A Curiosity Regarding Steganographic Capacity of Pathologically Nonstationary Sources

Andrew Ker

adk@comlab.ox.ac.uk

Oxford University Computing Laboratory

SPIE/IS&T Electronic Imaging, San Francisco 24 January 2011

A Curiosity

Regarding Steganographic Capacity of Pathologically Nonstationary Sources

Outline

- Stationary i.i.d. bit streams:
 - square root capacity law
- The most horrible nonstationary source:
 - linear capacity law (if...)
- The next most horrible nonstationary source:
 - a curious result

Ultimate aim

Want to prove capacity laws for realistic cover models with minimal assumptions.

'If there is a problem you can't solve, then there is an easier problem you can solve: find it.'

George Pólya

A simple square root law

As
$$n \to \infty$$
,

- 1. If $\gamma^2 n \to \infty$, an asymptotically perfect detector exists.
- 2. If $\gamma^2 n \to 0$, there is asymptotic perfect security.

The critical payload size $\propto n\gamma = O(\sqrt{n})$.

Pathological nonstationarity

Even when γ is fixed, there is no asymptotic perfect detector as $n \to \infty$,

- if and only if the detector is ignorant of the p_i , and
 - $\sum \epsilon_i = 0$ (first-order statistics are preserved).

Pathological nonstationarity

Even when γ is fixed, there is no asymptotic perfect detector as $n \to \infty$,

- if and only if the detector is ignorant of the p_i , and

$$\Pr\begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = (1 - p_i)^2 (p_i + \gamma \epsilon_i)^2$$

$$\Pr\begin{bmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} = (1 - p_i) p_i (1 - p_i - \gamma \epsilon_i) (p_i + \gamma \epsilon_i)$$

$$\Pr\begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \end{bmatrix} = (1 - p_i) p_i (1 - p_i - \gamma \epsilon_i) (p_i + \gamma \epsilon_i)$$

$$+$$

$$\Pr\begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} = p_i^2 (1 - p_i - \gamma \epsilon_i)^2$$

$$= \gamma^2 \epsilon_i^2$$

• the detector is ignorant of the p_i , and
• $\sum \epsilon_i = 0$ (first-order statistics are preserved).

Detector must be invariant under permutations, so forced to rely on $\begin{pmatrix} \#(X_{2i}=0,X_{2i+1}=0,Y_{2i}=0,Y_{2i+1}=0) \\ \#(X_{2i}=0,X_{2i+1}=0,Y_{2i}=0,Y_{2i+1}=1) \\ \vdots \end{pmatrix} \dot{\sim} \mathbf{N}(n\mu+n\gamma^2\nu,n\Sigma(\gamma))$

if

- the detector is ignorant of the p_i , and
- $\sum \epsilon_i = 0$ (first-order statistics are preserved).

As $n \to \infty$,

- 1. If $\gamma^4 n \to \infty$, an asymptotically perfect detector exists.
- 2. If $\gamma^4 n \to 0$, no asymptotically perfect detector exists.

The critical payload size $\propto n\gamma = O(n^{3/4})$.

Triple stationarity

if

- the detector is ignorant of the p_i , and
- $\sum \epsilon_i = 0$ (first-order statistics are preserved).

As
$$n \to \infty$$
,

- 1. If $\gamma^4 n \to \infty$, an asymptotically perfect detector exists.
- 2. If $\gamma^4 n \to 0$, no asymptotically perfect detector exists.

The critical payload size $\propto n\gamma = O(n^{3/4})$.

Conclusions

- These cover models are not supposed to be realistic.
 - This work pushes the boundaries of the square root law.
- The square root law fails for completely nonstationary sources...
 - ... as long as the detector is ignorant of the bit probabilities.
 - ... and the embedding is first-order secure.
- Stationarity for two bits at a time leads to an $O(n^{3/4})$ capacity law.
- Stationarity for any pattern of bits has the same conclusion.
 - This is very curious.