments using the SFI estimate to choose optimal combinations of
embedding functions, thereby deriving optimally-shaped stego noise for simple
variable-base (mod k)-matching embedding; (Sect. 5) a conclusion.

Some notational conventions: random variables and distributions will be de-
noted by upper-case letters, and realizations of random variables the correspond-
ing lower case. Vectors of either random variables or realizations will be boldface
x = (x1, . . . .xn), with n implicit. All logs will be to natural base.

2 Steganographic Fisher Information

We model stego objects as random variables with distribution P (λ), where λ
indicates the payload size (how the size is measured is important and we will
return to this momentarily), so that P (0) is the distribution of covers. KL di-
vergence cannot be increased by processing, and thus we reach the well-known
limit on the accuracy of any detector for the presence of steganography, in terms
of DKL(P (0) ‖P (λ)) [2]. This justifies using KL divergence as a measure of evi-
dence. In [4] it is argued that we should focus on asymptotic capacity, as relative
payload size tends to zero, because repeated communication must reduce the
embedding rate or face eventual certain detection. So in order to make an asymp-
totic judgement about secure capacity it is sufficient to consider the asymptotic
behaviour of DKL(P (0) ‖P (λ)) as λ → 0, and usually (see [5]), this is locally
quadratic in λ, i.e.

DKL(P (0) ‖P (λ)) ∼ 1
2Iλ2 + O(λ3).

I is called, in this setting, Steganographic Fisher’s Information. Unlike most
other benchmarks, SFI is a single figure which can be used to compare the
asymptotic performance of embedding methods or, by considering SFI of pro-
jections of the stego object space, the evidence available to various feature sets.
It also seems to be easier to estimate SFI than KL divergence directly.
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We suppose that stego objects are made up of n locations – pixel values,
transform coefficients, or suchlike – and that embedding alters some locations.
How λ measures payload size is critical to the interpretation of SFI. If we define
λ to be the relative number of embedding changes – the proportion of cover
locations changed by embedding – then we call it SFI with respect to change rate
and write Ic. But this does not correctly take account of the cover size n, nor
does it correctly compare embedding methods with different embedding efficiency
– usually defined as the average number of covert payload bits conveyed per
embedding change [6], and denoted e – so [1] defined SFI with respect to payload
rate

Ip =
Ic

ne2
.

It was Ic which was directly estimated in [1], and converted to Ip as above for
proper comparison of embedding and detection methods. Ip has the following
interpretation, to connect it with the square root law of steganographic capac-
ity [7,8]: if one embeds a small m bit payload into a cover with n locations, using
an embedding method with SFI Ip, one expects to produce a KL divergence of
approximately Ip(m2/n) nats of evidence.

Here, we find it more convenient to use a different parameterization for λ. Let
us measure payload as the relative number of payload locations used for embed-
ding, whether changed or not. In the case of embedding one bit per symbol, this
is exactly the relative payload size, but if embedding k-ary symbols in m loca-
tions the total payload transmitted is m log2 k bits. This measure is convenient
because different embedding methods have different probabilities of changing a
location, which is otherwise an algebraic nuisance. We call the SFI thus derived
SFI with respect to location rate and denote it Il; it is Il which will be estimated
in Sect. 3. Then Ip can be recovered as

Ip =
Il

ne′2
, (1)

where e′ denotes the number of covert bits transmitted per location used. We
will later consider (mod k)-matching embedding, for which e′ = log2 k.

2.1 Estimating SFI

The dimensionality of the space of digital images is outrageously large, so it
is not possible to estimate true SFI for entire images. In [1] we advocated the
following lower-dimensional model: imagine that an image is made up of many
independent pixel groups, where the groups are of fixed size such as 1× 2 pixels,
2 × 2, 3 × 3, etc. Thus we reduce each image to its histogram of groups: in
the case of 1 × 1 groups this is the standard histogram, in the case of 1 × 2
groups it is the co-occurrence matrix, and so on. We argued that, although
this certainly destroys information, it is a fact that most leading steganalysis
methods do exactly the same: they base their decision on information extracted
from histograms, adjacency histograms, or (in the case of JPEG images) 8 × 8
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blocks. (This is no surprise because models of digital media are usually local.)
So, if we do likewise, computing SFI for small pixel groups gives us asymptotic
bounds on the performance of these steganalysis methods. Indeed, the main focus
of [1] was the comparison of evidence in different pixel groups.

Having reduced an image to independently-considered groups of pixels, we
obtained the SFI as a function of the group frequencies and embedding function,
via a Taylor expansion of KL divergence in change rate, but only for a particular
type of embedding operation which changes cover samples to one of a fixed
number of alternatives, equiprobably: this is suitable for LSB embedding, but
not for more complex examples such as the convex combinations we explore later
in this paper. An estimator for SFI was obtained by plugging the empirical group
histogram, obtained from a corpus of genuine covers, into the SFI formula. This
estimator has limitations – we need a very large corpus from which to estimate
the histogram, particularly for larger groups of pixels where the histogram itself
has very many bins – but does converge in probability to the true value as the
corpus size tends to infinity.

We performed some experiments, mostly with just one corpus of covers, to
compare the SFI found in different types of pixel groups in grayscale images.
Some brief experiments compared the relative security of LSB replacement and
2LSB replacement (where each pixel carries two bits of payload, at the cost of
higher embedding noise), motivated by an observation in [9] that 2LSB embed-
ding was, on a per-payload basis, slightly less sensitively detected by structural
detectors. Our experiments in a set of very well-regulated cover images contra-
dicted this hypothesis, but brief experiments on noisier image sets were consistent
with it. This raises the questions addressed in this paper: given the options of
embedding more payload per change with greater stego noise, or less payload
with lower stego noise, which is better? And what of intermediate options?

3 Extending the SFI Estimator to Arbitrary Embedding

With weaker assumptions, but using similar techniques as in [1], we will compute
Il by expanding the KL divergence in location rate. Our model is that the cover
is made up of a fixed-length sequence of symbols (X1, . . . , Xn), each drawn from
finite alphabet X (with arbitrary distribution: the components Xi need not be
independent). The corresponding stego object is denoted (Y1, . . . , Yn). We are
concerned with independent embedding, where the embedding function chooses
whether to locate a payload in each cover symbol independently with probability
λ, and if location Xi is chosen then it is altered randomly according to a matrix
B = (bij), so that P (Yi=y |Xi=x) = bxy in the chosen locations (otherwise
Yi = Xi). For this to be well-defined, B must be stochastic:

∑
j bij = 1 for all

i. Most non-adaptive steganography methods are accurately described by this
model, including bit replacement, (mod k)-matching, and additive noise.

We also assume that the distribution of cover sequences P (X=x) is such that
P (X=x) = 0 ⇐⇒ P (Y =x) = 0. This ensures that the KL divergence between
cover and stego sequences is finite. And we assume that the embedding is not
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perfect : for at least some x, P (X=x) �= P (Y =x), otherwise SFI is zero and the
square root law of capacity does not apply.

We begin with
P (Y =y |X=x) = (1 − λ)δxy + λbxy

from which we derive

P (Y = y) =
∑

x∈Xn

P (Y =y |X=x)P (X=x)

= (1 − λ)nP (X=y) + λ(1−λ)n−1A(y) + λ2(1−λ)n−2B(y) + O(λ3)

= P (X=y) + λ
[−nP (X=y) + A(y)

]

+ λ2
[n(n−1)

2 P (X=y) − (n−1)A(y) + B(y)
]
+ O(λ3)

where

A(y) =
n∑

i=1

∑

u∈X
P (X=y[u/yi])buyi , (2)

B(y) =
n∑

i,j=1
i<j

∑

u,v∈X
P (X=y[u/yi, v/yj])buyibvyj ,

and y[u/yi] denotes the sequence (y1, . . . , yi−1, u, yi+1, . . . , yn), y[u/yi, v/yj ]
analogously. A(y), respectively B(y), represents the probability of observing
y in a stego object given exactly one, respectively two, locations used. Now,
using log(1 + z) = z − z2

2 + O(z3), we can expand the KL divergence:

DKL(X ‖Y ) = −
∑

y∈Xn

P (X=y) log
(

P (Y =y)
P (X=y)

)

= λ
[
n

∑
P (X=y) − ∑

A(y)
]

+λ2
[

n
2

∑
P (X=y) − ∑

A(y) − ∑
B(y) + 1

2

∑ A(y)2

P (X=y)

]
+ O(λ3)

= λ2

2

[∑ A(y)2

P (X=y) − n2
]

+ O(λ3). (3)

For the final step, we use
∑

y P (X=y) = 1, and

∑

y

A(y) =
∑

y

n∑

i=1

∑

u

P (X=y[u/yi])buyi

=
n∑

i=1

∑

u

∑

y
except yi

P (X=y[u/yi])
∑

yi

buyi

=
n∑

i=1

∑

y

P (X=y) = n,

similarly
∑

y B(y) = n(n−1)
2 .
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Thus, once we know the embedding efficiency per location for our embedding
function e′, we combine (3) and (1) to compute the SFI with respect to payload
rate

Ip =

∑

y∈Xn

A(y)2

P (X=y)
− n2

ne′i
2 (4)

as a function of the true frequencies of each symbol group in Xn (note that
A(y) is a linear combination of such frequencies). As in [1], we can estimate this
quantity from a large corpus of cover objects, simply by plugging the empirical
frequencies into (4). We must omit any terms where P (X=y) = 0, i.e. groups
of n which never occur in the corpus, but if sufficiently large then this should
happen never or rarely, and the missing terms should be negligible.

Considering digital images, for n ≥ 4 it can be challenging even to compute
the empirical histogram, because there are potentially 256n histogram bins and
our image corpus will consist of at least 1010 groups of pixels, so computer
memory is soon exhausted. We solved this problem in [1], using red-black trees
to create overlapping histogram chunks, shuffle-sorting the chunks, making a
second pass through the histogram to adjoin the value of A(x) to each P (X=x),
and finally summing the ratio A(x)2/P (X=x). We will not go into the detail
here because the same techniques can be used, although the second stage is
somewhat slower because A(x) depends on potentially the entire histogram,
but for the experiments we report here on (mod k)-matching it is still the case
that only portions local to x need be examined. With our available computing
resources (a cluster of 20 dual-core machines) it is feasible to estimate Ip for
pixel groups of size up to about 9, but our image libraries are only large enough
adequately to sample the histograms for n ≤ 6.

3.1 Convex Combinations of Embedding Functions

As well as extending the estimator to arbitrary independent embedding, we will
consider the combination of embedding functions. Suppose that the steganogra-
pher and recipient share k different embedding options each of which matches
the hypotheses of the previous section. Let us denote the change probabilities for
embedding method i by the matrix Bi, and the embedding efficiency per location
as e′i. They can construct a hybrid embedding method which, on a per-symbol
basis, picks embedding method i with fixed probability πi such that

∑
i πi = 1

(the correspondence between symbols and embedding functions can be generated
from their shared secret key). This convex combination has overall embedding
efficiency per location

∑
πie

′
i and its change matrix is B =

∑
i πiBi, and this

allows us to vary continuously between the different options. In particular, we
can vary the tradeoff between higher stego noise and higher embedding rates.
Here, we examine the SFI of such a combination, and later will demonstrate that
combinations can indeed provide better transmission rates, at comparable levels
of risk, than any of the individual options alone.

Recall that SFI is defined in terms of A(y), the probability of observing y in a
stego group with exactly one embedding location used. Observe in (2) that A(y)
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is a linear function of B. Therefore if embedding method i has corresponding
function Ai(y), for the convex combination we have A(y) =

∑
i πiAi(y).

Therefore, the SFI with respect to payload rate is given by

Ip =

∑

y∈Xn

(
∑

i πiAi(y))2

P (X=y)
− n2

n(
∑

i πie′i)2
=

∑
i,j cijπiπj − n2

n(
∑

i πie′i)2
(5)

where

cij =
∑

y∈Xn

Ai(y)Aj(y)
P (X=y)

. (6)

The optimal convex combination is the probability vector π which minimizes (5):
lower SFI means lower KL divergence – less accurate detection – or alternatively
a greater secure capacity for equivalent risk. SFI is inversely proportional to the
square of the “root rate”, the asymptotic constant in secure capacity r

√
n where

n denotes cover size [7,8].
Equation (5) is a ratio between two quadratic forms and there does not seem

to be an easy analytic form for the minimum, but the optimization can be
performed very efficiently by numerical methods because all cij and e′i must
be positive, and Il must also positive, so both

∑
i,j cijπiπj and (

∑
i πie

′
i)

−1 are
positive and convex in π. So (5) can be written as the product of positive convex
functions, and therefore is a convex function. Thus, given cij and e′i, numerical
optimization of (5), subject to

∑
πi = 1, can be performed using standard convex

programming methods.

4 Results

We now apply the extended estimator to find the optimal convex combinations
of some simple embedding functions. Of course, the results depend on the cover
source: there is no universally-optimal embedding function, and we expect differ-
ent results for different sources. We will restrict our attention to spatial-domain
(mod k)-matching embedding in grayscale digital images: each selected pixel
conveys one k-ary symbol (log2 k bits) of information in its remainder (mod k),
and the embedding function alters the cover pixel to the nearest value with the
correct remainder. We consider only odd k = 2j + 1, so that the embedding is
symmetric. Most of the time, this results in additive noise uniformly distributed
from the range −j, . . . , j, but for pixels near to saturation at 0 or 255 the abso-
lute value of the noise could reach 2j. (Although it was LSB and 2LSB embed-
ding which was briefly considered in [1], here we have excluded bit replacement
and (mod 2k)-matching embedding because it has been demonstrated, time and
again, that asymmetrical embedding causes additional weaknesses [9,10].)

The case of (mod 3)-matching is also sometimes known as ±1 embedding,
and k = 5, 7 can be called ±2,±3 embedding, respectively. However, we eschew
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this terminology for two reasons. First, ±1 more accurately describes the effect
of LSB replacement while (mod 3)-matching can cause stego noise of ±2 when
applied to saturated pixels. Second, there is some confusion in the literature
as to exactly what shape stego noise ±2 denotes: uniform distortions of ±2,
or including ±1 noise as well, or some other shape? Our preferred terminology
is ternary embedding for (mod 3)-matching, quinary embedding for (mod 5)-
matching, septenary embedding for (mod 7)-matching, and so on.

Our experiments will involve four sets of cover images, chosen for different
levels of noise, to test the hypothesis that greater stego noise is optimal for
noisy covers.

Set A: 2121 grayscale images taken with a single digital camera, all sized ap-
proximately 4.7 Mpixels. The histograms were computed from the im-
ages in each of four orientations, to boost the evidential base, so that
a total of just over 4 · 1010 pixel groups were used to estimate the joint
histograms. The images had never been subject to JPEG compression,
but as part of their conversion from RAW format were substantially de-
noised; also, images with significant areas of saturation were removed.
This set of images is extremely well-behaved and it is the main corpus
used for the results in [1].

Set B: 1040 grayscale images taken with a mixture of digital cameras, all sized
approximately 1.5 Mpixels, for a total of over 6·109 pixel groups. Again,
the images were never JPEG compressed and had been denoised in
conversion from RAW format, but the denoising is not as aggressive as
in set A.

Set C: 3200 grayscale images taken with the same camera as set A (in fact, the
parent RAW files for set A are a subset of these), for a total of about
1.5 · 1010 pixel groups. In conversion from RAW format, all optional
denoising was disabled, so these images are visibly more noisy than
those of sets A or B. Note that, unlike in set A, images with saturated
areas (typically over-exposed highlights) have not been excluded.

Set D: 10000 grayscale decompressed JPEG images from a photo library CD,
all sized about 900 × 600. Like set A, the images were re-used in each
of four orientations, for a total of about 2 · 1010 pixel groups. These
images are certainly noisy, but feature quantization noise rather than
sensor noise.

In each case we use the technology of [1] to estimate the histograms of in-
dividual pixels, and pixel groups of shapes 1 × 2, 1 × 3, 1 × 4, 2 × 2 (we will
not follow [1] to even larger group sizes, to be sure that the histograms are not
undersampled). For ternary, quinary, and (sometimes) septenary embedding, the
coefficients cij (6) are computed and (5) minimized numerically to find the op-
timal combination.
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4.1 Combination of Ternary and Quinary Embedding

We begin by considering combinations of ternary and quinary embedding: this
allows stego noise up to level ±2 (except at saturated cover locations). The
embedding matrices are

B1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
3

1
3

1
3 0 0 0 · · · 0 0 0 0 0 0

1
3

1
3

1
3 0 0 0 · · · 0 0 0 0 0 0

0 1
3

1
3

1
3 0 0 · · · 0 0 0 0 0 0

0 0 1
3

1
3

1
3 0 · · · 0 0 0 0 0 0

. . .

0 0 0 0 0 0 · · · 0 1
3

1
3

1
3 0 0

0 0 0 0 0 0 · · · 0 0 1
3

1
3

1
3 0

0 0 0 0 0 0 · · · 0 0 0 1
3

1
3

1
3

0 0 0 0 0 0 · · · 0 0 0 1
3

1
3

1
3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

B2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
5

1
5

1
5

1
5

1
5 0 · · · 0 0 0 0 0 0

1
5

1
5

1
5

1
5

1
5 0 · · · 0 0 0 0 0 0

1
5

1
5

1
5

1
5

1
5 0 · · · 0 0 0 0 0 0

0 1
5

1
5

1
5

1
5

1
5 · · · 0 0 0 0 0 0

. . .

0 0 0 0 0 0 · · · 1
5

1
5

1
5

1
5

1
5 0

0 0 0 0 0 0 · · · 0 1
5

1
5

1
5

1
5

1
5

0 0 0 0 0 0 · · · 0 1
5

1
5

1
5

1
5

1
5

0 0 0 0 0 0 · · · 0 1
5

1
5

1
5

1
5

1
5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and we consider the mixture B = π1B1 + π2B2, where π1 + π2 = 1, i.e. the
embedding will use proportion π1 ternary symbols and π2 quinary symbols. (The
embedder and recipient may need to transcode the payload via a variable-base
format, but we will not concern ourselves with the technicalities of doing so.)

Figure 1 shows the results of SFI estimation, considering both 1×2 and 1×4
blocks (most other shapes were similar; we shall see shortly that 1 × 1 groups
are anomalous). For each image set we first plot the SFI with respect to location
rate Il, as a function of π2: for most image sets, the graphs are rising, indicating
that the greater the proportion of quinary symbols, the greater the evidence of
payload. This is no surprise, because quinary embedding causes greater stego
noise. (However, the slight decrease for small values of π2 in set B, and the
significant U-shape in set D, means that it can be less suspicious to embed with
more noise, a paradox which probably deserves further study.)

The second column in Fig. 1 shows how the embedding efficiency e′, measured
in bits per payload location, increases as we increase the proportion of quinary
symbols (which carry more bits each). This linear function is the same for all
image sets, of course. The final column computes the trade-off between these
functions, showing SFI per payload: for a given (small) payload, this indicates
how much evidence is available to the opponent for each combination of ternary
and quinary embedding. For cover image set A, which contains little noise, pure
ternary embedding is best. For set B, which is more noisy, the optimum is about
1/3 ternary and 2/3 quinary embedding: the exact minimum does depend on
whether we look at 1 × 2 or 1 × 4 pixel groups. For set C, which is very noisy,
we might have expected an even higher proportion of quinary embedding, but
in fact observe the opposite: we attribute this to the saturated areas in some
of the images, because the embedding noise is exaggerated for saturated pixels.
For set D, which has quantization noise, the optimum is almost pure quinary
embedding for 1×2 pixel groups, but nearer to an even mixture for 1×4 groups.
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Fig. 1. SFI for varying combinations of ternary and quinary embedding. In each case
the x-axis represents the proportion of quinary locations, so that leftmost points cor-
respond to entirely ternary and rightmost entirely quinary embedding. Left graphs,
SFI with respect to location rate Il; middle, embedding efficiency e′; right, SFI with
respect to payload Ip. For SFI measures, the solid line is derived from pixel pairs and
is denoted on the left axis, the dotted line from 1 × 4 groups on the right axis. From
top to bottom, image sets A to D.

4.2 Optimal Embedding Noise Up to ±3

We can extend the analysis further, but we will go only as far as mixtures
of ternary, quinary, and septenary embedding. Such a mixture is specified by
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Fig. 2. Combinations of ternary (proportion π1), quinary (proportion π2), and septe-
nary (proportion π3) embedding. Left, a three-dimensional depiction of the surface Ip,
as it depends on π1 and π2. Centre, the same information in two dimensions, where
lighter shading indicates lower SFI. In both cases the location of the minimum is
marked. Right, the shape of optimal stego noise, at the SFI minimum. In all cases 1×2
pixel groups have been used to estimate SFI. From top to bottom, image sets A to D.

respective probabilities π1, π2, π3. The matrix for septenary embedding, B3, is
analogous to B1 and B2 in Subsect. 4.1 and the same procedure, albeit more
computationally expensive, can be used to determine the coefficients cij for
1 ≤ i, j ≤ 3. With two degrees of freedom, the result can be visualised as
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Table 1. The optimal mixture of ternary (π1), quinary (π2), and septenary (π3) em-
bedding, for each image set and considering joint histograms from five different pixel
group shapes. The final column indicates the relative SFI for the optimum, compared
with pure ternary embedding.

Image Set Group Size π1 π2 π3
Ip(π1,π2,π3)

Ip(1,0,0)

A 1 × 1 1.000 0.000 0.000 1.000
A 1 × 2 1.000 0.000 0.000 1.000
A 1 × 3 1.000 0.000 0.000 1.000
A 1 × 4 1.000 0.000 0.000 1.000
A 2 × 2 1.000 0.000 0.000 1.000

B 1 × 1 0.130 0.115 0.755 0.346
B 1 × 2 0.576 0.152 0.272 0.684
B 1 × 3 0.684 0.099 0.216 0.707
B 1 × 4 0.718 0.119 0.163 0.749
B 2 × 2 0.707 0.157 0.136 0.792

C 1 × 1 0.434 0.071 0.495 0.576
C 1 × 2 0.805 0.067 0.128 0.883
C 1 × 3 0.921 0.041 0.038 0.944
C 1 × 4 0.961 0.024 0.015 0.971
C 2 × 2 1.000 0.000 0.000 1.000

D 1 × 1 0.000 0.987 0.013 0.181
D 1 × 2 0.210 0.053 0.736 0.444
D 1 × 3 0.187 0.346 0.467 0.437
D 1 × 4 0.408 0.228 0.364 0.522
D 2 × 2 0.487 0.291 0.222 0.594

either a three-dimensional surface, or a two-dimensional “heatmap”; both types
of graphic are displayed in Fig. 2, for SFI in pixel pairs.

In the first row, corresponding to image set A, the Ip surface slants sharply
down towards the point where π1 = 1: pure ternary embedding is clearly opti-
mal. For image set B the surface is curved, and at the optimum a majority of
ternary embedding is mixed with smaller amounts of both quinary and septenary
symbols. Set C is similar but with a lower proportion of quinary and septenary
symbols, despite the extra noise in the covers: again, we attribute this to satura-
tion. Finally, for set D the mixture features a majority of septenary embedding:
these covers are so noisy that, had we extended our analysis to nonary embed-
ding and beyond, it is likely that we would have seen even larger stego noise in
the mixture as well. (Of course, there exist other detectors for steganography in
previously JPEG-compressed images, which make use of the 8 × 8 JPEG block
structure and can be extremely sensitive [11]. Such detectors are not accounted
for in our analysis, which only covers smaller pixel groups.)

To examine other pixel groups, we show how the location of the minimum
depends on the group size and shape in Tab. 1. Although there is certainly
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variation with pixel group size, most of the results are broadly similar as the
group size changes. Further examination (not included here) shows that the sur-
face slopes rather gently near the optimum so that the optimum for, say, 1 × 2
pixel groups is quite close to optimal for the others. The notable exceptions are
the results for 1 × 1 groups, which have markedly different optima in all cases
except set A. There is no contradiction here, and it underlines an important
lesson: optimizing embedding to best preserve image histograms is far from op-
timal when inter-pixel dependencies are considered. This is a familiar pattern
from steganalysis literature.

How much difference does it make, to use the optimal combination of em-
bedding functions instead of, say, pure ternary embedding? The final column of
Tab. 1 shows the ratio between the SFI Ip of optimally-mixed and pure ternary
embedding. For example, looking at set B, we see that the SFI is about 30%
lower with a suitable mixture of embedding functions, and this means that a
payload of about (1/0.7)1/2 ≈ 1.2 times as large can be carried with equivalent
asymptotic KL divergence.

5 Conclusions

Steganographic Fisher Information can be estimated from a large corpus of cov-
ers, and we have demonstrated that the technology of SFI estimation can be used
to examine convex combinations of embedding functions. It is then simple to find
the optimal embedding function combination for a given cover source, though
of course the results vary depending on the nature of the cover objects. Opti-
mal SFI is a true information theoretic optimality, indicating lowest asymptotic
KL divergence and therefore best security again detection. Except in the image
set subject to heavy denoising, combinations of ternary, quinary, and septenary
embedding outperform any single embedding method.

Of course, true optimality happens if the embedding method is perfect (pre-
serves the distribution of covers exactly), in which case the SFI is zero and
secret payload can be conveyed at a linear, not square root, rate. But construct-
ing such an embedding is difficult and requires perfect knowledge of the cover
source, whereas a pseudorandom combination between ternary, quinary, etc, em-
bedding is very simple to implement at both embedder and receiver (though we
have not considered the difficulty of transcoding the payload into variable-base).
We could take this work further, into quasi-adaptive embedding where the rows
of the matrix B are not regular, and find the optimal matrix, but again this asks
a lot of the sender and recipient. For the same reasons, we have assumed that
the embedder does make use of source coding [6], which usually requires solving
systems of linear equations. We must acknowledge that the presence of source
coding can complicate the analysis, and may lead to different conclusions.

This paper has a number of limitations. First, our model for covers is of inde-
pendent groups of pixels. We have argued that, although the model is certainly
not accurate for digital images, it mirrors the practice of steganalysis methods
which inevitably base their decisions on joint histograms of pixel groups (al-
though the group size might be larger than we are able to examine here), and
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therefore SFI is properly connected with the security against such detectors. One
difficulty in selecting an optimal embedding combination is that the optimum
depends on the size of the pixel groups examined: there is no easy solution to this
conundrum, but it makes sense to base decisions on the largest possible group
size, since the evidence in large groups subsumes that in small groups. Thank-
fully, roughly similar results seem to appear in most pixel group shapes with
the notable exception of 1 × 1 groups. We re-iterate this observation: selecting
an embedding method to preserve, as best as possible, the histogram of image
pixels is a poor strategy. This lesson has been observed a number of times in
the literature, with steganography methods touted as “perfect” because of his-
togram preservation soon falling to steganalysis which considers pairs of pixels
or other higher-order information. Nonetheless, a number of authors continue to
advance ad hoc embedding methods to preserve cover histograms.

We note that we make the implicit assumption, when using SFI as a bench-
mark, that the enemy steganalyst has complete knowledge of both the cover
source and the chosen embedding function. This is in keeping with Kerckhoffs’
Principle but could be argued too pessimistic. However, any other scenario is
difficult to examine using KL divergence.

Our experiments were carried out using four sets of cover images, which hap-
pened to be conveniently available to the author. In some respects the choice
was unfortunate, because they differ in both noise levels and saturation, and
there appears to be some interplay between these factors regarding the optimal
embedding function. In future work we could examine systematically the effects
of noise, saturation, prior JPEG compression, or other macroscopic properties,
in isolation, though the computational demands may be considerable.

We should contrast SFI, as an information theoretic measure of asymptotic
evidence, with Maximum Mean Discrepancy (MMD), applied to information
hiding in [12]. MMD is now quite well-studied though its application in informa-
tion hiding is still in infancy, and there are efficient estimators allowing MMD
to be computed for large-dimensional feature sets. However, although there is
some connection between MMD and the performance of kernelized support vec-
tor machines, it is not a truly entropic measure and we know no analogue of the
connection between KL divergence and maximum hypothesis test performance.
Nonetheless, it would be interesting to derive an estimator for asymptotic MMD,
and repeat these experiments with that metric to see whether similar results
arise.

We may also contrast the SFI estimator here and in [1] with an independent
approach to the same problem by Filler & Fridrich [13]. Their estimator dif-
fers significantly, modelling the images as a Markov chain with a parameterised
transition matrix. They also examine convex combinations, but only of LSB re-
placement and ternary embedding. Hopefully there will be a confluence of ideas
in the area of Fisher Information estimation, which only recently emerged as the
true asymptotic benchmark for steganography [4].
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7. Ker, A., Pevný, T., Kodovský, J., Fridrich, J.: The square root law of stegano-

graphic capacity. In: Proc. 10th ACM Workshop on Multimedia and Security, pp.
107–116 (2008)

8. Filler, T., Ker, A., Fridrich, J.: The square root law of steganographic capacity for
Markov covers. In: Proc. SPIE. Media Forensics and Security XI, vol. 7254, pp.
801–811 (2009)

9. Ker, A.: Steganalysis of embedding in two least significant bits. IEEE Transactions
on Information Forensics and Security 2(1), 46–54 (2007)

10. Ker, A.: A general framework for the structural steganalysis of LSB replacement.
In: Barni, M., Herrera-Joancomart́ı, J., Katzenbeisser, S., Pérez-González, F. (eds.)
IH 2005. LNCS, vol. 3727, pp. 296–311. Springer, Heidelberg (2005)
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