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Abstract

Simulating the human heart is a challenging problem, with simulations being very time con-
suming, to the extent that some can take days to compute even on high performance computing
resources. There is considerable interest in computational optimisation techniques, with a view
to making whole-heart simulations tractable. Reliability of heart model simulations is also of
great concern, particularly considering clinical applications. Simulation software should be
easily testable and maintainable, which is often not the case with extensively hand-optimised
software. It is thus crucial to automate and verify any optimisations.

CellML is an XML language designed for describing biological cell models from a mathe-
matical modeller’s perspective, and is being developed at the University of Auckland. It gives
us an abstract format for such models, and from a computer science perspective looks like a
domain specific programming language. We are investigating the gains available from exploit-
ing this viewpoint. We describe various static checks for CellML models, notably checking the
dimensional consistency of mathematics, and investigate the possibilities of provably correct
optimisations. In particular, we demonstrate that partial evaluation is a promising technique for
this purpose, and that it combines well with a lookup table technique, commonly used in cardiac
modelling, which we have automated.

We have developed a formal operational semantics for CellML, which enables us to math-
ematically prove the partial evaluation of CellML correct, in that optimisation of models will
not change the results of simulations. The use of lookup tables involves an approximation, thus
introduces some error; we have analysed this using a posteriori techniques and shown how it
may be managed.

While the techniques could be applied more widely to biological models in general, this work
focuses on cardiac models as an application area. We present experimental results demonstrat-
ing the effectiveness of our optimisations on a representative sample of cardiac cell models, in
a variety of settings.
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1
Introduction

Computer simulations have long played an important role in the physical sciences. Mathe-

matical modelling of physical systems can aid our understanding, elucidating the underlying

mechanisms which give rise to the behaviour we observe. The use of these techniques in the

life sciences community has been more limited however, mostly due to the fact that biological

systems are incredibly complex, and so simulating anything but the simplest systems has un-

til recently been computationally intractable. The use of quantitative mathematical models to

describe the behaviour of biological systems is now becoming increasingly common, however,

with many groups investigating different systems. We consider the modelling of the heart in

particular, as this is a field that has benefited from almost 50 years of research (Noble, 1960),

starting with models of single cells.

Understanding the human heart is a fascinating and vital subject. Heart problems are a major

cause of death in developed countries (World Health Organisation, 2008), and much effort has

been put into elucidating the causes of heart disease in the hope of developing cures (see e.g.

Noble, 2004; Rodriguez et al., 2006). Also, many drugs have adverse side effects on the heart,

primarily due to interactions with some ionic channels potentially leading to fatal arrhythmias,

which drug companies would like to avoid (see e.g. Noble, 2008).

Computer simulations have played an important part in this research (Noble, 2002), correctly

reproducing many features of both single cell and multicellular behaviour, and providing insight
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into the underlying causes of medical conditions in order to determine novel treatments. The

idea of ‘an indestructible test bed on which any theory [of how the heart works] may be safely

tested and results analysed in minute detail’ (Vigmond et al., 2003) is an attractive one. Much

valuable work has been done, but even within the limits imposed by the nature of modelling

there is still some way to go before this is realised. This is in large part due to the complexity

of the computation required, which in turn derives from the complexity of the heart. The phys-

iology of the heart, and how this may be modelled mathematically, is described in Sections 2.1

and 2.2.

This thesis is focused on models of single cardiac cells, a sample of which is presented in

Section 2.2. These models can be described using CellML (Lloyd et al., 2004), an XML-based

(and hence computer-readable) language described in Section 2.3. CellML was designed as a

format for exchanging models between researchers. Our contribution has been to view it also

as a programming language and explore the ideas suggested by this paradigm. We have thus

defined a formal semantics for the language (Chapter 3), investigated suitable static checks

for validating models (Chapter 4), as well as implemented and proved the correctness of some

optimisation techniques (Chapters 5 and 6) enabling faster simulation of the models. The thesis

structure thus somewhat mirrors program compilation and execution—validation, optimisation,

then generation of experimental results (Chapter 7)—as shown in Figure 1.1.

The need for automatic optimisation is strongly demonstrated by two trends evident in our

sample of cell models (see Section 2.2.13). As the available experimental data increases, models

become more detailed and complex, and hence the need for effective optimisation increases.

Also, the number of models in use increases, and so applying optimisations manually is not a

good long term solution. The optimisation work in this thesis is thus both relevant and timely.

Another key theme is the requirement of confidence in the correctness of optimisations,

in order to have confidence that the results of our simulations are valid derivations from our

models. If simulation results differ from empirical data, it is important to know whether the

mathematical model or the simulation code is at fault. Obviously, as simulation develops to



3

Figure 1.1 The programming language paradigm for CellML: validation, compilation, and ex-
ecution. PE and LT are optimisation techniques described in Chapters 5 and 6 respectively,
and implemented as source-to-source transformations. We need to extend CellML slightly to
represent lookup tables, hence the asterisk after that transformation.

CellML

Valid? Exit

CellML CellML CellML∗

Inputs

Results

Simulation
framework

Code

Yes

No

PE LT

the point where it is of direct clinical relevance, reliability of the results will be even more

important. Hence we need to be able to show that any transformations we apply to models

do not change the results of simulations of the models in any significant way. In order to do

this, we need to have a good definition of the meaning of a model, in order to prove that this is

invariant under our transformations. This is the main driving force behind our development of

a semantics for CellML that is mathematically tractable (Cooper and McKeever, 2007).

The optimisations we apply are not novel in and of themselves. Partial evaluation (PE)

has long been studied within the computer science community (Jones et al., 1993), and lookup

tables (LT ) have been used in hand-optimised cardiac models. Rather, the novelty comes either

through their application to a new class of problem (in the case of PE ; Cooper et al. 2006) or

through their automation and the analysis of correctness.

In partial evaluation, expressions are separated into those which need only be computed

once, and those which must be recomputed after every time step of the simulation (because the

values of variables in the equation change with time). A new model is then produced from the

original, in which as much of the model as possible has been pre-computed.
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Lookup tables are used to pre-compute the values of expressions that would otherwise be

repeatedly calculated. Several expressions in most cardiac electrophysiological cell models

(notably those controlling the gating variables in Hodgkin–Huxley formulations of ion chan-

nels) contain only one variable: the membrane potential, V . They also typically contain ex-

ponential functions, which are expensive to compute. Under normal physiological conditions,

the membrane potential V usually lies between −100 mV and 50 mV, and so a table can be

generated of pre-computed values of each suitable expression for potentials within this range.

Then, given any membrane potential within the range, a value for each expression can quickly

be computed using linear interpolation between two entries of the lookup table, which is faster

than computing an exponential directly.

The results of applying these two optimisation techniques to our sample of cell models are

shown in Chapter 7. We typically see 3 to 4-fold speedups for recent models when both tech-

niques are used.

Finally, in Chapter 8 we summarise the main contributions of the thesis, and consider the

place of this work within the wider research context, looking towards future research directions.



2
Background

This chapter presents the background to the work of this thesis. In Sections 2.1 and

2.2 we give a brief introduction to the field of heart modelling, and thus give the

context in which our research is placed. The former section looks at such modelling

in general, while the latter section focuses on single cells.

Section 2.3 describes the modelling language CellML. Firstly we motivate its exis-

tence, and then in Section 2.3.1 we introduce the main constructs in the language,

giving examples of their usage. Since the XML syntax of CellML is very verbose,

we also define a compact syntax for use within the thesis.

2.1 Cardiac modelling

The beating of the heart is caused by myocytes—cardiac cells—contracting in a regular pat-

tern. Myocytes are rod-like muscle cells approximately 100 µm long and 20 µm in diameter,

the membrane of which responds characteristically to electrical stimulation by producing an

electrical impulse called an action potential and triggering a contraction. Myocytes in different

parts of the heart will respond differently (see Figure 2.1), and this together with the arrange-

ment of cells within the heart determines how an action potential propagates through the whole

organ. It is thus the flow of electric current around the heart that regulates the heart beat. Ab-
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Figure 2.1 The main features of the heart, with regards to electrophysiology. The graphs show
typical variation in action potential shape and timing for different classes of myocyte.

normal current patterns lead to life-threatening arrhythmias and fibrillation, the worst effect of

which is blood not being pumped, causing cardiac arrest.

Under normal conditions, an action potential (AP) is initiated in the sino-atrial node (SAN)

or pacemaker, which consists of self-exciting cells that are capable of autonomously producing

a regular electrical impulse.1 The excitation wave then propagates through the atria, passing

from cell to cell via intercellular gap junctions. This triggers atrial contraction, thus filling

the ventricles with blood. The atria are electrically isolated from the ventricles, except via the

atrioventricular (AV) node, which delays the AP briefly. This ensures that the atria have ejected

their blood into the ventricles before the ventricles contract. Another important property of the

AV node is that the more frequently it is stimulated, the slower it conducts. This prevents rapid

conduction to the ventricles in cases of atrial fibrillation.

The contraction of the ventricles is coordinated so as to maximise the pressure with which

blood is forced through the circulation. From the AV node, an AP propagates along Purkinje

fibres to the apex of the heart, then rapidly upwards through the ventricular walls. Contraction

of the ventricles thus begins at the apex, progressively squeezing blood towards the arterial

1Certain other regions, notably around the AV node and the Purkinje fibres, are also capable of self-excitation
if the SAN fails.
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exits. The AP is sustained to prevent premature relaxation, maintaining initial contraction until

the entire myocardium has had time to depolarize and contract completely.

For more information on heart physiology, see Sherwood (2001, Chapter 9) or Carmeliet and

Vereecke (2002).

2.1.1 Mathematical modelling

Historically, mathematical modelling of the heart began with modelling the electrical behaviour

of single myocytes, as this is where the bulk of experimental data was available on which to

base models (Noble, 1960). Based on the insights of Hodgkin and Huxley into the squid giant

axon (Hodgkin and Huxley, 1952), these models treat a cell like an electrical circuit, considering

currents flowing across the cell membrane, and the effect of these currents on the transmem-

brane potential. Mathematically, this circuit is represented by a system of ordinary differential

equations (ODEs). Simulating the models (for instance, to derive predictions, which can be

tested against experiments) is then done by solving the ODE system using some numerical

algorithm.

In Section 2.2 the main features of these cell models are introduced through consideration of

a series of seminal models. Firstly, however, we consider the larger context—modelling a block

of cardiac tissue, or indeed the whole organ. This is a complex challenge and the subject of

ongoing research (see e.g. Hunter et al., 2003; Kerckhoffs et al., 2006). Within a tissue or organ

level model, models of the individual cells need to be incorporated and coupled together in some

fashion, in order to examine how the electrical activation of one cell affects its neighbours.

The most commonly used models of this electrical coupling are the monodomain and bido-

main equations. The set of bidomain equations is currently the most complete mathematical

model of electrical propagation, and was first applied to cardiac tissue in 1978 (Tung, 1978;

Miller III and Geselowitz, 1978; see also Sepulveda et al., 1989). It treats cardiac tissue as an

intracellular domain and an extracellular domain separated by an excitable membrane. These

domains are superimposed in space; where no cell is present, the intracellular domain is empty.
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The electrical activity in each domain is modelled by a partial differential equation (PDE), and

these are coupled together by the ODE systems representing current flow across the cell mem-

branes separating the domains. The complete system is thus given by:

χ

(
Cm

∂Vm

∂t
+ Iion(Vm,u)

)
−∇ · (σi∇ (Vm + φe)) = 0, (2.1.1)

∇ · ((σi + σe)∇φe + σi∇Vm) = 0, (2.1.2)

∂u

∂t
= f(u, Vm), (2.1.3)

where:

• Vm is the transmembrane potential, i.e. the difference between the potentials in the intra-

cellular and extracellular domains, and is the primary variable of interest;

• φe is the potential in the extracellular domain;

• χ is the surface-to-volume ratio;

• Cm is the membrane capacitance per unit area;

• σi is the intracellular conductivity tensor;

• σe is the extracellular conductivity tensor;

• f is the (vector-valued) function giving the ODE system representing the cell model,

which must be solved at each point in space;

• Iion is the ionic current across the membrane, also given by the cell model; and

• u is a vector of dependent variables in the cell model ODE system.

Suitable boundary conditions are given by

(σi∇ (Vm + φe)) · n = Isi
, (2.1.4)

(σe∇φe) · n = Ise , (2.1.5)
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where n is the outward pointing normal vector to the boundary, and Isi
and Ise give the ex-

ternal stimulus current per unit area applied to the intracellular and extracellular boundaries,

respectively.

Under certain conditions (by assuming that the extracellular domain is infinitely conducting,

or the two domains are equally anisotropic), φe may be eliminated from the bidomain equations,

replacing Equations (2.1.1) and (2.1.2) by the single equation

χ

(
Cm

∂Vm

∂t
+ Iion(Vm,u)

)
−∇ · (σ∇Vm) = 0, (2.1.6)

with a single ‘bulk conductivity tensor’ σ. Together with Equation (2.1.3) this forms the mono-

domain equations. Since there is only one PDE, the monodomain equations are much less

demanding to solve than the bidomain equations. The accuracy penalty is acceptable in the

absence of applied currents (Potse et al., 2006), but if external shocks (e.g. to investigate de-

fibrillation, see for example Rodriguez et al. 2005, 2006) or the magnetic field (e.g. dos Santos

et al., 2002) are to be modelled then the bidomain model is the only choice.

A variety of numerical schemes may be used to calculate a numerical solution of the mono-

domain or bidomain equations (see, for some examples and further citations, Sundnes et al.

2001; Smith et al. 2004; Whiteley 2006; Vigmond et al. 2008). As the heart has an irregular

geometry, the equations with spatial derivatives in both the monodomain and bidomain equa-

tions are usually solved using the finite element method (Reddy 1993; also described in brief in

Chapter 6). This discretises the problem domain into a ‘mesh’ of elements, and approximates

the true solution by a function (e.g. a low-order polynomial) on each element. The PDEs at each

time step may then be reduced to a large, sparse, linear system of equations which is solved to

obtain values of the functions at nodes of the mesh. This approach also handles the derivative

boundary conditions systematically.

An action potential usually propagates through cardiac tissue with a very steep wavefront. In

order to resolve the wavefront accurately, a fine mesh must thus be used, typically with a reso-

lution of 100–200 µm. Solving the large linear systems that result is thus very computationally
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demanding (Vigmond et al., 2008). Furthermore, the cell models increasingly include a large

number of physiological processes that vary on a wide range of timescales: to accurately resolve

the effect of the fast physiological processes, a short time-step must be used, commonly on the

order of 10−2 ms. Using the computing power available in 2003, Hunter et al. (2003) reported

that about thirty million grid points and fifty thousand time-steps would be required to compute

a single heartbeat (0.5 s) in a realistic anatomical model (250 cm3) of the heart, necessitating

several days to compute even on the most powerful of contemporary high-performance com-

puters. More recently, Potse et al. (2006) state that it takes 2 days to simulate a single human

heartbeat using the bidomain model on a 32-processor machine (albeit at a fairly coarse spatial

scale). It should also be noted that these simulations only consider the electrical activity. If one

also considers modelling the mechanical contraction of the heart, fluid flow of blood through the

circulation, and the coupling between these systems, the computational requirements increase

significantly (see the review by Kerckhoffs et al. 2006, for example).

In such a context, the importance of optimisation to increase simulation speed is clearly

seen. As well as the use of advanced numerical algorithms (for an example, and other ci-

tations, see Whiteley 2006), traditional approaches from computer science have their part to

play. Whichever mathematical model and numerical algorithm are chosen for performing tissue

simulations, it is still necessary to solve the ODE system representing the cell model at each

point in space, at each time step. Solving these millions of ODE systems accounts for a not

insignificant portion of the total computational effort (with the exact proportion depending on

the particular algorithms and cell models used). In the present work we have thus chosen to

focus on optimising this area of the simulation.

2.2 Cardiac cell models

As we have indicated, our contribution in this thesis is focused on the optimisation of single

cell models. There have been several review papers giving a history of cardiac modelling (for
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example, Noble and Rudy 2001; Noble 2002; Hunter et al. 2003; Noble 2004; Rudy and Silva

2006), and we do not seek to reproduce them here. Rather, through the use of a selection of both

seminal and recent models we aim to present the main features of cardiac models, and provide

a representative sample of the field which may be used to test our optimisation techniques.

Our selection is limited to twelve models, in order to avoid excessive clutter in the results

graphs. We also restrict our attention to models where we have access to the model in a form to

which we can apply our optimisation techniques; this rules out very few models however.2 The

selection presented here consists of five seminal and seven recent models, covering five species

of animal (guinea–pig, rabbit, mouse, dog, and human) and the major types of cardiac myocyte

(SAN, atrium, Purkinje fibre, and ventricle). They also span a range of ‘model genealogies’—

while they do share certain features, since they are all models of cardiac myocytes, they have

not all been developed by successive modification of the same original model.

2.2.1 Hodgkin–Huxley 1952 (Hodgkin and Huxley, 1952)

The paper “A quantitative description of membrane current and its application to conduction and

excitation in nerve” (Hodgkin and Huxley, 1952) concluded a series of papers concerned with

the flow of electric current through the surface membrane of a giant nerve fibre, by presenting a

mathematical model capable of reproducing the experimental results seen. While Hodgkin and

Huxley were concerned with nerve signal propagation in squid, their insights and the general

structure of their mathematical formulation have underpinned cardiac cellular modelling for the

past four decades.

This was the first model to use mathematical reconstruction of ion channel behaviour, rather

than abstract equations, thus linking modelling directly to the underlying physiological pro-

cesses. It was also extremely successful, correctly predicting the action potential shape, the

impedance changes, and the conduction velocity.

The electrical circuit used to represent a nerve cell is shown in Figure 2.2. The total current
2CellML files encoding the models in our sample may be downloaded from https://chaste.ediamond.

ox.ac.uk/cellml/sample.zip.

https://chaste.ediamond.ox.ac.uk/cellml/sample.zip
https://chaste.ediamond.ox.ac.uk/cellml/sample.zip
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Figure 2.2 Electrical circuit representing a squid giant axon membrane (Hodgkin and Huxley,
1952). Resistors represent ion channels. The lipid bilayer that forms the cell membrane acts as
a capacitor with capacitance Cm. Vm is the transmembrane potential.

is divided into capacitative and ionic contributions: the cell membrane acts as a capacitor, as a

result of its hydrophobic nature that makes it impermeable to charged ions, and charge is also

carried by a variety of ions moving down their respective electrochemical gradients, through

‘channels’ in the membrane. The change in Vm can then be described by the ODE

dVm

dt
= − 1

Cm

Iion ,

where Iion is the total transmembrane ionic current and Cm is the membrane capacitance. To

normalise for variability in cell size, models typically consider capacitance per unit area of

membrane, and current densities, so Cm might be given in µF/cm2 and Iion in µA/cm2.

The model considers Iion to be composed of three currents—those caused by sodium and

potassium ions (INa and IK), and a small ‘leakage current’ due to other ions, such as chlo-

ride. Each species of ion has its own conductance and equilibrium potential, and the current is
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calculated using Ohm’s law, for example

INa = gNa(Vm − ENa)

where gNa is the sodium channel conductance [mS/cm2] and ENa is the equilibrium potential

[mV], giving INa in µA/cm2.

Hodgkin and Huxley posited the existence of activating and inactivating molecules for the

ion channels, which function as gates determining whether the channel is open or closed. The

conductance is then a function of the maximum conductance (assumed constant) and the open

probabilities of the gates (which can vary with time, depending on the transmembrane poten-

tial); for a given type of gate this probability ranges from 0 (all gates closed) to 1 (all open), and

can be described by an ODE of the form

dm

dt
= α(1−m)− βm,

where m is the open probability (and hence 1 −m is the closed probability), and α and β are

Vm-dependent opening and closing transition rates, described by exponential expressions. Gate

transitions are assumed to be independent of each other. The sodium current was found to be

accurately modelled by three identical activation gates (each with open probability m) and one

inactivation gate (with open probability h), giving the conductance as

gNa = ḡNam
3h,

where ḡNa is the maximum conductance.

The squid giant axon is an unusually large nerve cell, with a diameter typically around

0.5 mm. It is this feature that was key to Hodgkin and Huxley’s work—they were able to

insert electrodes inside the axon, and thus obtain the experimental data needed to develop their

model. This illustrates the ‘middle-out’ approach to modelling: start where the data is available,

yet the system is simple enough to comprehend sufficiently to model. As we shall see below,
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subsequent advances in experimental techniques have triggered advances in modelling. Mod-

elling has also provided insight into designing new experiments, giving an iterative interplay

between models and experiments (Noble and Rudy, 2001).

2.2.2 Noble 1962 (Noble, 1962)

There are obvious similarities between nerve cells and myocytes: both feature an excitable

membrane and produce an action potential when stimulated. The APs produced are quite differ-

ent, however. A nerve AP is of extremely brief duration, on the order of 1 millisecond, whereas

a human ventricular AP may last 400 milliseconds, with many intracellular events during that

time controlling the mechanical contraction. In the early 1960s research was done to investi-

gate whether, with certain modifications, Hodgkin and Huxley’s formulation of the properties of

excitable membranes might also be used to describe the long-lasting action and pace-maker po-

tentials of the Purkinje fibres of the heart. Noble was the first to show that a model incorporating

two potassium currents could produce a long AP duration without requiring unrealistically high

conductances, thus reducing the energy cost by an order of magnitude (Noble, 2002, 2004).

Various conventions of cardiac models differ from those used by Hodgkin and Huxley. The

primary change is in the sign of Vm: in myocytes Vm is the potential of the inside with respect to

the outside of the membrane (i.e. Vm = φi − φe). This means that an AP is a positive variation

in the transmembrane potential, and the resting potential is negative. Positive currents are thus

flowing outward. This is illustrated in the circuit diagram for this model, Figure 2.3.

2.2.3 DiFrancesco–Noble 1985 (DiFrancesco and Noble, 1985)

In 1964 the voltage clamp experimental technique was successfully applied to cardiac muscle

for the first time (Deck and Trautwein, 1964). The existence of a current carried by calcium ions

was soon discovered. Along with other discoveries, this formed the basis of the MNT (McAl-

lister et al., 1975) and Beeler–Reuter (Beeler and Reuter, 1977) models. The latter, due to its

simplicity as compared with later models of the ventricular action potential, has been exten-
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Figure 2.3 Electrical circuit representing the 1962 Noble model (Noble, 1962). Resistors repre-
sent ion channels. The potassium current is assumed to flow through two non-linear resistances
which have preferential directions for current flow. The lipid bilayer that forms the cell mem-
brane acts as a capacitor with capacitance Cm. Vm is the transmembrane potential.

sively used in multicellular simulations.

We have chosen to focus instead on the later DiFrancesco–Noble model of Purkinje fibres,

which was the first to incorporate ionic concentration changes within the cell. This was a

fundamental advance, since these are essential to the study of some disease states (Noble and

Rudy, 2001). In modelling such changes, it was also necessary to model the processes by which

the ionic gradients can be restored and maintained, and thus in a modelling ‘avalanche’ several

linked ion exchangers and pumps had to be included. As the names suggests, these allow

respectively for the exchange of ions (e.g. sodium for calcium) and for metabolic control of

certain currents. The model was also the first to consider events occurring inside the cell, rather

than just at the cell membrane, by including a model of calcium release from the sarcoplasmic

reticulum.

While not included in the DiFrancesco–Noble model, modelling of changes in calcium con-

centration has been crucial in later models that consider electro-mechanical coupling (Kerck-
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hoffs et al., 2006), since it is the release of calcium into the cytoplasm of the cell that triggers

contraction. The sarcoplasmic reticulum is a structure within the cell that stores large quanti-

ties of calcium, which is taken up from the cytoplasm while the cell relaxes. When an action

potential is initiated, the transfer of a small amount of calcium from the extracellular space into

the cell triggers the rapid release of calcium from the sarcoplasmic reticulum (this is known as

calcium-induced calcium release) which causes mechanical contraction.

2.2.4 Noble–Noble 1984 (Noble and Noble, 1984)

Noble and Noble also developed a variation of the DiFrancesco–Noble model to apply to the

mammalian sino-atrial node, primarily by altering various parameter values to match experi-

mental data. One of the differences between the pacemaker activity of Purkinje fibres and the

SAN is that the latter is far less sensitive to extracellular potassium, and so in this sense the

rhythm generated is more robust. Again this is a seminal model, being the first model of the

SAN to incorporate intracellular ion concentration changes.

It also attempted to account for differences in behaviour between cells in different regions of

the SAN: peripheral regions of the SAN show a higher resting potential than the centre. Various

parameter modifications were able to reproduce these differences.

2.2.5 Luo–Rudy 1991 (Luo and Rudy, 1991)

With the development of single-cell and single-channel recording techniques in the 1980s, the

limitations of voltage-clamp measurements were overcome and the intracellular and extracellu-

lar ionic environments could be controlled. The additional data thus available were used by Luo

and Rudy to develop a quantitative model of the mammalian ventricular action potential. Their

1991 paper marks the first step, formulating the fast inward sodium current and four outward

potassium currents, and incorporating the possibility of changing the extracellular potassium

concentration.

Many subsequent models have been based upon the Luo–Rudy formulations, and in par-
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ticular upon the second phase of development (Luo and Rudy, 1994), which incorporated the

dynamics of intracellular ionic concentrations, and is thus known as the LRd model. It includes

most of the ion exchangers and pumps, as well as implementing cell compartmentalization

(myoplasm, junctional and nonjunctional sarcoplasmic reticulum), calcium buffers in the my-

oplasm (troponin, calmodulin) and in the junctional sarcoplasmic reticulum (calsequestrin), and

calcium-induced calcium release.

2.2.6 Courtemanche et al. 1998 (Courtemanche et al., 1998)

There are many interspecies differences in myocyte behaviour. For example, the transient out-

ward current Ito present in rabbit and human atrial cells has been shown to recover from inac-

tivation at least two orders of magnitude faster in humans than in rabbits (Courtemanche et al.,

1998). Thus, while earlier models of atrial cells based solely on animal data have provided valu-

able insights into the mechanisms underlying AP generation in those species, the interspecies

differences and the amount of human data available led Courtemanche et al. to develop a model

based specifically on direct measurements of human atrial currents, albeit supplemented with

animal data where human data were lacking. Many of the current formulations are based on the

LRd model (Luo and Rudy, 1994).

The AP produced by the model resembles those recorded from human atrial samples, and

responds to various interventions in a manner consistent with experimental data. The model

also has some clinical relevance, as it provides insights into the basic mechanisms underlying a

variety of clinical determinants of atrial fibrillation.

The model of Nygren et al. (1998) was developed independently during the same period, and

also models a human atrial myocyte. We have arbitrarily elected to use the Courtemanche et al.

model instead.
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2.2.7 Noble et al. 1998 (Noble et al., 1998)

Modelling calcium handling is crucial when considering whole-heart behaviour, rather than

focusing purely on electrical activity. Many cardiac disease states are not purely electrical

(even if electrical mayhem is often the final villain) but incorporate biochemical and mechanical

factors. Mechanical contraction is triggered by the release of calcium within the cell, and hence

by the electrical activity, but this causality is not one way—various ion channels are sensitive

to cell shape changes.

Detailed models of calcium handling are, however, computationally expensive. Indeed, the

fact that one must compromise between model complexity and computability is one of the rea-

sons for the multiplicity of cell models available. Different models are designed to answer

different physiological questions. Some seek to model subcellular processes in great detail.

Others use simplified models of subcellular activity in order to make tissue-level simulations

tractable. The simplified dyadic space model of Noble et al. (1998), of the guinea–pig ventricle,

falls into the latter category, and reproduces many of the features of the initiation of calcium sig-

nalling, including some mechanoelectric feedback, with only a modest increase in computation

time.

2.2.8 Zhang et al. 2000 (Zhang et al., 2000)

This was the first model to consider variations in behaviour between the centre and periphery of

the (rabbit) sinoatrial node based on experimental data. The model was tested by investigating

the effect of blocking various ionic currents, and by measuring resting potentials after blocking

spontaneous activity; in each case results compared favourably with experimental data.

An assumption made in this model illustrates an important consideration when simulating

many beats. Unlike models which consider dynamic changes in intracellular ionic concen-

trations (e.g. LRd), all the intracellular concentrations are assumed to be constant. Since the

transmembrane currents are carried by ions, however, the model is only valid for simulations

of a few beats, since the law of conservation of charge is not obeyed. If ions responsible for a
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stimulus current are not accounted for, this can also be a problem for other models (Rudy and

Silva, 2006, p. 63).

Garny et al. (2003a) note that the published equations do not reproduce the figures shown in

the Zhang et al. paper, an instance demonstrating the importance of standard computer-readable

model description formats such as CellML. In their evaluation of 1D rabbit SAN models Garny

et al. have thus implemented three CellML versions of the model: the published version, a

version reproducing the single-cell simulations, and a version which may be used to reproduce

the 1D simulation results.

This encoding of the model is particularly interesting for our purposes because all these

versions are contained in a single CellML document. One parameter is used to select the desired

version, and another parameter sets the cell position within the SAN. Decision making based

on these parameters is nested within the model equations, thus there is considerable scope for

one of our optimisation techniques to promote these decisions from run-time to compile-time,

as we shall see in Chapters 5 and 7.

2.2.9 Faber–Rudy 2000 (Faber and Rudy, 2000)

This is a recent version of the LRd model (see also Section 2.2.5) and was developed to study

behaviour under sodium overload within the cell, which can accompany various pathologies

and lead to arrhythmia. Various features of the model have been reformulated in order to cover

the range of greatly elevated intracellular sodium and calcium: the sodium–potassium pump

current, the sodium–calcium exchanger current, and the process of calcium-induced calcium

release from the (junctional) sarcoplasmic reticulum. A sodium-activated potassium current is

also incorporated to investigate the hypothesis that this plays a significant role in APD shorten-

ing during conditions of elevated intracellular sodium.

We have included this model as it is the most recent guinea–pig LRd-based model available

at the time of writing, and it is in common usage.
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2.2.10 Fox et al. 2002 (Fox et al., 2002)

The period from the end of one action potential to the start of the next is known as the diastolic

interval, during which the ventricles relax. The length of the diastolic interval has a large effect

on the duration of the subsequent action potential, and the relationship between the two is

known as the action potential duration restitution relation. If the slope of the restitution relation

is at least 1, then high-frequency pacing commonly leads to an alternation of action potential

duration, or electrical alternans, with ‘normal’ APs interleaved with shortened APs.

Such alternans may be a precursor to the development of ventricular arrhythmias and fib-

rillation, and so Fox et al. (2002) aimed to develop a model which would exhibit stable alter-

nans, and hence to identify the ionic currents responsible for their occurrence. These currents

were then manipulated to eliminate alternans. This illustrates one important use for quantita-

tive modelling—gaining insight into the underlying causes of medical conditions in order to

determine novel treatments.

Their model was based primarily on the earlier Winslow model of the canine ventricle

(Winslow et al. 1999; itself based on the LRd model), with some parts also taken from the LRd

and Chudin et al. (1999) models, altered as necessary to fit experimental voltage-clamp data

from canine ventricular myocytes. As in Section 2.2.6, this illustrates the trend towards species-

specific models based on species-specific experimental data, in contrast to earlier generic ‘mam-

malian’ models.

2.2.11 Bondarenko et al. 2004 (Bondarenko et al., 2004)

In recent years a large body of knowledge has accumulated on the molecular structure of cardiac

ion channels, their function, and their modification by genetic mutations associated with various

cardiac disorders. Incorporating this knowledge into cell-level models, in order to understand

how molecular-level changes affect cellular function, remains a major challenge. In a recent

review article, Rudy and Silva (2006) explain how Markov models of ion channel function can

be included within integrated models of cardiac cells.
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Markov models explicitly represent ion channel states, and assign probabilities for the tran-

sitions between states. It is assumed that transitions depend only on the present state of the

channel, not on previous behaviour. Differential equations can then be used to compute the

probability of an ion channel occupying any given state, or equivalently the proportion of ion

channels of that type in each state, at a given point in time. Note that unlike ‘true’ Markov mod-

els, which consider small populations and are therefore stochastic, these differential equation

models are deterministic, and hence rely on the assumption that there are many ion channels of

each type in a cell. With these models, channels may have a variety of open, closed, and inac-

tivated states. As well as being able to express the situations described by a Hodgkin–Huxley

formulation of channel activity, Markov models can also account for cases where activation and

inactivation of a channel are not independent, but coupled. The state transitions of a Markov

model typically represent specific channel movements that have been characterised experimen-

tally. Many genetic manipulations and diseases alter the kinetic properties of a single ion chan-

nel and can be related to changes in specific transition probabilities in the Markov models for

these channels.

Bondarenko et al. developed a mouse ventricular cell model from voltage clamp data, using

Markov models to represent ion channels where possible. The attribution of putative molecu-

lar bases for several of the component currents enables this model to be used to simulate the

behaviour of genetically modified transgenic mice (which have genetic defects associated with

human diseases). The model also has detailed intracellular calcium dynamics, including spatial

localisation.

Due to the high level of detail in this model, it is extremely computationally intensive. Also,

it is the only model in our sample to use Markov models extensively, rather than using Hodgkin–

Huxley-style formulations for the ion channels. It thus provides an interesting test case for our

optimisation techniques.
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2.2.12 ten Tusscher and Panfilov 2006 (ten Tusscher and Panfilov, 2006)

The ten Tusscher models (ten Tusscher et al., 2004; ten Tusscher and Panfilov, 2006) are cur-

rently the most advanced human ventricular models, designed with multicellular simulations in

mind. They are thus not as detailed as some models in modelling certain features, particularly

of the calcium dynamics.

The 2006 model is based on more recent experimental measurements of human AP duration

restitution (see also Section 2.2.10), and includes a more extensive description of intracellular

calcium dynamics than the earlier model, by considering localisation of calcium within the

cell and using a reduced Markov model to represent calcium-induced calcium release (see also

Section 2.2.3). These features are used to investigate the causes of ventricular fibrillation, a

major cause of death, by simulating blocks of cardiac tissue or a whole ventricle, and examining

how the chaotic electrical patterns characteristic of fibrillation can be induced. It is hoped that

this will lead to an understanding of how they can be prevented.

The model also comes in three variants, describing differences between cells at different

depths within the ventricular wall: endocardial cells on the interior layer, midicardial (M) cells

in the central region, and epicardial cells forming the outer layer. Our simulations in Chapter 7

will use the midicardial variant.

2.2.13 Cell model summary

In the previous sections some of the key features of cardiac cell models have been introduced:

ion transfer across the cell membrane (either by Hodgkin–Huxley style formulations or Markov

models), ion concentration changes within the cell, and intracellular calcium handling (includ-

ing the link with mechanical contraction). Also, we have seen the ongoing trend towards models

designed for specific uses, aimed at detailed predictions of behaviour in a single species for par-

ticular disease states, and hence based increasingly on data solely from the relevant species.

Two important points for the current work can be drawn from this. Firstly, as more and

more data becomes available, models become increasingly detailed and complex, and the need
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Table 2.1 Number of ODEs and ionic currents included in each model of our sample.
Model ODEs Currents

Hodgkin–Huxley 1952 4 3
Noble 1962 4 3

DiFrancesco–Noble 1985 16 10
Noble–Noble 1984 15 9

Luo–Rudy 1991 8 6
Courtemanche et al. 1998 21 12

Noble et al. 1998 26 20
Zhang et al. 2000 15 15
Faber–Rudy 2000 25 16

Fox et al. 2002 13 13
Bondarenko et al. 2004 41 15

ten Tusscher and Panfilov 2006 19 12

for effective optimisation techniques increases. This is illustrated in Table 2.1. Secondly, as

mentioned in Section 2.2.7, there is no single ‘best model’; rather it is necessary to choose the

most appropriate model for the scientific questions asked. Faced with a multiplicity of models,

the use of languages such as CellML (see the next section) for describing them in a portable

fashion is essential. In this context, the work of this thesis is most timely.

2.3 The CellML modelling language

Implementing a published cell model is rarely a straightforward exercise. Simple typographical

errors can easily be introduced by either the author or the reader. Documentation on the model

(e.g. initial conditions and units, as well as more general comments) can be lacking, making

it difficult to produce working code from an abstract mathematical description. Some authors

have tried to overcome this problem by publishing source code implementing their model on

the internet (e.g. Luo and Rudy 19943), which greatly reduces errors, but does not prevent

them when porting a model to another simulation environment (that is, a piece of software or

a software framework for simulating such models). Since newer environments are likely to

be more advanced, it is desirable to be able to port models easily. Also, if each cell model is

3http://rudylab.wustl.edu/research/cell/methodology/

http://rudylab.wustl.edu/research/cell/methodology/
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written in an ad-hoc coding format, it is then difficult to integrate these in a coherent manner

into higher-level simulations (e.g. of the whole heart).

The modelling language CellML (Hedley et al., 2001; Cuellar et al., 2003; Lloyd et al., 2004)

was developed by the Bioengineering Institute at the University of Auckland to facilitate the ex-

change of biological cell-level models, ameliorating the problems described above. Its focus is

on enabling those developing mathematical models of cellular phenomena to write their models

easily in an abstract, well-defined form. The basic constituents and structure of CellML are

simple, providing a common basis for describing models, and facilitating the creation of com-

plex models from simpler ones by combining models and/or adding detail to existing models.

It is an XML-based language, and hence is well suited to enable easy manipulation of models

by computer programs, for example generating graphical or LATEX representations of models,

or integrating models into a simulation environment. Various such environments have support

for CellML models, including PCEnv4, COR5 (Garny et al., 2003b), CESE6 (Missan and Mc-

Donald, 2005), Virtual Cell7 (Loew and Schaff, 2001), JSim8, and CMISS9. A review of tool

support for CellML has recently been written by Garny et al. (2008).

CellML provides us with a clear, abstract format for describing cardiac ionic models. A

large component of this D.Phil. has been to automatically transform these model descriptions

to produce efficient implementations of the models, and the XML nature of CellML expedites

this process. There are, however, other biological modelling languages which could be used to

represent such models, and provide a basis for our transformations, notably SBML (Hucka et al.,

2004). The primary reason for favouring CellML for this work is the availability of a repository

of CellML models10 which includes many curated cardiac ionic cell models. With CellML we

thus have access to a large test base for our techniques. SBML also has a narrower scope than

4http://www.cellml.org/tools/pcenv/
5http://cor.physiol.ox.ac.uk/
6http://cese.sourceforge.net/
7http://www.nrcam.uchc.edu/
8http://nsr.bioeng.washington.edu/PLN/
9http://www.cmiss.org/

10http://www.cellml.org/models

http://www.cellml.org/tools/pcenv/
http://cor.physiol.ox.ac.uk/
http://cese.sourceforge.net/
http://www.nrcam.uchc.edu/
http://nsr.bioeng.washington.edu/PLN/
http://www.cmiss.org/
http://www.cellml.org/models
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CellML, being focused on describing sub-cellular processes such as reaction networks. It is

thus less suited to the ODE system models of cardiac cells which we address.

2.3.1 CellML syntax

As an XML dialect, CellML is a very verbose language. To illustrate this, consider the exceed-

ingly simplified model

dV

dt
=

I

C
, I = gV, C, g constants. (2.3.1)

This could be encoded by the CellML document shown in Listing 2.1. Within this thesis we

therefore give examples in a compact syntax based on the ‘readable format’ used by COR (Garny

et al., 2003b). In this compact syntax, the above model would be represented as shown in List-

ing 2.2.

Listing 2.1: A possible CellML encoding of the simple model given in (2.3.1).
<model name= ' example ' xmlns= ' h t t p : / /www. c e l l m l . o rg / c e l l m l / 1 . 0 # '>

<u n i t s name= ' ms '>
<u n i t p r e f i x = ' m i l l i ' u n i t s = ' second ' />

< / u n i t s>
<component name= 'A '>

<v a r i a b l e name= ' t ime ' u n i t s = ' ms ' p u b l i c i n t e r f a c e = ' o u t ' />
<v a r i a b l e name= ' v o l t a g e ' u n i t s = ' v o l t ' p u b l i c i n t e r f a c e = ' o u t '

p r i v a t e i n t e r f a c e = ' o u t ' />
<v a r i a b l e name= ' c u r r e n t ' u n i t s = ' ampere ' p r i v a t e i n t e r f a c e = ' i n ' />
<v a r i a b l e name= 'C ' u n i t s = ' f a r a d ' i n i t i a l v a l u e = ' 1 ' />
<math xmlns= ' h t t p : / /www. w3 . org / 1 9 9 8 / Math / MathML '>

<a p p l y><eq />
<a p p l y><d i f f />

<bva r><c i>t i m e< / c i>< / bva r>
<c i>v o l t a g e< / c i>

< / a p p l y>
<a p p l y><d i v i d e />

<c i>c u r r e n t< / c i>
<c i>C< / c i>

< / a p p l y>
< / a p p l y>

< / math>
< / component>
<component name= 'B '>

<v a r i a b l e name= 'V ' u n i t s = ' v o l t ' p u b l i c i n t e r f a c e = ' i n ' />
<v a r i a b l e name= ' I ' u n i t s = ' ampere ' p u b l i c i n t e r f a c e = ' o u t ' />
<v a r i a b l e name= ' g ' u n i t s = ' s i emens ' i n i t i a l v a l u e = ' 0 . 3 ' />
<math xmlns= ' h t t p : / /www. w3 . org / 1 9 9 8 / Math / MathML '>
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<a p p l y><eq />
<c i>I< / c i>
<a p p l y><t i m e s />

<c i>g< / c i>
<c i>V< / c i>

< / a p p l y>
< / a p p l y>

< / math>
< / component>
<group>

< r e l a t i o n s h i p r e f r e l a t i o n s h i p = ' e n c a p s u l a t i o n ' />
<c o m p o n e n t r e f component= 'A '>

<c o m p o n e n t r e f component= 'B ' />
< / c o m p o n e n t r e f>

< / g roup>
<c o n n e c t i o n>

<map components component 1 = 'A ' component 2 = 'B ' />
<m a p v a r i a b l e s v a r i a b l e 1 = ' v o l t a g e ' v a r i a b l e 2 = 'V ' />
<m a p v a r i a b l e s v a r i a b l e 1 = ' c u r r e n t ' v a r i a b l e 2 = ' I ' />

< / c o n n e c t i o n>
< / model>

Listing 2.2: The model of Listing 2.1 described using a compact syntax.
def model example as

def u n i t ms from
u n i t second { pre f : m i l l i } ;

def comp A as
var t i m e : ms {pub : o u t } ;
var v o l t a g e : v o l t { pr iv : out , pub : o u t } ;
var c u r r e n t : ampere { pr iv : i n } ;
var C : f a r a d { i n i t : 1} ;
ode ( v o l t a g e , t i m e ) = c u r r e n t / C ;

def comp B as
var V : v o l t {pub : i n } ;
var I : ampere {pub : o u t } ;
var g : s i e m e n s { i n i t : 0 . 3 } ;
I = g * V ;

def group as e n c a p s u l a t i o n f o r
comp A i n c l

comp B ; ;
def map between A and B f o r

vars v o l t a g e and V ;
vars c u r r e n t and I ;

The compact syntax can be (approximately) described using an EBNF11 notation. This con-

sists of rules defining terms (representing parts of the language) by expressions, which have

some similarity to regular expressions. They may contain literals of the compact syntax (in

11Extended Backus–Naur Form; see Wirth (1977).
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bold type) or references to terms (in italics). Certain characters have special meaning: text

in square brackets is optional; a vertical bar indicates a choice between options; a superscript

asterisk denotes that the preceding item may occur any number of times (including not at all);

whereas a superscript plus symbol means the item must occur at least once. Round brackets are

used for grouping. In the EBNF below, the term M represents a CellML model.

M = def model name as U∗ C∗ G∗ K∗

U = def unit uname [from
(unit uname { urefs };)+]

urefs = uref | uref , urefs
uref = m | p | e | o

m = mult: real
p = pref : prefix
e = expo: real
o = offset : real
C = def comp cname as V+ E∗
V = var vname : uname [{ init, interface }] ;
E = (vname | ode( vname , vname ))

= mathematics ;
G = def group as type for T +

type = containment | encapsulation
T = comp cname [ incl T +];
K = def map between cname and cname for

µ+

µ = vars vname and vname ;
uname = vname = cname = name

In explaining the usage of the various constructs available in CellML, we illustrate them

using a modified version of the Hodgkin–Huxley equations (see Section 2.2.1), shown in List-

ing 2.3. The only alterations to the published model have been to change the conventions used

to match those in cardiac models (see Section 2.2.2).

A CellML model M is represented as a collection of discrete components C linked by con-

nections K to form a network. A component is a functional unit that may correspond to a

physical compartment (e.g. the membrane component represents the cell membrane), a collec-

tion of entities engaged in similar tasks (e.g. the sodium channel component, which represents

all the sodium channels in the cell membrane), or a convenient modelling abstraction (e.g. the
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Listing 2.3: The modified Hodgkin–Huxley equations encoded in CellML, taken from http:
//www.cellml.org/models/hodgkin huxley 1952 version07.

def model h o d g k i n h u x l e y s q u i d a x o n 1 9 5 2 as
def u n i t m i l l i s e c o n d from

u n i t second { pre f : m i l l i } ;
def u n i t p e r m i l l i s e c o n d from

u n i t second { pre f : m i l l i , expo : −1};
def u n i t m i l l i v o l t from

u n i t v o l t { pre f : m i l l i } ;
def u n i t m i l l i S p e r c m 2 from

u n i t s i e m e n s { pre f : m i l l i } ;
u n i t metre { pre f : c e n t i , expo : −2};

def u n i t microF per cm2 from
u n i t f a r a d { pre f : micro } ;
u n i t metre { pre f : c e n t i , expo : −2};

def u n i t microA per cm2 from
u n i t ampere { pre f : micro } ;
u n i t metre { pre f : c e n t i , expo : −2};

def comp e n v i r o n m e n t as
var t i m e : m i l l i s e c o n d {pub : o u t } ;

def comp membrane as
var V : m i l l i v o l t { i n i t : −75, pub : o u t } ;
var E R : m i l l i v o l t { i n i t : −75, pub : o u t } ;
var Cm : microF per cm2 { i n i t : 1} ;
var t i m e : m i l l i s e c o n d {pub : i n } ;
var i Na : microA per cm2 {pub : i n } ;
var i K : microA per cm2 {pub : i n } ;
var i L : microA per cm2 {pub : i n } ;
var i S t i m : microA per cm2 {pub : i n } ;

ode ( V , t i m e ) = −(− i S t i m + i Na + i K + i L ) / Cm ;

def comp s o d i u m c h a n n e l as
var i Na : microA per cm2 {pub : o u t } ;
var g Na : m i l l i S p e r c m 2 { i n i t : 120} ;
var E Na : m i l l i v o l t ;
var t i m e : m i l l i s e c o n d {pub : in , pr iv : o u t } ;
var V : m i l l i v o l t {pub : in , pr iv : o u t } ;
var E R : m i l l i v o l t {pub : i n } ;
var m : d i m e n s i o n l e s s { pr iv : i n } ;
var h : d i m e n s i o n l e s s { pr iv : i n } ;

E Na = E R +115{ m i l l i v o l t } ;
i Na = g Na*pow (m , 3{ d i m e n s i o n l e s s } )* h *(V−E Na ) ;

def comp s o d i u m c h a n n e l m g a t e as
var m : d i m e n s i o n l e s s { i n i t : 0 . 0 5 , pub : o u t } ;
var alpha m : p e r m i l l i s e c o n d ;
var be ta m : p e r m i l l i s e c o n d ;
var V : m i l l i v o l t {pub : i n } ;

http://www.cellml.org/models/hodgkin_huxley_1952_version07
http://www.cellml.org/models/hodgkin_huxley_1952_version07
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var t i m e : m i l l i s e c o n d {pub : i n } ;

alpha m = −0.1{ p e r m i l l i s e c o n d }*(V+50{ m i l l i v o l t } ) /
( exp (−(V+50{ m i l l i v o l t } ) / 1 0{ d i m e n s i o n l e s s } )
−1{ d i m e n s i o n l e s s } ) ;

be ta m = 4{ p e r m i l l i s e c o n d }* exp (−(V+75{ m i l l i v o l t } ) /
18{ m i l l i v o l t } ) ;

ode (m , t i m e ) = alpha m *(1{ d i m e n s i o n l e s s}−m)−be ta m *m ;

def comp s o d i u m c h a n n e l h g a t e as
var h : d i m e n s i o n l e s s { i n i t : 0 . 6 , pub : o u t } ;
var a l p h a h : p e r m i l l i s e c o n d ;
var b e t a h : p e r m i l l i s e c o n d ;
var V : m i l l i v o l t {pub : i n } ;
var t i m e : m i l l i s e c o n d {pub : i n } ;

a l p h a h = 0 .07{ p e r m i l l i s e c o n d }* exp (−(V+75{ m i l l i v o l t } ) /
20{ m i l l i v o l t } ) ;

b e t a h = 1{ p e r m i l l i s e c o n d } /
( exp (−(V+45{ m i l l i v o l t } ) / 1 0{ d i m e n s i o n l e s s } )

+1{ d i m e n s i o n l e s s } ) ;
ode ( h , t i m e ) = a l p h a h *(1{ d i m e n s i o n l e s s}−h)− b e t a h *h ;

def comp p o t a s s i u m c h a n n e l as
var i K : microA per cm2 {pub : o u t } ;
var g K : m i l l i S p e r c m 2 { i n i t : 36} ;
var E K : m i l l i v o l t ;
var t i m e : m i l l i s e c o n d {pub : in , pr iv : o u t } ;
var V : m i l l i v o l t {pub : in , pr iv : o u t } ;
var E R : m i l l i v o l t {pub : i n } ;
var n : d i m e n s i o n l e s s { pr iv : i n } ;

E K = E R−12{ m i l l i v o l t } ;
i K = g K*pow ( n , 4{ d i m e n s i o n l e s s } ) * ( V−E K ) ;

def comp p o t a s s i u m c h a n n e l n g a t e as
var n : d i m e n s i o n l e s s { i n i t : 0 . 3 2 5 , pub : o u t } ;
var a l p h a n : p e r m i l l i s e c o n d ;
var b e t a n : p e r m i l l i s e c o n d ;
var V : m i l l i v o l t {pub : i n } ;
var t i m e : m i l l i s e c o n d {pub : i n } ;

a l p h a n = −0.01{ p e r m i l l i s e c o n d }*(V+65{ m i l l i v o l t } ) /
( exp (−(V+65{ m i l l i v o l t } ) / 1 0{ d i m e n s i o n l e s s } )
−1{ d i m e n s i o n l e s s } ) ;

b e t a n = 0 .125{ p e r m i l l i s e c o n d }* exp ( ( V+75{ m i l l i v o l t } ) /
80{ m i l l i v o l t } ) ;

ode ( n , t i m e ) = a l p h a n *(1{ d i m e n s i o n l e s s}−n)− b e t a n *n ;

def comp l e a k a g e c u r r e n t as
var i L : microA per cm2 {pub : o u t } ;
var g L : m i l l i S p e r c m 2 { i n i t : 0 . 3 } ;
var E L : m i l l i v o l t ;
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var t i m e : m i l l i s e c o n d {pub : i n } ;
var V : m i l l i v o l t {pub : i n } ;
var E R : m i l l i v o l t {pub : i n } ;

E L = E R +10.613{ m i l l i v o l t } ;
i L = g L *(V−E L ) ;

def comp s t i m u l u s p r o t o c o l as
var I s t i m : microA per cm2 {pub : o u t } ;
var I s t i m S t a r t : m i l l i s e c o n d { i n i t : 50} ;
var I s t i m E n d : m i l l i s e c o n d { i n i t : 50000} ;
var I s t i m A m p l i t u d e : microA per cm2 { i n i t : 20} ;
var I s t i m P e r i o d : m i l l i s e c o n d { i n i t : 200} ;
var I s t i m P u l s e D u r a t i o n : m i l l i s e c o n d { i n i t : 0 . 5 } ;
var t i m e : m i l l i s e c o n d {pub : i n } ;

I s t i m = s e l
case ( t i m e ≥ I s t i m S t a r t ) and ( t i m e ≤ I s t i m E n d ) and

( t i m e − I s t i m S t a r t −
f l o o r ( ( t ime−I s t i m S t a r t ) / I s t i m P e r i o d )* I s t i m P e r i o d

≤ I s t i m P u l s e D u r a t i o n ) :
I s t i m A m p l i t u d e ;

o t h e r w i s e :
0{microA per cm2 } ;

def group as c o n t a i n m e n t f o r
comp membrane i n c l

comp s o d i u m c h a n n e l i n c l
comp s o d i u m c h a n n e l m g a t e ;
comp s o d i u m c h a n n e l h g a t e ; ;

comp p o t a s s i u m c h a n n e l i n c l
comp p o t a s s i u m c h a n n e l n g a t e ; ;

comp l e a k a g e c u r r e n t ; ;

def group as e n c a p s u l a t i o n f o r
comp s o d i u m c h a n n e l i n c l

comp s o d i u m c h a n n e l m g a t e ;
comp s o d i u m c h a n n e l h g a t e ; ;

comp p o t a s s i u m c h a n n e l i n c l
comp p o t a s s i u m c h a n n e l n g a t e ; ;

def map between membrane and s t i m u l u s p r o t o c o l f o r
vars i S t i m and I s t i m ;

def map between e n v i r o n m e n t and s t i m u l u s p r o t o c o l f o r
vars t i m e and t i m e ;

def map between membrane and e n v i r o n m e n t f o r
vars t i m e and t i m e ;

def map between s o d i u m c h a n n e l and e n v i r o n m e n t f o r
vars t i m e and t i m e ;

def map between p o t a s s i u m c h a n n e l and e n v i r o n m e n t f o r
vars t i m e and t i m e ;

def map between l e a k a g e c u r r e n t and e n v i r o n m e n t f o r
vars t i m e and t i m e ;
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def map between membrane and s o d i u m c h a n n e l f o r
vars V and V ;
vars E R and E R ;
vars i Na and i Na ;

def map between membrane and p o t a s s i u m c h a n n e l f o r
vars V and V ;
vars E R and E R ;
vars i K and i K ;

def map between membrane and l e a k a g e c u r r e n t f o r
vars V and V ;
vars E R and E R ;
vars i L and i L ;

def map between s o d i u m c h a n n e l and s o d i u m c h a n n e l m g a t e f o r
vars m and m ;
vars t i m e and t i m e ;
vars V and V ;

def map between s o d i u m c h a n n e l and s o d i u m c h a n n e l h g a t e f o r
vars h and h ;
vars t i m e and t i m e ;
vars V and V ;

def map between p o t a s s i u m c h a n n e l and p o t a s s i u m c h a n n e l n g a t e f o r
vars n and n ;
vars t i m e and t i m e ;
vars V and V ;

environment component which just contains the simulation time). Components thus bear some

similarities to modules in conventional programming languages. They may contain variables

V , and mathematical relationships E that specify the interactions between those variables (in

CellML these are described using MathML content markup). The init property can be used to

specify an initial value for a state variable (which has an ODE describing its behaviour, e.g. V

and h in Listing 2.3), or the value of a constant variable (e.g. Cm).

Variables may be local to a component, or made visible to other components via interface

attributes. The effect of these is determined by the group structure G. There are two types of

group defined by CellML: containment and encapsulation. Containment refers to physical rela-

tionships between components; for example in Listing 2.3 the sodium channels are physically

located in the cell membrane. Encapsulation is a logical relationship similar to the program-

ming concept, and is used to hide the details of child components within a parent component,

producing an encapsulation hierarchy. In Listing 2.3 this is used to hide internal details of

the sodium channel (namely the gating variable) from the rest of the model. The behaviour
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implied by interfaces depends on the encapsulation hierarchy. The private interface of a vari-

able says whether its value is exported to or imported from a child component (e.g. in the

sodium channel component the gating variable h is imported). The public interface specifies

whether the variable’s value is exported to or imported from a parent or sibling component (e.g.

the sodium channel h gate component exports the value of the gating variable h to its parent).

Note that both interfaces may be specified, although some combinations of settings clearly do

not make sense. Note also that a mapping between variables in different components must be

specified in the connections section; giving interfaces and groups is not sufficient, although it is

these that determine the direction of a mapping for each pair of mapped variables. Components

without an explicit parent are treated as siblings.

There is no explicit distinction within CellML as to the role which a variable may play. For

example, there is no analogy of the const keyword indicating a constant. Instead, the whole

of the mathematics comprising the model must be analysed to determine the use to which a

variable is put. All the mathematics in the models we consider consists of simple assignments

as the only type of top-level expression: such expressions are applications of eq with a single

term (either a variable or a derivative) on the left hand side, as indicated in the EBNF above.

This makes classification of variables straightforward (as shown in Section 2.3.2) and simplifies

the semantics presented in Chapter 3. The CellML language, however, allows more generality

than is typically used by models (largely due to a lack of tool support)—expressions such as

a+b = c+d are permitted. In such cases more complex analysis is required to determine which

variables have known values (based on other expressions) and which must be computed using

the given expression. Algebraic rearrangement may be required to evaluate the expression, or

several such expressions grouped together and the resulting system of equations solved.

Every variable must have physical units associated with it. This is also required for constants

within a mathematics section. The CellML standard defines various base units (e.g. the SI base

units, as well as dimensionless and boolean), and derived units U can be defined in

terms of base units or other derived units (SI derived units may be assumed to be defined). We
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present further details of this model of units in Chapter 4.

Although not presented in our compact syntax, CellML models will typically also contain

metadata described using the Resource Description Framework.12 This contains information

such as the model authors, a reference to the publication that describes the model, references to

the experimental data used to derive or test the model, a history of changes made to the CellML

document, links to ontologies specifying the biological system(s) being modelled, and much

more. Further information can be found in the overview paper by Cuellar et al. (2003), and

specifications for the use of metadata within models are available on the CellML website.13

There are currently two versions of the CellML language: 1.0 and 1.1. All of the features

described so far are common to both. The major addition in CellML 1.1 is the import element,

which allows unit, variable and component definitions in one model to be included in another,

greatly increasing the reusability of CellML models. Support for CellML 1.1 models in the

cellml.org repository is still under development.

A new version of CellML, 1.2, is currently being discussed. This will probably include

several backwards-incompatible changes to the language, including the removal of reaction

elements (not described above) and all group relationships apart from encapsulation—other

relationships should be described using metadata. Another proposed change is to remove the

explicit directionality of interfaces, so that variables are merely exposed rather than imported or

exported; the direction of information flow will then have to be determined by analysis of the

mathematics.

2.3.2 Variable classification

As mentioned in Section 2.3.1, CellML does not explicitly declare the roles played by variables;

instead this information is implicit in the mathematical relationships defined between variables.

Tools must thus analyse the model to determine the use to which a variable is put. Similarly to

COR, we identify the following classes of variables:
12RDF; see http://www.w3.org/RDF/
13http://www.cellml.org/specifications

cellml.org
http://www.w3.org/RDF/
http://www.cellml.org/specifications
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free a variable with respect to which others are differentiated, e.g. time;

state a variable that is differentiated with respect to a free variable, e.g. the transmembrane

potential;

constant a variable that has a constant value set by its initial condition, not by any equation;

computed a variable whose value is computed in a direct fashion (i.e. not via an ODE);

mapped a variable whose value is imported from another component (such variables could

equally well be thought of as having the same classification as their source variable, but

the distinction is useful from a programming point of view); and

unknown a variable that cannot be put in another category, for whatever reason.

Where models contain only explicit assignment expressions, a simple algorithm may be used

to classify variables. The one presented here is essentially the same as that used by COR, and

proceeds as follows.

1. Classify all variables as unknown.

2. Process the encapsulation hierarchy and connection elements to determine which vari-

ables should be classified as mapped.

3. Classify all variables with an initial value set as ‘maybe constant’. Note that in a valid

model (according to the CellML specification) a variable cannot be both mapped and

‘maybe constant’.

4. Now do the following for each assignment expression in the model.

(a) If the expression represents an ODE, i.e. the left hand side is a derivative, classify

the independent variable as free and the dependent variable as state.
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Again we can apply some validity checks. If the state variable doesn’t have an initial

value, or was previously classified as computed, then the model is invalid. It is also

invalid if the free variable was not classified as either free or unknown.

(b) Otherwise, classify the variable assigned to on the left hand side as computed. If it

was not classified as unknown then the model is invalid.

(c) Recursively process the expression tree forming the right hand side of the assign-

ment, classifying as constant any variables which appear and were classified as

‘maybe constant’.

We have now described the background to CellML, and the features of the language. Thus

far, discussion of the meaning of language constructs has been informal. In the next chapter, we

define formally what it means to evaluate a CellML model.



3
An Operational Semantics for CellML

In this chapter we define an operational semantics for CellML, which provides us

with a formal definition of the language, suitable for reasoning about mathemati-

cally. The semantics is given in terms of an abstract data type describing a CellML

model (Section 3.1) and an interpreter for models described in this fashion (Sec-

tion 3.2). Reasons for defining the semantics in this way will be given.

This chapter describes a dynamic semantics for the meaning of a CellML model

when evaluated. The next chapter addresses a static semantics, providing compile-

time checks of model validity.

It must be emphasised that CellML does not specify how a model should be simulated (e.g.

which ODE solver to use); rather it describes the structure and mathematics of the model, and

leaves the choice of solver to the user. On the mathematics side, it thus specifies a vector Y of

state variables and the ODE system

dY

dt
= f(Y , t). (3.0.1)

A solver for such a system basically consists of a loop over time t. The simplest version is

Euler’s method, which at each time-step t, given a current solution Y t, computes the next

solution by

Y t+∆t = Y t + f(Y t, t)∆t. (3.0.2)
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More complex solvers will perform additional calculations during each iteration, for example

calculating the right hand side of the system at multiple points during the next time interval, or

making use of solutions from several previous iterations. Süli and Mayers (2003) have written

a good introduction to this topic.

In order to simulate a CellML model, it must thus be imported into a simulation environment

which provides the appropriate numerical algorithms. Given the existence of multiple simula-

tion environments, it is vital that they agree on the meaning of a CellML model if exchanging

models in this format is to be effective. We thus need a clear semantics of CellML. This has

been provided by the specifications (Hedley and Nelson, 2001; Cuellar et al., 2006) available on

the cellml.org website. These, as with other XML specifications, are lengthy documents

written in semi-formal English, describing the structure of CellML documents and the intended

behaviour of CellML processing software, and are very thorough. However, as we discuss be-

low, there are limitations to this approach, which we have sought to address by defining a formal

semantics for CellML.

With any optimisations we use, it is crucial to be confident that they are correct, in order to

have confidence that the results of our simulations are valid derivations from our models. If

simulation results differ from empirical data, it is important to know whether the mathematical

model or the simulation code is at fault. As simulation develops to the point where it is of

direct clinical relevance, reliability of the results will be even more important. Hence we need

to be able to show that any transformations we apply to models do not change the results of

simulations of the models in any significant way. This also requires a good definition of the

meaning of a model, in order to prove that this is invariant under our transformations. In other

words, we need a semantics for our model description language that is mathematically tractable.

Since the meaning of a CellML model should be independent of whatever method might be

used to simulate the model, we cannot define this meaning in terms of simulation results. This

makes our CellML semantics somewhat different in concept from an operational semantics of

a traditional programming language, where meaning is defined in terms of execution of the

cellml.org
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program. We need a meaning which is intrinsic to the model, and the function f provides a

natural candidate. Given values for Y and t, evaluation of the model is then evaluation of the

function f(Y , t). To show that the meaning of a model is unchanged by a transformation, we

thus need to show that this evaluation is unchanged for any possible values of Y and t. If this

is the case, then any simulation algorithm will give the same result for the transformed model

as for the original.

Not all ODE solvers evaluate the function f directly. Some, such as those based on the

Rush–Larsen technique (Rush and Larsen, 1978), require the definition of f to be rearranged

into particular forms, in order to enable more efficient simulation. However, these techniques

do still involve evaluating the expressions within f during the course of the simulation, and so

a semantics also based on this principle can still be applied.

To avoid unnecessary complexity, our semantics focuses on the subset of CellML required

for describing the types of mathematical models we are interested in, namely first order systems

of ODEs. We also only consider CellML 1.0 models, not CellML 1.1. These restrictions are

not onerous, however. The subset we consider is sufficient for the vast majority of models

currently available in the cellml.org repository, including all the cardiac models. Also,

through instantiating all imports, it is possible to convert a CellML 1.1 model into a form which

fits with our semantics.

The operational semantics for CellML consists of an abstract data type describing a CellML

document (Section 3.1), and a Haskell1 interpreter for data with this type (Section 3.2). Note

that a CellML model is not translated into a Haskell program—there is an interpretive layer.

The simple example model of Equation 2.3.1 is encoded as shown in Listing 3.1.

CellML is a declarative language—as we have said above, CellML describes the structure

and mathematics of a model, not how it should be simulated. This is analogous to a functional

language, in which the focus is on what is to be computed, not how it should be computed. The

1Readers not familiar with the Haskell programming language are referred to Appendix A for a brief overview
of its features and syntax.

cellml.org
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Figure 3.1 The example CellML model in diagrammatic form, with arrows showing the flow
of control.

Listing 3.1: The simple example model of (2.3.1) encoded using the Haskell data type for
CellML models.
example =

Model ” example ” u n i t s components c o n n e c t i o n s
u n i t s =

[ UDef ”ms”
( S i m p l e U n i t s 1 (−3) ( B a s e U n i t s ” second ” ) 0 ) ]

components =
[ Component ”A” [ ]

[ VarDecl ” t ime ” ”ms”
, VarDecl ” v o l t a g e ” ” v o l t ”
, VarDecl ” c u r r e n t ” ” ampere ”
, VarDecl ”C” ” f a r a d ” ]
[ A s s i g n ( Var ”C” ) (Num 1 ” f a r a d ” )
, A s s i g n ( Ode ” v o l t a g e ” ” t ime ” )

( Apply D i v i d e [ ( V a r i a b l e ” c u r r e n t ” ) ,
( V a r i a b l e ”C” ) ] ) ]

, Component ”B” [ ]
[ VarDecl ”V” ” v o l t ”
, VarDecl ” I ” ” ampere ”
, VarDecl ” g ” ” s i emens ” ]
[ A s s i g n ( Var ” g ” ) (Num 0 . 3 ” s i emens ” )
, A s s i g n ( Var ” I ” )

( Apply Times [ ( V a r i a b l e ” g ” ) ,
( V a r i a b l e ”V” ) ] ) ] ]

c o n n e c t i o n s =
[ VarMap ( ”A” , ” v o l t a g e ” ) ( ”B” , ”V” )
, VarMap ( ”B” , ” I ” ) ( ”A” , ” c u r r e n t ” ) ]

semantics we have chosen is thus much like a lazy functional language, and so implementing

the interpreter in such a language is a natural choice.

Lazy evaluation was chosen in order to avoid having to determine an evaluation order for

the expressions making up the model explicitly. While a CellML model is organised into com-

ponents, these logical groupings are useful from a model reuse perspective, rather than for

evaluation—one cannot evaluate each component in turn. In our simple example for instance
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(see Figure 3.1), values for the voltage V and time t are passed into component A from the

evaluator (solid arrows), then the voltage is passed to component B (dashed arrow) in order to

compute the current I , which is passed back to A (dotted arrow) to compute the right hand side

of the ODE. Real models have an even more complex information flow. While the evaluation

order can be determined by a topological sort, it seemed more natural to us to have evaluation

performed ‘on demand’, and implementation in a lazy functional language is well suited to this.

(Incidentally, if we are to allow for implicit equations at a later date, the evaluation order be-

comes even harder to determine, and we expect lazy evaluation to be even more useful. This is

discussed further in Section 8.3.)

Compared with the CellML specifications, our interpreter has several benefits. It is both

concise and precise, making it easier to grasp conceptually as a whole. The CellML 1.0 specifi-

cation is a 74 page document; our Haskell interpreter is only 1000 lines of comments and code

(much of which is supporting code) and so requires roughly 20 pages when printed at a similar

spacing and font size. Being amenable to computer manipulation, it also offers the possibility

of being compared automatically against other implementations, although this is not an avenue

we have explored as yet. The key advantage for our purposes, however, is that a formal seman-

tics allows us to prove the correctness of optimisations for CellML. In particular, implementing

partial evaluation also using Haskell makes the correctness proof for this technique relatively

straightforward, as shown in Chapter 5.

Our formal semantics for CellML does have limitations, however. The primary one is that

it only gives a semantics for a subset of CellML. There are features we have not implemented,

such as allowing implicit equations, for example of the form a+b = c+d, and hence systems of

algebraic equations.2 Such features are used by very few existing CellML models, and by none

of the cardiac models we are concerned with, but their inclusion is necessary if this is to be a

complete semantics for CellML. We also do nothing with the metadata included within CellML

documents. This may seem innocuous, but it is being proposed to include certain parameters

2Simultaneous linear equations, for example.
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controlling simulation runs (e.g. the type of numerical algorithm to use) within this metadata,

thus enabling more faithful reproduction of published results graphs.

3.1 The model data type

Mathematically, CellML specifies a vector Y of state variables and the ODE system of Equa-

tion (3.0.1):
dY

dt
= f(Y , t).

The data type representing a CellML model encodes the function f , and thus the key concept

we require is a mathematical expression. For this we use the MathTree type, a tree structure

which corresponds directly to the MathML encoding of the expression.

data MathTree
= Num Double URef −− A cn e l e m e n t
| Bool Bool −− The r e s u l t o f a r e l a t i o n a l or l o g i c a l o p e r a t o r
| V a r i a b l e I d e n t −− A ci e l e m e n t
| Apply Opera tor [ MathTree ] −− An apply e l e m e n t
| P i e c e w i s e [ Case ] ( Maybe MathTree ) −− A piecewise e l e m e n t
| D i f f I d e n t I d e n t −− D i f f v1 v2 ≡ dv1/dv2

data Case −− P i e c e w i s e c a s e s : Case c o n d i t i o n r e s u l t
= Case MathTree MathTree

−− U n i t s r e f e r e n c e s are e i t h e r t o named u n i t s ,
−− or an anonymous d e f i n i t i o n
type URef = Ei th er UName U n i t s

A few elements of this definition are worth noting.

• URef is used to annotate quantities with their physical units. The units model used is

explained in Chapter 4, and the use of an Either type in Section 5.2.3.

• Boolean values do not exist explicitly in CellML documents;3 the Bool constructor is just

used for the results of certain operators.

• Operator is a simple enumerated type, with data constructors being capitalised versions

of MathML element names.
3Although they may in CellML 1.2.
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• Piecewise expressions may optionally contain an ‘otherwise’ clause, which is the result

of the expression if no case conditions match, hence the Maybe MathTree.

The result of evaluating an expression can either be a number, or a boolean value. The value

space also includes the special value DynamicMarker which is used for explicit binding time

annotations; see Sections 5.2 and particularly 5.2.4 for further details.

data Value
= Number Double
| Boolean Bool
| DynamicMarker

The remaining type definitions comprising a full CellML type provide the model structure,

representing variables, components, connections, and the model as a whole. The top level

datatype for a CellML model is CellML:

data CellML = Model I d e n t [ UDef ] [ Component ] [ C o n n e c t i o n ]

This gives the model a name, and states that it consists of units definitions (see Chapter 4),

components, and connections. A component is also identified by name, and may contain further

units definitions (scoped locally to the component), variable declarations, and mathematics:

data Component = Component I d e n t [ UDef ] [ VarDecl ] [ MathAss ignment ]

A variable declaration is simply used to define the units of the variable:

data VarDecl = VarDecl I d e n t UName

As explained above, our semantics is restricted to explicit equations, where a variable or deriva-

tive is assigned a value, given by some expression (possibly a constant). Thus each expression

within a component must be an assignment of an expression to either a variable or a derivative:

data MathAss ignment = A s s i g n EnvKey MathTree
data EnvKey

= Var I d e n t
| Ode I d e n t I d e n t

The EnvKey type will be discussed further in the next section; for now we note that variables are

referred to by name, and a derivative is identified by the names of the dependent and indepen-

dent variables. Several examples of assignments can be found in Listing 3.1; for instance the

statement Assign (Var ”C”) (Num 1 ”farad”) which assigns the constant value 1 to the variable
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C.

Finally, to simplify the interpreter implementation, our Connection type is directional, thus

incorporating the information obtained by analysing the encapsulation hierarchy and variable

interfaces (this analysis is performed as part of the syntax conversion from the XML encoding

of CellML to our datatype). The second variable is assigned the value of the first. Variables

being mapped are identified by a pair giving the name of the component in which they are

declared, and the variable name.

data C o n n e c t i o n = VarMap ( I d e n t , I d e n t ) ( I d e n t , I d e n t )

3.2 The interpreter

In order to assign a meaning to CellML models, we define an interpreter for models defined

using the data type in Section 3.1. As we have indicated above, the meaning of a CellML model

must be independent of whatever method is used to perform simulations of the model. Our

interpreter thus requires two inputs: the model itself (in the form of Equation 3.0.1), and values

for the state variables Y and time t. Evaluation of the model is then defined as evaluation of the

function f(Y , t). The full code of the interpreter is given in Appendix C; here we describe the

main features and explain how they relate to a model’s meaning.

At the interpreter’s core is the function eval, which evaluates expressions defined by a

MathTree to obtain a Value:

e v a l : : Env → MathTree → Value

Prior to evaluating any expressions, however, we must first transform the model into an envi-

ronment (of type Env) which is a mapping from variables or ODEs to their defining expressions.

This is a more convenient representation for evaluation, and is a common technique when writ-

ing interpreters.

Many types of environment can be defined. The general environment concept is of a mapping

from keys to values. We use a polymorphic Environment type which can be parameterised with

types for the keys and values used to give a specific type of environment. The Environment type
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is provided with various functions to perform operations on environments. The find function

is used to determine the value associated with a given key. It throws an exception if the key is

not defined; the related maybe find function instead returns a Maybe value, yielding Nothing

if the key is not found. The function define is used in building environments, and adds a new

key–value mapping to an environment, yielding a new environment. There is also a function

names which generates a list of the keys defined in an environment. The types of these functions

are as follows.

f i n d : : Env i ronmen t k v → k → v
m a y b e f i n d : : Env i ronmen t k v → k → Maybe v
d e f i n e : : Env i ronmen t k v → k → v → Env i ronmen t k v
names : : Env i ronmen t k v → [ k ]

The environment type used for a CellML model, Env, is defined as follows, with the keys

having type EnvKey and values type EnvValue:

type Env = Env i ronmen t EnvKey EnvValue
data EnvKey = Var I d e n t | Ode I d e n t I d e n t
data EnvValue

= Expr MathTree
| Val Value
| I n t e r n a l D a t a ( VarUni tsEnv , Uni t sEnvs , Env )

Keys, which represent either variables or derivatives, can thus be bound either to expressions

(Expr MathTree) or simple values (Val Value). To continue with our earlier example, the assign-

ment of 1 to C would be represented in a model environment by the mapping from Var ”A,C” to

Val (Number 1). The variable name used is explained below. The InternalData value is bound

to the variable named ”” (which is an illegal identifier for CellML) and is used as a convenient

way to pass some extra information between parts of the interpreter and partial evaluator (see

also Chapter 5): an environment storing the units of each variable, environments storing the

units defined in the model, and an environment containing the initial conditions for simulation.

Given this environment, simulation of a model is then performed by the run env function,

which evaluates the right-hand side of each ODE, and defines the results in a new environment,

using a helper function elookup (defined later) which looks up a key in an environment and

evaluates the defining expression within that environment, using eval.
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r u n e n v : : Env → [ EnvKey ] → Env
r u n e n v mode l env d e r i v s

= f o l d r e v a l d e r i v e m p t y e n v d e r i v s
where −− E v a l u a t e t h e RHS o f a s i n g l e ODE

e v a l d e r i v : : EnvKey → Env → Env
e v a l d e r i v d env = d e f i n e env d ( Val ( e l o o k u p mode l env d ) )

Here the fold builds up the result environment using eval deriv applied to each derivative in

the model in turn. This helper function adds a new binding in the environment, mapping the

derivative it is given to the result of evaluating that derivative’s definition (i.e. the right-hand

side of the relevant ODE) in the model environment. The result is thus an environment binding

each derivative in dY
dt

to the corresponding Value in f(Y , t).

In generating the model environment (using the load cellml function), we perform various

canonicalisations, in order to simplify the core of the interpreter.

• Within the environment, components are no longer explicitly represented. We still need to

distinguish between variables defined in separate components which have the same name,

however, and so all occurrences of variable names are changed to use the ‘full name’ of

the variable, including the name of the component within which it is defined. This ‘full

name’ is defined by the full ident function.

• Units may also be defined within components as well as globally for the whole model,

and so a similar transformation is applied to unit names.

• Connections are represented by a simple assignment of one variable to another. The con-

nection VarMap (cname1, vname1) (cname2, vname2) is thus represented by a binding in

the environment of the expression Expr (Variable (full ident cname1 vname1)) to the key

Var (full ident cname2 vname2).

• Otherwise clauses of piecewise expressions are converted into an extra case, so that all

piecewise expressions have the form Piecewise cases Nothing. The associated condition

is given as Bool True, to preserve the expression semantics.
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• For any ODE defined, we also add an ‘alias’ to the environment. This alias uses the

‘source’ variable names for both dependent and independent variables, where the source

variables are found by following connections until the original definition of the variable is

found. Since these sources are unique, if an ODE is referenced in a component different

from that in which it is defined, we can thus use the alias to find the definition.

For example, consider the ODE dV/dt in Listing 2.3, defined in the membrane compo-

nent. For this ODE the following alias will also be added to the model environment:

d e f i n e env ( Ode ” membrane ,V” ” env i ronment , t ime ” )
( Expr ( D i f f ” membrane ,V” ” membrane , t ime ” ) )

If the value of dV/dt were required in another component, when the use of local variable

names fails to find an entry in the environment, the alias will be looked up, and hence the

ODE definition found.

Performing static checks such as those described in Chapter 4 also simplifies the interpreter

by allowing us to avoid checking for various error conditions. A particularly important static

check ensures that there are no cycles (e.g. a = f(b), b = g(a)) within the mathematics. This

permits use of a simple recursive evaluation strategy for expressions, without needing to check

for non-termination due to infinite recursion.

We now proceed to describe the evaluation itself. Evaluation of expressions within an envi-

ronment is performed by the eval function, with the function apply defining operator behaviour

in terms of standard Haskell functions. While CellML has no user-defined functions, it does

have many mathematical operators ‘built-in’, and so apply is quite lengthy. A convenience

function elookup combines the actions of looking up an identifier and evaluating its definition.

The definition of eval is simple:

e v a l : : Env → MathTree → Value
−− C o n s t a n t s are easy .
e v a l env (Num n )

= Number n
e v a l env ( Bool b )

= Boolean b
−− Lookup t h e v a r i a b l e ' s d e f i n i t i o n and e v a l u a t e i t .
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e v a l env ( V a r i a b l e v )
= e l o o k u p env ( Var v )

−− Lookup t h e ODE' s d e f i n i t i o n and e v a l u a t e i t .
e v a l env ( D i f f var bvar )

= e l o o k u p env ( Ode var bvar )
−− E v a l u a t i o n o f a p p l y depends on t h e o p e r a t o r .
−− L a z i l y e v a l u a t e t h e operands .
e v a l env ( Apply o p e r a t o r operands )

= a p p l y o p e r a t o r (map ( e v a l env ) operands )
−− E v a l u a t i o n o f a p i e c e w i s e e x p r e s s i o n s h o r t−c i r c u i t s when a True
−− c o n d i t i o n i s found .
e v a l env ( P i e c e w i s e c a s e s Nothing )

= case f o l d r e c a s e Nothing c a s e s of
Jus t v → v
Nothing → error ” f a l l e n o f f end of p i e c e w i s e ”

where
e c a s e : : Case → Maybe Value → Maybe Value
e c a s e ( Case cond r e s ) r e s t = case e v a l env cond of

Boolean F a l s e → r e s t
Boolean True → Jus t ( e v a l env r e s ) −− s h o r t−c i r c u i t
→ error ( ” c o n d i t i o n a l does n o t e v a l u a t e t o a b o o l e a n : ”

++ show cond )

We leave the full definition of apply for Appendix C, including just a few key operators here by

way of illustration.

a p p l y : : Opera tor → [ Value ] → Value
a p p l y P lus operands −− nary a d d i t i o n

= Number ( sum (map ( get num ) operands ) )
a p p l y Minus [ operand ] −− unary minus

= Number (0 − ( get num operand ) )
a p p l y Minus [ a , b ] −− b i n a r y minus

= Number ( ( get num a ) − ( get num b ) )
a p p l y D i v i d e [ a , b ] −− b i n a r y d i v i d e

= Number ( ( get num a ) / ( get num b ) )
a p p l y Times operands −− nary m u l t i p l i c a t i o n

= Number ( f o l d l 1 ( * ) (map ( get num ) operands ) )
a p p l y Exp [ operand ] −− unary e x p o n e n t i a l f n

= Number ( exp ( get num operand ) )
a p p l y And operands −− nary l o g i c a l and

= Boolean ( and (map ( g e t b o o l ) operands ) )
a p p l y L t [ a , b ]

= Boolean ( get num a < ( get num b ) )

The definition of elookup is straightforward except for the case where we need to look up the

definition of an ODE, where we must consider the possibility that it may have been defined in a

different component from that in which the reference occurs, and so we must look up the defi-

nition using the source variable names instead, to find the alias defined by the canonicalisation
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process described above.

e l o o k u p : : Env → EnvKey → Value
e l o o k u p env ( Ode var bvar )

= case m a y b e f i n d env ( Ode var bvar ) of
Jus t ( Expr e ) → e v a l env e
Jus t ( Val v ) → v
Nothing → e l o o k u p env o d e s r c

where o d e s r c = ( Ode ( f i n d s r c env var ) ( f i n d s r c env bvar ) )
e l o o k u p env key

= case f i n d env key of
Expr e → e v a l env e
Val v → v

These definitions provide us with a formal, mathematically tractable definition of what it

means to evaluate (and hence simulate) a CellML model. The next chapter considers various

static checks which may be applied to CellML models, and then in Chapter 5 we use the seman-

tics defined here to prove the correctness of our optimisation of CellML by partial evaluation.



4
Validation of CellML models

The ultimate aim of validation is to prevent incorrect results. Humans will always

make errors, and so the more errors that can be automatically detected, the more

reliable our system becomes. Detecting errors early is also important—much time

will be saved if we can find errors by an analysis of the model, rather than waiting

until simulation time, or even for an analysis of the simulation results.

There are a variety of different forms of validation that can be applied to CellML

models, with different tools needed to perform each one. The basic levels utilise

standard validation tools for XML files, verifying that the given model really does

conform to the CellML specification. This is discussed in Section 4.1.

Other checks are not so suited to standard tools. One in particular that we have

implemented is to check for dimensional consistency. Errors in this area gener-

ally cause wrong results, rather than program failure, so catching them at ‘compile

time’ is especially important. This is the subject of the remaining sections. Sec-

tion 4.2 introduces the topic, and the conceptual model of units used in CellML is

described formally in Section 4.3. The units checking algorithm is given in Sec-

tion 4.4, and we conclude with some discussion in Section 4.5 placing our algo-

rithm in the context of related work, and considering possible future adaptations:
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both to account for possible developments in the CellML language, and whether

improvements could be made to the CellML units model itself.

Much of this work has been published (Cooper and McKeever, 2008), including an

algorithm for automatically converting between compatible units, which we do not

describe here.

4.1 XML validation

There are a variety of standard approaches to validating XML documents, which can therefore

also be applied to CellML. They allow us to automatically check many of the rules given in the

CellML specifications that define what constitutes a valid CellML model. At the lowest level,

an XML parser checks that the file contains well-formed XML. The next level is to compare a

CellML document against a schema that defines what is allowable content. This verifies that

the grammar is correct—that elements and attributes appear in the correct places, and that text

content conforms to the appropriate data type. We have written schemas for CellML 1.0 using

the RELAX NG1 and Schematron2 schema languages.

RELAX NG is designed to address two aspects of XML validation: validating the structure

of an XML document, and providing a connection to datatype libraries that validate the content

of text nodes and attributes. It has a strong mathematical background, with a theoretical basis

similar to regular expressions. A key feature for our purposes is that it permits ‘co-occurrence

constraints’ in which the value of one node changes the content model of another. This can be

used to validate certain aspects of the mathematical content of models. For example, we can

ensure that each operator is given the correct number of operands. Our RELAX NG schema is

available from the CellML website.

Schematron schemas are more suited to expressing so-called ‘business rules’ restricting an

1http://relaxng.org/
2http://www.schematron.com/

http://relaxng.org/
http://www.schematron.com/
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XML document’s content. XPath3 expressions may be used to state more complex relationships

between sections of the document. CellML models include many name references: mathematics

can refer to variables defined in the enclosing component, units definitions refer to other units

definitions, etc. We need to ensure that the target of such a reference exists, and this is done by

the Schematron schema.

Other aspects of validation, however, are either difficult or impossible to perform using stan-

dard tools, and hence bespoke solutions must be produced. One such aspect is to check for

cycles within the data structures implied by a CellML model. The encapsulation hierarchy

of components, for instance, should represent a collection of tree structures, as should units

definitions. These conditions are trivial to check (e.g. by a topological sort) if the model has

been parsed to create graph structures within a program. The same technique can be used to

check that the mathematical equations are acyclic, as is required by our CellML semantics (see

Section 3.2).

The main contribution of our CellML validation suite, however, is in checking for the con-

sistent use of physical units, and we proceed to discuss this in detail.

4.2 Units and dimensions

Dimensions and physical units are widely used in the sciences, but there is comparatively lit-

tle support for these concepts in programming languages. Their usefulness for checking the

correctness of mathematical models of reality is well known: similarly to the use of types for

catching nonsensical programs, we know that an equation cannot be correct if constraints on

the dimensions of the quantities involved are not met. For example, if a length and a time are

added together, we know that the model must be incorrect in some fashion. Similarly if lengths

measured in metres and feet are compared without a suitable conversion then simulations of the

model are unlikely to give sensible results.

Such errors may seem trivial, but they are not uncommon. Scientific programs are often

3http://www.w3.org/TR/xpath

http://www.w3.org/TR/xpath
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composed of many different components, sometimes written by different authors, using differ-

ing units, especially for multi-scale models. Units conversions at the interfaces are thus essential

for correct operation. Input and output of quantities with units also requires care. In one in-

stance, a space shuttle was instructed to bounce a laser off a 10,000 mile high mountain, instead

of the intended 10,000 feet, and so rolled away from the Earth (Neumann, 1985). Units errors

can also be costly—the loss of NASA’s Mars Climate Orbiter in 1999 was due to the software

failing to convert between imperial and metric units (Isbell and Savage, 1999). The need for au-

tomated systems to detect such errors is illustrated in the following quote from Edward Weiler,

NASA’s Associate Administrator for Space Science.

“People sometimes make errors. The problem here was not the error, it was the fail-

ure of NASA’s systems engineering, and the checks and balances in our processes

to detect the error. That’s why we lost the spacecraft.” (Isbell et al., 1999)

Most programming languages do not provide such checks and balances.

Before presenting our approach to solving this problem, we briefly describe the fundamental

concepts of a system of units. Every physical quantity is considered to exist in some dimension,

for example length or force. Two quantities may exist in the same dimension, yet have different

units; for example metres and feet are both units of length. If the relationship between feet and

metres is known, it is possible to convert a quantity expressed in one unit to be given in the

other.

Dimensions can be either base dimensions, or derived dimensions, which are defined in terms

of other dimensions. Dimensions can be combined by multiplication, division, or exponentia-

tion; acceleration is length divided by time squared, for instance. Quantities can be combined

in the same way, with the resultant quantity existing in the appropriate combined dimension,

and having combined units.

Dimensions and units are in some ways very similar to the programming language concept

of types. Just as expressions in a strongly-typed programming language must be well-typed
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in order for the program to compile, so mathematical expressions must be dimensionally con-

sistent. Rules can be given defining this notion, just as type inference rules define well-typed

programs, as we show in Section 4.4. However, several properties necessary for dimension

checking cannot be expressed in a conventional type system. For example, rather than dealing

with a single type for each expression, a mathematical expression is associated with a dimen-

sion, which can be regarded as an equivalence class of units under operations of a units algebra

(e.g. [m s−1 s] = [s m s−1] = [m]). Furthermore, units definitions are not semantically separate

from the value space of the programming language: exponents (such as in [s−1]) contain numer-

ical values. Unless exponents are restricted to be constants, a units checker must be capable of

actually evaluating expressions. Where the expression cannot be evaluated, the program must

either be rejected, or the programmer trusted and the program allowed even though the units

cannot be fully checked.

The subject of automatically checking and converting units has been discussed many times

already, in a variety of contexts (e.g. Karr and Loveman III, 1978; House, 1983; Männer, 1986;

Dreiheller et al., 1986; Baldwin, 1987; Kennedy, 1994; Allen et al., 2004; Wilkinson et al.,

2005), although Wilkinson et al. (2005) only checks unit at run time, and Baldwin (1987) and

Kennedy (1994) do not support unit conversions. The most fundamental difference, as com-

pared with our work, is the context in which the work is done: all of these consider adding

some form of units support to a programming language, as opposed to the modelling language

approach we have adopted.

The quality of the work varies considerably, but all the papers mentioned above restrict the

kinds of units that can be expressed in some fashion, which we did not want to do since CellML’s

units model, described in the next section, is very general. One such restricted area is support

for exponents on units. In most cases these are only permitted to be constants given in the units

definition or declaration. Allen et al. (2004) allow exponents to be given as a final int, i.e.

an integer fixed at compile time, which allows them to give units to the power function; it will

be seen that our solution using ideas from partial evaluation is still more general.
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4.3 CellML units definitions

The CellML units model was developed with mathematical modellers in mind, and is hence

intended to be flexible and intuitive. It allows for base units and units derived in various ways:

by scaling, products, etc. as is the case for most units, and also by the use of an offset, as is

required for degrees Fahrenheit. The aim is to allow model authors to work in whatever set of

units they feel most comfortable, while still ensuring that their models can be integrated with

those of other authors using other units.

For the purposes of this exposition, we describe the units model using the abstracted version

given in Haskell below. Complete Haskell code can be found in Appendix D.4

Definition 4.1 The abstracted CellML units model
data U n i t s = ComplexUni t s [ ComplexUni t sRe f ]

| S i m p l e U n i t s M u l t i p l i e r P r e f i x U n i t s O f f s e t
| B a s e U n i t s Name

data ComplexUni t sRe f = Uni t M u l t i p l i e r P r e f i x U n i t s Exponent
type M u l t i p l i e r = Double
type P r e f i x = Double
type Exponent = Double
type O f f s e t = Double
type Name = S t r i n g

There are three classes of units in CellML: base, simple and complex.

Base units are defined just with a name, and form the primary units for their base dimension—

dimensions are thus implied by the combination of base units, rather than explicitly de-

fined. BaseUnits ”metre” would be one example, as the primary units of length.

Simple units are defined as a linear function of another simple or base unit (note that this crucial

restriction is not shown in the schema above), and thus represent a scaling of a single base

unit, with the Prefix and Multiplier fields specifying the scaling factor (see below). These

are also the only units for which an offset is allowed, e.g. to define the Fahrenheit scale.

Complex units are the product of multiple units. Each unit referenced in the product can be

4Appendix A provides a brief overview of the features and syntax of Haskell.
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scaled (Prefix and Multiplier fields) and raised to an arbitrary real power (Exponent field).

Both the Prefix and Multiplier give a multiplicative term in a units definition. This decision

was made so that units could be defined in a more natural fashion for modellers, using SI

prefixes, with milli = −3, mega = 6, etc. The overall multiplicative factor of a units reference

with multiplier m, prefix p and exponent e is defined as m(10p)e. The multiplicative factor of a

units definition is the product of the factors on the units references in the definition.

For both simple and complex units, the new units [U] are defined in terms of the (basic

product of) the constituent units [u] by the formula

[U] = m[u]− o,

where m is the multiplicative factor of the new units and o is the offset (which is 0 for complex

units). For quantities xnew , xold measured in the different units, the relationship is

xnew [U] =
1

m

[
U

u

]
xold [u] + o[U]. (4.3.1)

That we need to use the reciprocal of the multiplicative factor here can be seen if we consider

converting from metres to kilometres. The latter has a multiplicative factor of 1000, but 1 metre

is 0.001 kilometres. Understanding the behaviour of the offset is a little harder. The intention is

for the Fahrenheit scale to be declared as

f a h r e n h e i t = S i m p l e U n i t s ( 5 / 9 ) 0 c e l s i u s 32

whence 1◦F= (5/9)◦C−32◦F, but 1◦C is (9/5 + 32)◦F.

CellML also defines two special units which are worthy of mention here. Firstly, boolean

is an invented unit used for truth values. This unit is special, in that it is like a base unit, but

no units can be derived from it. Secondly, dimensionless is defined as a base unit, for

quantities that have no dimension (i.e. are plain numbers), or the ratio of two quantities with the

same units.

There are several ‘operations’ on units that we use below. These are needed in order to

reason about and develop our algorithms. Firstly we consider the question of a canonical form
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for a units definition, and then in Section 4.3.2 we define the operations which combine units

definitions to form new units, thus forming an algebra of units.

4.3.1 Canonicalisation operations

It is possible for multiple units definitions to refer to the same physical units. For example,

energy could be given in terms of Joules, or in terms of Newton-metres (expanding the definition

of Joule), or in base SI units as kg s−2 m2 or kg m2 s−2. It greatly simplifies the design and

analysis of algorithms involving units if they are always expressed in some canonical form,

since there is then no need to add similar code in multiple places to cope with variations in the

form.

The most obvious canonical form to choose (and one that has been chosen before, e.g. House

1983; Allen et al. 2004) is to express units in terms of products of powers of base units—the

last of the forms in the above example. This is a particularly useful choice in that it does not

have multiple levels of unit references in a single definition, which removes the requirement of

recursing through units definitions from other units algorithms. It allows us to check the dimen-

sional equivalence of two units definitions by a straightforward comparison of their canonical

forms, and eases calculating a units conversion expression for a quantity, since only the mul-

tiplicative factors and offsets of the canonical form are required. Importantly, this is also the

canonical form used in the CellML specification, and our canonicalisation algorithms are based

on those given there, but extended to maintain details (such as multiplicative factors) needed for

units conversion.

Converting definitions to this canonical form is achieved by the expansion algorithm given

below (Algorithm 4.1). However, this algorithm does not give the whole story, since it will

keep multiple references to the same base unit. Keeping with the example above, it would ex-

pand Joule as kg m s−2 m. We also present a separate simplification algorithm (Algorithm 4.2)

which replaces such multiple references by a single reference, with the appropriate exponent

and multiplier.
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There are two reasons for keeping simplification as a separate algorithm. The first is that

it aids understanding of the canonicalisation process to split it into multiple steps. The second

is that simplification is also useful in other contexts—multiple references to the same unit can

also occur when multiplying units definitions (e.g. when taking the product of two quantities).

We would like the product of [C V−1] and [V] to be [C], not [C V−1 V], for instance.

Algorithm 4.1 Expansion of units definitions
expand ( B a s e U n i t s n )

= B a s e U n i t s n
expand ( S i m p l e U n i t s m p u o )

= case expand u of
B a s e U n i t s n
→ S i m p l e U n i t s m p ( B a s e U n i t s n ) o

S i m p l e U n i t s m ' p ' u ' o '
→ S i m p l e U n i t s (m*10** p*m' * 1 0 * * p ' ) 0 u ' ( o+o ' / ( m*10** p ) )

expand ( ComplexUni t s us )
= ComplexUni t s ( expand ' us )
where

expand ' [ ] = [ ]
expand ' ( ( Uni t m p u e ) : u r e f s ) = n e w u r e f s ++ expand ' u r e f s

where
n e w u r e f s = prop mf n e w u r e f s '
n e w u r e f s ' = case expand u of

B a s e U n i t s n → [ Uni t m p u e ]
S i m p l e U n i t s m ' p ' u ' → [ Uni t m ' p ' u ' 1 ]
ComplexUni t s u r e f s ' → map p r o p e u r e f s '

where p r o p e ( Uni t m ' p ' u ' e ' )
= Uni t ( ( m ' * ( 1 0 * * p ' ) * * e ' ) * * e ) 0 u ' ( e *e ' )

prop mf [ ] = [ ]
prop mf ( ( Uni t m ' p ' u ' e ' ) : us )

= ( Uni t (m*(10** p )** e * m ' ) p ' u ' e ' ) : us

The expansion algorithm can be hard to follow, so we illustrate and explain with a couple of

examples using the following units definitions:

k i l o = 3
newton = ComplexUni t s [ Uni t 1 0 kg 1 , Uni t 1 0 m 1 ,

Uni t 1 0 s −2]
kPa = ComplexUni t s [ Uni t 1 k i l o newton 1 , Uni t 1 0 m −2]
c e l s i u s = S i m p l e U n i t s 1 0 k e l v i n −273.15
f a h r e n h e i t = S i m p l e U n i t s ( 5 / 9 ) 0 c e l s i u s 32

Example 1 First let us consider expand kPa. We need to apply expand' to each of the unit

references in its definition. When processing the reference to newton, we need to expand this
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definition too using the same procedure. Each of the unit references in the definition of newton

is to base units, so expand is equivalent to the identity function in this case.

We then map the function prop e onto the unit references of newton. This function updates

each unit reference to reflect the fact that it occurs within the context of a unit reference, and

so may be subject to an extra exponentiation. It does this by raising the multiplicative factor to

the appropriate value (e) and multiplying the exponent by the same value. For our example, the

exponent on the enclosing unit reference is 1, so prop e is equivalent to the identity function.

Next prop mf is applied to the list of unit references from newton. This function propagates

the multiplicative factor of the enclosing unit reference (to newton itself) into the list, by multi-

plying it into the multiplier of the first unit reference. In our example this sets the multiplier of

the kg reference to 1000.

The expand' function then proceeds to the next unit reference, which is to m. m is a base unit,

so we retain the same reference in the new list. We thus obtain a final answer of

kPa exp = ComplexUni t s [ Uni t 1000 0 kg 1 , Uni t 1 0 m 1 ,
Uni t 1 0 s −2, Uni t 1 0 m −2]

which illustrates the need for a further simplification step.

Example 2 Next we consider expand fahrenheit.

expand f a h r e n h e i t
= expand ( S i m p l e U n i t s ( 5 / 9 ) 0 c e l s i u s 32)
= expand ( S i m p l e U n i t s ( 5 / 9 ) 0 ( S i m p l e U n i t s 1 0 k e l v i n −273.15) 32)

Now,

expand c e l s i u s
= expand ( S i m p l e U n i t s 1 0 ( B a s e U n i t s ” k e l v i n ” ) −273.15)
= S i m p l e U n i t s 1 0 ( B a s e U n i t s ” k e l v i n ” ) −273.15

and so

expand f a h r e n h e i t
= S i m p l e U n i t s ( 5 / 9 ) 0 ( B a s e U n i t s ” k e l v i n ” ) ( 3 2 −2 7 3 . 1 5 / ( 5 / 9 ) )
= S i m p l e U n i t s ( 5 / 9 ) 0 k e l v i n −459.67

Some explanation of Algorithm 4.2 is called for. Simplification is the process of replacing

multiple references to the same unit by a single reference. Step 1 defines the form of this
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Algorithm 4.2 Simplification of units definitions
For simple or base units, simplification is the identity function. For complex units,

1. for each unique Units referenced, replace all the references by a single reference (treat
dimensionless last):

(a) sum all the exponents;

(b) if the result is 0, the reference is to dimensionless, otherwise it is to the original
Units, with the resulting exponent;

(c) the new Multiplier is the product of the multiplicative factors on the original refer-
ences;

(d) the new Prefix is 0;

2. if dimensionless is referenced in the list and has unitary Multiplier, then remove the
reference;

3. if the list is empty then the result is dimensionless, otherwise it is a ComplexUnits
with the generated list of references, one for each unique Units, sorted by unit name.

reference. References in a ComplexUnits definition can be thought of as the referenced units

being multiplied together to form a new unit. In algebra, when multiplying xa and xb the

exponents are added, giving xa+b; the same applies here, hence step 1(a).

A dimension with exponent 0 doesn’t really exist—a ratio of two time values is a plain

number, for example. Hence in step 1(b) dimensionless is used where units cancel out.

Steps 1(c) and 1(d) give the multiplicative factor for the new reference; this is contained

entirely in the Multiplier field for simplicity of the algorithm.

Step 2 is included for readability purposes. When simplifying units such as [m s−1 s] we

think of the result purely as metres, not as metres multiplied by a dimensionless constant 1.

There are only two cases where dimensionless should be retained in the result. The first is

that given in step 3: if no units are referenced other than dimensionless, then the resulting

units are dimensionless—a ratio of two time values is a plain number. The second is the

case where a reference to dimensionless exists with a non-unitary multiplier. This occurs

in situations such as simplifying [m s−1 ms], where we need to retain a multiplicative factor of

0.001 in the resulting units definition. Since in the units model presented here such factors can
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only occur on unit references, a reference to dimensionless with the required factor is kept.

As an example, we apply the above algorithm to the expanded kPa definition we obtained

earlier:

kPa exp = ComplexUni t s [ Uni t 1000 0 kg 1 , Uni t 1 0 m 1 ,
Uni t 1 0 s −2, Uni t 1 0 m −2]

There is only one instance of multiple references to the same Units, namely those to m, with

exponents 1 and−2. Summing these gives−1, and the product of the multiplicative factors is 1,

so we replace the two references by the single reference Unit 1 0 m −1. There are no references

to dimensionless, and the list is non-empty, so the result is

k P a e x p s i m p = ComplexUni t s [ Uni t 1000 0 kg 1 , Uni t 1 0 m −1,
Uni t 1 0 s −2]

4.3.2 Basic operations of a units algebra

Dimensional equivalence

This is an equivalence relation between units which holds if the units have the same dimensions,

e.g. they are both times, or both areas. This is important, since many mathematical operators re-

quire operands having the same dimension, rather than identical units—we can add any lengths,

no matter what units they are measured in.

Dimensional equivalence of two units definitions is checked by Algorithm 4.3.

Algorithm 4.3 Checking dimensional equivalence

1. Expand and simplify each definition (to express each units definition in canonical form
as a product of powers of base units, as described above).

2. Extract two lists of the form (BaseUnitsName, Exponent).

3. Lexicographically sort each list by BaseUnitsName (to enable the comparison in the next
step).

4. Return true iff the lists are equal.

Let us illustrate this process by comparing Joules and kiloPascals. First we define some

units:
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k i l o = 3
newton = ComplexUni t s [ Uni t 1 0 kg 1 , Uni t 1 0 m 1 ,

Uni t 1 0 s −2]
j o u l e = ComplexUni t s [ Uni t 1 0 newton 1 , Uni t 1 0 m 1]
kPa = ComplexUni t s [ Uni t 1 k i l o newton 1 , Uni t 1 0 m −2]

where kg, m and s are the usual SI base units for mass, length, and time, respectively. Applying

step 1, we obtain the canonical forms

j o u l e c a n = ComplexUni t s [ Uni t 1 0 kg 1 , Uni t 1 0 m 2 ,
Uni t 1 0 s −2]

kPa can = ComplexUni t s [ Uni t 1000 0 kg 1 , Uni t 1 0 m −1,
Uni t 1 0 s −2]

Extracting lists as per step 2 gives us

j o u l e l i s t = [ ( ” kg ” , 1 ) , ( ”m” , 2 ) , ( ” s ” , −2)]
k P a l i s t = [ ( ” kg ” , 1 ) , ( ”m” ,−1) , ( ” s ” , −2)]

which are already sorted, so step 3 does nothing. Finally, we see that these lists are not equal,

since the exponents for ”m” differ, so Joules and kiloPascals are not dimensionally equivalent,

as we would expect.

Multiplication

The operator ⊗ represents multiplication of units, with simplification where appropriate. For

example, m s−1 ⊗ s = m. This is implemented according to Algorithm 4.4.

Algorithm 4.4 Multiplication of units definitions

1. Convert both operands to ComplexUnits:

• SimpleUnits m p u o 7→ ComplexUnits [Unit m p u 1],

• BaseUnits n 7→ ComplexUnits [Unit 1 0 (BaseUnits n) 1].

2. Simplify the ComplexUnits formed from the concatenation of the two lists of units refer-
ences.

The conversion from SimpleUnits to ComplexUnits deserves further comment. In particular,

note that the offset field is dropped in this conversion. This demonstrates that when units defined

with respect to some reference point are combined with other units, the value of the reference

point is no longer important. In terms of measurement scales, we are only concerned with the
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distance between two points on the scale, not their distance from the origin.

Exponentiation

Units can also be raised to a power; this operation is represented in the same way as stan-

dard exponentiation (e.g. s2). To raise a units definition to the power e we use Algorithm 4.5,

which simply alters the Exponent and Multiplier fields, converting the units into ComplexUnits

if needed in order to do so.

Algorithm 4.5 Exponentiation of units definitions
e x p o n e n t i a t e ( B a s e U n i t s n ) e =

ComplexUni t s [ Uni t 1 0 ( B a s e U n i t s n ) e ]
e x p o n e n t i a t e ( S i m p l e U n i t s m p u o ) e =

ComplexUni t s [ Uni t (m** e ) p u e ]
e x p o n e n t i a t e ( ComplexUni t s u r e f s ) e =

ComplexUni t s (map expo u r e f s )
where

expo ( Uni t m p u e ' )
= Uni t (m** e ) p u ( e ' * e )

4.4 Units checking

Below we present type-inference style rules for performing units checking of mathematical

expressions. These define dimensional consistency of an expression in much the same way as

we could define whether it was well-typed, by giving assertions about the units of expressions

in terms of assertions about the units of their subexpressions.

Therefore the units checking algorithm processes an expression tree in a bottom-up fashion,

annotating nodes with their units as it progresses. Leaf nodes (numbers and variables) are all

explicitly annotated with their units in the model. For compound expressions, the algorithm

must select the rule whose conclusion matches the form of the expression, and check that the

subexpressions have units matching the premise of the rule. If they do, the expression can be

annotated with the units specified by the conclusion, which will often be derived from the units

of the subexpressions, using the operations given in Section 4.3.2. It is these operations, and the

fact that units definitions can contain elements from the value space, that primarily distinguish
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this algorithm from type checking. The latter issue will be discussed in Section 4.4.2.

Firstly we introduce some notation. Subexpressions are given as e1, e2, etc. Greek letters

are used for qualifiers such as the order of a derivative, f stands for a function, and op for an

operator.

We write e1 :: u to say “e1 has units dimensionally equivalent to u”. That is, u stands for

a whole class of physical units, rather than a single unit. This allows us to write the rules

in a more standard style, since most operators merely require operands with dimensionally

equivalent units, not identical units. The choice of which unit from the equivalence class to

use for an expression is left as arbitrary here; it is important in the context of units conversion

however (Cooper and McKeever, 2008).

4.4.1 Inference rules

We first present all the rules of the units checking algorithm, and then illuminate them with a

few examples.

Addition (considered as an n-ary operator):

e1 :: u . . . en :: u

e1 + . . . + en :: u
(4.4.1)

Subtraction (binary operator):
e1 :: u e2 :: u

e1 − e2 :: u
(4.4.2)

Unary minus:
e1 :: u

−e1 :: u
(4.4.3)

Multiplication (considered as an n-ary operator):

e1 :: u1 . . . en :: un

e1 × . . .× en :: u1 ⊗ . . .⊗ un

(4.4.4)

Division:
e1 :: u e2 :: v

e1/e2 :: u⊗ v−1
(4.4.5)
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Logical operators:
e1 :: boolean . . . en :: boolean

e1 op . . . op en :: boolean
(4.4.6)

Relational operators:
e1 :: u e2 :: u

e1 op e2 :: boolean
(4.4.7)

The abs, floor and ceiling functions:
e1 :: u

f e1 :: u
(4.4.8)

The exponential function, natural logarithm, factorial function, and trigonometric functions:

e1 :: dimensionless
f e1 :: dimensionless

(4.4.9)

Logarithms:
e1 :: dimensionless β :: dimensionless

logβ(e1) :: dimensionless
(4.4.10)

Powers:
e1 :: u e2 :: dimensionless

ee2
1 :: ue2

(4.4.11)

Roots:
e1 :: u δ :: dimensionless

δ
√

e1 :: u1/δ
(4.4.12)

Derivatives:
e1 :: u e2 :: v δ :: dimensionless

dδe1
deδ

2
:: u⊗ v−δ

(4.4.13)

Piecewise:
c1 :: boolean . . . cn :: boolean e0 :: u . . . en :: u

if c1 then e1 elif . . . elif cn then en else e0 :: u
(4.4.14)

Examples

Consider the expression 2 m + 3 m. This matches the form of the conclusion to rule (4.4.1),

with e1 = 2 m and e2 = 3 m. Both e1 and e2 thus have units dimensionally equivalent to (and

indeed equal to) metres, and so 2 m + 3 m :: m.
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Alternatively, suppose the expression 4 kg < 6 km is to be checked for consistent use of

units. This is an application of a relational operator, and so by rule (4.4.7) we again require

the operands to have dimensionally equivalent units. However, 4 kg :: kg whereas 6 km :: m,

which are in different dimensions (mass and length, respectively), and so the premise does not

hold. The expression is thus not dimensionally consistent.

As a third example, consider the more complex expression e = 5 m/(10 s)2. This expression

matches the conclusion of rule (4.4.5), with e1 = 5 m, and e2 = (10 s)2. To determine the units

of e we thus need to first determine the units of the subexpression e2, using rule (4.4.11). Now

10 s :: s and 2 :: dimensionless, and so the premises are satisfied and e2 :: s2. Thus the

units of e are given by m⊗ (s2)−1 = m s−2.

Finally, consider the equation for beta n taken from the modified Hodgkin–Huxley equations

of Listing 2.3:

βn = 0.125 ms−1e
V +75 mV

80 mV

where V :: mV and βn :: ms−1. The process of checking the units of this expression can best be

represented by the following derivation tree. Working from axiomatic premises, we see that the

appropriate rule can be satisfied at each step, and so the whole expression has consistent units.

βn :: ms−1

0.125 ms−1 :: ms−1

(4.4.1)
V :: mV 75 mV :: mV

V + 75 mV :: mV 80 mV :: mV

(V + 75 mV)/80 mV :: dimensionless
(4.4.5)

e(V +75mV)/80 mV :: dimensionless
(4.4.9)

0.125 ms−1e(V +75mV)/80 mV :: ms−1
(4.4.4)

βn = 0.125 ms−1e(V +75mV)/80 mV
(4.4.7)

4.4.2 Partial evaluation and units checking

As we have already mentioned, units checking is made more complex than traditional type

checking by the fact that units definitions can contain items from the value space, rather than
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being entirely separate. This is seen above in the rules for logarithms, powers, roots and deriva-

tives ((4.4.10)–(4.4.13)), where the units of the whole expression contain values (β, e2 and δ),

rather than ‘just’ units definitions. A fully general units checker is impossible to write, since it

would need to be able to evaluate arbitrary expressions in order to determine suitable units for

the cases mentioned, but not all expressions are computable in a programming language (e.g. in

the case of an endless loop or recursion) and not all values are known at compile time. We must

therefore conservatively approximate the division between those values computable by the units

checker, and those unknown until program run time.5

Much research has been done on this issue, as part of partial evaluation (Jones et al., 1993).

Deciding whether a given expression is computable at compile time or not is done by a binding

time analysis. Since we have a partial evaluator for CellML (see Chapter 5) we use this to

evaluate required values where possible.

If the binding time analysis determines that these values cannot be computed, then the ex-

pression is marked as having unknown units, and units checking ‘fails’. Note that even in

this case we are still able to translate the model to code and run it, but we have lost the extra

checks that units checking gives us, and we will not be able to perform units conversion where

the failed expression is involved, which could lead to wrong results if a conversion is, in fact,

needed. This is a different approach from standard partial evaluation, where the evaluation of

expressions marked as dynamic is simply deferred until program run time. One could imagine

a more complex units checking compiler adding a run time units checking framework to the

generated executable if it was unable to determine all the units at compile time. In practice, we

believe this would be more trouble than it is worth, since such cases are unlikely to occur.6

5Exact determination of the division is impossible, as this would imply a solution to the halting problem.
6One case where exponents might be dynamic values is if the space dimensionality of the physical problem is

a run time parameter. As an easy workaround we suggest to run the units checking multiple times, once for each
possible value of the parameter.
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4.5 Discussion

We have presented above our approach to automatically validating certain properties of CellML

models. This assists model authors (and users) in catching errors at an early stage, thus saving

time. The checks described have focused on ensuring that models do conform to the CellML

specification.

Our main contribution is in checking for the consistent use of physical units. Partial eval-

uation techniques have been leveraged in order to handle quantities raised to arbitrary powers

robustly. A recent publication (Cooper and McKeever, 2008) describes how to extend this work

to perform automatic conversion between quantities measured in different but dimensionally

equivalent units.

There are aspects of dealing with units addressed in other papers that we have not covered in

our work thus far. One of these is the question of inferring a ‘units signature’ for an expression.

Kennedy (1994) presents an inference algorithm along the lines of ML type inference. Since

in CellML all constants and variables are explicitly annotated with their units, we have not

needed to make any inferences, but this would be an interesting area to examine, especially in

conjunction with the incorporation of user-defined functions. These may well be included in a

future version of CellML; such an extension has more implications for units conversion than for

units checking, however, so we refer the reader to our paper for further discussion (Cooper and

McKeever, 2008).

Another area we have not addressed is the theoretical underpinning of our units model. Allen

et al. (2004) present a dimensional algebra based on a free abelian group, whereas Kennedy

(1994) defines a formal type system for dimensions. To deal satisfactorily with inferring units

we would require some such basis for our work as well. Kennedy notes that a dependent type

system is required in order to handle values in units definitions (Kennedy, 1994).

The CellML units model is complex, since it attempts to allow for any sorts of units that

modellers might wish to use. As we discovered whilst doing this work, this can make it con-
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fusing to work with. One interesting issue is that the units model does not distinguish explicitly

between ◦C (i.e. a temperature measurement in degrees Celsius) and C◦ (i.e. the difference be-

tween two such measurements). This can make certain expressions ambiguous: for example,

twice 2◦C could refer to 550.3 K or a temperature difference of 4 K. To an extent the distinc-

tion is made implicitly, in that ◦C will always be expressed using SimpleUnits with an offset,

whereas C◦ will generally be expressed using ComplexUnits, where the offset is dropped, since

temperature differences are usually used in a context where they are combined with other units

(for example, a temperature gradient might be measured in C◦ m−1). To avoid this complexity,

SBML has decided not to use units with offsets at all, and indeed as of the time of writing no

models in the cellml.org repository use units with offsets. An alternative solution would

be to follow Allen et al. (2004) in explicitly modelling scale readings as separate entities from

other quantities.

Another shortcoming, not so much in the units model itself as in the XML encoding of it, is

also demonstrated by the Fahrenheit definition:

f a h r e n h e i t = S i m p l e U n i t s ( 5 / 9 ) 0 c e l s i u s 32

The multiplier 5/9 cannot be exactly represented in decimal form, and so cannot be given

exactly in a CellML model. There are two approaches which could be taken to resolve this.

One is to add a ‘divisor’ field, since 9/5 can be written exactly. A more general solution would

be to allow the multiplier to be given by a mathematical expression encoded in MathML.

To achieve generality, CellML allows exponents in units definitions to be any real number.

This has disadvantages, however, due to the inexact nature of floating point arithmetic. Com-

paring two units for equality (or even dimensional equivalence) then involves comparing two

floating point values, and hence the test cannot be exact. Since there are no ‘real world’ units

which require such general exponents, other work (House, 1983, p. 368) favours using only

rational powers, thus allowing exact comparisons to be made with no practical loss in expres-

siveness.

Finally, we note again that there are two different senses of the word ‘validation’ in the con-

cellml.org
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text of CellML. We have discussed checking that a model conforms to the definition of what

constitutes a CellML document (as given in the specifications). The sense which is proba-

bly more familiar to modellers and physiologists is to validate a mathematical model against

experimental data, to determine to what extent the model matches reality (and can therefore

elucidate reality). This is closely related to the task of model curation—annotating models in

the repository to indicate what a user may expect from them.

At the most basic level of CellML model curation, a given CellML encoding of a mathemat-

ical model can be assigned one of four curation levels.

Level 0: the model has been implemented, but has not yet been through the process of curation.

Level 1: the model has been implemented and corrected, if necessary, to accurately represent

the published model.

Level 2: the model has been implemented and corrected, if necessary, to accurately reproduce

the published results.

Level 3: the model has been implemented and corrected, if necessary, to satisfy domain spe-

cific biophysical constraints (e.g. conservation of mass and charge, or thermodynamic

constraints).

Potentially, a CellML model may be assigned multiple curation levels, but historically at

least, CellML models which accurately represent a model as it was published (level 1) will not

satisfy the requirements for level 2. With recent tool developments to assist modellers, it is

hoped that new models being developed will satisfy curation levels 1–3 with a single version of

the CellML model.

Having now considered correctness of the models themselves, we next turn our attention to

simulation efficiency. The next two chapters introduce two separate optimisation techniques,

showing how they may be applied to CellML, and proving that correctness of simulations is not

adversely affected.



5
Partial Evaluation

CellML provides us with a portable and easily understood format for cell models,

but as with computing in general this comes at the expense of efficiency. Again

pursuing our analogy of treating CellML like a programming language, just as

we were able to check certain properties of CellML models automatically in the

previous chapter, there is also scope for automatically transforming CellML models

to enable more efficient simulation.

In this chapter, we consider the use of partial evaluation (PE; Jones et al. 1993) for

automatically optimising the simulation of cardiac ionic cell models. The technique

is explained in general terms in Section 5.1. We have designed a partial evalua-

tor specifically for CellML, which hence contains some unique features. This is

described in Section 5.2.

Crucially, partial evaluation can also be placed on a solid theoretical basis, and

the correctness of our partial evaluator is proven in Section 5.3. We conclude

the chapter with some discussion in Section 5.4, which includes a comparison of

two implementations of our partial evaluation techniques. Experimental results of

applying this optimisation to a sample of models will be presented in Chapter 7.
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Figure 5.1 CellML models are typically translated into computer code and compiled in order
to be simulated within a simulation environment.
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5.1 Introduction

Writing a separate program to simulate each type of cell model, coupled tightly to the simulation

environment, and optimising by hand, can produce very efficient code, and this is thus the

route that has traditionally been taken since computation time is at a premium. This has the

disadvantages that much work is required for each new cell model, the simulation software

becomes very hard to maintain, and confidence in the correctness of the simulations can be low.

On the other hand, if a simulation environment must interpret a large CellML file at every

time step, this introduces a large computational overhead. For this reason it is common to con-

vert the CellML model into code written in some programming language prior to simulation, as

illustrated in Figure 5.1. This is a substantial improvement, but a good model will be written

in an abstract style to enable easy comprehension by human readers, with many small com-

ponents. A faithful translation will thus produce an inefficient program, just as there is a cost

associated with a modular, high-level programming style. Often a natural ‘flattening’ transfor-

mation is applied,1 which places all the mathematics within a single method, renaming variables

to indicate the original ‘owning’ component. This will give some improvement, and one might

suppose that using an optimising compiler would remove further inefficiencies. However there

1For example COR (Garny et al., 2003b) uses such a transformation; CESE (Missan and McDonald, 2005)
does not.
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are optimisations that we would like to apply that a compiler will not perform.

A compiler is designed to process many different programs, solving many different prob-

lems. Hence any optimisations it applies must necessarily be general, applicable to a large class

of programs. Specific problems may be amenable to optimisations that do not apply to other

problems, and we would not expect a general compiler to apply these. Also, a compiler will

only apply optimisations after the CellML model has been converted into program code. As

we shall see, there are advantages to performing optimisations earlier, directly transforming the

CellML model. Notably, this allows such domain specific optimisations to interact.

In this chapter we discuss the class of optimisations known as staging transformations. Con-

sider a system of ODEs, such as is found in a cell model. To simulate the model we need to

solve the system, which involves a loop over time, with the ‘right hand side’ of the system being

evaluated at least once at each time step. Some of the computations performed at each time step

will be identical, and it would thus make sense to perform these computations only once, before

the simulation is started—they are moved to an earlier stage of the whole process. Various sim-

ple examples are found in Listing 2.3, such as the division by the membrane capacitance Cm in

ode(V, time), or the computations of the reversal potentials E Na, E K and E L. This optimi-

sation especially applies when the cell model is parameterised, for example to specify a version

of the model, or some external conditions. Many of the parameters will not change during the

course of the simulation, and so static computations depending only on fixed parameters should

be performed only once. Since ODE solver loops are often large and complex, a compiler will

generally not perform this sort of optimisation for us to the degree we desire. Also, if these

transformations are left to the compiler, any other optimisations we may wish to perform must

be done beforehand, not afterwards. We thus need to use a partial evaluator instead.

A partial evaluator is an automatic tool that pre-computes parts of a program known at com-

pile time, producing a new specialised program. This specialised program will produce the

same output as the original, when given equivalent2 input. Deciding which computations only

2Inputs known at compile time may be given to the partial evaluator; these are then not given to the specialised
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depend on the (incomplete) known data and can safely be performed early is undertaken by a

Binding Time Analysis (BTA), which classifies each (sub-)expression as static or dynamic. The

former are certain to be computable at compile time, whereas the latter may not be—the name

comes from the fact that they may depend on variables which change dynamically at run time,

such as state variables or the simulation time.

As a (trivial) example, consider this program fragment which computes integer powers:

power base e x p o n e n t =
i f e x p o n e n t == 0 then 1

e l s e base * ( power base ( e x p o n e n t − 1 ) )

We can partially evaluate the function square:

sq ua re x = power x 2
= x * ( power x 1)
= x * x * 1

A specialised program would thus include the expression x*x*1 in place of calls to square x;

the former will execute faster than the latter.

There are other instances where the techniques of partial evaluation have been applied to

scientific computations. Anderson has specialised ray tracers to a specific scene (Andersen,

1995). He noted a positive interaction between partial evaluation and an optimising compiler:

program simplifications as a result of partial evaluation allowed the compiler to make further

optimisations, for example algebraic simplifications and better register use. Partial evaluation

has also been applied to programs solving the 9-body gravitational attraction problem (Berlin

and Weise, 1990; Berlin, 1990) with considerable success—speed increases of between 7 and 90

times have been reported. Finally work has been done on using partial evaluation to accelerate

the simulation of digital circuits (Weise and Seligman, 1992); this shows the use of partial

evaluation in an object-oriented context. We have not found any instances where the techniques

have been applied to cardiac modelling however, so this is a new application area.

We show how partial evaluation can be applied to CellML models, producing a new model

in which all possible computation has been performed, but that will give the same results as the

program.
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original model when simulated. The rules governing this transformation are presented in the

next section.

5.2 Partial evaluation of CellML

We actually have two implementations of our partial evaluator for CellML. One, written in

Python3 produces a new CellML document, and for pragmatic reasons is the one used for ap-

plying the optimisations (see also Section 5.4 and Cooper and McKeever, 2007). The other,

written in Haskell, we present here in order both to express the ideas clearly and to prove the

correctness of the optimisation technique. Its main output is an environment representing a

model, as described in Section 3.2, rather than a CellML document (although it is straightfor-

ward to generate the latter from the former). Key portions of the Haskell code are included

within the text, and the full code can be found in Appendix E.

The input to the partial evaluator is primarily a CellML model. Automatic analysis of the

model (see Section 2.3.2) can determine which variables are state or free variables (and hence

dynamic) and which are parameters (assumed to be static). However, the partial evaluator also

takes an environment mapping variables to values, in order to specify those parameters as ex-

plicitly being dynamic. This serves two purposes. Firstly, scientists may wish to observe how

the values of certain computed variables vary during the course of a simulation; these variables

must therefore be retained in the specialised model. Secondly, scientists may wish to modify

the values of some parameters manually during the course of a simulation, for instance to model

the introduction of a drug; this is known as computational steering.

A unique feature of our partial evaluator is its support for physical units. Every quantity

in the specialised model will be annotated with the units of the expression from which it was

computed, and appropriate definitions of these units will be added to the units environment of

the model. Thus if the input model is dimensionally consistent, the specialised model will be

also. This feature is discussed further in Section 5.2.3.
3https://chaste.ediamond.ox.ac.uk/cellml/

https://chaste.ediamond.ox.ac.uk/cellml/
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Partial evaluation is conceptually performed in two phases: binding time analysis (Sec-

tion 5.2.1) followed by evaluation and reduction of expressions (Section 5.2.2). The former

determines whether each node in each expression tree in the model is static or dynamic. The

latter evaluates static expressions to obtain their value, and reduces dynamic expressions by

evaluating static subexpressions. Section 5.2.4 discusses how the phases are combined to par-

tially evaluate a model.

We make two key assumptions about the input CellML model:

1. the dependency graph of the equations is acyclic; and

2. the model is ‘valid’.

Both of these assumptions may be checked automatically. In other words, we shift error check-

ing to a pre-processing stage so it does not obscure the key ideas. The second of these as-

sumptions means that the mathematics does yield a boolean value where a boolean is expected,

etc. The first ensures that our recursions will terminate. For example, BTA is simply a post-

order traversal of the expression tree, processing dependencies by looking up definitions in the

environment, hence could only fail to terminate if there was a cycle.4

5.2.1 Binding time analysis

BTA is performed primarily by the bta function, which analyses a single expression. There

is a related function, bta key, which analyses the definition of an identifier within the model

environment, using bta if the definition is an expression; it is in turn used by bta to analyse

variable and ODE lookups. The outcome of this analysis is a partition of the model environment

into static and dynamic portions:

data Bind ingT ime = S t a t i c | Dynamic

p a r t i t i o n : : Env → ( Env , Env )
p a r t i t i o n env = f o l d r f ( empty env , e m p t y e n v ) ( names env )

4It could also fail if the function was not defined for all terms in the abstract data type; our implementation of
BTA is total, however.
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where
f : : EnvKey → ( Env , Env ) → ( Env , Env )
f k ( env s , envd ) =

case b t of
S t a t i c → ( d e f i n e env s k v , envd )
Dynamic → ( env s , d e f i n e envd k v )

where
v = f i n d env k
b t = b t a k e y env k

The bta function is straightforward, with most of the work delegated to helper functions,

discussed below. The only cases dealt with directly are for constants, which are static.

b t a : : Env → MathTree → Bind ingT ime
b t a env (Num ) = S t a t i c −− c o n s t a n t s are a lways s t a t i c
b t a env ( Bool ) = S t a t i c −− c o n s t a n t s are a lways s t a t i c
b t a env ( V a r i a b l e v ) −− l o o k up t h e d e f i n i t i o n and a n a l y s e t h a t

= b t a k e y env ( Var v )
b t a env ( D i f f v1 v2 ) −− a n a l y s e t h e ODE d e f i n i t i o n

= b t a k e y env ( Ode v1 v2 )
b t a env ( Apply o p e r a t o r operands )

= b t a a p p l y env o p e r a t o r operands
b t a env ( P i e c e w i s e c a s e s Nothing )

= b t a p i e c e w i s e env c a s e s

The main feature of the bta key helper function is that it checks to see whether variables

have been annotated as dynamic, either automatically (in the case of state and free variables) or

explicitly by the user. It does so by testing whether they are defined in a ‘dynamic environment’

dyn env included as part of the internal data5 within the environment.

b t a k e y : : Env → EnvKey → Bind ingT ime
b t a k e y env ( Var ” ” ) = S t a t i c −− a r b i t r a r y c h o i c e
b t a k e y env key

= case m a y b e f i n d d y n e n v key of
Jus t → Dynamic −− s t a t e or f r e e v a r i a b l e , or u s e r a n n o t a t e d
Nothing → case f i n d env key of

Expr t → b t a env t −− a n a l y s e t h e d e f i n i n g e x p r e s s i o n
Val → S t a t i c −− c o n s t a n t s are s t a t i c

where ( I n t e r n a l D a t a ( , , d y n e n v ) ) = f i n d env ( Var ” ” )

The binding time of an operator application is, in general, the maximum of the binding times

of the operands (the ordering on the BindingTime type means that Static < Dynamic). If any

operand is dynamic, we do not (in most cases) have enough information to evaluate the whole

expression, and thus it too must be dynamic. There are exceptions to this, however. Our partial

5See also Section 3.2.
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evaluator is partially online, which means that it evaluates certain static expressions during

the binding time analysis phase in order to determine a better partition, with more expressions

annotated as static. The subsidiary function bta short circuit is used to short-circuit the analysis

of operators such as And and Or. It is applied to the list of operands, and analyses only as many

as are required to determine a binding time for the whole expression. This is done by evaluating

static operands (we show that this is safe in Theorem 5.2), checking with the supplied predicate

whether evaluation of the whole expression would short-circuit at this point. If a dynamic

operand is encountered, then it cannot be evaluated and so the whole expression is dynamic.

b t a a p p l y : : Env → Opera tor → [ MathTree ] → Bind ingT ime
b t a a p p l y env And operands −− s h o r t−c i r c u i t i f s t a t i c operand i s F a l s e

= b t a s h o r t c i r c u i t env ( not . g e t b o o l ) operands
b t a a p p l y env Or operands −− s h o r t−c i r c u i t i f s t a t i c operand i s True

= b t a s h o r t c i r c u i t env g e t b o o l operands
b t a a p p l y env operands −− g e n e r a l case

= maximum (map ( b t a env ) operands )

b t a s h o r t c i r c u i t : : Env → ( Value → Bool ) → [ MathTree ] → Bind ingT ime
b t a s h o r t c i r c u i t env pred ( t : t s )

= i f b t a env t == S t a t i c
then i f pred ( e v a l env t ) then S t a t i c

e l s e b t a s h o r t c i r c u i t env pred t s
e l s e Dynamic

b t a s h o r t c i r c u i t env pred [ ] = S t a t i c

A similar short-circuiting is applied to piecewise expressions, with evaluation of initial static

conditions. If such a condition is false, we can ignore that case; if it is true, then that case is the

only one we need consider.

b t a p i e c e w i s e : : Env → [ Case ] → Bind ingT ime
b t a p i e c e w i s e env ( Case cond r e s : cs )

= i f b t a env cond == S t a t i c
then i f g e t b o o l ( e v a l env cond ) then b t a env r e s

e l s e b t a p i e c e w i s e env cs
e l s e Dynamic

b t a p i e c e w i s e env [ ] = S t a t i c

5.2.2 Reduction of dynamic expressions

The workhorse of the partial evaluator is the reduce function, which performs PE on a single

expression, evaluating static subexpressions within the static portion of the model environment
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and replacing them by constants (using the subsidiary function eval to expr). We first show its

definition, then explain the key features.

r ed uc e : : Env → MathTree → MathTree
r ed uc e env expr

= case b t a env expr of
S t a t i c → l e t ( , e ) = e v a l t o e x p r expr in e
Dynamic → reduce ' expr

where
−− Determine e x p r e s s i o n b i n d i n g t i m e s
( env s , envd ) = p a r t i t i o n env

−− E v a l u a t e a s t a t i c e x p r e s s i o n t o g e t a c o n s t a n t e x p r e s s i o n
e v a l t o e x p r : : MathTree → ( Value , MathTree )
e v a l t o e x p r e

= l e t v = e v a l env s expr in
( v , case v of

Number n → Num n ( Right ( e v a l u n i t s i n env expr ) )
Boolean b → Bool b

)

−− Reduce an e x p r e s s i o n known t o be dynamic
reduce ' ( V a r i a b l e var )

= r e d u c e l o o k u p ( Var var ) ( V a r i a b l e var )
reduce ' ( D i f f v1 v2 )

= r e d u c e l o o k u p ( Ode v1 v2 ) ( D i f f v1 v2 )
reduce ' ( P i e c e w i s e c a s e s Nothing ) −− s h o r t−c i r c u i t s t a t i c c o n d i t i o n s

= f c a s e s
where

f a l l cs@ ( Case cond r e s : cs )
= i f b t a env cond == S t a t i c

then case e v a l env s cond of
Boolean True → r ed uc e env r e s
Boolean F a l s e → f c s

e l s e P i e c e w i s e (map ( r c a s e env ) a l l c s ) Nothing
r c a s e env ( Case cond r e s ) = Case cond ' res '

where cond ' = r ed uc e env cond
res ' = r ed uc e env r e s

reduce ' ( Apply And operands ) −− s h o r t−c i r c u i t i f s t a t i c operand F a l s e
= s h o r t c i r c u i t And ( not . g e t b o o l ) operands

reduce ' ( Apply Or operands ) −− s h o r t−c i r c u i t i f s t a t i c operand True
= s h o r t c i r c u i t Or g e t b o o l operands

reduce ' ( Apply D i v i d e [ n , d ] ) −− c o n v e r t d i v i d e−by−s t a t i c t o t i m e s
= i f b t a env d == S t a t i c

then r ed uc e env ( Apply Times [ n , Apply D i v i d e [ one , d ] ] )
e l s e Apply D i v i d e ( r e d u c e l i s t [ n , d ] )

where one = Num 1 ( Lef t ( f u l l i d e n t ” . model ” ” d i m e n s i o n l e s s ” ) )
reduce ' ( Apply op operands ) −− r ed uc e operands

= Apply op ( r e d u c e l i s t operands )

r e d u c e l i s t = map ( r ed uc e env )
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s h o r t c i r c u i t : : Opera tor → ( Value → Bool ) → [ MathTree ] → MathTree
s h o r t c i r c u i t op pred ( t : t s )

= i f b t a env t == S t a t i c
then i f pred v a l then e −− n e v e r happens as expr i s dynamic

e l s e s h o r t c i r c u i t op pred t s
e l s e Apply op ( r e d u c e l i s t ( t : t s ) )

where ( va l , e ) = e v a l t o e x p r t

r e d u c e l o o k u p key k e y a s e x p r
= i f m a y i n s t a n t i a t e k e y env key

then r ed uc e env e −− i n s t a n t i a t e reduced d e f i n i t i o n
e l s e k e y a s e x p r −− r e t a i n l oo ku p

where Expr e = f i n d envd key

Several aspects of this function deserve further discussion. Firstly, environment lookups are

handled by the reduce lookup function. This uses the function may instantiate key to determine

whether to instantiate the (reduced) definition of the variable or ODE in place of the lookup,

or whether to leave the lookup in place. This is used to prevent code duplication, and will be

examined further in Theorem 5.5. We only note that the definition will be an Expr, since if not

then the expression would be static.

Parallelling bta short circuit there is another subsidiary function short circuit defined within

reduce, which allows us to discard unneeded operands where short-circuiting is possible, and

yet the expression as a whole is dynamic. Any initial static operands are discarded (since they

must evaluate to give False under the predicate) and the remaining operands reduced.

Short-circuiting also takes place in the reduction of piecewise expressions, with initial static

conditions being evaluated much as was done during BTA. Note that since the whole expression

is dynamic, there must be at least one condition that is either dynamic or evaluates to True.

The rcase helper function reduces any remaining cases by reducing the condition and result

separately.

Our partial evaluator performs a further optimisation by converting divisions where the de-

nominator is static into multiplications, which can be evaluated more efficiently at run-time. A

compile-time computation is performed to determine the reciprocal of the denominator, and a

run-time multiplication of the numerator with this reciprocal is generated.
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We also define a related function reduce key which reduces the definition of an identifier.

There is an important difference in the type of this function, however: whereas reduce produces

a new expression, reduce key wraps either an expression or a plain value in an EnvValue. The

use of this will be seen in Section 5.2.4.

r e d u c e k e y : : Env → EnvKey → EnvValue
r e d u c e k e y env k

= case f i n d env k of
Expr t → Expr ( r ed uc e env t )
v a l u e → v a l u e

5.2.3 Units and partial evaluation

It was seen in the definition of reduce that whenever a static expression was evaluated to a

number, the number was also annotated with the units definition associated with the original

expression, in the line

Number n → Num n ( Right ( e v a l u n i t s i n env expr ) )

The function eval units in uses the algorithms of Chapter 4 to determine the units of the given

expression. In doing so it makes use of two environments contained in the InternalData within

env. The first, of type VarUnitsEnv = Environment Ident (UName, Units) maps (the full name

of) each variable to the units it is explicitly given in the CellML model. The second, of type

UnitsEnvs = Environment Ident UnitsEnv = Environment Ident (Environment UName Units)

stores the units defined within the model, grouped according to the component in which they

were defined. This latter is used to determine the units associated with constant expressions,

using the lookup units function to search first definitions in the local component, then those at

the whole model scope, then the built-in definitions.

l o o k u p u n i t s : : U n i t s E n v s → I d e n t → UName → U n i t s
l o o k u p u n i t s envs cname uname

= case m a y b e f i n d ( c o m p o n e n t u n i t s envs cname ) uname of
Jus t u → u
Nothing → case m a y b e f i n d ( m o d e l u n i t s envs ) uname of

Jus t u → u
Nothing → f i n d s t a n d a r d u n i t s uname

m o d e l u n i t s : : U n i t s E n v s → Uni t sEnv
m o d e l u n i t s uenvs = f i n d uenvs ” . model ”



5.2 Partial evaluation of CellML 81

c o m p o n e n t u n i t s : : U n i t s E n v s → I d e n t → Uni t sEnv
c o m p o n e n t u n i t s uenvs cname

= i f cname == ” ” then e m p t y e n v
e l s e case m a y b e f i n d uenvs cname of

Jus t env → env
Nothing → error ( show cname ++ ” i s n o t a component ” )

This is sufficient to associate the proper units definition with the constant, but the units envi-

ronment has been left unchanged. However, a CellML model cannot contain a units definition

inline within the mathematics, but must refer by name to units defined elsewhere in the file.

This detail is taken care of later by the define pe units function, after all expressions have been

completely reduced, so that reduction of expressions may be performed locally without needing

to modify the environment. We thus see why an Either type was used for units references: in

a model, either before or after PE has been performed, such references must be to unit names,

but during PE it is convenient to refer anonymously to unit definitions.

The define pe units performs a kind of fold over the environment representing a model, pro-

cessing each expression tree defined within the environment using the def units expr function.

This in turn recurses through the expression examining each units reference, and where refer-

ence is made to anonymous units the function define units is used to obtain a name instead, and

a (possibly updated) units environment. The define units function uses equality on the Units

type to determine if a definition is already present in the environment. Where it is, the name to

which that definition is bound is used; where not present, the definition is added to the environ-

ment (in that portion for definitions global to the model) with a unique name of the form “ i”,

where i is the first integer such that the resulting name is not already used.

We give here code for three of the key functions; full details are in Appendix E.

d e f i n e p e u n i t s : : Env → Env
d e f i n e p e u n i t s env

= f o l d r e x p r k e y f env env
where

f : : MathTree → EnvKey → Env → Env
f expr key env ' = d e f i n e env ' ' ( Var ” ” ) i d a t a '

where
( I n t e r n a l D a t a ( vuenv , uenvs , d y n e n v ) ) = f i n d env ' ( Var ” ” )
i d a t a ' = I n t e r n a l D a t a ( vuenv , uenvs ' , d y n e n v )
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env ' ' = d e f i n e env ' key ( Expr expr ' )
( uenvs ' , expr ' ) = d e f u n i t s e x p r uenvs expr

d e f u n i t s e x p r : : U n i t s E n v s → MathTree → ( Uni t sEnvs , MathTree )
d e f u n i t s e x p r uenvs (Num x u r e f )

= case u r e f of
Le f t uname → ( uenvs , Num x u r e f )
Right u n i t s → ( uenvs ' , Num x ( Lef t uname ' ) )

where
( uname ' , uenvs ' ) = d e f i n e u n i t s uenvs u n i t s

d e f u n i t s e x p r uenvs ( Apply op operands )
= ( uenvs ' , Apply op operands ' )
where ( uenvs ' , operands ' ) = m a p f o l d r d e f u n i t s e x p r uenvs operands

d e f u n i t s e x p r uenvs ( P i e c e w i s e c a s e s Nothing )
= ( uenvs ' , P i e c e w i s e cases ' Nothing )
where ( uenvs ' , t s ) = m a p f o l d r d e f u n i t s e x p r uenvs ( c a s e s 2 l i s t c a s e s )

cases ' = l i s t 2 c a s e s t s
d e f u n i t s e x p r uenvs l e a f = ( uenvs , l e a f )

d e f i n e u n i t s : : U n i t s E n v s → U n i t s → ( UName , U n i t s E n v s )
d e f i n e u n i t s uenvs u n i t s

= case u n i t s d e f i n e d uenvs u n i t s of
Jus t uname → ( uname , uenvs )
Nothing → ( uniq uname ,

d e f i n e uenvs ” . model ”
( d e f i n e menv uniq uname u n i t s ) )

where menv = m o d e l u n i t s uenvs
uniq uname = u n i q k e y menv

There is one other units-related transformation needed when performing PE. Partial evalua-

tion changes the component structure of the model, moving all mathematics to be situated within

a single component, and removing all the original components. Any units definitions within

these components must thus also be moved. This is accomplished by the move component units

function, which is applied as a post-processing step on the model environment after PE. It alters

all units definitions to be global to the model, and updates name references within mathematics

to reflect this.

Note that after PE, all named units references to component-level definitions use a full name

of the form full ident component name units name, so we can use that name in defining these

units within the model-global environment, and there are unlikely to be naming conflicts with

units already defined there. We still include a test for naming conflicts, however, to ensure they

don’t occur. If there is a conflict, we iterate adding ‘ ’ to the end of the name until there is no
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longer a conflict.

This may result in duplicate definitions, in the sense that the same units are defined multiple

times but with different names; however this will only occur if it was also the case in the original

model, which is reasonable.

m o v e c o m p o n e n t u n i t s : : Env → Env
m o v e c o m p o n e n t u n i t s env

= m o d i f y e x p r s ( m o d i f y l e a v e s r e n a m e u r e f s ) env '
where

I n t e r n a l D a t a ( vuenv , uenvs , d y n e n v ) = f i n d env ( Var ” ” )
i d a t a ' = I n t e r n a l D a t a ( vuenv , new uenvs , d y n e n v )
env ' = d e f i n e env ( Var ” ” ) i d a t a '
new uenvs = d e f i n e s t a n d a r d u e n v s ” . model ” new mode l env
( new model env , renamed )

= f o l d r e n v do comp ( m o d e l u n i t s uenvs , e m p t y e n v ) uenvs

r e n a m e u r e f s : : MathTree → MathTree
r e n a m e u r e f s (Num n ( Lef t uname ) )

= case m a y b e f i n d renamed uname of
Jus t new name → Num n ( Lef t new name )
Nothing → Num n ( Lef t uname )

r e n a m e u r e f s l e a f = l e a f

do comp : : I d e n t → Uni t sEnv → ( UnitsEnv , RenameEnv )
→ ( UnitsEnv , RenameEnv )

do comp cname c u e n v ( uenv , renames )
= i f head cname == ' . '

then ( uenv , renames )
e l s e f o l d r e n v ( d o u d e f cname ) ( uenv , renames ) c u e n v

d o u d e f : : I d e n t → UName → U n i t s → ( UnitsEnv , RenameEnv )
→ ( UnitsEnv , RenameEnv )

d o u d e f cname uname u n i t s ( uenv , renames )
= i f new name == f u l l n a m e

then ( new env , renames )
e l s e ( new env , d e f i n e renames f u l l n a m e new name )

where f u l l n a m e = f u l l i d e n t cname uname
new name = ( head . dropWhile used )

( i t e r a t e (++ ” ” ) f u l l n a m e )
used name = i s J u s t ( m a y b e f i n d uenv name )
new env = d e f i n e uenv new name u n i t s

5.2.4 Applying PE to a model

In Chapter 3, simulation of a model was defined in terms of the function run env, which acts on

an environment representing the model, rather than on the Model type directly. It also requires

an environment containing values for the state variables and time, in order to evaluate each ODE
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at that input point in the domain of the model function f . Similarly therefore, partial evaluation

of a model is defined in terms of the function reduce env, which applies PE to each expression

in the model environment, generating a new environment which may be passed to run env.

As with run env, reduce env takes as input two environments and a list of keys, this last

specifying the ODEs which compose f . The first environment is the model environment, just as

would be passed to run env. The second environment contains values for any dynamic variables,

and is thus known as dyn env. It defines the state variables Y and time t, as for run env, but may

also contain definitions of other variables which the user has explicitly annotated as dynamic.

These definitions are considered to replace those given in the model unless they are given by the

special value DynamicMarker, so that users may also use this environment to alter parameter

values at run time.

r e d u c e e n v : : Env → [ EnvKey ] → Env → Env
r e d u c e e n v mode l env d e r i v s d y n e n v

= ( m o v e c o m p o n e n t u n i t s . d e f i n e p e u n i t s )
( r e c r e d u c e d e r i v s mode l env )

where i d a t a = f i n d mode l env ( Var ” ” )
r e d u c e d e r i v s env

= f o l d r ( r e d u c e d e r i v env ) i n i t e n v d e r i v s
i n i t e n v = f i l t e r e n v r e a l v a l u e d y n e n v

where r e a l v a l u e ( Val DynamicMarker ) = F a l s e
r e a l v a l u e = True

r e c r e d u c e d e r i v s env
= i f h a s i n s t a n t i a b l e k e y new env

then r e c r e d u c e d e r i v s new env
e l s e new env

where new env = d e f i n e
( head ( dropWhile h a s u n d e f i n e d v a r

( i t e r a t e ( a d d r e d u c e d d e f i n i t i o n s env )
( r e d u c e d e r i v s env ) ) ) )

( Var ” ” ) i d a t a

r e d u c e d e r i v : : Env → EnvKey → Env → Env
r e d u c e d e r i v menv d env = d e f i n e env d ( r e d u c e k e y menv d )

There are several auxiliary functions defined here. The most important is reduce deriv,

which uses reduce key (and hence reduce; see Section 5.2.2) to apply PE to the definition of

a single ODE. The function reduce derivs uses this to add reduced definitions of each ODE to

the dynamic environment.
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If we were not concerned with code duplication—if the definitions of variables or ODEs were

always instantiated at the point of lookup and reduced—this would be all that is required. Indeed

in the proof of Theorem 5.4 we assume that this is the case. Our full implementation shown here,

however, does not duplicate code, and this is proved in Theorem 5.5. In the previous section

we noted the function may instantiate key which restricts when definitions may be instantiated.

The other part of the solution is rec reduce derivs, which repeats PE if there are any references

remaining which may be instantiated (has instantiable key uses may instantiate key), any en-

sures that any expressions which are used but not instantiated at points of use are still reduced

and defined within the model environment. Definitions of the functions involved will be seen in

the proof of Theorem 5.5.

Finally we note that while conceptually there are two phases to partial evaluation, in our

implementation these are not separated. The bta function is called whenever a binding time is

required by reduce, and partition is also called by reduce multiple times. This is clearly inef-

ficient, but does not affect correctness. The approach was chosen for the sake of simplicity, to

avoid passing binding time information separately to the reduce function, or defining a different

type for expressions annotated with a binding time.

5.3 Proof of correctness

Consider again the ODE system model given in Equation (3.0.1):

dY

dt
= f(Y , t).

For the correctness proof, we wish to show that for any ODE solver, simulation of the partially

evaluated model will produce the same results as simulating the original model, when given the

same inputs (initial conditions and simulation duration), i.e.

∀ i ∈ inputs , c ∈ CellMLmodels
solver(c, i) = solver(PE c, i).
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As we discussed in Chapter 3, since it is impossible to analyse every potential algorithm for

solving ODEs directly, we instead note that all solvers must interact with the model through

evaluations of the function f . Hence if we can show that evaluation of f is unchanged under

partial evaluation, then the desired result follows. To use the terminology of our interpreter and

partial evaluator developed here, suppose that envf is the model environment representing the

function f , and let derivs be the list of EnvKeys representing the derivatives in dY /dt. We then

need to prove that for all models of the form (3.0.1) and all input environments inputs,

run env envf derivs inputs =
run env (reduce env envf derivs inputs) derivs inputs

We start by showing that the BTA produces a ‘suitable’ division of the environment repre-

senting a model into static and dynamic parts, such that evaluating a static expression within

only the static environment is the same as evaluation within the whole environment (Theo-

rem 5.2). We then turn to the partial evaluation itself, and proceed in four stages.

Theorem 5.3 Having shown that evaluation of static expressions by the partial evaluator is

‘safe’, in that evaluation will succeed if evaluation in the full model would succeed, we

can then show that evaluation of a reduced expression, in which all static portions have

been already evaluated, is the same as evaluating the original expression within the same

environment. This shows that partial evaluation of a single expression does not change

its meaning.

Theorem 5.4 We then show that, when using a somewhat simplified core of the partial eval-

uator, partial evaluation of a whole model does not change its meaning. This proves

the correctness of the core, and the two remaining theorems deal with the extra features

present in the full implementation.

Theorem 5.5 The core implementation considered in Theorem 5.4 duplicates code—it always

instantiates the definition of a variable or ODE at the point of lookup. It only requires

minor changes to correct this, however. The first is to instantiate defining expressions
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only if the lookup is performed in precisely one location within the model. The second

is to repeat PE on the reduced model if it contains any definitions that are used only

once, and ensure that definitions which are used more than once are included (reduced)

within the reduced model. We show that these modifications both maintain correctness

and ensure no code is duplicated.

Theorem 5.6 Finally, we show that appropriate units definitions are added to the reduced

model, and that all quantities in the model have a reference to the appropriate units defi-

nition.

In this chapter, some of the proofs are only given in outline form, in order to put across

the main ideas without detracting from the flow of the text. Further details are included in

Appendix B. For brevity, we also frequently ignore the fact that CellML Values are not Haskell

values, and do not write in the (un)wrapping functions. For instance,

a p p l y And operands = Boolean ( and (map g e t b o o l operands ) ) ,

but in the proof here we would write

a p p l y And operands = and operands .

The proof mixes Haskell and mathematical notation to some extent.

• k ∈ env, where k :: EnvKey, means that the key k is defined in the environment env and

maps to some unspecified value.

• envs ⊕ envd is a sum operation on environments. The resulting environment contains all

the definitions in both envs and envd. For the sake of definiteness, if envs and envd both

define the same key, the value from envs is chosen.

• We also talk of an expression expr being within an environment env. This means that

∃k ∈ env such that find env k = Expr t and expr is a subtree of t (possibly the whole tree).

We begin the proof with a lemma stating some basic properties of the partition produced by

the binding time analysis.
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Lemma 5.1 The binding time analysis of a CellML model produces a partition of the environ-

ment into static and dynamic portions. Formally, if (envs, envd) = partition env,

(i) ∀k ∈ envs, find envs k = find env k;

(ii) ∀k ∈ envd, find envd k = find env k;

(iii) bta key env k = S ⇔ k ∈ envs;

(iv) bta key env k = D ⇔ k ∈ envd;

(v) ∀k ∈ env, either k ∈ envs or k ∈ envd (but not both).

Proof. All of these follow straightforwardly from the definition of partition. 2

Theorem 5.2 Evaluation of a static expression can be performed solely within the static portion

of the model environment. Formally, for any environment env and expression expr within it,

bta env expr = S ⇒ eval envs expr = eval (envs ⊕ envd) expr

where

(envs, envd) = partition env.

Note that by Lemma 5.1 env = envs ⊕ envd.

Proof. The proof proceeds by structural induction on the form of expr, and details are given in

Appendix B.1. The key requirement is to show that variable or ODE lookups can always be

satisfied by the static portion of the environment. There is also some work required to handle

the cases where short-circuiting is employed. 2

Theorem 5.3 Partial evaluation of a single expression does not change its meaning: evaluation

of a reduced expression is the same as evaluating the original, within the same environment.

Formally, for any environment env and expression expr within it,

eval env expr = eval env (reduce env expr).
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Proof. We first consider the case of a static expression. This is evaluated by reduce within the

static portion of the environment, to ensure that all required variables are defined:

eval env (reduce env expr)
= {definition of reduce}

eval env (wrap (eval envs expr))
= {Theorem 5.2}

eval env (wrap (eval env expr))
= {evaluation of a constant}

eval env expr

The wrap function simply wraps a Value into a constant expression (Num or Bool), and hence

eval just performs unwrapping. In the actual code, the behaviour of wrap is implemented by the

eval to expr function.

For dynamic expressions we proceed by structural induction on the form of expr. Note that

since constants are always static and expr is dynamic, there are only four cases to consider. In

each case we assume that (envs, envd) = partition env.

i. Case expr = Variable v:

This case is handled by the reduce lookup function. The behaviour differs depending on

the result of may instantiate key. For the present, we consider a simplified version where

the result is always True unless the key was provided in the input dyn env, i.e. it is a state

variable, time variable, or explicitly annotated as dynamic by the user.

If may instantiate key gives False, reduce leaves expr unchanged and the result is triv-

ial. Otherwise, by Lemma 5.1(iv) Var v ∈ envd, and by the definition of bta key and

Lemma 5.1(ii) we also have that find envd (Var v) = Expr e, where e is dynamic. Thus,

eval env (reduce env expr)
= {definition of reduce}

eval env (reduce env e)
= {IH on e}

eval env e
= {Lemma 5.1(ii) and definition of elookup}

elookup env (Var v)
= {definition of eval}

eval env expr
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ii. Case expr = Ode v1 v2:

Since this case is also handled by reduce lookup, the argument is identical to that above.

iii. Case expr = Apply operator operands:

iv. Case expr = Piecewise cases Nothing:

The details for these cases are given in Appendix B.2. The short-circuiting requires some

fairly lengthy analysis, but it is not difficult. 2

Theorem 5.4 Partial evaluation of a model does not change its meaning. As mentioned at

the start of Section 5.3, this involves showing that evaluation of f(Y , t) is unchanged for any

possible values of Y and t. Formally, for any CellML model model and environment initenv

associating values with Y and t,

run cellml model initenv = reduce and run cellml model initenv.

Proof. The only difference between the two sides in this equality is the environment which

is used to run the model in the function run env—run cellml uses that given by load cellml

directly, whereas reduce and run cellml applies partial evaluation to it first using reduce env.

Here we prove the theorem for the simpler case where code duplication is not considered,

and defer consideration of the full partial evaluator for Theorem 5.5. Thus, as was seen in

the proof of Theorem 5.3, all environment lookups have the defining expression instantiated

unless a definition is given in the input environment initenv. Also, the definition of reduce env

is simpler:

r e d u c e e n v : : Env → [ EnvKey ] → Env → Env
r e d u c e e n v mode l env d e r i v s i n i t e n v

= d e f i n e p e u n i t s ( r e d u c e d e r i v s mode l env )
where i d a t a = f i n d mode l env ( Var ” ” )

r e d u c e d e r i v s env
= d e f i n e ( f o l d r ( r e d u c e d e r i v env ) i n i t e n v d e r i v s )

( Var ” ” ) i d a t a
r e d u c e d e r i v menv d env

= d e f i n e env d ( r e d u c e k e y menv d )
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Recall that run env is defined as

r u n e n v mode l env d e r i v s
= f o l d r e v a l d e r i v e m p t y e n v d e r i v s
where e v a l d e r i v d env

= d e f i n e env d ( Val ( e l o o k u p mode l env d ) )

We need to prove that

run env model env derivs initenv =
run env (reduce env model env derivs initenv) derivs initenv

where derivs is the list of EnvKeys representing the derivatives in the model, and model env is

the environment generated from model.

Since both run env and reduce env are essentially folds processing each ODE in turn, the re-

sult follows by repeated application of Theorem 5.3. We can’t apply it directly, since evaluation

of each reduced ODE takes place in the reduced model environment, and Theorem 5.3 requires

evaluation of the reduced expression to take place in the same environment as evaluation of

the whole expression. However, on examining the proof we see that the environment used for

evaluation only matters when environment lookups are performed. But using the definition

of reduce env given here, the only lookups remaining in a reduced expression are satisfied by

initenv, and thus have the same definition in both model env and the reduced environment. 2

Theorem 5.5 When using the full PE implementation, there is no duplication of code in the

reduced model. That is, if the original model contains a binding of some dynamic variable

(say x) to an expression (say Expr e, where e is not an environment lookup, i.e. of the form

Variable v or Diff v1 v2), and x is used in more than one location in the reduced model, then the

reduced model will contain a binding of x to a reduced Expr e, and lookups of x will be retained

in the reduced model, rather than its definition being instantiated.

While we refer to x as a variable in the statement above, this applies equally if x is a deriva-

tive.

Proof. There are two facets to this proof. The first is to show that definitions will not be instan-

tiated if this would lead to code duplication, which is the purpose of the may instantiate key
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function. The second is to show that where a lookup is retained, an appropriate definition is

also present.

The definition of a key may be instantiated if either (a) this is the only lookup of the key in

the whole model; or (b) the key’s definition means it is just an alias for another key. An example

of this latter case is the key being defined by Expr (Variable v). There is also another criterion

used by may instantiate key: the key must not be explicitly marked as dynamic by the user (i.e.

must not be provided in the input environment; this includes the case where it is a state variable

or time); this is tangential to a discussion of code duplication, however.

m a y i n s t a n t i a t e k e y : : Env → EnvKey → Bool
m a y i n s t a n t i a t e k e y env key

= not a n n o t a t e d && ( u s e d o n c e | | a l i a s )
where

I n t e r n a l D a t a ( , , d y n e n v ) = f i n d env ( Var ” ” )
a n n o t a t e d = i s J u s t ( m a y b e f i n d d y n e n v key )
u s e d o n c e = c h e c k u s a g e env key == 1
a l i a s = case f i n d env key of

Expr ( V a r i a b l e ) → True
Expr ( D i f f ) → True

→ F a l s e

The check usage function simply counts how many times the key is looked up in expressions

within the given environment. With these definitions it is easy to see that expressions are never

duplicated. We thus turn our attention to showing that the reduced model environment contains

all the necessary definitions.

The key part of the full reduce env implementation is the function rec reduce derivs, which

we reproduce here for ease of reference.

r e c r e d u c e d e r i v s env
= i f h a s i n s t a n t i a b l e k e y new env

then r e c r e d u c e d e r i v s new env
e l s e new env

where new env = d e f i n e
( head ( dropWhile h a s u n d e f i n e d v a r

( i t e r a t e ( a d d r e d u c e d d e f i n i t i o n s env )
( r e d u c e d e r i v s env ) ) ) )

( Var ” ” ) i d a t a

h a s i n s t a n t i a b l e k e y env
= f o l d r ( | | ) F a l s e (map ( m a y i n s t a n t i a t e k e y env ) ( l o o k u p s env ) )
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h a s u n d e f i n e d v a r env
= not ( u s e d s e t ` S e t . i s S u b s e t O f ` d e f s e t )
where d e f s e t = S e t . f r o m L i s t ( names env )

u s e d s e t = S e t . f r o m L i s t ( l o o k u p s env )

a d d r e d u c e d d e f i n i t i o n s f r o m e n v t o e n v
= f o l d r a d d d e f t o e n v ( S e t . t o L i s t ( S e t . d i f f e r e n c e u s e d s e t d e f s e t ) )
where d e f s e t = S e t . f r o m L i s t ( names t o e n v )

u s e d s e t = S e t . f r o m L i s t ( l o o k u p s t o e n v )
a d d d e f key env = d e f i n e env key ( r e d u c e k e y f r o m e n v key )

The function reduce derivs is used to perform a single run of the PE algorithm, reducing each

ODE in the model, and then add reduced definitions is iterated to ensure that any environment

lookups are defined in the reduced model, and their definitions reduced. PE is repeated while

the has instantiable key test (which uses may instantiate key) holds. This is because reduction

of an expression may remove environment lookups, for instance if they occur in a subexpression

that we can show statically will never be evaluated, and thus may reduce the number of lookups

of a particular key to one, hence allowing an instantiation that was previously considered im-

possible.

In order to show that the reduced model environment includes all the required definitions,

we therefore need to prove the following three claims.

i. Iteration of add reduced definitions terminates.

ii. Recursion of rec reduce derivs terminates.

iii. Evaluation of ODEs in the reduced model is equivalent to evaluation in the original model.

The first two points show how progress is made towards completion, and prove that the par-

tial evaluation process will not fail to terminate. The last point proves that the model semantics

are preserved.

i. Iteration of add reduced definitions terminates.

Let envi be the ith member of

iterate (add reduced definitions env) (reduce derivs env)
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where env is the environment passed to rec reduce derivs. Since we are assuming the

model is valid, all lookups from env must be defined in env, and hence all lookups from

any envi must be defined in env (this can be shown by a simple induction, using this para-

graph to perform the inductive step). The iteration continues until some envi has no un-

defined variables. By properties of iterate, envi+1 will include all the definitions in envi.

If envi does have an undefined variable, then by properties of sets a definition not present

in envi will be copied (reduced) from env to envi+1. Hence the size of the envi increases

monotonically, and is bounded above by the size of env, so the iteration must terminate.

ii. Recursion of rec reduce derivs terminates.

We show that the number of lookups in the environment at each recursive call is strictly

decreasing; since the number cannot go below zero the recursion must thus terminate. As

we have shown above, expressions are never duplicated, and the total number of expres-

sion tree nodes in the environment cannot increase from one recursive call to the next,

hence the number of lookups cannot increase. Also, whenever a recursive call is made,

has instantiable key new env must be True, hence reduce will instantiate at least one defin-

ing expression, thus reducing the number of lookups by at least one.

iii. Evaluation of ODEs in the reduced model is equivalent to evaluation in the original model.

This requires us to prove that for any expression expr within the original model environment

envm, with corresponding reduced environment envr,

eval envm expr = eval envr (reduce envm expr).

For the most part the proof proceeds as for Theorem 5.3, since the environments used for

evaluation and reduction only matter when lookups are performed. Hence we need only

consider the cases for Variable v and Ode v1 v2. We will prove the Variable v case; that for

ODEs is essentially identical.
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Therefore, suppose that expr = Variable v, and let k = Var v. If k is static the result is

trivial, since then

reduce envm expr = wrap (eval envm expr)

and evaluation of a constant does not depend on the environment. Assume therefore that k

is dynamic. Since the model is valid, k ∈ envm, and it must be bound either to a run-time

parameter or a dynamic expression. In the former case the result is also trivial, since then

reduce leaves expr unchanged and k is defined in the initial input environment, and thus has

the same definition in both envr and envm.

The final case to consider is thus that of k bound to a dynamic expression e in envm, so

that find envm k = Expr e. If at any point in the recursion of rec reduce derivs k is an

instantiable key, then we have that

eval envr (reduce envm expr)
= {definition of reduce}

eval envr (reduce envm e)
= {IH on e}

eval envm e
= {definition of elookup}

elookup envm k
= {definition of eval}

eval envm expr

Otherwise, reduce retains the lookup of k, and since has undefined var is false for envr we

must have k ∈ envr. From the definition of add reduced definitions we have that

find envr k = reduce key envm k (5.3.1)

and so
eval envr (reduce envm expr)

= {definition of reduce}
eval envr expr

= {definition of eval}
elookup envr k

= {definition of elookup, (5.3.1), and definition of reduce key}
eval envr (reduce envm e)

= {continuing as above}
eval envm expr 2
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We have now shown that partial evaluation of a model will not change the results of simu-

lations, and that no code duplication will occur in a specialised model. Such requirements are

standard for partial evaluation of any language, however. CellML, being a modelling language

concerned with the real world, also includes units information, and as we saw in Chapter 4 it is

important that the use of units within a model is consistent. We must thus show that our partial

evaluator maintains this consistency, and this is the subject of the next theorem.

Theorem 5.6 Appropriate units definitions are added to the reduced model. That is, for any

constant c in the reduced model with units u (which are not standard CellML units), the units

environment envu of the reduced model contains a binding of a name nu :: UName to the units

definition u :: Units, and the units of c in the reduced model are given as nu (i.e. a named

reference, rather than an anonymous reference to u). Further, nu is the only name bound to u in

the units environment (assuming that the original model did not contain duplicate definitions).

Proof. The units environment is contained within the ‘internal data’ part of a model environ-

ment. Units references within expressions have type Either UName Units, and as such are

either by name to units defined in the environment, or to ‘anonymous’ units definitions given

explicitly. During partial evaluation, when a constant is created, the units field is filled in with

the units of the expression as an ‘anonymous’ reference, as explained in Section 5.2.3. This

avoids the need for PE to change the environment as well as individual expressions. After

PE is complete, the define pe units function is used to add these anonymous units to the units

environment and change the references within constants to use names.

Under certain assumptions, including correctness of the foldr expr key and map foldr func-

tions, this theorem is straightforward to prove informally. The key component is the define units

function. It uses the equality relationship defined on the Units datatype to avoid adding multi-

ple definitions of u to the units environment, so we require this to actually capture equality of

definitions, rather than being an equivalence relation. As discussed at the end of Chapter 4, due

to the use of floating point arithmetic in comparing definitions this is not absolutely ensured,
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but the assumption is unlikely to fail.

If a definition equal to u is found, define units returns the name nu already bound to u, and

leaves the units environment unchanged. Otherwise, it uses uniq key to generate a unique key nu

such that nu /∈ envu, and returns both nu and the new units environment envu⊕{nu 7→ u}, with

the new binding contained in the ‘model global’ portion of envu. The correctness of uniq key,

shown below, follows directly from properties of sets.

u n i q k e y : : Uni t sEnv → UName
u n i q k e y uenv

= head ( dropWhile used (map num2uname [ 0 . . ] ) )
where n a m e s s e t = S e t . f r o m L i s t ( names uenv )

num2uname n = ” ” ++ show n
used n = S e t . member n n a m e s s e t

Finally, def units expr is used to process each constant within the reduced model, and uses

the results of define units to update the units reference as needed. 2

With these results, we can thus have confidence that the partial evaluation algorithm de-

scribed in this chapter will not change the results of simulations of models. Partial evaluation

therefore provides us with a reliable, provably correct optimisation of mathematical models

described in CellML.

5.4 Discussion

We have presented an application of the optimisation techniques of partial evaluation to the

domain specific modelling language CellML, and proved it correct. Due to the unusual nature

of CellML, our partial evaluator contains features not seen in those for other languages. We

believe the integration of physical units to be unique. Also, since we have no need to self-apply

PE, we chose a partially online strategy to obtain some further small improvements.

One issue that has not yet been addressed is the impact on our proof of floating point arith-

metic. We have assumed that all PE-time calculations have been of sufficient precision to not

unduly affect the accuracy of simulations. This is a reasonable assumption for two reasons.

Firstly, the precision is much greater than that used for parameter values. Secondly and more
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importantly, as we shall see in the next chapter, greater errors do not affect simulation accuracy.

The proof presented here has shown the reliability of the Haskell implementation of PE for

CellML, and hence of the essential PE algorithm. However, as noted in Section 5.2, in practice

we use a Python implementation for transforming CellML models. Our proof as given here does

not directly address the reliability of that implementation. However, we are able to compare the

results of the two implementations (utilising a function which converts a model environment

back to an instance of the CellML type), and the fact that the Haskell implementation has been

proven correct then allows us to verify the output of the Python implementation on each model

in our sample. This gives us an additional level of confidence above that obtained by unit testing

and comparing simulation results.

The comparison mentioned above is not, unfortunately, exact. This is due to the fact that the

Python implementation has a better algorithm for adding units definitions to the reduced model.

It uses a different data structure for units, with references done by name rather than including

the reference unit’s definition directly (as is done with the ComplexUnitsRef type for instance;

see Section 4.3). This then allows it to generate more human-readable names for definitions,

based on these named references.

The primary reasons for having a Python implementation, rather than just using Haskell, are

pragmatic. Whilst our initial approach to partially evaluating CellML used Haskell, specifically

the Haskell XML Toolbox, to convert CellML into Scheme (whence an existing partial evaluator

could be used), this was found to be difficult to work with. A decision was thus made to start

from scratch in implementing PE for the CellML language directly, and Python was chosen

as being a good fit both for our experience and that of the intended user community—Python

has gained significant popularity particularly among bioinformaticians, and it is also used for

pre-existing CellML-related software, notably the model repository; other CellML tools are

also written using the object-oriented paradigm. It was thus felt that other developers would be

more able to contribute to and use a Python-based tool.

The Python implementation was designed with both extensibility and performance in mind.
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It essentially operates directly on the XML tree (using a data binding library), and endeavours

to do something sensible with any data or metadata that it is not transforming. Since CellML

is designed to be extensible, this flexibility is useful. It also makes much use of ‘bookkeeping’

state to avoid recomputation of data during the validation and optimisation process.

However, the Python implementation has definite shortcomings. The PE algorithm is ob-

scured by the ‘plumbing’ introduced by the data binding library, the heavy use of state, and the

object oriented design of the system. Python, being a dynamically typed imperative language,

also lacks the desirable features of Haskell that facilitate program proofs. Hence when we con-

sidered proving the correctness of our techniques, we returned to a Haskell implementation. We

have also found that the experience of developing two essentially independent implementations

has been of assistance in refining the techniques.

With hindsight, we can see benefits to having the primary implementation in Haskell, and

this may be the direction we take in the future. With suitable ‘meta’ functions for processing

the data types involved, model transformations can be described very concisely and elegantly.

Haskell’s pattern matching also provides us with an easy way to apply transformations only to

expressions having a certain form. There may be scope for using automatic theorem provers to

analyse the correctness of optimisations. These considerations suggest that Haskell would be a

better choice for developing a more general model transformation framework.

In Chapter 7 we will consider the question of effectiveness, with experimental results of

applying this optimisation to a sample of models. Firstly, however, we look at another technique

for optimising cardiac simulations, and its application to CellML.



6
Lookup Tables

In this chapter we consider a further optimisation technique which may be applied

to enable more efficient simulation of CellML models. Lookup tables have long

been used in cardiac simulations, with the modifications required being manually

applied to hand-coded implementations of models. We have automated the tech-

nique for models described in CellML.

Section 6.1 describes how the technique works, and also explains how the anal-

ysis of when a lookup table may be used can be automated. This is followed in

Section 6.2 with a brief discussion of how the use of lookup tables affects code

generation.

The remainder of the chapter is devoted to our other contribution in this area—an

analysis of the error introduced by this optimisation. Since the use of lookup tables

involves approximating certain expressions within the model, we cannot prove that

the meaning of the model is unchanged as we did for partial evaluation in the previ-

ous chapter. Instead we must show that the error introduced, and then accumulated

over the course of a simulation, is within a tolerance level.
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6.1 Introduction

A further optimisation which may be applied to CellML models is the use of lookup tables to

precompute the values of expressions that would otherwise be repeatedly calculated.

This technique works because several expressions in most cardiac cell models contain only

one dependent variable: the transmembrane potential. For example, the following occurs in the

LR91 model (Luo and Rudy, 1991):

βm = 0.08e
−V
11 . (6.1.1)

Under physiological conditions the transmembrane potential V usually lies between −100 mV

and 50 mV, and so a table T can be generated of precomputed values of βm for potentials

within this range. Then, given any transmembrane potential within the range, a value for βm

can quickly be computed using linear interpolation between two entries (Ti and Ti+1) of the

lookup table:

βm = Ti +
(Ti+1 − Ti)(V − Vi)

Vi+1 − Vi

, (6.1.2)

where Vj is the voltage used in computing Tj . If V lies outside the range, this can either be

considered an error condition, or the original equation can be used.

Another technique sometimes described as using lookup tables is memoization (Michie,

1968). This is a computer science technique in which the return values of function calls are

automatically cached, and if the function is called again with the same arguments then the

saved result is used, thus avoiding recomputation of the function. This is not the same as our

use of the term lookup tables: here values are precomputed rather than computed on demand,

and interpolation is used to approximate values where an exact match is not available.

The use of a lookup table is a worthwhile efficiency saving when the expression contains

exponential (as in the case for equation (6.1.1), and generally in Hodgkin–Huxley style for-

mulations of ion channel behaviour) or trigonometric functions, since these are expensive to

compute.1 The technique has been in use for some time (e.g. Dexter et al., 1989; Fox et al.,
1An estimate of the relative costs is given in Chapter 7, as are further examples.
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2002), with the lookup table code hand-written for each equation; we generate the code auto-

matically, as well as treating subexpressions rather than just whole equations.

The (explicit) mathematics contained within a CellML file is described using MathML, and

hence is tree structured. It is thus trivial to construct a recursive algorithm to check any ex-

pression (either the whole right hand side of an assignment, or a subexpression thereof) for

suitability for conversion to using a lookup table. The two key criteria we check are:

1. the only variable used is the transmembrane potential V ;

2. the expression contains exponential, logarithmic, or trigonometric functions.

These criteria are checked for each node of the expression tree, starting at the top. The recursion

terminates (for a given branch) as soon as both are satisfied, so that maximal subexpressions are

matched.

The lookup tables transformation annotates suitable expressions with attributes in an ex-

tension namespace specifying how to generate the table,2 since CellML does not yet contain

suitable constructs for describing these. It contains no tabular or array data types (every vari-

able is considered to be a real number), and there is also no facility for specifying that certain

expressions should be evaluated prior to simulation, rather than at every timestep. The anno-

tations used specify the variable used to index the table, minimum and maximum values for

this variable, and the step size (which we denote by τ ; choosing a suitable τ will be discussed

later). This provides more flexibility than is required when considering only tables indexed

by the transmembrane potential, but allows for possible future extensions to other variables

constrained by physiological bounds.

A code generation tool may make use of these annotations to incorporate lookup tables

within the generated cell model source code. The precise form this code takes can vary depend-

ing on the target programming language and simulation environment. Indeed, one advantage

of decoupling the lookup table analysis from the code generation is that one may easily exper-

2Unsuitable expressions are annotated with the reasons why a table may not be used.
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iment with different representations for lookup tables. This question is considered further in

Section 6.2.

The first criterion for when a lookup table may be used is very simplistic. Constant variables,

and variables whose values depend only on constants, could be included within an expression

that is converted to use a lookup table. The key question is:

is the value known when the lookup table is generated?

In other words, can the value of the expression be computed (given a value for V ) when the

lookup tables are generated prior to simulation, or does such a computation require values

that are not known until the simulation is in progress? Such an analysis however is basically

a binding time analysis. Hence if partial evaluation is applied before the lookup table analysis

then a more complex version of the second criterion is not required. This is because expressions

which can be computed prior to simulation are computed by partial evaluation and replaced by

their value as a constant. The correctness proof for the lookup table analysis then comes from

the proof of the partial evaluator.

6.2 Lookup tables in generated code

The representation of lookup tables within generated code is important for the effectiveness

of the technique. In particular, it is crucial to lay out the values in memory such that access

to the tables makes good use of the memory cache in typical computer architectures. When

performing a simulation, at a given time step every table will (typically) be accessed, but the

same index will be used for each table. Rather than storing each table in its own block of

memory, it thus makes sense to arrange the tables together, such that values for a given index

are stored contiguously. They are then likely to share a cache line, leading to fewer cache misses

and better data throughput.

When generating C++ code for use with Chaste (Pitt-Francis et al., 2008), the current version

of PyCml generates two classes: one for the cell model itself, and one following the Singleton
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design pattern (Gamma et al., 1995) containing the lookup tables for the model. The use of a

singleton means that even in a multi-cellular simulation only one instance of the lookup tables

will be generated, thus keeping memory usage to a minimum. The generation of the lookup

tables is performed within the constructor of this class, and (inline) methods are provided to

perform linear interpolation on each table. Within the cell model class, calls to these methods

replace the appropriate expressions.

Since the index i and the factor (V −Vi)/(Vi+1−Vi) in the linear interpolation formula (6.1.2)

are common to all tables, they are computed once per timestep within the cell model class, and

passed to the interpolation methods. The index i is given by the integer part of (V − V0)/τ .

6.3 Lookup table error analysis

The analysis above of when an expression may be replaced by a lookup table is not the only facet

we must consider in regard to proving this optimisation correct. Recall that the use of lookup

tables involves an approximation—the expression replaced is approximated by a piecewise-

linear function. We therefore cannot say that the transformed model has precisely the same

meaning as the original, since an error is introduced. Instead, we must show that this error, even

accumulated over the course of a simulation, will be sufficiently small that it may be ignored.

In other words, using the same informal notation as in Section 5.3, we must show that for any

ODE solver used,

∀ i ∈ inputs , c ∈ CellMLmodels
‖solver(c, i)− solver(LT c, i)‖ ≤ ε

for some suitable error bound ε.

To the best of our knowledge, there is no existing work analysing this error in any rigorous

way. Instead, the accuracy of a simulation using lookup tables is verified by running the same

simulation without lookup tables, perhaps also using a smaller time step (see e.g. Fox et al.,

2002). Usually the error in physiological quantities of interest for the study, such as action

potential duration, is considered, rather than comparing the solutions directly. We have sought
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to use mathematical error analysis to determine a computable error bound which will allow the

lookup table step size to be chosen so as to guarantee that the error is within acceptable limits.

One approach is to use truncation error analysis, noting that the problem bears some similar-

ities to analysing the error caused by floating point inaccuracies. However, the ‘stiff’ nature of

the ODE systems representing cardiac cells (the fact that the upstroke of an action potential oc-

curs on a very fast timescale, whereas the rest of the activity occurs on a much longer timescale)

makes this approach infeasible. The error bound obtained is far too large to be useful, as well

as being very difficult to calculate, as is shown in Section 6.4.

A better approach is to use a posteriori error analysis, which has its roots in adaptive finite

element techniques. Finite element methods discretise the problem domain into a ‘mesh’ of

elements, and approximate the true solution by a function (e.g. a low-order polynomial) on

each element. A posteriori error analysis is used to refine the mesh until a prescribed global

accuracy is achieved. It provides an algorithm for computing the error bound, and gives a much

tighter bound, within an order of magnitude of the actual error. This approach is the subject of

Sections 6.5 and 6.6.

6.4 Truncation error analysis

Truncation error analysis considers the propagation of errors due to ‘truncation’ of values at

a given precision, such as is caused by the limited precision of floating point arithmetic. We

describe the main features of the technique here, and refer the reader to books for further details

(Lambert, 1973; Henrici, 1962, 1963).

Firstly, some notation. Recall the generic ODE system model of Equation (3.0.1), which we

can write as

dy

dt
= f(y, t), y(a) = η, (6.4.1)

where η gives the initial conditions of the state variables at time a. We denote the components

of the vector y by y1, y2, . . . , yM .
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A Lipschitz condition ensures that (6.4.1) has a unique solution on some region D, defined

by a ≤ t ≤ b (a and b finite), −∞ < yi < ∞, i = 1, 2, . . . ,M . We require that there exist a

constant L such that, for every t,y, y∗ such that (y, t) and (y∗, t) are both in D,

‖f(y, t)− f(y∗, t)‖ ≤ L‖y − y∗‖, (6.4.2)

where ‖ · ‖ denotes some vector norm.

Computational methods to solve ODEs generally seek an approximation to y(t) at a set of

discrete points {tn|n = 0, 1, . . . , (b − a)/h}, where h is the steplength of the method, and is

constant for all methods considered here. Let yn be an approximation to y(tn), the theoretical

solution at tn, and let fn ≡ f(yn, tn). A linear k-step method for determining the yn takes the

form of a linear relationship between yn+j, fn+j, j = 0, 1, . . . , k, and can be written as

k∑
j=0

αjyn+j = h
k∑

j=0

βjfn+j, (6.4.3)

where the αj and βj are constants. We assume that α0 and β0 are not both 0, and without loss

of generality we can assume that αk = 1.

To solve this difference equation we first need to obtain a set of starting values y0, . . . ,yk−1.

In the case where k = 1 we only need y0, and normally choose y0 = η. Methods for obtaining

these values will not be discussed here (see e.g. Süli and Mayers, 2003).

We say that the method (6.4.3) is explicit if βk = 0, and implicit otherwise. For an explicit

method we can obtain the current value yn+k directly from (6.4.3), and so such methods are

easier to compute, but implicit methods enjoy better numerical stability properties.

Henrici (1963, Theorem 4.1) gives the following bound for the global truncation error en =

y(tn)− yn when h|αk|−1L|βk| < 1:

‖en‖ ≤ Γ∗[Akδ + (tn − a)GY hp]e(tn−a)Γ∗LB, (6.4.4)
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where

Y = max
t∈[a,b]

‖y(p+1)(t)‖,

A =
k∑

j=0

|αj|,

B =
k∑

j=0

|βj|,

Γ∗ =
Γ

1− h|αk|−1L|βk|
,

Γ = sup
l=0,1,...

|γl|,

1/(αk + αk−1ζ + . . . + α0ζ
k) = γ0 + γ1ζ + γ2ζ

2 + . . . ,

and δ is the maximum error in the starting values under some vector norm. Note that in the case

of an explicit method Γ∗ = Γ.

Errors due to lookup tables can be incorporated in the analysis in the same way as Henrici

addresses round-off error, leading to the bound

‖en‖ ≤ Γ∗[Akδ + (tn − a)(GY hp + |ε|/hΓ∗)]e(tn−a)Γ∗LB, (6.4.5)

where |ε| is a small constant bounding the error due to lookup tables introduced at a single step

of the ODE solver. As shown by Henrici (1963, Theorem 5.1) the additional accumulated error

from this source is bounded by
ε(tn − a)

h
e(tn−a)Γ∗LB,

which when added to (6.4.4) yields (6.4.5).

Computing those parts of the error bound which depend solely on the ODE solution method

may not always be straightforward, but they need only be done once per method and so do not

present a significant computational challenge. There are two greater challenges to the practical

use of the error bound above. The first is to compute a value for Y , a bound on the p + 1th

derivative of the problem. In general, since f may depend on y, we may need to know values

of y in order to compute Y , which may not be possible. Fortunately, in the case of cardiac
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electrophysiological models the physiology of the problem gives us bounds on y which we may

in principle use to compute Y , although performing the differentiation will be difficult, since

the ODE systems are complex.

Obtaining a value for L is also hard. If we can calculate the 2-norm (i.e. largest eigenvalue)

of the Jacobian matrix of the problem, and find its maximum over D, then this gives us L. Given

the complexity of cardiac models, however, this approach does not appear fruitful, and there is

still a further problem. We can estimate L by choosing random values for the dependent vari-

ables, within D, and calculating the corresponding value of L which gives equality in (6.4.2).

For the Hodgkin–Huxley system of equations (Hodgkin and Huxley, 1952), this gives a value

for L of at least 9000. Unfortunately, such a large value makes the error bound above useless

for the purpose of choosing suitable step sizes. The magnitude of the Lipschitz constant is due

to the stiff nature of the ODE system—the upstroke of an action potential occurs on a much

faster timescale than the remainder of the activity.

Thus we conclude that, while such an error analysis may possibly be useful for proving theo-

retical safety properties of the lookup table optimisation, it is not suitable for use in determining

what table step size to use.

6.5 An a posteriori error analysis

The aim of a posteriori error analysis is to obtain a computable bound on the error of an approx-

imation U to the true solution u of a problem, where the approximate solution U is obtained

using the finite element method. A key feature of this error analysis is that it does not require

any knowledge about the true solution u beyond the fact that it is a solution. The error bound

is given solely in terms of the computed solution U , not the unknown analytic solution u. The

name ‘a posteriori’ is due to this fact that the bound is only computable after the numerical

solution to the problem has been obtained. This section derives some error bounds, and the

results of applying them are shown in Section 6.6.
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In this section, the system of M ODEs representing a cardiac cell model is written as

dui

dt
+ fi(u, t) = 0, T0 < t ≤ T1, i = 1, 2, . . . ,M, (6.5.1)

ui(0) = ui,0, i = 1, 2, . . . ,M, (6.5.2)

with the initial conditions ui,0. The system is simulated over the time interval [T0, T1].

The key assumption made about the true solution u is that it is continuous for the duration

of the simulation, and that du/dt exists everywhere. This is a reasonable assumption since

we expect biological systems to exhibit fairly smooth continuous behaviour, and this should

therefore be reflected in models of such systems.

In the next subsection, we introduce the main concepts of the finite element method, and

then in Section 6.5.2 show how it applies to solving the system of ODEs above, and how the

use of lookup tables can be incorporated. Subsequent sections deal with the error analysis, first

introducing the technique in general, then applying it to cardiac cell models.

An important benefit of a posteriori error analysis is that, rather then just determining the

error of the solution in some norm, it can be applied to calculate a bound on the error in any

functional of the solution.3 Section 6.5.6 uses this fact to derive two alternative error bounds,

which provide more insight into the behaviour of the models.

Finally, Section 6.6 evaluates the effectiveness of these techniques on a variety of cell mod-

els, as well as considering questions such as the robustness of the analysis, and convergence of

the error as the mesh size or lookup table step size are reduced.

6.5.1 The finite element method

Galerkin’s method for solving a general differential equation is based on finding an approximate

solution as a function in a (finite-dimensional) space of functions. This space should be spanned

by a set of basis functions which are easy to differentiate and integrate. In the finite-dimensional

3A functional is a real-valued function on a vector space V , usually of functions. Recall that the finite element
method gives a solution of the problem as a function, so a function of this solution is a functional.
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case, the method leads to a system of linear or nonlinear simultaneous equations which may be

solved using a computer.

The basic finite element method is thus just Galerkin’s method using piecewise polynomials

for the basis functions. Süli and Mayers (2003) give a very brief introduction to the finite

element method, from a fairly mathematical viewpoint, while Eriksson et al. (1996) provide

a good introduction to the topic, including examples of its application to various classes of

problems.

Given a set of basis functions φi : i = 1, . . . , n, any function in the space, including the

approximate solution, may be represented as a linear combination of basis functions:

U(t) =
n∑

i=1

ζiφi(t),

for some coefficients ζi ∈ R. The coefficients for the approximate solution are obtained by

requiring U to satisfy the differential equation in an ‘average’ sense, such that U is the solution

to the weak or variational form of the problem.

The method is best understood by way of an example, and so in the next section we apply it

to our cardiac model, equations (6.5.1) and (6.5.2).

6.5.2 The finite element method applied to a cardiac model

For the purposes of our presentation of a posteriori error analysis applied to cardiac cell models,

we will seek a piecewise constant finite element solution to equation (6.5.1). This is equivalent

to using the backward Euler method to solve the ODE system. We will thus require piecewise

constant basis functions. While piecewise linear basis functions would be likely to give a more

accurate solution for a given mesh size, there are advantages to using a low order solution which

will be seen later.

Suppose that the time interval of the simulation, [T0, T1] is partitioned into N sub-intervals
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In where

In = (tn−1, tn], and T0 = t0 < t1 < . . . < tN = T1.

These intervals In are the finite elements. The mesh size on element In is given by

hj = tj − tj−1, j = 1, 2, . . . , N.

We then define the piecewise constant basis functions V1, V2, . . . , VN such that Vj is 1 on

element Ij and zero elsewhere, i.e.

Vj(t) =

{
1 t ∈ Ij

0 otherwise. (6.5.3)

The vector space spanned by these basis functions is denoted by W .

The finite element solution U to (6.5.1) is then given by

Ui(t) =
N∑

j=1

Ui,jVj(t), i = 1, 2, . . . ,M,

where the Ui,j’s are constants that are to be determined. This is known as the “dG(0)” solution,

where “d” denotes that the solution is discontinuous, “G” stands for Galerkin, and the “(0)”

denotes that the piecewise polynomials are of degree zero (Eriksson et al., 1996, p. 212).

In order to reason effectively about discontinuous functions, we make use of the following

notation:

v(t+k−1) = lim
ε→0+

v(tk−1 + ε),

v(t−k−1) = lim
ε→0+

v(tk−1 − ε),

where ε > 0. These expressions give the values of the function v as we approach a discontinuity

from either side. The “jump” in a quantity across the boundary between Ik and Ik+1 is denoted

by

[v(k)] = v(t+k )− v(t−k )
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The weak form

The weak form of equation (6.5.1) is given by an integral equation. Let L2([T0, T1]) denote

the vector space of functions that are square–integrable on the interval [T0, T1], and let v =

(v1, v2, . . . , vM) such that vi ∈ L2([T0, T1]), for i = 1, 2, . . . ,M . Then, using equation (6.5.1),

we have that ∫ T1

T0

(
dui

dt
+ fi(u, t)

)
vi dt = 0, i = 1, 2, . . . ,M.

This says that the true solution u (or rather, its residual error dui

dt
+ fi(u, t)) is orthogonal to

all such functions v. This orthogonality property is the way in which we specify that the finite

element solution satisfies the differential equation in an ‘average’ sense.

Noting that ui(t) is continuous, and thus has no jumps, we may write∫ T1

T0

(
dui

dt
+ fi(u, t)

)
vi dt +

N∑
k=1

[u
(k−1)
i ]vi(t

+
k−1) = 0, i = 1, 2, . . . ,M, (6.5.4)

since all the [u
(k−1)
i ] are zero. This is the weak form of the problem.

The reason for adding a zero term in (6.5.4) becomes clear when we consider that the finite

element solution may have jumps, since it is permitted to be discontinuous. Since the true so-

lution is continuous, however, we wish to penalise jumps in the approximate solution, which is

accomplished by this term. The coefficients Ui,j of the finite element solution are thus calculated

by demanding that∫ T1

T0

(
dUi

dt
+ fi(U, t)

)
Vj dt +

∑N
n=1[U

(n−1)
i ]Vj(t

+
n−1) = 0,

i = 1, 2, . . . ,M, j = 1, 2, . . . , N,
(6.5.5)

thus asserting that U is orthogonal to all functions in the space W defined earlier. The Vj are

often known as test functions. In order to satisfy the initial conditions (6.5.2) we fix Ui,0 = ui,0.

As Vj is non-zero only on the interval Ij , and U is constant on this interval, we may write

equation (6.5.5) as

Ui,j − Ui,j−1 + hjfi(Uj, t) = 0, i = 1, 2, . . . ,M, j = 1, 2, . . . , N, (6.5.6)
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where Uj denotes U on the interval Ij , and we thus obtain a numerical scheme identical to the

backward Euler finite difference formula. Note that we have assumed that since U is constant

on Ij , fi(U, t) is also. This is usually the case for cardiac models, since they contain no direct

reference to t except via a stimulus protocol, and the stimulus is usually represented by a step

function, which can be made to change on element boundaries.

6.5.3 The finite element approximation using lookup tables

How may we account for the presence of lookup tables? The use of lookup tables alters the

function f slightly; we denote this altered version by f̂ . With this change to the ODE system,

we can proceed just as before. The finite element approximation in this case is denoted by

Ûi(t) =
N∑

j=1

Ûi,jVj(t), i = 1, 2, . . . ,M,

satisfies∫ T1

T0

(
dÛi

dt
+ f̂i(Û, t)

)
Vj dt +

N∑
n=1

[Û (n−1)
i ]Vj(t+n−1) = 0, i = 1, 2, . . . ,M, j = 1, 2, . . . , N,

(6.5.7)

and is calculated from

Ûi,j − Ûi,j−1 + hj f̂i(Ûj, t) = 0, i = 1, 2, . . . ,M, j = 1, 2, . . . , N, (6.5.8)

Ûi,0 = ui,0, i = 1, 2, . . . ,M. (6.5.9)

6.5.4 A posteriori error analysis

A posteriori error analysis is based on representing the error in terms of the solution of a con-

tinuous dual problem to the original ODE system (6.5.1), which is used to determine the effects

of the accumulation of errors. To motivate this, consider the simple ODE du
dt

+ au = f for

0 < t < T , which has the weak form∫ T

0

(
du

dt
+ au

)
v dt =

∫ T

0

fv dt.
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Integration by parts gives us

u(T )v(T )− u(0)v(0) +

∫ T

0

u(t)

(
−dv

dt
+ av

)
dt =

∫ T

0

fv dt,

for all test functions v. If we choose v such that it solves the dual problem −dv
dt

+ av = 0 for

0 < t < T , then this simplifies to

u(T )v(T ) = u(0)v(0) +

∫ T

0

fv dt.

We are thus able to use the fact that u solves the differential equation, and the solution v of the

dual problem, to get information about the final value u(T ) without knowing the true solution.

Nonlinear cardiac cell models are more complex, but the same principle applies. For a detailed

survey of the subject of a posteriori error estimation, we refer the reader to Ainsworth and Oden

(2000).

We now proceed to apply the analysis to equation (6.5.1). Define the error between the

(unknown) true solution and the finite element solution calculated using lookup tables as

e = u− Û.

We consider the following dual problem, defined to be the system of “backwards” ODEs

− dφ

dt
+ Aφ = e, T0 ≤ t < T1, (6.5.10)

φ(T1) = 0, (6.5.11)

where the matrix A is given by

Ai,j(t) =

∫ 1

0

∂fj

∂ui

(su + (1− s)Û, t) ds, i = 1, 2, . . . ,M, j = 1, 2, . . . ,M, (6.5.12)

and the term in brackets in the integral above indicates the point at which ∂fj/∂ui is evaluated.

This choice of A is required because the ODE is nonlinear, and it allows us to examine the effect

of approximating u by Û, as we see in result (i) below.
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We will seek a bound on the L2 norm of the error, defined by

‖e‖2
L2([T0,T1]) =

∫ T1

T0

M∑
i=1

eiei dt.

In the analysis which follows, we will require two subsidiary results.

(i) For a fixed value of t, u− Û is constant and so we may write

M∑
i=1

Ai,jei =
M∑
i=1

Ai,j(ui − Ûi)

=

∫ 1

0

M∑
i=1

(ui − Ûi)
∂fj

∂ui

(su + (1− s)Û, t) ds

[
since u−Û is
constant

]
=

∫ 1

0

d

ds

(
fj(su + (1− s)Û, t)

)
ds

[by the general
chain rule

]
= fj(u, t)− fj(Û, t).

(ii) Integrating by parts will give us the following term, which we wish to replace with one

containing a jump only in e.

N∑
k=1

M∑
i=1

[φiei]
tk
tk−1

=
N∑

k=1

M∑
i=1

(
φi(tk)ei(t

−
k )− φi(tk−1)ei(t

+
k−1)

)
[assuming continuity of φ]

=
N∑

k=1

M∑
i=1

φi(tk)ei(t
−
k )−

N−1∑
k=0

M∑
i=1

φi(tk)ei(t
+
k ) [renumbering]

=
N−1∑
k=0

M∑
i=1

φi(tk)ei(t
−
k )−

N−1∑
k=0

M∑
i=1

φi(tk)ei(t
+
k )

[defining ei(t
−
0 ) = 0 and using (6.5.11)]

=
N−1∑
k=0

M∑
i=1

φi(tk)
(
ei(t

−
k )− ei(t

+
k )
)

[combining like terms]

= −
N−1∑
k=0

M∑
i=1

φi(t
+
k )[e

(k)
i ] [assuming continuity of φ]

= −
N∑

k=1

M∑
i=1

φi(t
+
k−1)[e

(k−1)
i ] [renumbering]
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Using these results, we may now proceed to manipulate the L2 norm:

‖e‖2
L2([T0,T1]) =

∫ T1

T0

M∑
i=1

eiei dt

=

∫ T1

T0

M∑
i=1

ei

(
−dφi

dt
+

M∑
j=1

Ai,jφj

)
dt [using (6.5.10)]

=
N∑

k=1

∫ tk

tk−1

M∑
i=1

ei

(
−dφi

dt
+

M∑
j=1

Ai,jφj

)
dt

=
N∑

k=1

(
M∑
i=1

(∫ tk

tk−1

φi
dei

dt
+

M∑
j=1

Ai,jeiφj dt− [φiei]
tk
tk−1

))
[distributing ei and integrating by parts]

=
N∑

k=1

(
M∑
i=1

(∫ tk

tk−1

φi
dui

dt
− φi

dÛi

dt
dt

)
+

∫ tk

tk−1

M∑
j=1

(fj(u, t)− fj(Û, t))φj dt

+
M∑
i=1

φi(t
+
k−1)[e

(k−1)
i ]

) [
using results (i) and (ii)
and the definition of ei

]

=
N∑

k=1

(∫ tk

tk−1

M∑
i=1

φi

(
dui

dt
+ fi(u, t)− dÛi

dt
− fi(Û, t)

)
dt

−
M∑
i=1

φi(t
+
k−1)[Û

(k−1)
i ]

)
[since ui is continuous]

=
N∑

k=1

(∫ tk

tk−1

M∑
i=1

−φifi(Û, t) dt−
M∑
i=1

φi(t
+
k−1)[Û

(k−1)
i ]

)
[by (6.5.1) and since Ûi is piecewise constant]

=
N∑

k=1

(∫ tk

tk−1

M∑
i=1

−φif̂i(Û, t) dt−
M∑
i=1

φi(t
+
k−1)[Û

(k−1)
i ]

)

+

∫ T1

T0

M∑
i=1

φi

(
f̂i(Û, t)− fi(Û, t)

)
dt.

Using equation (6.5.7) and the fact that Û is piecewise constant, we may ‘add zero’ to obtain

‖e‖2
L2([T0,T1]) =

N∑
k=1

(∫ tk

tk−1

M∑
i=1

(φ̄i − φi)f̂i(Û, t) dt +
M∑
i=1

(φ̄i(t
+
k−1)− φi(t

+
k−1))[Û

(k−1)
i ]

)

+

∫ T1

T0

M∑
i=1

φi

(
f̂i(Û, t)− fi(Û, t)

)
dt
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where φ̄ is any function in the vector space W spanned by the basis functions. This gives us an

exact formula for the L2 norm of the error, but it is not feasible to compute it. However, we can

use the triangle inequality to obtain an upper bound:

‖e‖2
L2([T0,T1]) ≤

N∑
k=1

M∑
i=1

Ei,k +

∫ T1

T0

∣∣∣∣∣
M∑
i=1

φiFi

∣∣∣∣∣ dt (6.5.13)

where

Ei,k =

∫ tk

tk−1

∣∣∣(φi − φ̄i)f̂i(Û, t)
∣∣∣ dt +

∣∣∣(φi(t
+
k−1)− φ̄i(t

+
k−1))[Û

(k−1)
i ]

∣∣∣ , (6.5.14)

Fi = max
∣∣∣f̂i(Û, t)− fi(Û, t)

∣∣∣ . (6.5.15)

This bound can then be computed as described in the next section, but first we consider what

the bound actually tells us. The solution to the dual problem gives us a measure of how errors are

propagated through the simulation, while the terms involving f̂i and fi measure the production

of error on each element. Where φ is large or changes rapidly, any error produced will have

a greater impact on the overall solution. The term involving [Û
(k−1)
i ] penalises large jumps in

the solution, since u is continuous. Section 6.6.2 considers further the intuitive meaning of the

terms in this error bound.

6.5.5 Practical application of the error bound

In order to actually compute the error bound above, we first need to solve the ODE system and

the dual problem. A suitable choice of φ̄ will then enable us to compute all the terms in the

error bound.

The finite element solution using lookup tables is calculated using equation (6.5.8), setting

the initial conditions according to equation (6.5.9), and using a suitable nonlinear solver4 to

compute the Ui,j for each j = 1, 2, . . . , N in turn.

In order to solve the dual problem, we need to know A and e. In practice we assume that

the finite element solution Û is accurate enough for us to approximate the matrix A using this

4e.g. fsolve in Matlab.



118 Lookup Tables

Figure 6.1 An illustrative example of
∫

Ik

∣∣φi − φ̄i

∣∣.

solution. This allows us to write

Ai,j(t) =
∂fj

∂ui

which is evaluated at Û. Since e is unknown, we replace the right hand side of equation (6.5.10)

by 1, assuming that the error is approximately constant everywhere. We can then calculate the

dual solution from equations (6.5.10) & (6.5.11), using a higher order finite element method

(such as linear finite elements; see below) so that we can assume that our solution is the true

solution for φ.

We then define φ̄ piecewise to be the average of φ on each element Ik:

φ̄ =
1

hk

∫ tk

tk−1

φ dt

=
φ(tk−1) + φ(tk)

2
;

the latter expression holds if φ is computed using linear finite elements.

Using linear finite elements to solve the dual problem has the advantage that it is easy to

compute integrals involving φ exactly. Since we have assumed that f̂i does not vary on Ik we
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may take it outside the integral when computing E , and determine
∫

Ik

∣∣φi − φ̄i

∣∣ by summing

two triangles, as shown in Figure 6.1. The values of Fi are calculated using equation (6.5.15).

Again, since we have already assumed that f̂i and fi do not vary within an element, this is

straightforward: we compute

Fi = max
0≤k≤N

∣∣∣f̂i(Ûk, tk)− fi(Ûk, tk)
∣∣∣ .

The integral involving F can then be computed exactly using the trapezium rule.

We now have everything we need to compute the error bound given by equation (6.5.13).

Linear finite element solution of the dual problem

We solve the dual problem using continuous linear finite elements, and thus have linear basis

functions V0, V1, . . . , VN defined such that

Vj(ti) =

{
1 i = j
0 i 6= j

(6.5.16)

Let C1
0(T0, T1) denote the space of functions continuous on (T0, T1) which are zero where

Dirichlet boundary conditions—initial conditions in this case—are imposed. For any function

v(t) ∈ C1
0(T0, T1), the weak form of the dual problem is given by∫ T1

T0

(
−dφ

dt
+ Aφ

)
v(t) dt =

∫ T1

T0

v(t) dt

or element-wise as

N∑
k=1

∫ tk

tk−1

(
−dφi

dt
+

M∑
j=1

Ai,jφj − 1

)
v(t) dt = 0, i = 1, 2, . . . ,M. (6.5.17)

Let P (t) denote the finite element solution, so that

Pi(t) =
N∑

k=0

Pi,kVk(t), i = 1, 2, . . . ,M.
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Note that on Ik,
dPi

dt
=

Pi,k − Pi,k−1

hk

, i = 1, 2, . . . ,M.

We use V0, V1, . . . , VN−1 as test functions, since the dual problem has a Dirichlet boundary

condition at T1. Substituting into (6.5.17) we have, for i = 1, 2, . . . ,M and l = 0, 1, . . . , N −1,

0 =
N∑

k=1

(
Pi,k−1 − Pi,k

hk

∫ tk

tk−1

Vl(t) dt +
M∑

j=1

Ai,j(tk)

∫ tk

tk−1

Pj(t)Vl(t) dt−
∫ tk

tk−1

Vl(t) dt

)
,

since Ai,j is constant on Ik, since Û is piecewise-constant. Also, on element Ik only the basis

functions Vk and Vk−1 are non-zero, and so for each l at most 2 terms in each summation over

k are non-zero. The values of the integrals are given by∫ tk

tk−1

Vl(t) dt =

{
hk/2 l = k, k − 1,
0 otherwise;∫ tk

tk−1

Pj(t)Vl(t) dt =


hk

6
(2Pj,k + Pj,k−1) l = k,

hk

6
(Pj,k + 2Pj,k−1) l = k − 1,

0 otherwise.

We thus obtain the equations

Pi,0 − Pi,1

2
+

h1

6

M∑
j=1

Ai,j(t1)(Pj,1 + 2Pj,0) =
h1

2
, i = 1, 2, . . . ,M, l = 0, (6.5.18)

and for i = 1, 2, . . . ,M and l = 1, 2, . . . , N − 1,

Pi,l−1 − Pi,l+1

2
+

hl

6

M∑
j=1

Ai,j(tl)(2Pj,l+Pj,l−1)+
hl+1

6

M∑
j=1

Ai,j(tl+1)(Pj,l+1+2Pj,l) =
hl + hl+1

2
.

(6.5.19)

For k = 1, 2, . . . ,M we define the column vectors x̃k of length M such that (x̃k)i = Pi,k for

i = 1, 2, . . . ,M . Equations (6.5.18) and (6.5.19) can then be written in matrix form as

x̃0 − x̃1

2
+

h1

6
A(t1)(x̃1 + 2x̃0) =

h1

2
, l = 0, (6.5.20)

and for l = 1, 2, . . . , N − 1,

x̃l−1 − x̃l+1

2
+

hl

6
A(tl)(2x̃l + x̃l−1) +

hl+1

6
A(tl+1)(x̃l+1 + 2x̃l) =

hl + hl+1

2
. (6.5.21)
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To solve this system of equations we construct the linear system
D̃0,0 D̃0,1 · · · D̃0,N

D̃1,0 D̃1,1 · · · D̃1,N
...

... . . . ...
D̃N,0 D̃N,1 · · · D̃N,N




x̃0

x̃1
...

x̃N

 =


b̃0

b̃1
...

b̃N


where the D̃i,j are M -by-M matrices and the b̃i are column vectors of length M , given by

D̃0,0 = I/2 + h1A(t1)/3,

D̃0,1 = −I/2 + h1A(t1)/6,

D̃l,l−1 = I/2 + hlA(tl)/6, l = 1, 2, . . . , N − 1,

D̃l,l = hlA(tl)/3 + hl+1A(tl+1)/3, l = 1, 2, . . . , N − 1,

D̃l,l+1 = −I/2 + hl+1A(tl+1/6, l = 1, 2, . . . , N − 1,

D̃N,N = I,

D̃i,j = 0, otherwise,

b̃0 = h1/2,

b̃l = (hl + hl+1)/2, l = 1, 2, . . . , N − 1,

b̃N = 0.

This system can also be written as Dx = b and may be solved by, for example, Gaussian

elimination.

6.5.6 Alternative error measures

A posteriori error analysis can be used to determine the error in any functional of the solution,

rather than just the L2 norm of the error as done above (see e.g. Harriman et al., 2004). Two

measures in particular give us a better grasp of the behaviour of the system.

Error at the end time

A heart beat is a cyclical process, and this is reflected in the ODE system used to model the

action potential. After a beat, it returns to a resting state, ready for the next stimulus. It is thus

instructive to consider what difference the use of lookup tables makes to this resting state. If

after a single beat the system is returned to essentially the same state as it would be in without

lookup tables, then simulations of many beats will be robust.
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To derive a bound on the error of a component m of the system at time T1, we consider the

following dual problem, which is quite similar to our simple example in Section 6.5.4:

− dφ

dt
+ Aφ = 0, T0 ≤ t < T1, (6.5.22)

φ(T1) = v, (6.5.23)

where A is defined by (6.5.12) as before, and v is given by

vi =

{
1 i = m,
0 i 6= m,

(6.5.24)

that is, v selects the desired component. Again we will solve this dual problem using linear

finite elements. The derivation is very similar to Section 6.5.5, and we obtain the same matrix

D. The right hand side b is given by

b̃l = 0, l = 0, 1, . . . , N − 1,

b̃N = v.

We will need the following result to enable us to get at the component of interest in order to

bound it.

N∑
k=1

M∑
i=1

[φiei]
tk
tk−1

= em(T1)−
M∑
i=1

φi(tN−1)ei(t
+
N−1)

+
N−1∑
k=1

M∑
i=1

(
φi(tk)ei(t

−
k )− φi(tk−1)ei(t

+
k−1)

)
[assuming continuity of φ]
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= em(T1)−
M∑
i=1

φi(tN−1)ei(t
+
N−1) +

N−1∑
k=1

M∑
i=1

φi(tk)ei(t
−
k )

−
N−2∑
k=0

M∑
i=1

φi(tk)ei(t
+
k ) [renumbering]

= em(T1) +
M∑
i=1

φi(tN−1)(ei(t
−
N−1)− ei(t

+
N−1))

+
N−2∑
k=1

M∑
i=1

φi(tk)
(
ei(t

−
k )− ei(t

+
k )
)

+
M∑
i=1

φi(t0)(0− ei(t
+
0 ))

[considering the first and last elements separately]

= em(T1) +
N−1∑
k=0

M∑
i=1

φi(tk)
(
ei(t

−
k )− ei(t

+
k )
)

[defining ei(t
−
0 ) = 0]

= em(T1)−
N−1∑
k=0

M∑
i=1

φi(tk−1)[e
(k−1)
i ]

Hence by (6.5.22)

0 =

∫ T1

T0

M∑
i=1

ei

(
−dφi

dt
+

M∑
j=1

Ai,jφj

)
dt

=
N∑

k=1

∫ tk

tk−1

M∑
i=1

ei

(
−dφi

dt
+

M∑
j=1

Ai,jφj

)
dt

=
N∑

k=1

M∑
i=1

(∫ tk

tk−1

φi
dei

dt
+

M∑
j=1

Ai,jeiφj dt− [φiei]
tk
tk−1

)
[integrating by parts]

=
N∑

k=1

M∑
i=1

∫ tk

tk−1

φi
dei

dt
+

M∑
j=1

Ai,jeiφj dt− em(T1) +
N−1∑
k=0

M∑
i=1

φi(tk−1)[e
(k−1)
i ],

using the result above at the last step. Following the earlier analysis, we thus have that

em(T1) =
N∑

k=1

(∫ tk

tk−1

M∑
i=1

−φif̂i(Û, t) dt−
M∑
i=1

φi(tk−1)[Û
(k−1)
i ]

)

+

∫ T1

T0

M∑
i=1

φi

(
f̂i(Û, t)− fi(Û, t)

)
dt,

and so

|em(T1)| ≤
N∑

k=1

M∑
i=1

Ei,k +

∫ T1

T0

∣∣∣∣∣
M∑
i=1

φiFi

∣∣∣∣∣ dt (6.5.25)

with E and F defined as before (equations (6.5.14) and (6.5.15)).
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Error in the area under the curve

The greatest error is introduced during the upstroke of the action potential, when the solution

varies dramatically on a short timescale. However, since the upstroke is of short duration, it

is plausible that the area bounded by the graph of the transmembrane potential is only slightly

affected by the use of lookup tables.

Let us consider the error in the area under the curve of component m of the ODE system.

The relevant dual problem is given by

− dφ

dt
+ Aφ = v, T0 ≤ t < T1, (6.5.26)

φ(T1) = 0, (6.5.27)

where A and v are as defined by (6.5.12) and (6.5.24) respectively. Again the matrix D is given

by our earlier analysis, whereas b takes values

b̃0 = vh1/2,

b̃l = v(hl + hl+1)/2, l = 1, 2, . . . , N − 1,

b̃N = 0.

The quantity we wish to bound is given by∫ T1

T0

em dt =

∫ T1

T0

M∑
i=1

eivi dt

=

∫ T1

T0

M∑
i=1

ei

(
−dφi

dt
+

M∑
j=1

Ai,jφj

)
dt. [by (6.5.26)]

We may thus proceed as before, and so∣∣∣∣∫ T1

T0

em dt

∣∣∣∣ ≤ N∑
k=1

M∑
i=1

Ei,k +

∫ T1

T0

∣∣∣∣∣
M∑
i=1

φiFi

∣∣∣∣∣ dt (6.5.28)

with E and F defined as in equations (6.5.14) & (6.5.15).
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6.5.7 Summary of assumptions made

We have made various assumptions during the derivation of the above error bounds, and for

ease of reference we summarise them here.

1. The true solution u is continuous on [T0, T1], the simulation interval, and du/dt exists

here. This assumption is made implicitly by the model.

2. If U is constant on Ij , then fi(U, t) and f̂i(U, t) are also. This requires that any stimulus

is represented by a step function, which changes only on element boundaries.

3. The finite element solution Û is accurate enough for us to approximate the matrix A using

this solution.

4. The linear finite element solution for φ is of sufficiently better accuracy than Û that we

can assume it is the true solution.

5. For the L2 norm error bound only, we also assume that the error is approximately constant

for the duration of the simulation.

6.6 Results

The a posteriori error analyses described above have been implemented in Matlab. PyCml is

capable of generating Matlab code usable with this analysis framework, and so we have been

able to apply the analysis to a variety of cell models. The results of this are shown primarily in

Section 6.6.3. We also consider the questions of verifying the accuracy of our implementation

of the analyses (Section 6.6.1), evaluating the effect of models pathologically unsuited to lookup

tables (Section 6.6.4), and the convergence of the various error bounds as the lookup table step

size is reduced (Section 6.6.5).
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6.6.1 Verification of analysis implementation

Two approaches have been taken in verifying that our Matlab implementation of the error anal-

yses above accurately reflects the theory.

Firstly, we have solved both the model ODE systems and the dual problem using Matlab’s

own ODE solvers, in order to verify the correctness of our finite element codes.

Secondly, we have looked at the convergence of the error bounds as the mesh size h is varied.

Theoretically, when not using lookup tables the convergence of the error in the L2 norm is O(h)

(Eriksson et al., 1996, p. 224), as is the convergence in the error in any linear functional, since

backward Euler is an O(h) method (Lambert, 1973). We have checked this for a sample of

models, and the results are shown in Figure 6.2 (plots (b) and (d)). The models chosen are

relatively simple, in order that computing the error bounds could be undertaken in a reasonable

amount of time even on the smallest mesh, but are still illustrative of typical behaviour.

Note that in most cases the gradient of the plots is 1, indicating O(h) convergence. The ‘end

time’ error bound for the Hodgkin–Huxley model, however, does not converge. This is because

the nerve action potential is much shorter than that in cardiac cells, and hence for much of the

duration of the simulation being analysed the model is in a steady state. The magnitude of the

end time error is thus very small, on the order of the tolerance used by the nonlinear solver

in our FEM implementation, and hence the FEM solution is incapable of resolving to a higher

accuracy. If a tighter tolerance is used, convergence of this bound matches the rest.

Another point to note is that the L2 norm and area error bounds always have practically the

same value. This is due to the nature of cardiac ionic models. Both error bounds are defined as

integrals over the solution, with the area bound only considering the transmembrane potential,

whereas the L2 norm involves all components of the state variable vector. However, with the

units typically used in these models, the transmembrane potential is significantly larger than the

other state variables, and thus dominates the L2 norm. This would naturally suggest using a

weighted norm instead of the L2 norm, and the analysis could be adjusted to do so. We have
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Figure 6.2 Log-log plot of convergence in the contribution of E term to the error bound as
the mesh size h decreases. The gradients indicate O(h) convergence. The upper plots use the
Hodgkin–Huxley squid axon model (Hodgkin and Huxley, 1952); the lower plots use an early
Noble model (Noble, 1962). For the plots on the right lookup tables were not used; the E term
is thus the only contribution to the error bound in this case. Note that the lines for the L2 norm
and area error bounds are superimposed.
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not done so, however, since this would not address further issues with the L2 norm error bound

described in Section 6.6.3.

6.6.2 The meaning of the error bound contributions

Recall that each error bound is made up of contributions from two terms, E and F , using the

formula

E + F :=
N∑

k=1

M∑
i=1

Ei,k +

∫ T1

T0

∣∣∣∣∣
M∑
i=1

φiFi

∣∣∣∣∣ dt

where E and F are defined by

Ei,k =

∫ tk

tk−1

∣∣∣(φi − φ̄i)f̂i(Û, t)
∣∣∣ dt +

∣∣∣(φi(t
+
k−1)− φ̄i(t

+
k−1))[Û

(k−1)
i ]

∣∣∣
Fi = max

∣∣∣f̂i(Û, t)− fi(Û, t)
∣∣∣ .

From this it can be seen that the most direct contribution of lookup tables to the error bound is

through F . If lookup tables are not used (i.e. we set f̂ = f ) then this term is zero. The E term

is indirectly influenced by the use of lookup tables, since f̂ occurs both directly and is used to

determine φ. However, as can be seen by comparing the left and right plots in Figure 6.2, the

effect on the error bound via this route is minimal (at least assuming that lookup tables are not

a poor approximation): for these models the results are practically identical.

Roughly speaking, therefore, we can consider the E term to represent the error due to the

particular ODE solver used (Backward Euler in this case), and the F term gives the additional

error due to the use of lookup tables.

6.6.3 Application to various cell models

The error analyses above have been applied to a selection of cell models, and the results are

presented graphically in Figure 6.3.

In considering the suitability of each error bound, we need to know how tightly it bounds

the actual error. However, we typically do not have an analytic solution for the ODE systems
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Figure 6.3 Plots of error bounds along with actual error measures for various models and bound
types. Plot (a) measures error in the L2 norm, plot (b) gives the error at the end time, and (c) uses
the area measure. For each model, the left bar gives the error bound, with the contribution of the
E term at the bottom and coloured magenta, and that of theF term at the top shown in dark blue.
The other 4 bars represent the ‘actual error’ obtained using different ways of approximating the
true solution: FEM, FEM on a finer mesh, Matlab’s ode45 solver, and ode45 on a finer mesh.
The first of these (FEM) often is not apparent due to its low comparative magnitude. The bars
are normalised in height by model, such that the maximum error for each model (whether the
error bound or an actual error) is 1. The value used for normalisation is indicated by an asterisk,
with the relevant axes on the right. The models are taken from (1) Bondarenko et al. 2004;
(2) Fox et al. 2002; (3) Hodgkin and Huxley 1952; (4) Noble 1962; (5) Noble and Noble 1984;
(6) Zhang et al. 2000. The time mesh step size was 0.01 ms, except for model 1 which used
0.005 ms. A mesh 5 times finer was used in approximating the true solution. The end time for
each model was chosen to be shortly after the cell had returned to its resting potential, where
possible. A lookup table step of 0.01 mV was used in all cases.
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modelling cardiac cells, and thus the actual error is unknown. We must instead obtain a better

approximation than Û to the true solution u and use that to compute the ‘actual error.’ There

are many approaches one could take, and four of them are compared in Figure 6.3.

To aid in reading this figure, we describe the first two groups of bars verbally here. These

both address the error in the L2 norm. The first group uses the model from Bondarenko et al.

(2004). In this case the error bound obtained is 31, and the contribution of the F term is

negligible. The last two estimates of the actual error exceed the error bound, being 37 and 38

respectively, and this latter value is used for normalisation, hence the position of the asterisk;

all bars in the group are scaled accordingly. The first measure of the actual error is on the order

of 10−5 and so a bar is not visible; the second measure gives the error as 10.

The second group of bars uses the Fox et al. (2002) model. In this case the error bound is 7,

with the F term contributing roughly one third of this value. This is also larger than any of the

actual error estimates, so this is used for normalisation. Again the first measure of the actual

error is on the order of 10−5 and so does not show up. The other measures all give an actual

error of approximately 3, and so are normalised to around 0.36–0.46.

As we saw in these two examples, the first approximation to the true solution typically un-

derestimates the actual error by a considerable margin. It simply solves using the same method

and mesh, but without using lookup tables, i.e. we use U to approximate u. It thus captures the

additional error due to the use of lookup tables well, and in this regard is compared with the

F contribution in Figure 6.4—we see that the contribution of the F term always exceeds this

error measure. However, it ignores any error due to the ODE solver used, and is thus not a good

choice for the ‘true solution’.

A better method of approximating the true solution is to assume that the ODE solver will

converge to the true solution as the mesh is refined, and hence to solve on a finer mesh to

determine u (again, without using lookup tables). For comparison purposes, we can also use a

different ODE solver, either on the original mesh or a refined mesh.

Note that both the L2 norm and the area error measures involve computing an integral of
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Figure 6.4 A comparison of the difference between U and Û with the contribution of F to the
error bound. The bars show |U− Û| as a percentage of the F contribution for each error bound
type. Models are as in Figure 6.3.
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the solution. Where the dG(0) solver is used, the solution is a piecewise constant function, and

computing an exact integral is straightforward. When using Matlab’s ODE solvers, however,

we do not have a functional form for the solution, and thus use Simpson’s rule to evaluate the

integral.

There is no clear pattern allowing us to say definitively which ‘true solution’ is the best

approximation for any given problem. We would consider using FEM on a finer mesh to be a

good default choice, since it provides a better like-for-like comparison with Û. Using a different

ODE solver is more suited to examining the effect of the solution method than of lookup tables.

In most cases the error bound is within an order of magnitude of the actual error, and the

contribution of the F term is negligible compared with the E term. We thus infer that the use of

lookup tables (with a step size of 0.01 mV) has a negligible impact on accuracy in these cases.

There are several exceptions, however, which require further consideration.

For two of the models evaluated, the bound on the L2 norm of the error is less than the actual

L2 norm, whichever ‘true solution’ we use. This indicates that at least one of the assumptions in

the error analysis does not hold. It may be that Û is not ‘sufficiently accurate’ due to small time

offsets during the upstroke of the AP. Looking at time-course plots for the Hodgkin–Huxley
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Figure 6.5 Plot of the integrand used to compute the L2 norm of the actual error for the
Hodgkin–Huxley model, using FEM on a finer mesh to approximate the true solution.
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model confirms that these offsets occur, and this causes significant fluctuation in the actual

error when evaluating convergence.

On the other hand, since this assumption underlies all the error bounds, we would expect

the other bounds to also be affected if it did not hold, which is not the case. An assumption

only used for the L2 norm is that the error is approximately constant over the whole time mesh.

Since the upstroke is much harder to resolve accurately than the rest of the simulation, it is quite

likely that this assumption does not hold. Plotting the integrand against time (Figure 6.5) shows

that this is indeed the case. Furthermore, similar spikes (albeit of smaller amplitude) are seen

with the other models, indicating that it may be unsafe to rely on the L2 error bound for any

of them. Such spikes also appear in the E term of the error bound, which would indicate to an

adaptive FEM algorithm that those elements should be refined (i.e. a smaller timestep used) and

the simulation repeated.

Also, it is hard to relate the L2 norm to anything of physiological significance. It is defined

as the square root of the integral over time of the sum of the squared absolute error in each

component of the ODE system. This is not a quantity which lends itself to an intuitive under-

standing, and it cannot be given in physical units. The other error bounds, by contrast, have

clear physiological meanings, as well as having well-defined units.

Note the relatively poor performance of the ‘end time’ bound on the Zhang et al. model.
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This is because it models the sino-atrial node, and is hence self-cycling, and never remains at

a resting potential. The end point used in Figure 6.3 is actually on the upstroke of the second

AP, for dramatic effect, but other points show a similar effect. The 1984 Noble model is also of

the SAN. For this model we chose as the end time a brief period after an AP in which V varies

little. While other state variables show considerable variation at this point in time, the bound is

still relatively good, illustrating the importance of choosing the end time carefully.

The Bondarenko et al. model is very detailed, and hence requires a finer time step in order

to correctly capture its behaviour in a simulation. Despite the fact that it is not a SAN model,

the end time error bound is still unusually large. Looking in more detail at the results from

this simulation, we see that while the end time chosen is some time after V returns to rest, the

calcium concentrations are still varying considerably. This could well have affected the error

bound.

The Fox et al. model shows a large contribution of the F term to the error bound. The

reason for this is explored further in Figure 6.6. From this we see that, as expected, the large

contribution of the F term is indicative of the lookup table step size chosen being too large for

this particular model, and reducing τ reduces the error by reducing the F term. Reducing h, on

the other hand, reduces the overall error by reducing the absolute contribution of both E and F ,

but the relative contribution of F is still high.

Computation of the Jacobian matrix

In computing the error bounds we approximate the matrix A in the dual problem, given by

(6.5.12), by the transpose of the Jacobian matrix of the ODE system:

Ai,j =
∂fj

∂ui

.

By using Maple5 to perform symbolic differentiation, we are able to automatically compute an

analytic form for this matrix, and this was used in calculating many of the results shown above.

This approach does not work for all models at present—Maple is unable to differentiate certain
5http://www.maplesoft.com/Products/Maple/

http://www.maplesoft.com/Products/Maple/
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Figure 6.6 Error bound plots for the Fox et al. model (Fox et al., 2002). The first group of 3
sets of bars shows the error in the L2 norm, the next end time, and the last area. In each group
the first set uses h = 0.005 ms, the middle set uses τ = 0.001 mV, and the last set uses the
settings from Figure 6.3.
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complex piecewise expressions, notably when the variable with respect to which we perform the

differentiation is included within the test for one or more cases, and we have not yet determined

a workaround for this. However, using a numerical approximation to the Jacobian matrix still

gives good results, as can be seen with the 1984 Noble model.

6.6.4 Pathological cases

One of the assumptions made in computing the error bounds is that the finite element solution

to the model ODE system is sufficiently accurate for us to approximate the matrix A using this

solution when solving the dual problem. If lookup tables introduce a significant error then this

assumption is no longer necessarily valid. An important question is therefore what the effect of

this incorrect assumption will be: in particular, will the error bound produced be smaller than

the actual error, or larger?

As a further verification of this method of error analysis, therefore, we have invented ‘mod-

els’ which will exhibit a significant error when lookup tables are used. These models contain

expressions which appear to be suitable for replacement by lookup tables, but vary significantly

on the scale of a typical lookup table step size, hence the use of linear interpolation is a poor



6.6 Results 135

Figure 6.7 Simulation of our pathological model. The left plot shows V , whilst the right plot
shows X . The use of lookup tables introduces a significant error in the latter. The mesh size h
was 0.001, with τ = 0.01.
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approximation.

One such model is given by

dV

dt
= 0.1,

dX

dt
= 10π sin(100πV )

dV

dt
,

V (0) = 0,

X(0) = −0.1.

Our naive analysis of where lookup tables may be used considers the term 10π sin(100πV ) in

the second ODE a suitable candidate, since it only depends on the value of the transmembrane

potential, and contains an expensive to compute trigonometric function. However, using a table

step size of 0.01 to interpolate V results in this term being approximated by a constant, thus

introducing an error in the term with a maximum magnitude of 10π. Furthermore, due to the

placing of lookup table entries, this constant value is 0, hence no variation in X occurs. The
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Figure 6.8 Error bound plots for the pathological model. Plots (a)–(c) show error in the L2

norm, end time, and area, respectively. As in Figure 6.3, the bars are grouped in fives, showing
the error bound and four measures of the actual error. For each model, the left bar gives the
error bound, with the contribution of the E term at the bottom and coloured magenta, and that
of theF term at the top shown in dark blue. In each plot, groups 1 and 2 both use h = 0.001 and
τ = 0.01, and show the error in V and X respectively. Groups 3 and 4 both show the error in
X , with 3 reducing the mesh spacing (h = 0.0001) and 4 using finer lookup tables (τ = 0.001).
Each group is normalised such that the highest bar in the group has height 1; the value used for
normalisation is indicated by an asterisk, with the relevant axes on the right.
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effect of this is shown in Figure 6.7.

Figure 6.8 presents the error bounds for this pathological model. The use of lookup tables

introduces a significant error in X , but no error in V , and this is reflected in the difference

between the groups of bars labelled 1 and 2. The L2 norm is identical in both cases, since this

takes all variables into account, but in the case of V the other error measures are miniscule,

on the order of discretisation error or less; this can be seen by comparing the position of the

asterisks, which indicate what value was used for normalisation. Also, the contribution of F to

the error bound is zero. For X , on the other hand, the error bound is dominated by F (as is the

L2 norm bound). Happily, the bound is still larger than any measure of the actual error.
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Figure 6.9 Log-log plots of convergence in the F term in the error bound as the lookup table
step size τ decreases. The gradients are each 2, showing O(τ 2) convergence. Models are taken
from: (a) Fox et al. 2002; (b) Hodgkin and Huxley 1952; (c) Noble 1962; (d) Garny et al. 2003a.
A mesh size h of 0.1 milliseconds was used, except for (b) which used 0.01 ms.
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Reducing the time mesh spacing, as in the third group of bars, has negligible effect. In

order to reduce both the error and the bound, τ must be reduced so that the model is no longer

pathological. The results are seen in the fourth group of bars: more than half the error bound is

now due to E .

In Section 6.7 we consider the question of whether we can perform some analysis of the

model to automatically choose τ such that each function replaced by a lookup table looks linear

everywhere on the scale of τ , in order to ensure that we do not have pathological behaviour.

6.6.5 Convergence

We can use the error bounds presented here to investigate the effect the lookup table step size has

on the overall simulation error. Changing this step size, τ , influences the error bound through
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the F term. As can be seen from Figure 6.9 this term converges as O(τ 2) in all the error bounds

we have considered, for these four models at least.

We can intuitively explain this behaviour by considering the Taylor series expansion of a

function g(Vm) that represents a subexpression of f which is replaced by a lookup table. Sup-

pose the solution of the ODE system requires evaluating g(a), where a lies between the lookup

table entries v0 and v0 + τ . Using linear interpolation between these lookup table entries, ĝ(a)

is given by

ĝ(a) = g(v0) +
a− v0

τ
(g(v0 + τ)− g(v0)).

By Taylor’s theorem,

g(a) = g(v0) +
g′(v0)

1!
(a− v0) +

g′′(v0)

2!
(a− v0)

2 + R2,

and so, approximating g′ using forward differences,

g(a)− ĝ(a) ≈ g′′(v0)

2!
(a− v0)

2 + R2.

Now 0 ≤ a − v0 < τ , so assuming that g is sufficiently differentiable and τ is small, the

remainder term R2 is O(τ 3) and the error introduced by the linear interpolation is g(a)− ĝ(a) =

O((a− v0)
2) = O(τ 2).

In typical cardiac models, terms replaced by lookup tables occur as simple factors within f ,

i.e. they are only ever raised to positive powers. The overall error introduced is thus at worst

O(τ 2), as we have seen.

6.7 Discussion

We have seen that using a posteriori error analysis allows us to compute a bound on the error

involved in simulating a cardiac cell using lookup tables. While the bound produced is not

especially tight, typically an order of magnitude above more reliable measures of the actual
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error, examination of the terms in the bound does still have diagnostic power, and the nature of

the bounds themselves can give insight into the behaviour of cardiac models.

The relative contributions of the E and F terms to the error bound can be used to determine

whether the lookup tables have been made sufficiently fine. This was illustrated with both the

Fox et al. model and our pathological model, and explained briefly in Section 6.6.2. If the

contribution of F is large, this indicates that the lookup tables are contributing significantly to

the overall error, and thus τ should be reduced. That this is a correct diagnosis can be verified

by reducing τ and h independently; the former will reduce the relative contribution of F , while

the latter will not. If, on the other hand, the error bound is large but F does not contribute

significantly, then it is not worth reducing τ : a smaller time step should be used instead.

This provides us with a ‘trial and error’ procedure for choosing a suitable step size. Can we

instead automate a different analysis of the model to determine τ a priori? For each expression

eligible for replacement by a lookup table, we would need to be able to compute a measure of

its curvature, in order to determine how closely the curve is approximated by a straight line over

intervals of length τ . Given a suitability threshold, we could then in principle use this to choose

τ . Recall that F is defined by

Fi = max
∣∣∣f̂i(Û, t)− fi(Û, t)

∣∣∣
and so may be computed without a simulation being run, if the maximum can be determined

analytically. This also requires both computing second derivatives of the function with respect

to the transmembrane potential, and analysing the continuity of the function. We believe this to

be possible in theory for many common functions, but not trivial, and it is likely to be a com-

putationally intensive process. In our view the approach presented here is easier to implement

and use, especially since few real-world models are pathological.

The different error bounds provide different views on the behaviour of the model being

analysed. The L2 norm is commonly considered to provide a good overall measure. However, as

we have seen, it is not ideal for these problems. The assumption that the error is approximately
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constant does not hold, and thus the bound is not reliable. It also does not relate to the underlying

physiology. Another point is that the different state variables in the models have very different

typical magnitudes. Without suitable weighting, therefore, a few state variables (especially the

transmembrane potential) will dominate the L2 norm.

A significant advantage of a posteriori error analysis in this context is that it allows us to

consider the error in functionals of the solution. We have presented two examples of this.

Analysing the error at the end time is important if we wish to consider long running simulations.

It would be computationally infeasible to run an error analysis on the whole simulation, but this

is unnecessary due to the cyclical nature of the system, reflected in the very small error at the

end time (measured during the diastolic interval when the cell is ‘at rest’).

The area under the curve of the transmembrane potential, while not usually of interest to

physiologists, can still provide interesting information. When coupled with other measures, we

could use it as an indicator that the shape of the action potential is not greatly altered through

the use of lookup tables.

When lookup tables have been used in the literature, the step size chosen has typically been

0.01 mV. From our results presented here, including the convergence results of Figure 6.9, this

appears to be a sensible choice to make in the absence of any indication to the contrary.

Finally, it must be noted that the analysis we have presented only applies directly if the cell

model is simulated using the finite element method (in particular, dG(0)). What, then, can we

say about the behaviour of other solvers, since backward Euler is rarely used? Firstly, backward

Euler is a low order solver—only O(h). Assuming that a solver is operating within the bounds

of numerical stability, it is thus unlikely to perform worse for a given mesh size. There is thus

a good chance that the same error bound will hold.

A more important point, however, is that our recipe presented above for choosing τ is still

rather qualitative, since the error bounds we have obtained are not always very tight. Since we

can (roughly) consider the F term as representing the contribution of lookup tables to the error,

whilst the E term represents the contribution of the ODE solver, if the F term is insignificant
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then lookup tables will not dominate the error whatever ODE solver is used.

We have now seen how the lookup table optimisation may be applied to CellML models, and

shown that the error introduced by the approximations involved may be controlled. In the next

chapter, we will apply this optimisation technique to a sample of models, and thus investigate

its effectiveness in practice.



7
Experimental Results

In Chapters 5 and 6 we have presented two optimisation techniques for CellML

models, and proved that they are correct in that they do not significantly alter the

results of simulations. We now consider the question of effectiveness: how much

improvement in simulation speed do these techniques provide?

This chapter will contain two approaches to answering the question. On the one

hand it will present experimental results of applying the optimisations to the range

of models introduced in Chapter 1, showing the speed increases produced by each

technique individually as well as in combination (Section 7.2). It will also present

a method for approximating the speedup without actually simulating the model

(Section 7.1). The results from both approaches will be used to discuss why we see

the results that we do, notably in Section 7.2.1.

The experimental setup and framework for applying the optimisations will be ex-

plained. A key point to note is the synergy between the two techniques used: when

PE is performed before LT the combined effect is greater than the product of the

effects of each optimisation in isolation. The use of PE makes the lookup table

analysis more effective.



7.1 Estimating the potential speedup 143

7.1 Estimating the potential speedup

One question that users of transformation tools such as ours may have is ‘how effective will

this be for my model?’ This is a difficult question to answer precisely, as there are many factors

which influence the actual speed increase observed and are difficult to account for theoreti-

cally. For instance, the machine used to run experiments can have a large impact, with concerns

such as pipelining, or cache utilisation of table lookups affecting the results. Furthermore, the

speedup experienced in a given simulation environment will depend on features of the environ-

ment used: the choice of ODE solver and its implementation, for example. In a tissue-level

(as opposed to cell-level) simulation, e.g. of a whole heart, the choice of tissue model also has

an effect, since simulating this portion of the combined model will take a certain proportion of

the total time. We thus need to consider approximate answers, which at least allow us to say

‘this model will probably be somewhere between these models, and experience roughly this

improvement in simulation time within this context.’

We assign a rough execution cost, or complexity, to each type of expression node, based on a

priori expectations of relative costs and tuned with some experimental timing runs. These costs

are shown in Table 7.1. This then allows us to estimate the execution cost of an entire model,

both before and after we have performed PE. This is straightforward for all nodes except for

piecewise expressions, where the real evaluation time will generally depend on run time data.

Our estimate takes the sum of the complexities of the conditions and the maximum of the

complexity of the case results; this gives us an upper bound on the complexity of the piecewise

expression.

We can also account for the presence of lookup tables in our complexity estimate: where an

expression can be replaced by a table, we may count its cost as that of linear interpolation on a

table, by summing the costs of the elementary operations used to perform the interpolation.

One might consider using some form of parameter optimisation to adjust the costs listed in

Table 7.1. An automatic approach to doing so is not fruitful, however. Since the complexity of
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Table 7.1 Approximate execution costs for each type of expression node.
Node type Complexity estimate

constants 0.5
variables 0.7
divide 15

abs 5
floor, ceiling 20

power 5 (x2, x3) or 30
root 30

trigonometric, exp, log 70
other operators number of operands − 1

all containers sum cost of children

a model is a linear combination of node complexities, it is possible to use actual measured run

times to set up a linear system, which may be solved to obtain costs for each class of node. The

results thus obtained are not sensible—several of the parameters are negative, whichever set of

models are used to provide run time data. This is due to the difficulties in producing an accurate

complexity estimate described above—these mean that in reality the performance is not a linear

combination of node costs. One could try to improve the situation by further subdivision of

node classes, but this increases the likelihood that we would merely over-fit to the particular

experimental setup used. We have, however, been able to use results from the experiments

detailed in the next section to perform some manual adjustments of the costs listed.

Given this complexity estimate, we can then use it to estimate the speedups obtained by our

optimisation techniques, by comparing the complexity measures obtained before and after. In

the next section, results graphs will be ordered according to this estimate of the speedup. Sec-

tion 7.2.1 will also use the complexity measure to analyse the factors underlying any simulation

performance improvements.

7.2 Actual speedup results

There are several settings in which we wish to evaluate the effectiveness of our optimisations, in

order to obtain some indication of how the speedup obtained might depend on context. Our first



7.2 Actual speedup results 145

Figure 7.1 The optimisation framework for CellML models (reproduced from Figure 1.1). PE
and LT are the optimisation techniques described in Chapters 5 and 6 respectively. When both
optimisations are combined, PE is performed before LT to exploit synergy, as explained in the
text.

CellML

Valid? Exit

CellML CellML CellML∗

Inputs

Results

Simulation
framework

Code

Yes

No

PE LT

test setting will be followed in Section 7.2.1 by an analysis of the primary factors influencing

performance, using the insights gained from Section 7.1. We will then present other settings

and discuss how they affect the results.

In performing simulations of our sample of models, we use the Chaste simulation framework

(Pitt-Francis et al., 2008), which we have helped to develop over the last three years. It consists

primarily of C++ libraries (along with supporting infrastructure and tests), and provides a small

selection of ODE solvers, as well as classes for solving the monodomain and bidomain equa-

tions using the finite element method. For each model, we use PyCml1 to apply our optimisation

techniques and generate C++ classes which integrate into Chaste. This process typically takes

only a few seconds once a model has been loaded and validated; for no model in our sample

does it take more than thirty seconds in total. Four versions of each model are generated: a

control with no optimisation, one using just lookup tables,2 one using just partial evaluation,

and one with both optimisations applied as shown in Figure 7.1. In all simulation runs, full

1PyCml is our Python implementation of the optimisations; see Chapter 5 for discussion on this point.
2See also Section 6.2.
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Table 7.2 Time step sizes used for simulations with Euler’s method.
Model Euler time-step (ms)

Bondarenko et al. 2004 0.0002
Faber and Rudy 2000 0.001

Fox et al. 2002 0.001
ten Tusscher and Panfilov 2006 0.001

others 0.01

compiler optimisation was used, so as to give a fairer comparison with real-life usage.

In each experiment, each type of simulation was performed three times, and the smallest run

time of these was used to compare with other optimisation settings. Since any other activity on

the machine used to perform simulations will increase the run time, taking the smallest run time

gives us the best approximation to the situation where no interference occurs.3

Figure 7.2 gives an indication of the results to be expected when studying a single cell in

isolation. The run times recorded are for repeated short simulations of a single myocyte. Further

details of the experimental setup are given in the figure caption. Full discussion of the results is

contained in Section 7.2.1, but we note a few points here. Firstly, with a few exceptions that will

be covered later, there is a correlation between our estimate of the speedup and the observed

speedup, demonstrated by the fact that the actual speedup increases from left to right. Secondly,

the speedup when LT and PE are combined is usually significantly greater than the product of

the individual speedups. We will now explore the factors leading to this in more detail.

7.2.1 Analysis of results

In the results shown above we see that the use of partial evaluation alone leads to only modest

improvements, typically no more than 10%. The translation to C++ does ‘flatten’ the CellML

model, by placing all the mathematics within a single method. Hence we expect this to perform

somewhat better than C++ code that retains the hierarchical structure. This sort of transfor-

mation (unfolding program structure) is also performed by partial evaluation, and so the effect

of partial evaluation may be under-represented here. On the other hand, this flattening is a

3This idea is not original to me, but I cannot remember where I first read of it.
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Figure 7.2 The effects of partial evaluation and lookup tables on run times. Each model was
simulated using Euler’s method with a step size of 0.01ms (except where a smaller step was
required for stability; see Table 7.2), for 1 second of simulated time. These simulations were
each run 25 times and the total time recorded. Each bank of simulations was repeated 3 times,
and the fastest running time for each was used in calculating speeds relative to the normal
model. All simulations used the GNU C++ compiler with full (processor-neutral) optimisation,
and for all models the lookup table step size was set to 0.01 mV. The LT.PE columns show the
combined performance with both optimisations applied. For comparison, the [PE*LT] columns
show the product of the individual LT and PE speedups; this illustrates the synergy obtained
by combining the techniques. Models from left to right, ordered according to estimated LT.PE
speedup, are: (1) Noble and Noble 1984; (2) Noble et al. 1998; (3) DiFrancesco and Noble
1985; (4) Faber and Rudy 2000; (5) Bondarenko et al. 2004; (6) ten Tusscher and Panfilov 2006;
(7) Courtemanche et al. 1998; (8) Hodgkin and Huxley 1952; (9) Fox et al. 2002; (10) Luo and
Rudy 1991; (11) Noble 1962; (12) Garny et al. 2003a.
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very natural translation, and is used by other simulation software, so it is reasonable to compare

against such flattened code. The main reason for a poor performance by partial evaluation is that

the code implied by a CellML model is fairly simple—a CellML model consists only of math-

ematical expressions, without complex user-defined functions—thus PE is mainly performing

constant folding, which is also done by the compiler. Hence we do not see the impressive

improvements often obtained by PE in other contexts.

The main benefit of PE here is seen when it is combined with lookup tables. While the

LT transformation by itself does provide a better speedup than PE , it is the combination of

the techniques that yields the most impressive results. The increase in efficiency when both

optimisations are used is, in most cases, significantly larger than the product of the speedups

obtained by either technique in isolation, indicating that the interaction of the techniques is

favourable.

The analysis for when a lookup table may be used is simple: if the only variable within the

expression is V , and ‘expensive’ functions are used, then we should use a lookup table. We

could be more sophisticated, allowing other variables to appear in such expressions: constant

variables, for example, or more generally those whose value can be determined statically. In

other words, any expression which would be annotated as static by the BTA, were it not for the

presence of V , is admissible. If partial evaluation is performed prior to the lookup table analysis,

then static portions of such expressions will have been evaluated and replaced by constants, and

the simple analysis we use annotates them for replacement by a table. This is the root cause of

the synergy between these two optimisations.

The synergy is manifested in two factors which influence the speedup. In many cases the

number of lookup tables used increases significantly after PE—more expressions are replaced

by a lookup table. In others the mean complexity of expressions covered by a lookup table in-

creases, without the number of tables necessarily increasing—bigger expressions are replaced.

Details of these factors for each model in our sample can be found in Table 7.3.

The complexity figures are all calculated based on the unspecialised model, i.e. they give
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Table 7.3 Indicators and influencers of model speedup, showing the number of lookup tables
both before and after partial evaluation, as well as the mean complexity of expressions replaced
by lookup tables. The final pair of columns show the proportion of the whole model that can be
replaced by lookup tables. Expression complexities are all calculated from the original version
of the expression, not the optimised version.

Model Num. Tables Mean Complexity Complexity Proportion
Before After Before After Before PE After PE

Hodgkin–Huxley 52 6 6 98 98 76% 76%
Noble 62 7 7 114 114 86% 86%

DiFrancesco–Noble 85 12 23 103 102 26% 49%
Noble–Noble 84 4 13 87 98 8% 30%

Luo–Rudy 91 14 16 150 153 66% 76%
Courtemanche et al. 98 33 31 133 167 60% 70%

Noble et al. 98 16 32 92 93 21% 42%
Zhang et al. 00 29 31 130 146 65% 77%
Faber–Rudy 00 24 39 141 125 41% 59%

Fox et al. 02 20 29 120 121 46% 68%
Bondarenko et al. 04 32 36 113 116 55% 63%

ten Tusscher–Panfilov 06 31 29 133 166 60% 70%

the complexity of expressions prior to PE being performed. Those figures headed ‘After PE’,

however, count the complexity of those expressions which will be replaced by lookup tables

after specialisation. This is done in order to obtain a better comparison—since PE simplifies

expressions, evaluating complexity after PE gives a lower cost for many expressions.

Often both of these influencing factors are present within the same model, to varying extents.

As can be seen in Table 7.3, many models show increases in both the number of lookup tables

and the mean complexity of replaced expressions. In other models this is not so clear. For

example, consider the Fox et al. model (Fox et al., 2002), and two expressions within it in

particular:

iKp = gKpKpV
(V − EK), (7.2.1)

KpV
=

1

1 + e(7.488−V )/5.98
, (7.2.2)

EK =
RT

F
log(Ko/Ki),

Ko, Ki, gKp , R, T, F constant.
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Prior to partial evaluation, only (7.2.2) may be replaced by a lookup table. However, since

EK and gKp are static, after partial evaluation they are replaced by their (constant) values.

Also, the definition of KpV
is instantiated within (7.2.1), and so the whole of (7.2.1) is deemed

replaceable by our analysis, since the only variable it now contains is V and it contains an

exponential function. There is still only one lookup table, but it replaces a larger expression,

and thus is more effective.

Also, the number of lookup tables used increases by 9 after PE. One such new lookup table

is within the calculation of iCaK:

e
V F
RT − 1.

Prior to PE the presence of the variables F , R, and T remove this expression from consideration.

Since they are constant, however, the expression after PE is simply eV (96.5)(3.88·10−4) − 1 and

hence is eligible for replacement.

Regardless of whether it is due to an increased number of lookup tables, larger expressions

replaced by tables, or both, we see that the proportion (in terms of our complexity measure) of

the model which may be replaced by lookup tables increases after partial evaluation, hence the

effectiveness of using lookup tables is increased.

The best results are seen in the case of the Zhang et al. (2000) model. As mentioned in

Section 2.2.8, the CellML encoding of this model by Garny et al. has a (static) parameter which

selects different versions of the model. The model can also describe different cell types within

the SAN (e.g. a central or peripheral cell) which have different properties, and hence different

values for constants. There are also many computed variables whose values depend solely on

these properties, which are thus able to be computed at partial evaluation time, and their constant

values inserted in the optimised model.

Also, due primarily to the model version selection, the model contains many piecewise ex-

pressions selecting different versions of key expressions, where the choice can be made stati-

cally, i.e. by PE. Many of these are also within expressions that would otherwise by suitable for
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replacement by a lookup table. One such example is the equation for τr:

τr =


0.001

(
2.98 + 15.59

1.037e0.09(V +30.61)+0.369e−0.12(V +23.84)

)
, Version = 0,

0.0025
(
1.191 + 7.838

1.037e0.09012(V +30.61)+0.369e−0.119(V +23.84)

)
, Version = 1,

0.001
(
2.98 + 15.59

1.037e0.09012(V +30.61)+0.369e−0.119(V +23.84)

)
, otherwise.

Before PE, the lookup table analysis considers that the result of each individual case may be

replaced by a table, but the expression as a whole may not. After PE, the expression is replaced

by just one of the cases, and the whole expression, possibly including nodes higher up the tree,

may be converted to a lookup table. There is thus a high amount of synergy.

This model also demonstrates a side-effect of our complexity measure for piecewise expres-

sions. Prior to PE there are several piecewise expressions for which the result of each case may

become a lookup table (the equation above is one such). If each of these is counted separately,

the model has 49 lookup tables in total. The figure 29, quoted in Table 7.3, is obtained by count-

ing only 1 for each such piecewise expression, since at run-time only 1 table will actually be

used, and hence contribute to any speed increase. After PE, there is only 1 table per expression,

since the piecewise choice is made statically.

7.2.2 Unexpected results

If our estimation of the speedup described in Section 7.1 were suitable for all models, we would

expect Figure 7.2 to show a steady increase in actual speedup from left to right. A few models,

however, do not fit this pattern. In this section we attempt to explain why.

The speedup due toPE alone is consistently overestimated. Any good optimising compiler is

capable of performing constant folding, and thus will do essentially the work done by the partial

evaluator (albeit after any lookup tables analysis). The estimated speedup calculation, however,

does not take compiler optimisation into consideration, and thus predicts an improvement due

to PE which is not seen in practice.

The simplest cases to explain are the simplest models: the Hodgkin–Huxley equations and

the 1962 Noble model. With both of these, exactly the same expressions are replaced by lookup
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tables both before and after partial evaluation (compare the optimised Hodgkin–Huxley model

shown in Listing 7.1 with the original in Listing 2.3 for example). There is thus no synergy

when optimising these models, and so inaccuracies in the complexity estimate are far more

evident. This is also the main reason why, for the Hodgkin–Huxley equations, the product of

the LT and PE speedups is greater than the combined speedup—in this case the compiler is

less effective at optimising the model with lookup tables once PE has been performed.

The ten Tusscher and Courtemanche models are shown in the opposite order to that predicted

by our complexity estimate. This is simply due to inaccuracies in the node execution costs

assigned by the estimate. Both in estimated and actual speedup the two models show very

similar behaviour, despite their differences physiologically, and so any error in the estimate is

quite likely to lead to an incorrect ordering.

7.2.3 Other experimental settings

We now proceed to look at the effect of our optimisations in some different settings, to consider

the influence of factors such as the C++ compiler or ODE solver used on the observed speedup.

We also briefly consider multi-cellular simulations.

Figure 7.3 uses the same experimental setup as before, but a different compiler: the Intel

C++ compiler. This optimises better for the advanced features of Pentium™ processors, and

also uses a high performance mathematics library, which has faster routines for computing

functions such as exponentials. These factors lead to normal run times 2 to 3 times faster than

with the GNU compiler. Better compiler optimisation would also tend to reduce the accuracy

of our complexity estimate, although the predicted ordering of models contains only the same

errors as in Figure 7.2.

Curiously, the speedup obtained by PE on its own is better than was seen with the GNU

compiler, whereas one would expect the opposite to be true. This is especially odd given that

the optimisations performed by the Intel compiler also appear to interact with our techniques in

such a way as to exacerbate the anomalies described in Section 7.2.2 for our two simplest cell
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Figure 7.3 The effect of compiler choice on optimisation efficiency. All simulations used the
Intel C++ compiler, optimised for Pentium™ processors; all other settings were as for Fig-
ure 7.2. The results are displayed as in Figure 7.2, with the addition of an extra bar for each
model showing the speedup achieved on the normal model by using the different compiler.
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Listing 7.1: The modified Hodgkin–Huxley equations of Listing 2.3 after PE and LT optimisa-
tions. Expressions annotated for replacement by a lookup table are shown bold and underlined.

def model h o d g k i n h u x l e y 1 9 5 2 v e r s i o n 0 7 as
def u n i t m i l l i s e c o n d from

u n i t second { pre f : m i l l i } ;
def u n i t p e r m i l l i s e c o n d from

u n i t second { pre f : m i l l i , expo : −1};
def u n i t m i l l i v o l t from

u n i t v o l t { pre f : m i l l i } ;
def u n i t m i l l i S p e r c m 2 from

u n i t s i e m e n s { pre f : m i l l i } ;
u n i t metre { pre f : c e n t i , expo : −2};

def u n i t microF per cm2 from
u n i t f a r a d { pre f : micro } ;
u n i t metre { pre f : c e n t i , expo : −2};

def u n i t microA per cm2 from
u n i t ampere { pre f : micro } ;
u n i t metre { pre f : c e n t i , expo : −2};

def u n i t p e r m i l l i v o l t from
u n i t v o l t { pre f : m i l l i , expo : −1, mult : 1} ;

def u n i t c e n t i m e t r e 2 p e r m i c r o f a r a d from
u n i t f a r a d { pre f : micro , expo : −1, mult : 1} ;
u n i t metre { pre f : c e n t i , expo : 2 , mult : 1} ;

def comp c as
var e n v i r o n m e n t t i m e : m i l l i s e c o n d ;
var membrane V : m i l l i v o l t { i n i t : −75};
var membrane i Na : microA per cm2 ;
var membrane i K : microA per cm2 ;
var membrane i L : microA per cm2 ;
var m e m b r a n e i S t i m : microA per cm2 ;
var s o d i u m c h a n n e l m g a t e m : d i m e n s i o n l e s s { i n i t : 0 . 0 5 } ;
var s o d i u m c h a n n e l h g a t e h : d i m e n s i o n l e s s { i n i t : 0 . 6 } ;
var p o t a s s i u m c h a n n e l n g a t e n : d i m e n s i o n l e s s { i n i t : 0 . 3 2 5} ;

ode ( membrane V , e n v i r o n m e n t t i m e ) =
−(−m e m b r a n e i S t i m + membrane i Na + membrane i K

+ membrane i L )*1{ c e n t i m e t r e 2 p e r m i c r o f a r a d } ;
membrane i Na = 120{ m i l l i S p e r c m 2 }

*pow ( s o d i u m c h a n n e l m g a t e m , 3{ d i m e n s i o n l e s s } )
* s o d i u m c h a n n e l h g a t e h *( membrane V−40{ m i l l i v o l t } ) ;

ode ( s o d i u m c h a n n e l m g a t e m , e n v i r o n m e n t t i m e ) =
−0.1{ p e r m i l l i s e c o n d }*( membrane V+50{ m i l l i v o l t } ) /

( exp (−(membrane V+50{ m i l l i v o l t } ) * 0 . 1{ d i m e n s i o n l e s s } )
−1{d i m e n s i o n l e s s } )

*(1{ d i m e n s i o n l e s s}−s o d i u m c h a n n e l m g a t e m )
−4{ p e r m i l l i s e c o n d }* exp (−(membrane V+75{ m i l l i v o l t } )

*0 .0555555555556{ p e r m i l l i v o l t } )
* s o d i u m c h a n n e l m g a t e m ;

ode ( s o d i u m c h a n n e l h g a t e h , e n v i r o n m e n t t i m e ) =
0 .07{ p e r m i l l i s e c o n d }* exp (−(membrane V+75{ m i l l i v o l t } )

*0 .05{ p e r m i l l i v o l t } )
*(1{ d i m e n s i o n l e s s}− s o d i u m c h a n n e l h g a t e h )
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−1{ p e r m i l l i s e c o n d } / ( exp (−(membrane V+45{ m i l l i v o l t } )
* 0 .1{ d i m e n s i o n l e s s } )

+1{ d i m e n s i o n l e s s } )
* s o d i u m c h a n n e l h g a t e h ;

membrane i K = 36{ m i l l i S p e r c m 2 }
*pow ( p o t a s s i u m c h a n n e l n g a t e n , 4{ d i m e n s i o n l e s s } )
* ( membrane V−−87{m i l l i v o l t } ) ;

ode ( p o t a s s i u m c h a n n e l n g a t e n , e n v i r o n m e n t t i m e ) =
−0.01{ p e r m i l l i s e c o n d }*( membrane V+65{ m i l l i v o l t } ) /

( exp (−(membrane V+65{ m i l l i v o l t } ) * 0 . 1{ d i m e n s i o n l e s s } )
−1{d i m e n s i o n l e s s } )

*(1{ d i m e n s i o n l e s s}−p o t a s s i u m c h a n n e l n g a t e n )
−0 .125{ p e r m i l l i s e c o n d }* exp ( ( membrane V+75{ m i l l i v o l t } )

*0 .0125{ p e r m i l l i v o l t } )
* p o t a s s i u m c h a n n e l n g a t e n ;

membrane i L = 0 . 3{ m i l l i S p e r c m 2 }*( membrane V−
−64.387{ m i l l i v o l t } ) ;

m e m b r a n e i S t i m = s e l
case ( e n v i r o n m e n t t i m e ≥ 50{ m i l l i s e c o n d } ) and

( e n v i r o n m e n t t i m e ≤ 50000{ m i l l i s e c o n d } ) and
( e n v i r o n m e n t t i m e −50{m i l l i s e c o n d }
− f l o o r ( ( e n v i r o n m e n t t i m e −50{m i l l i s e c o n d } )

*0 .005{ p e r m i l l i s e c o n d } )
*200{ m i l l i s e c o n d } ≤ 0 . 5{ m i l l i s e c o n d } ) :

20{microA per cm2 } ;
o t h e r w i s e :

0{microA per cm2 } ;

models, suggesting that the addition of lookup tables reduces the effectiveness of this compiler

on partially evaluated code. Without a detailed look at the machine code generated by the

compiler, it is hard to determine why this is the case. Various changes to the structure of

generated code have not affected these features in the results, so it would appear that the issue is

fundamental to the interaction of the compiler with our partial evaluation. One possibility is that

the Intel compiler is more effective than the GNU compiler at optimising the large statements

that result from PE (i.e. the GNU compiler prefers the source code to contain more explicit

temporary variables) but that the inclusion of method calls to perform table lookups adversely

impacts this ability.

The Noble et al. (1998) model is also adversely affected by this compiler, with the product

of the individual LT and PE speedups being greater than the combined speedup. It is possible

that this is related to the unusually complex way in which many of the currents are expressed
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in the CellML file, using many nested divisions and n-ary multiplications. This code structure

may impact the effectiveness of compiler optimisation.

We must also consider the impact of the ODE solver used. In all the simulations above, we

have used Euler’s method, which being the simplest ODE solver also gives the least overhead,

meaning that actual evaluation of the cell model provides as high a proportion of the run time as

possible. However, due to the multiscale nature of the cell models the ODE system is stiff, and

hence explicit ODE solvers may be unstable; Euler’s method thus requires the use of a small

time step, and so is not very efficient.

The CVODE library4 includes adaptive methods for solving stiff systems of ODEs, and has

been used for simulations of single cardiac cells; it is used by COR, for example. PyCml

includes a code generator targeting this library, which we have used to obtain the results shown

in Figure 7.4.

An extra bar in this figure demonstrates the speedup obtained from using the better ODE

solver, which can be quite pronounced, especially in the case of the Bondarenko et al. (2004)

model (model 5). This is because the model is especially stiff, and hence required a much

smaller time step when solved using Euler’s method (see Table 7.2).

Comparing Figures 7.2 and 7.4, the effect of our optimisations appears to be reduced when

using the CVODE solver. This is because the adaptive nature of the solver introduces a much

greater overhead than is needed for Euler’s method, and thus the proportion of the total simula-

tion time spent actually evaluating the cell models is reduced. We can measure the time spent

in such evaluation, and the corresponding speedup is shown in Figure 7.5, showing almost

identical behaviour regardless of which solver is used.

The performance of a tissue simulation is highly dependent on the efficiency of the simula-

tion framework, and hence the proportion of the total simulation time spent in solving the ODE

systems, as opposed to solving the PDEs, writing output to disk, etc. For illustrative purposes,

however, we include some timing results of performing a simulation of a small block of tissue

4https://computation.llnl.gov/casc/sundials/main.html

https://computation.llnl.gov/casc/sundials/main.html
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Figure 7.4 The effect of ODE solver on optimisation efficiency. Simulations were performed as
for Figure 7.2, except that the CVODE library was used to solve the ODEs. This uses adaptive
time-stepping, rather than a fixed time step; the maximum time step was set for each model to
the duration of the applied stimulus current, to ensure that the stimulus was acted upon. The
results are displayed as in Figure 7.2, with the addition of an extra bar for each model showing
the speedup achieved on the normal model by using the different ODE solver; this bar is scaled
according to the axes on the right of the plot.
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Figure 7.5 Fully optimised cell model evaluation times for different ODE solvers. The bars
show the speed increase in evaluating the right hand side of the ODE system representing each
cell model, after PE and LT have been performed, for both the Euler and CVODE solvers.
Settings used for the simulations are as in Figure 7.2 (Euler) and Figure 7.4 (CVODE). Models
are as in Figure 7.2.
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Figure 7.6 Timing results for a monodomain simulation of the Faber–Rudy model. Chaste was
used to simulate a 2 mm3 block of tissue for 1 s, with a single stimulus current applied to the
left face at the start. The cell model ODEs were solved using Euler’s method with a step size
of 0.005 ms. PDE solver settings were left at the defaults. The Intel compiler was used, and
the simulation was run in parallel on an 8 core machine. The first set of bars shows results of a
single cell simulation, taken from Figure 7.3 for comparison. The middle set shows the effect
on the total simulation time, and the right hand set the effect on the time taken to solve the
ODEs.

using Chaste. We are more restricted in our choice of models for this, since not all the models

have been designed for use in a tissue simulation, and thus some can break down when used in

such a context.

Figure 7.6 shows the results of such a simulation of the Faber and Rudy (2000) model. We

see that the effect on the total running time for this (very small) simulation is slight, due to the

overhead involved. Looking at the performance of the ODE solver itself, however, we see that

the results are comparable with a single cell simulation, although the improvement is somewhat

reduced. This is most likely to be due to poorer cache performance in the multicellular parallel

simulation, and to the overhead involved in looping over cells, since this loop is included within
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the recorded time.

Finally, we also wish to know how the performance of our automatic techniques compares

with hand-optimised code. For this, we have decided to test against the LIMPET cell model

library, which is part of CARP (Vigmond et al., 2003). The models in this library have received

considerable attention to ensure they match the original authors’ versions, and have been exten-

sively optimised for use in bidomain simulations. They can thus be considered the state of the

art in this respect.

The additional memory requirements of a multicellular simulation can affect performance by

significantly altering the usage of the processor’s memory cache. LIMPET is typically bench-

marked with one million cells, since the authors have observed that performance characteristics

of single cell tests are so different as to make them meaningless. The simplest method of eval-

uating this effect is to simulate multiple ‘disconnected’ cells, imitating a tissue simulation but

without considering interactions between cells.

Since a direct comparison requires using a CellML file that produces the same results when

simulated as the LIMPET implementation of the model, we have thus far compared only one

model—that of Courtemanche et al. (1998)—in a simulation of disconnected cells for 1 second

of simulated time. The results are shown in Figure 7.7. We see that LIMPET outperforms our

automatic optimisations, but we are within an order of magnitude. The results also suggest that

LIMPET is slightly better at scaling to large numbers of cells than is Chaste.

The comparison is not entirely fair, since the automatically optimised code uses Euler’s

method to solve the ODE system, whereas LIMPET uses a more advanced solver hardwired into

the model. It makes use of Rush–Larson techniques (Rush and Larsen, 1978) as well as updating

different currents on different time scales to reduce the amount of computation required. Various

other coding techniques are employed to make best use of cache and pipelining. It is thus

not surprising that LIMPET gives the better performance at present. Future work (see also

Chapter 8) will look at utilising this solution approach in automatically generated code.
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Figure 7.7 Comparison of our optimisations with the hand-optimised LIMPET library. A col-
lection of disconnected cells using the Courtemanche et al. (1998) model was simulated for 1 s,
using both LIMPET, and Euler’s method in Chaste with our optimisations. The running times
were compared against that of simulating using Euler’s method in Chaste with only compiler
optimisation. In all cases the Intel compiler was used with full compiler optimisation.
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7.2.4 Verification of code generation

To verify correctness of the translation to C++, the simulation data (i.e. a trace of the value

of the transmembrane potential against time) produced when no optimisations were applied

was compared with data produced by COR (Garny et al., 2003b). The same ODE solver and

parameters were used in both cases. The results were compared numerically, and plotted to

compare by eye. No significant differences were observed.

7.3 Summary

The results presented above show that the optimisations of CellML described in this thesis do

decrease simulation times by a substantial amount. With 3-fold or better combined speedups of

cell model evaluation for more complex models, we envisage techniques such as these becoming

used as standard within the computational biology community. While at present hand-optimised

model implementations are still faster, there is scope to automate the other optimisation tech-

niques used, and so close the gap.

We have also further explored the interaction of partial evaluation with the use of lookup

tables, and explained the reasons why applying PE first improves the effectiveness of the latter

technique, allowing a greater proportion of the model to be approximated by lookup tables.

The optimisation techniques we have studied can be utilised no matter what compiler and

simulation framework are used, or what machine simulations are run on. However, achieving

optimal performance from simulations still requires knowledge of these factors. The use of

modelling languages allows a better division of labour—those developing supporting tools need

to be aware of these issues, but modellers need not be.

It would be desirable if the complexity estimate of Section 7.1 could be used to prove that

performance will not be reduced by our optimisations. By induction, if each ‘rewrite rule’ of

the partial evaluator either preserves or decreases our complexity measure, then the estimated

speedup will be at least 1. A similar argument could be used for lookup tables—a single evalu-
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ation of the exponential function will always be more expensive than an interpolation (at least

for non-trivial cases). However, these arguments only apply for actual simulation speeds if

the complexity estimate is sufficiently close to reality, which we saw is not the case, primarily

because the influences of machine architecture and compiler optimisation are not taken into

account.

Having seen that automatic optimisation does work in practice, we now proceed to sum-

marise the work performed, and look to future research directions.



8
Conclusions

In this chapter we summarise the main contributions of this work, and then proceed

to discuss ways in which it might be extended. We have seen that insights from pro-

gramming languages can be fruitfully applied to biological modelling languages,

and this is expanded upon in Section 8.1.

Section 8.2 considers various extensions to our work, looking both at improving the

techniques we have used, and at the possibilities of further optimisation techniques

and additional application domains. One extension which we discuss in some detail

in Section 8.3 is to apply our techniques to the whole CellML language, rather

than the subset described in Chapter 3. We also consider the implications of some

changes that have been proposed for future versions of CellML.

Finally, Section 8.4 takes a wider look at the physiological modelling research area,

and considers what role computer science might play.

8.1 Summary

The use of quantitative mathematical models to describe the behaviour of biological systems

is becoming increasingly important within both the biological and clinical sciences. This has

been driven by major breakthroughs in biotechnology providing a deluge of data. Full quanti-
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tative understanding of this data can only be achieved through the iterative interplay between

mathematical modelling, computational simulation, and laboratory experiments.

Rapid progress has led to a proliferation both of the models and the software for simulating

them. The abundance of approaches, differing between research groups, causes difficulties

for collaboration, reviewing models, reproducing results, and reusing simulation codes. At a

recent European Heart Modelling Workshop, the issue of sharing models across research groups

through the use of standard approaches was identified as one of the key obstacles to progress

in international collaboration in the modelling of biological and physiological systems. Such

collaboration is essential due to the complexity of the systems being modelled.

For certain classes of models, including cardiac cell models, the CellML language, described

in Section 2.3, is gaining widespread acceptance. Such model description languages play a vital

role in facilitating collaboration. Our contribution has shown that insights from programming

languages can be fruitfully applied to biological modelling languages like CellML.

Firstly, as we saw in Chapter 4, static checks aid modellers by catching more errors earlier,

and thus will improve the quality of published models. One benefit of validation is that if a

CellML model is valid according to the rules defined in the specification, then it should be

treated appropriately by any software that conforms to the specification, and thus its usefulness

is increased—this promotes interoperability. Further checks, such as the units checking we have

implemented, provide an important ‘reality check’ of the model. When coupled with automatic

units conversion, this greatly promotes model reuse.

Secondly, optimisation of simulation software is essential for making better use of compute

resources. If we are to obtain clinical usefulness, at least real-time simulation is needed. Due to

the multiplicity of models, and the fact that model development is ongoing, automating optimi-

sations is necessary. Furthermore, provably correct optimisation is essential if we are to rely on

the results of our simulations, especially in the light of clinical applications. The contribution of

this thesis, in automating and proving correct two optimisation techniques, is thus an important

first step. We have shown that lookup tables and partial evaluation are effective optimisations
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of cardiac cellular models, particularly when combined to exploit synergy, as seen in the results

of Chapter 7.

In summary, strong validation and provably correct optimisation provide us with both re-

duced simulation times and greater confidence that simulation results accurately reflect the

model being simulated, speeding the progress of scientific investigation. The work we have

performed, however, is only a start, and so we now consider what remains to be done.

8.2 Extensions

This research can be extended in various directions. We first consider improvements to the

optimisation techniques already described, and then the possibilities of other optimisations. We

also discuss whether techniques such as ours could be applied to models of other biological

systems, perhaps defined using different modelling languages. The related issue of processing

more of the CellML language is dealt with in Section 8.3. Section 8.2.1 addresses an important

side issue raised by some cardiac models, which has implications for optimisation techniques,

particularly the use of lookup tables.

The lookup tables technique admits a range of modifications. The framework developed

here can easily be applied to tables indexed on other physiological quantities, for example the

intracellular calcium concentration. Another possibility would be to look at using other types

of lookup tables, for example using cubic spline interpolation to give a better approximation, or

using nearest neighbour lookup to reduce further the computational cost. In this case the anal-

ysis for suitability would be unchanged—only the code generation would need to be updated.

The code generation approach also makes it easy to tweak the output to enable maximum ben-

efit from particular compilers or machine architectures. For example, currently inline methods

are used to perform table lookups. If detailed profiling revealed this to introduce an undesirable

overhead, an alternative strategy would be to interpolate all tables with one call at the start of

each timestep, storing the results in a local array which could then be indexed as needed.
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Another alteration to the code generation, which could improve performance in multicellular

simulations (but requires appropriate support from the simulation environment, which Chaste

does not yet provide), is to move the loop over cells inside the ODE solver loop, including it

as part of the cell model class, for instance. This would facilitate the use of certain compiler

optimisations such as automatic vectorization of floating point operations.

Other optimisation techniques for cardiac cell models have been investigated (see e.g. White-

ley, 2006, 2007) and implemented by hand for particular models. There is scope for these

techniques to be automated. Doing so requires more extensive transformation of the cell mod-

els than the techniques we have presented, including symbolic rearrangement of mathematical

expressions. Some work has already been done, and PyCml includes prototype code for per-

forming the manipulations described by Whiteley (2006). A similar transformation would be to

set Hodgkin–Huxley formulations of gating variables in the style proposed by Rush and Larsen

(1978).

Another technique which is being trialled is to decompose the ODE system representing a

model according to the timescale on which each differential equation operates. The princi-

ple is that equations operating on a fast timescale require small timesteps to be taken by the

solver, whereas larger timesteps can be used for slow equations, and thus computational effort

is reduced for these. Automating this technique will require careful analysis of the model to

determine the timescales involved and choose appropriate time steps. A possible approach is

to build on non-dimensionalisation techniques (see e.g. Khanin, 2001), since these can also in-

volve an analysis of timescales. Proving correctness in this case will require numerical analysis

to show that the timesteps chosen are appropriate.

To implement such techniques, it may be beneficial to do so in the context of a general

functional transformation framework, as suggested in Chapter 5. Rather than use an in-memory

representation of a CellML model that is closely tied to the XML structure, we may define

a data type that is well suited to the processing required. With suitable ‘meta’ functions for

handling this data type, model transformations can be described very concisely and elegantly.
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Further benefits can be obtained from pattern matching in the implementation language, as this

provides a simple means to transform only expressions having a certain form. There may also

be scope for using automatic theorem provers to analyse the correctness of optimisations, if the

required correctness properties can be stated in a suitable manner.

The design philosophy of CellML does not lend itself to ease of processing. The language is

designed to be very flexible, allowing the expression of complex mathematics and hence a wide

range of models, but with relatively little additional structure to aid tools. Processing software

thus has to be capable of analysing the mathematics in order to determine how to proceed.

Most tools restrict themselves to certain forms of expression, and the introduction of secondary

specifications in CellML 1.2 will formalise this concept. Providing a more structured data type

for representing CellML models could ease the burden on transformation tool developers.1

This might also provide a convenient bridge to aid in applying transformations to other

modelling languages, such as SBML. There is currently some support for converting models

between SBML and CellML, but it is limited. Since SBML provides more structure, being

designed for a smaller class of models, it should be easier to convert into other forms.

There is certainly scope for the optimisation techniques we have looked at to be applied

to other biological systems. By their very nature, biological quantities tend to be constrained

within fixed limits, and hence there is the potential for the use of lookup tables to approximate

portions of models. The effectiveness of this will depend on the complexity of the model. Where

it is computationally complex, but with few varying quantities that may be used to index tables,

then it is likely that lookup tables will be useful. If there are complex interactions between

quantities, however, then there may be few expressions containing only one key variable, and

so little scope for using tables.

In applying these techniques, the use of (biological) metadata will be crucial. Such informa-

tion could be used to determine the natural ranges over which quantities vary, and hence where

lookup tables could be used.

1See also http://monasticxml.org/mirage.html

http://monasticxml.org/mirage.html
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Partial evaluation may also play a supporting role, as in this work, by improving the lookup

table analysis. Where model structures are similar to those we have studied, implying sim-

ple code structure, partial evaluation by itself will have only a limited impact, as explained in

Chapter 7. We would expect partial evaluation to have a much greater impact at the level of

a whole-heart simulation, or other multi-level simulations. The concept of specialising a heart

simulation to the particular cell models involved is certainly intriguing. However, this is a much

more challenging prospect, since we would need a partial evaluator for the language the simu-

lation environment was written in. Chaste is written in C++, for which we are not aware of any

partial evaluators. There are tools for Java, in which some other environments are written, so

that may be an avenue worth exploring. General simulation environments designed using soft-

ware engineering techniques of abstraction, modularisation and object-orientation for the sake

of clarity would benefit from the use of partial evaluation to give extra efficiency. It is expected

that we could obtain significant speedups, due to the elimination of method lookup overheads,

simplification of complex datatypes, removal of conversions between internal datatypes, and

the like.

8.2.1 Singularities

Many cardiac cell models have equations similar to this one in the sodium channel in the

Hodgkin-Huxley model:

αm =
0.1(V + 25)

e0.1(V +25) − 1
. (8.2.1)

When the transmembrane potential V is −25 mV this equation has a singularity. By setting

ṽ = 0.1(V + 25) and expanding eṽ as a Taylor series, we see that as ṽ tends to 0, αm tends to 1,

so we can make the equation well-defined for all physiological values of V by setting αm = 1

if V = −25 mV and using (8.2.1) elsewhere.

Modellers usually treat such singularities as special cases and manually write code to take

each occurrence into account. This is not always done in the CellML descriptions however.

While these singularities rarely cause problems in a normal simulation (the transmembrane
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potential does not take a value close enough to −25 mV to trigger the singularity), if one of

the points of a lookup table lies at a singularity then this entry will be incorrect (it will be the

floating point error value ‘NaN’), and so simulation with lookup tables is likely to give incorrect,

non-numerical, results. We have adopted an ad-hoc solution of shifting the lookup table points

slightly in this situation, so they no longer fall exactly at the singularity, and this has been

sufficient to avoid any problems. A more rigorous treatment would be desirable, however. This

requires begin able to recognise such singularities by analysing the model. The simple analysis

used by our early prototype (Cooper et al., 2006) would be sufficient for those models we have

seen, but a more general technique may be needed in the future. The simple analysis involves

pattern matching on the expression tree to identify expressions with a form similar to (8.2.1);

such expressions are then replaced by a piecewise expression. If the value of V is −25 mV

(or whatever the corresponding problem value is) then an average is taken between values for

the expression 10−10 mV either side of V ; otherwise the original expression is used. Since the

average uses known values of V , it can be computed at partial evaluation time, so here we see

another benefit from partial evaluation. Since this approach is based on pattern matching, it

would be extremely simple to implement in our Haskell framework; Python however does not

have pattern matching of this sort built in, so this would require more work in PyCml.

In the next section we consider an important class of extensions in greater detail—applying

our techniques to the full CellML language, both now and in the future.

8.3 Processing full CellML

As explained in Chapter 3, the semantics we have defined deals with only a subset of the CellML

language, albeit a large subset capable of representing most existing models. In this section we

consider what changes would be required to our techniques in order to handle the full language.
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8.3.1 Implicit equations

Support for implicit equations is the most significant change which could be made. Much of the

model analysis is simplified by the assumption that all model equations can be represented as

straightforward assignments. If implicit equations are allowed, then software also has to be able

to process systems of algebraic equations. A related change is the possibility that connections

will lose their directionality in CellML 1.2: this is exactly equivalent to processing an expression

such as a = b in which it is not prescribed that b is the known quantity.

This extension has negligible impact on the units checking described in Chapter 4, since all

variables and constants are explicitly annotated with their units, and thus each expression may

be considered in isolation, regardless of whether it is explicit or implicit. The biggest change

is to the variable classification algorithm (see also Section 2.3.2), which needs to consider an

extra class of variable, ‘system,’ for those involved in a system of equations, as well as keeping

track of which system(s) a variable is included in.

Identification of constant, state, and free variables is still straightforward, since these must

all have an initial value set (in a valid model). Distinguishing between constants and the others

is done by analysing the mathematics to see which occur in derivatives.

For the rest of the analysis, we consider a generalisation of the variable concept: an assignable

quantity. This includes both variables and derivatives (e.g. dV
dt

).

One approach is to first process each expression in the model (treating connections as ex-

pressions of the form a = b) to construct for each expression a set of the assignable quantities

involved. Those quantities which have already been classified (as constant, state, or free vari-

ables) are then removed from the sets. For each expression, there are then three cases.

1. The associated set has size 0. The model is then overconstrained.

2. The associated set has size 1. The expression is then effectively an explicit assignment to

the member of the set, although some manipulation and possibly a numerical solve may

be required to write it in such a form.
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3. The associated set has size greater than 1. The expression then forms part of a system of

equations.

Those expressions matching the third case then need to be analysed to determine which must

be solved together when simulating the model. Automatically determining the optimal division

of such expressions into self-contained systems is still an open problem, being worked on at

the University of Auckland. It is not too difficult to determine a reasonable approximation that

will be suitable in many cases, however. Systems which are isolated from any others can be

identified by associating sets of assignable quantities with the set of expressions involving just

those quantities, and noting where the sets are the same size. Removing the relevant assignable

quantities from the sets associated with other expressions could then reduce the number of un-

knowns involved in other systems. There are pathological cases not addressed by this approach,

however, for example the set of equations

a + b = c,

b + c = d,

d + a = b,

c constant.

This system of 3 equations can be used to determine a, b, and d, but would not be identified as

such by the algorithm described above.

An analysis such as that described here can thus be used to convert a CellML model into an

environment similar to that defined in Chapter 3. There are only two extensions needed. One is

a data type for representing a system of equations, and an associated library of solver routines

for evaluating such systems. The second is a new member of the EnvValue type, associating

each assignable quantity determine by a system of equations with the appropriate system. Lazy

evaluation may then still be used to evaluate the model, with the addition that asking for the

value of a member of a system triggers a solve of the system.
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This does have important implications for the semantics as a definition of model meaning,

however, since with this setup the meaning is dependent on the particular system solver used.

For the purposes of correctness proofs it is desirable to remove this dependence, but determining

a suitable approach requires further investigation.

Implicit equations have surprisingly little further impact on partial evaluation. The binding

time analysis becomes slightly less straightforward, with all the equations comprising a system

needing to be treated together. The system is static if and only if no assignable quantity involved

(in any of the expressions of which it is comprised) is determined to be dynamic. The partial

evaluator can then do a PE-time solve of the system if it is static, and otherwise must reduce

each of the equations involved.

8.3.2 CellML 1.1

Relatively little work would be required to support CellML 1.1. Essentially all that is needed is

a pre-processing phase to convert a CellML 1.1 model into a CellML 1.0 model, by instantiating

all the imports. The optimisation tools can then be used unchanged.

8.3.3 Metadata

As the metadata standards related to CellML develop, it will become possible to make use

of them to refine the optimisations described in this thesis. For instance, biological metadata

could be used to determine which variable represents the transmembrane potential, and hence

should be used to key lookup tables. Further domain knowledge could also be encoded, perhaps

indicating other quantities that vary over a known range and thus may be treated in a similar way.

Such metadata will also be of use in code generation, allowing a more robust identification of

the variables representing ionic currents or a current stimulus—this information is needed when

linking cell models into a tissue simulations.

A proper handling of metadata is also good from an extensibility viewpoint. If our tools

parsed the RDF into an in-memory graph, it would become feasible to ensure coherent metadata
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is written out to the specialised model. Metadata could perhaps also be used to store binding

time and lookup table annotations, rather than using an extension namespace as at present.

8.3.4 User-defined functions

In order to describe more complicated models, the use of user-defined functions within CellML

models is currently being considered. It is impossible to predict exactly how this will impact our

work without knowing the form which these will take, but we can foresee some implications.

The impact on units checking and conversion, for instance, was discussed in some detail in an

earlier paper (Cooper and McKeever, 2008). Previous research on partial evaluation has also

addressed the application to functions at great length; see for example Jones et al. 1993.

8.4 Computer science and Physiome modelling

The goal of physiome research is to understand the function of an organism as a single unit,

largely through detailed quantitative mathematical modelling (Bassingthwaighte, 2000; STEP

Consortium, 2007). While there are many models of components of the physiome (for example,

models of the heart such as those described in this thesis), determining how these components

interact to yield the functions of the whole system remains a significant challenge. We believe

that contributions from the computer science community will be essential to address this, and

that the use of modelling languages, such as CellML or SBML, will play a central role.

Some areas in which computer science can contribute are suggested by the work we have

done. We have seen that insights from programming languages can be usefully applied to

XML-based modelling languages, and we anticipate further progress in this field as new mod-

elling languages, such as FieldML (Christie et al., accepted), are developed. As one exam-

ple, research on modular design of software could be applied in considering how to interface

models—to know when one model can be substituted for another, or to develop re-usable model

components.

Another area is to ensure reliability and repeatability of computer simulations. In experimen-
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tal science great importance is attached to recording every detail of the method followed in order

to allow others to repeat the experiment and so check the results obtained. In theory simulation

results should be easier to reproduce, since computer hardware provides an almost deterministic

system. In practice this is not yet the case for various reasons. Modelling languages are part of

the solution, providing a single source for both the simulation code and published mathematics,

with efforts such as MIRIAM (Novere et al., 2005) and MIASE2 standardising what metadata

needs to be included, for example to link the mathematics with the biology being modelled,

or the information needed about a simulation experiment in order to repeat it. Other projects

are looking at tracking workflows, automatically recording the actions scientists take when they

interact with a model, and recording metadata about the computer system used. Our work has

looked more at the reliability issue—ensuring that optimisations (required to enable efficient

simulation) do not change the meaning of the model and thus alter the results.

This remains a vibrant research area, particularly with the recent launch of the Virtual Phys-

iological Human initiative (Fenner et al., 2008), and we have been privileged to play a part in

it.

2http://www.ebi.ac.uk/compneur-srv/miase/

http://www.ebi.ac.uk/compneur-srv/miase/
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K. Harriman, D.J. Gavaghan, and E. Süli. Approximation of linear functionals using an hp-
adaptive discontinuous galerkin finite element method. Technical Report NA04/19, Ox-
ford University Computing Laboratory, 2004. URL http://www.comlab.ox.ac.uk/
oucl/publications/natr/na-04-19.html.

Warren J. Hedley and Melanie R. Nelson. CellML Specification 1.0, August 2001. URL http:
//www.cellml.org/specifications/cellml 1.0/.

Warren J. Hedley, Melanie R. Nelson, David P. Bullivant, and Poul F. Nielsen. A
short introduction to CellML. Philosophical Transactions: Mathematical, Physical
and Engineering Sciences, 359(1783):1073–1089, June 2001. doi: 10.1098/rsta.2001.
0817. URL http://www.journals.royalsoc.ac.uk/openurl.asp?genre=
article&id=doi:10.1098/rsta.2001.0817.

Peter Henrici. Discrete Variable Methods in Ordinary Differential Equations. Wiley, 1962.

Peter Henrici. Error Propagation for Difference Methods. The SIAM Series in Applied Math-
ematics. Wiley, 1963.

A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its appli-
cation to conduction and excitation in the nerve. J Physiol, 117:500–544, 1952.

R. T. House. A proposal for an extended form of type checking of expressions. Comput. J., 26
(4):366–374, 1983. ISSN 0010-4620. doi: 10.1145/4741.4742.

M. Hucka, A. Finney, B.J. Bornstein, S.M. Keating, B.E. Shapiro, J. Matthews, B.L. Kovitz,
M.J. Schilstra, A. Funahashi, J.C. Doyle, and H. Kitano. Evolving a lingua franca and
associated software infrastructure for computational systems biology: The systems biol-
ogy markup language (SBML) project. Systems Biology, 1(1):41–53, June 2004. URL
http://sbml.org/documents/papers/iee-paper-printed.pdf.

http://ajpheart.physiology.org/cgi/content/abstract/282/2/H516
http://ajpheart.physiology.org/cgi/content/abstract/282/2/H516
http://cor.physiol.ox.ac.uk/
http://www.comlab.ox.ac.uk/oucl/publications/natr/na-04-19.html
http://www.comlab.ox.ac.uk/oucl/publications/natr/na-04-19.html
http://www.cellml.org/specifications/cellml_1.0/
http://www.cellml.org/specifications/cellml_1.0/
http://www.journals.royalsoc.ac.uk/openurl.asp?genre=article&id=doi:10.1098/rsta.2001.0817
http://www.journals.royalsoc.ac.uk/openurl.asp?genre=article&id=doi:10.1098/rsta.2001.0817
http://sbml.org/documents/papers/iee-paper-printed.pdf


Bibliography 179

John Hughes. Why functional programming matters. Computer Journal, 32(2):98–107, 1989.
doi: 10.1093/comjnl/32.2.98.

P. J. Hunter, A. J. Pullen, and B. H. Smaill. Modelling total heart function.
Annu. Rev. Biomed. Eng., 5:147–177, 2003. doi: 10.1146/annurev.bioeng.5.040202.
121537. URL http://arjournals.annualreviews.org/doi/pdf/10.1146/
annurev.bioeng.5.040202.121537.

D. Isbell and D. Savage. Mars climate orbiter failure board releases report, numerous NASA
actions underway in response. NASA Press Release 99-134, November 1999. URL http:
//nssdc.gsfc.nasa.gov/planetary/text/mco pr 19991110.txt.

D. Isbell, M. Hardin, and J. Underwood. Mars climate orbiter team finds likely cause of
loss. NASA Press Release 99-113, September 1999. URL http://marsprogram.jpl.
nasa.gov/msp98/news/mco990930.html.

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and Automatic Pro-
gram Generation. Prentice Hall, 1993. ISBN 0-13-020249-5.

Michael Karr and David B. Loveman III. Incorporation of units into programming languages.
Commun. ACM, 21(5):385–391, May 1978. ISSN 0001-0782. doi: 10.1145/359488.359501.

James Keener and James Sneyd. Mathematical physiology, volume 8 of Interdisciplinary ap-
plied mathematics. Springer, 1998. ISBN 0387983813.

Andrew Kennedy. Dimension Types. In ESOP ’94: Proceedings of the 5th European Sympo-
sium on Programming, volume 788 of LNCS, pages 348–362, London, UK, 1994. Springer-
Verlag. ISBN 3-540-57880-3.

R.C.P. Kerckhoffs, S.N. Healy, T.P. Usyk, and A.D. McCulloch. Computational methods for
cardiac electromechanics. Proceedings of the IEEE, 94(4):769–783, April 2006. ISSN 0018-
9219. doi: 10.1109/JPROC.2006.871772.

Raya Khanin. Dimensional analysis in computer algebra. In ISSAC ’01: Proceedings of the
2001 international symposium on Symbolic and algebraic computation, pages 201–208, New
York, NY, USA, 2001. ACM Press. ISBN 1-58113-417-7. doi: 10.1145/384101.384129.

J. D. Lambert. Computational Methods in Ordinary Differential Equations. Introductory Math-
ematics for Scientists and Engineers. Wiley, 1973.

Catherine M. Lloyd, Matt D.B. Halstead, and Poul F. Nielsen. CellML: its future, present and
past. Progress in Biophysics and Molecular Biology, 85:433–450, 2004. doi: 10.1016/j.
pbiomolbio.2004.01.004.

L. M. Loew and J. C. Schaff. The Virtual Cell: a software environment for computational cell
biology. Trends Biotechnol, 19:401–406, 2001. URL http://www.nrcam.uchc.edu/.

Ching-hsing Luo and Yoram Rudy. A model of the ventricular cardiac action potential: De-
polarization, repolarization, and their interaction. Circ Res, 68:1501–1526, 1991. URL
http://circres.ahajournals.org/cgi/content/abstract/68/6/1501.

Ching-hsing Luo and Yoram Rudy. Dynamic model of the cardiac ventricular action
potential—simulations of ionic currents and concentration changes. Circulation Re-
search, 74:1071–1097, 1994. URL http://rudylab.wustl.edu/research/
cell/methodology/.

http://arjournals.annualreviews.org/doi/pdf/10.1146/annurev.bioeng.5.040202.121537
http://arjournals.annualreviews.org/doi/pdf/10.1146/annurev.bioeng.5.040202.121537
http://nssdc.gsfc.nasa.gov/planetary/text/mco_pr_19991110.txt
http://nssdc.gsfc.nasa.gov/planetary/text/mco_pr_19991110.txt
http://marsprogram.jpl.nasa.gov/msp98/news/mco990930.html
http://marsprogram.jpl.nasa.gov/msp98/news/mco990930.html
http://www.nrcam.uchc.edu/
http://circres.ahajournals.org/cgi/content/abstract/68/6/1501
http://rudylab.wustl.edu/research/cell/methodology/
http://rudylab.wustl.edu/research/cell/methodology/


180 Bibliography

R. Männer. Strong Typing and Physical Units. SIGPLAN Notices, 21(3):11–20, March 1986.
ISSN 0362-1340. doi: 10.1145/382280.382281.

R E McAllister, D Noble, and R W Tsien. Reconstruction of the electrical activity of cardiac
Purkinje fibres. J Physiol, 251(1):1–59, 1975. URL http://jp.physoc.org/cgi/
content/abstract/251/1/1.

Donald Michie. Memo functions and machine learning. Nature, 218:19–22, April 1968.

W.T. Miller III and D.B. Geselowitz. Simulation studies of the electrocardiogram. i. the normal
heart. Circ Res, 43(2):301–315, 1978. URL http://circres.ahajournals.org/
cgi/content/abstract/43/2/301.

Sergey Missan and Terence F McDonald. Cese: Cell electrophysiology simulation environment.
Applied Bioinformatics, 4(2):155–156, 2005. URL http://cese.sourceforge.
net/.

P. Neumann. Risks to the public from the use of computers. ACM Software Engineering Notes,
10(3):5–16, July 1985.

D. Noble and S.J. Noble. A model of sino-atrial node electrical activity based on a modification
of the DiFrancesco-Noble (1984) equations. Proc Roy Soc B, 222(1228):295–304, September
1984. URL http://www.jstor.org/stable/35919.

Denis Noble. Modelling the heart: insights, failures and progress. BioEssays, 24:1155–1163,
2002. doi: 10.1002/bies.10186. URL http://www3.interscience.wiley.com/
cgi-bin/fulltext/101019956/PDFSTART.

Denis Noble. Modeling the Heart. Physiology, 19(4):191–197, 2004. doi: 10.1152/
physiol.00004.2004. URL http://physiologyonline.physiology.org/cgi/
content/abstract/19/4/191.

Denis Noble. Computational models of the heart and their use in assessing the actions of drugs.
J Pharmacol Sci, 107(2):107–117, 2008. doi: 10.1254/jphs.CR0070042.

Denis Noble. Cardiac action and pacemaker potentials based on the hodgkin-huxley equations.
Nature, 188:495–497, 1960. URL http://www.nature.com/nature/journal/
v188/n4749/pdf/188495b0.pdf.

Denis Noble. A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre
action and pacemaker potentials. J Physiol, 160:317–352, 1962.

Denis Noble and Yoram Rudy. Models of cardiac ventricular action potentials: iterative interac-
tion between experiment and simulation. Phil Trans Roy Soc A, 359(1783):1127–1142, June
2001. doi: 10.1098/rsta.2001.0820. URL http://journals.royalsociety.org/
content/xa9lfd46lrk17dnl/.

Denis Noble, A. Varghese, Peter Kohl, and Penny Noble. Improved guinea-pig ventricular cell
model incorporating a diadic space, iKr and iKs , length- and tension-dependent processes.
Canadian Journal of Cardiology, 14(1):123–134, 1998. URL http://www.pulsus.
com/CARDIOL/14 01/nobl ed.htm.

Nicolas Le Novere, Andrew Finney, Michael Hucka, Upinder S Bhalla, Fabien Campagne,
Julio Collado-Vides, Edmund J Crampin, Matt Halstead, Edda Klipp, Pedro Mendes, Poul
Nielsen, Herbert Sauro, Bruce Shapiro, Jacky L Snoep, Hugh D Spence, and Barry L Wanner.
Minimum information requested in the annotation of biochemical models (MIRIAM). Nat
Biotech, 23:1509–1515, 2005. doi: 10.1038/nbt1156.

http://jp.physoc.org/cgi/content/abstract/251/1/1
http://jp.physoc.org/cgi/content/abstract/251/1/1
http://circres.ahajournals.org/cgi/content/abstract/43/2/301
http://circres.ahajournals.org/cgi/content/abstract/43/2/301
http://cese.sourceforge.net/
http://cese.sourceforge.net/
http://www.jstor.org/stable/35919
http://www3.interscience.wiley.com/cgi-bin/fulltext/101019956/PDFSTART
http://www3.interscience.wiley.com/cgi-bin/fulltext/101019956/PDFSTART
http://physiologyonline.physiology.org/cgi/content/abstract/19/4/191
http://physiologyonline.physiology.org/cgi/content/abstract/19/4/191
http://www.nature.com/nature/journal/v188/n4749/pdf/188495b0.pdf
http://www.nature.com/nature/journal/v188/n4749/pdf/188495b0.pdf
http://journals.royalsociety.org/content/xa9lfd46lrk17dnl/
http://journals.royalsociety.org/content/xa9lfd46lrk17dnl/
http://www.pulsus.com/CARDIOL/14_01/nobl_ed.htm
http://www.pulsus.com/CARDIOL/14_01/nobl_ed.htm


Bibliography 181

A. Nygren, C. Fiset, L. Firek, J.W. Clark, D.S. Lindblad, R.B. Clark, and W.R. Giles. Math-
ematical model of an adult human atrial cell the role of K+ currents in repolarization. Circ
Res, 82:63–81, 1998. URL http://circres.ahajournals.org/cgi/reprint/
82/1/63.

Joe Pitt-Francis, Miguel O. Bernabeu, Jonathan Cooper, Alan Garny, Lee Momtahan, James
Osborne, Pras Pathmanathan, Blanca Rodriguez, Jonathan P. Whiteley, and David J. Gav-
aghan. Chaste: Using Agile Programming Techniques to Develop Computational Biology
Software. Phil Trans Roy Soc A, 366(1878):3111–3136, 2008. doi: 10.1098/rsta.2008.0096.

M. Potse, B. Dube, J. Richer, A. Vinet, and R. M. Gulrajani. A comparison of monodomain
and bidomain reaction-diffusion models for action potential propagation in the human heart.
IEEE Transactions on Biomedical Engineering, 53(12):2425–2435, December 2006. ISSN
0018-9294. doi: 10.1109/TBME.2006.880875.

J Reddy. An Introduction to the Finite Element Method. McGraw–Hill, 1993.

Blanca Rodriguez, Li Li, James C. Eason, Igor R. Efimov, and Natalia A. Trayanova. Differ-
ences Between Left and Right Ventricular Chamber Geometry Affect Cardiac Vulnerability to
Electric Shocks. Circ Res, 97(2):168–175, 2005. doi: 10.1161/01.RES.0000174429.00987.
17. URL http://circres.ahajournals.org/cgi/content/abstract/97/
2/168.

Blanca Rodriguez, Natalia Trayanova, and Denis Noble. Modeling Cardiac Ischemia. Ann NY
Acad Sci, 1080(1):395–414, 2006. doi: 10.1196/annals.1380.029. URL http://www.
annalsnyas.org/cgi/content/abstract/1080/1/395.

Yoram Rudy and Jonathan R. Silva. Computational biology in the study of cardiac ion channels
and cell electrophysiology. Quarterly Reviews of Biophysics, 39(1):57–116, February 2006.
doi: 10.1017/S0033583506004227.

Stanley Rush and Hugh Larsen. A practical algorithm for solving dynamic membrane equations.
IEEE Transactions on Biomedical Engineering, BME-25(4):389–392, July 1978. ISSN 0018-
9294. doi: 10.1109/TBME.1978.326270.

N G Sepulveda, B J Roth, and Jr Wikswo, J P. Current injection into a two-dimensional
anisotropic bidomain. Biophys. J., 55(5):987–999, 1989. URL http://www.biophysj.
org/cgi/content/abstract/55/5/987.

Lauralee Sherwood. Human physiology: from cells to systems. Brooks/Cole, 4 edition, 2001.
ISBN 0534568262.

N. P. Smith, D. P. Nickerson, E. J. Crampin, and P. J. Hunter. Multiscale computational mod-
elling of the heart. Acta Numerica, 2004. doi: 10.1017/S0962492904000200.

STEP Consortium. Seeding the europhysiome: A roadmap to the virtual physiological human.
Online, July 2007. URL http://www.europhysiome.org/roadmap.
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A
An Overview of the Haskell Programming

Language

In this appendix we give a brief overview of Haskell, in order to enable readers unfamiliar with

the language to follow those chapters in which it is used, notably Chapters 3 and 5. For further

details on the language itself we suggest Bird (1998) and the haskell.org website.

Haskell is a lazy, statically and implicitly typed, pure functional language. The most fun-

damental of these is that it is functional: programs are functions, and evaluating a program

is equivalent to evaluating a mathematical function. This contrasts with imperative languages

which evaluate a sequence of statements in order. Hughes (1989) gives an excellent explanation

of the usefulness of functional programming in general.

Haskell is also pure because evaluation of functions is not permitted to cause side-effects,

which modify the ‘state’ of the world (e.g. by changing a global variable).1 Haskell thus does

not have destructive update—variables are not references to memory locations the contents

of which can be changed. Rather a variable is just a binding of an expression to a name. A

consequence of purity is that if a function is called twice with the same arguments, it will give

the same result each time.

Evaluation is lazy in that expressions whose values are not required to determine the result

1Of course, printing something to the screen or a file is also a side-effect; Haskell uses Monads to isolate impure
computations and perform them safely.

haskell.org
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of the program are simply not evaluated. This has powerful implications, including that one can

construct infinite data structures provided one never uses the entire structure.

Finally, Haskell has a strong type system: all expressions have a type, and these are checked

for correctness by the compiler. The programmer need not, generally, specify types explicitly,

however, since type inference is used to determine the type of expressions automatically.

We next present the main features of Haskell’s syntax and semantics in Section A.1. Sec-

tion A.2 builds on this by giving definitions of those functions defined in the Haskell standard

library which we make use of.

A.1 The main features of Haskell

A Haskell program consists primarily of a sequence of function definitions.2 Functions them-

selves are defined by a series of equations, and may also have a type signature declaration,

which we will discuss in Section A.1.1. Simple functions, for example the increment function,

may be defined by a single equation:

i n c r e m e n t n = n + 1

Multiple arguments may be provided, separated by spaces, for example:

add x y = x + y

Functions can also be defined by multiple equations. The following recursive definition of

the length function provides an example introducing several core features of Haskell:

l e n g t h [ ] = 0
l e n g t h ( x : xs ) = 1 + l e n g t h xs

This function takes a single list as input, and determines its length. It is defined in two parts:

the length of an empty list is zero, and the length of a list consisting of a single item x followed

by the remainder of the list xs is one plus the length of the remainder of the list. The use of re-

cursion as a basic control structure is common to functional languages, in contrast to imperative

languages which make much use of looping—looping does not make much sense in the absence

2The order in which functions are defined does not matter.
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of destructive update. This definition of length also illustrates the use of pattern matching: the

input to the length function is matched against each of the patterns given in the function defi-

nition in turn to determine which equation to use. Patterns may be quite complex—as complex

as the types of the arguments—and we return to them later.

Furthermore, the length function introduces us to notation for describing lists. An empty list

is represented by ‘[]’, and the ‘:’ operator3 prepends an item to the beginning of a list.4 Lists

are a central data type in most functional programming languages, and Haskell is no exception,

providing much syntactic sugar to make lists easy to represent in programs. Rather than using :

and [] to construct a list explicitly, the members may be enumerated directly in square brackets;

[1, 2, 3] is equivalent to 1:2:3:[]. There are also some special shorthands for numeric lists; for

example [n..] represents the infinite list [n, n+1, n+2, ...]. We also see in the length example a

common naming convention for lists: xs is the plural of x, and thus represents a list, whereas x

represents an element of the list.

The expression ‘1 + length xs’ gives an example of function application. Spaces are used

instead of brackets and commas to delineate the function arguments; multiple arguments are

separated by spaces, e.g. add 1 2. Function application also has a very high precedence, binding

tighter than any infix operator (such as +). Round brackets are used to override the normal

precedence rules.

Another important feature of Haskell is the use of partial function application. A function

of two arguments may be applied to a single input to obtain a function of one argument. For

example, the increment function above could also be defined by

i n c r e m e n t = add 1

This technique is closely related to the fact that functions are ‘first-class’ in Haskell, and may

themselves be passed as arguments to functions or returned as results. Functions that are de-

signed to take functions as arguments are known as higher-order functions.

3: is read as cons.
4Actually, : is a data constructor—see Section A.1.1.
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Operators are essentially the same as functions, except that their names consist of symbols

rather than alphanumeric characters, and by default they are used (and defined—see the ‘.’

example below) in an infix fashion. However, operators may be used just like normal functions

by writing them in brackets, for example (+) 1 2, and functions may be written in infix notation

by surrounding them with backticks: 1 `add` 2. Since operators are just functions, it also makes

sense to partially apply them, and this is known as sectioning. The increment function could

thus also be defined as increment = (+1); the brackets here are mandatory.

As well as named function definitions, functions may be defined anonymously using lambda

abstractions, thus allowing small functions to be defined at the point of use, since such a defi-

nition is syntactically an expression. A function equivalent to add could be written as

λ x y → x + y

Function composition also exists, and works in the same way as for mathematical functions. It

is implemented by the infix operator ‘.’ which is defined by

f . g = λ x → f ( g x )

This says that, for any functions f and g, the function “f composed with g” is defined as a

function mapping a single parameter x to the value f (g x).

There are two mechanisms provided for creating a local nested scope for definitions: the

let expression and where clause. In each case multiple local definitions may be made. The

main difference is that a let expression is actually an expression, whereas a where clause is

a syntactic construct. For an example, consider finding the roots of the quadratic polynomial

ax2 + bx + c:

r o o t s a b c =
l e t d e t = s q r t ( b*b − 4*a* c )

t w i c e a = 2*a
in ((−b + d e t ) / t w i c e a ,

(−b − d e t ) / t w i c e a )

This could also be written using a where clause:

r o o t s a b c = ((−b + d e t ) / t w i c e a , (−b − d e t ) / t w i c e a )
where d e t = s q r t ( b*b − 4*a* c )

t w i c e a = 2*a
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These examples also illustrate the use of indentation to structure code without the need for

explicit braces and semicolons.

Pattern matching provides a way to ‘dispatch control’ based on structural properties of a

value—selecting a different expression to evaluate depending on whether the argument list is

empty or not, for example. The case expression provides a means to utilise this without defining

a function.5 Using case we could define length as

l e n g t h xs = case xs of
[ ] → 0
( y : ys ) → 1 + l e n g t h ys

Patterns may use the underscore character as a wildcard, where we do not use one of the

values being matched against. For example, the head function returns the first element of a list,

and hence does not care about the remainder of the list; it is defined by

head ( x : ) = x

We can read this as “the head of a list that starts with some datum x and continues with any

list, is x.” There are also as-patterns for use when we want to bind names to the whole of a

value as well as constituents of it, for instance if we want to use the whole of a list in a function

definition as well as its first element. One such example is the standard function dropWhile,

which takes a predicate function and a list as input, and returns a new list in which any initial

elements that satisfy the predicate do not appear.

dropWhile p [ ] = [ ]
dropWhile p xs@ ( x : xs ' ) = i f p x then dropWhile p xs ' e l s e xs

This also demonstrates the if-then-else control construct, which has the obvious semantics.

Note that an else clause is mandatory.

Finally, Haskell programs may also contain comments. Single line comments begin with a

double dash (−−) and extend to the end of the line. Multi-line comments are enclosed in a

brace and a dash:

{− f o r example l i k e t h i s −}

5In fact, the meaning of pattern matching in function definitions is defined in terms of case expressions.
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A.1.1 Types

So far we have not specified the types of any of our example functions. Due to the powerful

type inference of Haskell, this is usually not a problem. However, it is often useful for the

programmer to specify types explicitly, both as a form of documentation, and as a statement

of intent about program meaning that the compiler can check—this can then help in catching

programming errors.

The increment function could be given the following type in a type signature declaration.

i n c r e m e n t : : I n t e g e r → I n t e g e r
i n c r e m e n t n = n + 1

Here ‘::’ is read as ‘has type,’ in this case a function type which takes an Integer and returns an

Integer. Simple values can also have their type specified, for example

1 . 0 : : Double

Note that type names always start with upper-case letters in Haskell, and variables always start

with lower-case letters—this is a rule of the language, not a naming convention.

There are many built-in types, including atomic types such as Integer, Double and Char,

as well as compound types such as lists (for example [1, 2, 3] :: [Integer]) and tuples (like

(1, 'a') :: (Integer, Char)).6 Function types are specified using the type constructor → to cre-

ate the function type from an argument and result type. Functions of multiple arguments use

multiple arrows, for example the add function:

add : : I n t e g e r → I n t e g e r → I n t e g e r
add x y = x + y

The → operator on types associates to the right, so this type signature could be written as

add : : I n t e g e r → ( I n t e g e r → I n t e g e r )

This links with partial function application—if the add function is applied to a single Integer,

the result is a function mapping Integer to Integer.

Haskell also incorporates polymorphic types, which allow us to discuss families of types

6Note that lists hold arbitrarily many values of the same type, whereas tuples hold a fixed number of values
which may be of different types.
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universally quantified over some type variable. For example, [a] is the type family containing,

for any type a, lists of values of type a.7 This allows us to give a type to the length function.

Since it can determine the length of any list, no matter what type of data it contains, it has the

type [a] →Integer.

User-defined types may also be declared. There are two mechanisms for doing so. The

simplest is to declare an alias for an existing type, to reduce typing and aid readability; this is

accomplished by the type keyword. The String type is one example—a string is simply a list

of characters.

type S t r i n g = [ Char ]

Defining entirely new types is done using the data keyword. Types can be straightforward

enumerations, for example the Bool type of truth values:

data Bool = F a l s e | True

New types may also be based on existing types, as is the case for the type we gave for assign-

ments in a CellML model:

data MathAss ignment = A s s i g n EnvKey MathTree

Here Assign is a data constructor, which is applied to values of types EnvKey and MathTree to

produce a value of type MathAssignment.

Polymorphic types may also be defined, and types may be recursive. An example of both of

these is the type of binary trees:

data Tree a = Lea f a | Branch ( Tree a ) ( Tree a )

The type constructor Tree constructs a new type from any type a: the type of trees containing el-

ements of type a. A tree may either be a leaf element (of type a) or an internal branch consisting

of two sub-trees. Note that type constructors and data constructors exist in separate namespaces,

so we can use the same name for both, as was done for cases in piecewise expressions:

data Case = Case MathTree MathTree

In the next section we consider various standard library functions used in this work. The stan-

7Type variables are written in lower case to distinguish them from specific types such as Integer.
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dard library also defines many useful types, including such types as lists and strings mentioned

already. Three other types deserve mention.

The Maybe type is used when we are not sure if we will have a value of a certain type or

not, and is defined as

data Maybe a = Nothing | Jus t a

There are also functions isJust and isNothing to test for whether a value of type a is present or

not. The Either type allows us to choose between two types for representing a datum:

data E i t her a b = Lef t a | Right b

Finally, Haskell code may also be organised into modules. We do not discuss the full syntax

here, however, the Set datatype which we use is defined in a separate module ‘Set’ which is

imported. Functions and types in this module can be accessed using qualified names, such as

Set.fromList (which constructs a set from a list of data) or Set.member (a membership test for

sets).

A.2 Standard Haskell functions

Since lists are a fundamental data structure in Haskell, many of the standard functions involve

processing lists. The most important of these are the higher-order functions map, foldr, and

foldl, which can be defined as follows:

map : : ( a → b ) → [ a ] → [ b ]
map f [ ] = [ ]
map f ( x : xs ) = f x : map f x s

f o l d r : : ( a → b → b ) → b → [ a ] → b
f o l d r f z [ ] = z
f o l d r f z ( x : xs ) = f x ( f o l d r f z x s )

f o l d l : : ( a → b → a ) → a → [ b ] → a
f o l d l f z [ ] = z
f o l d l f z ( x : xs ) = f o l d l f ( f z x ) xs

Each of these uses the function supplied as its first argument to process the input list. In the case

of map the function is simply applied to each member of the list, thus producing a list as output.

The fold functions are somewhat more complex. They ‘fold’ the list up using the supplied
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function in order to obtain a single value (although this value may have an arbitrarily complex

type). One can think of them as replacing the list constructor with the function parameter, and

the empty list by the initial value parameter; for instance:

f o l d r ( + ) 0 [ 3 , 4 , 5 ] = 3 + 4 + 5

The distinction between foldr and foldl is in the way the result is bracketed: foldr assumes the

function is right-associative (so gives 3 + (4 + 5)) whereas foldl assumes left-associativity (i.e.

(3 + 4) + 5). There are also variants which assume the input list is non-empty, and so do not

require an initial value to be supplied. For example:

f o l d l 1 f ( x : xs ) = f o l d l f x x s

Other list processing functions can often be defined in two forms: either directly using re-

cursion, or in terms of folds and maps. The sum function, which sums the elements of a list, is

a good example. It can be defined directly as

sum [ ] = 0
sum ( x : xs ) = x + sum xs

or using foldl as

sum = f o l d l ( + ) 0

(it could also be defined using foldr, since + is associative).

The following are definitions for some of the other standard list processing functions that we

use. The first, the ++ operator, is used to concatenate two lists. The and and or functions apply

the logical operators && and || (also defined below) to a list of booleans to determine if all are

True or at least one is True, respectively.

(++) : : [ a ] → [ a ] → [ a ]
[ ] ++ ys = ys
( x : xs ) ++ ys = x : ( xs ++ ys )

and , or : : [ Bool ] → Bool
and = f o l d r (&&) True
or = f o l d r ( | | ) F a l s e

(&&) , ( | | ) : : Bool → Bool → Bool
F a l s e && x = F a l s e
True && x = x
F a l s e | | x = x
True | | x = True
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The iterate function defined below is typically used in a context where we wish to apply a

function repeatedly to some initial value until a condition is met. Given a function f and value

x it (lazily) constructs the infinite list [x, f x, f (f x), f (f (f x)), ...]. The functions dropWhile and

head (defined earlier) can then be applied to this list to select the first element satisfying a given

condition.

i t e r a t e : : ( a → a ) → a → [ a ]
i t e r a t e f x = x : i t e r a t e f ( f x )

Another standard function, shown below, finds the maximum element of a list. This uses a

feature of Haskell not mentioned above, namely type classes, in this case the class Ord of types

which possess an ordering relation (and hence values of such a type may be compared using the

< operator). We do not discuss type classes in any detail here, except to mention the existence

of a few key ones. The Show class contains types for which the function show may be used to

obtain a string representation of values of that type, while the Eq class contains types whose

values may be compared for equality (using ==). There are also a range of numeric classes

(such as Integral, Rational, Floating) for which many of the standard mathematical operators

and functions are defined.

maximum : : Ord a ⇒ [ a ] → a
maximum = f o l d l 1 max

Finally, we end with the error function. This has the curious type String →a, implying that

it can return any type at all, even though it is always given a String argument. When evaluated

it throws an exception, which will typically halt program execution and display the argument as

an error message.



B
Partial Evaluator Correctness Proof Details

This appendix contains further details of the correctness proof for our partial evaluator, which

were omitted from the main text for conciseness.

B.1 Binding time analysis

The crucial property of BTA is stated in Theorem 5.2, namely that evaluation of a static ex-

pression may be performed solely within the static portion of the model environment. It is thus

required to prove that for any environment env and expression expr within it,

bta env expr = S ⇒ eval envs expr = eval (envs ⊕ envd) expr

where

(envs, envd) = partition env.

Proof (Theorem 5.2). The proof proceeds by structural induction on the form of expr. We de-

note the inductive hypothesis by IH. Most cases are simple to prove, and so we focus here

on those involving short-circuiting. Firstly however we briefly consider the case of a variable

lookup.

Suppose expr = Variable v. Since the expression is static, by Lemma 5.1(iii) we have that

Var v ∈ envs. There are thus two possibilities to consider.
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i. find envs (Var v) = Expr e:

By the definition of bta key, bta env e = S. Thus,

eval envs expr
= {definition of eval}

elookup envs (Var v)
= {definition of elookup}

eval envs e
= {IH on e}

eval env e
= {definition of elookup and Lemma 5.1(i)}

elookup env (Var v)
= {definition of eval}

eval env expr

ii. find envs (Var v) = Val val:

This case is even more simple.

eval envs expr
= {definition of eval}

elookup envs (Var v)
= {definition of elookup}

val
= {definition of elookup and Lemma 5.1(i)}

elookup env (Var v)
= {definition of eval}

eval env expr

The case for an ODE lookup, expr = Diff v1 v2, is very similar.

Suppose expr = Apply operator operands. In the general case, for each operand e,

bta env e = S, since bta env expr = maximum (map (bta env) operands). We thus have that

eval envs expr
= {definition of eval}

apply operator (map (eval envs) operands)
= {IH on each operand e}

apply operator (map (eval env) operands)
= {definition of eval}

eval env expr

For some operators, however, we follow an online strategy, short-circuiting the binding time

analysis when we have enough information to determine that evaluation of the remaining oper-
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ands will never be needed. The following lemma proves some useful properties of the BTA’s

short-circuiting.

Lemma B.1 If bta short circuit env pred [t1, t2, . . . , tn] = S then ∃m ≤ n such that

(i) ∀i ≤ m, bta env ti = S,

(ii) ∀i < m, pred (eval env ti) = False, and

(iii) m = n or pred (eval env tm) = True.

Proof. We proceed by induction on n. If n = 0 then m = 0 gives us the result vacuously.

For the inductive step suppose the result holds for n = k and the precondition is satisfied

for n = k + 1. Hence we must have bta env t1 = S. If pred (eval envs t1) = True

then, by IH on t1, we can take m = 1. Otherwise bta short circuit env pred [t1, . . . , tk+1] =

bta short circuit env pred [t2, . . . , tk+1], and we can then apply the inductive hypothesis of this

lemma to obtain a suitable m. 2

Now when operator = And, using the lemma with pred = not,

eval envs expr
= {definition of eval}

foldr (&&) True (map (eval envs) [t1, . . . , tn])
= {*, using IH on ti ∀i ≤ m by lemma part (i)}

foldr (&&) True (map (eval envs) [t1, . . . , tm])
= {IH on ti ∀i ≤ m}

foldr (&&) True (map (eval env) [t1, . . . , tm])
= {*}

foldr (&&) True (map (eval env) [t1, . . . , tn])
= {definition of eval}

eval env expr

where (*) uses the lemma part (iii) together with properties of && and foldr.

For Or the argument is identical, using || in place of &&, False in place of True, and pred =

id.

For Piecewise expressions the style of the argument is basically the same as for Apply, since

there is some short-circuiting of static conditions where appropriate. The only detail that differs
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in more than the names of functions is that if a static condition is found to evaluate to true, the

BTA must analyse the result associated with that condition, rather than simply returning S as

for Apply. This detail does not affect the flow of the proof, however. 2

B.2 Partial evaluation of a single expression

Theorem 5.3 states that partial evaluation of a single expression does not change its meaning,

i.e. for any environment env and expression expr within it,

eval env expr = eval env (reduce env expr).

For the case where expr is dynamic the proof proceeded by structural induction on the form of

expr, and the details of two cases were deferred to this appendix. Recall that in each case we

write (envs, envd) = partition env.

iii. Case expr = Apply operator operands:

For most operators,

eval env (reduce env expr)
= {definition of reduce}

eval env (Apply operator (map (reduce env) operands))
= {definition of eval}

apply operator (map (eval env) (map (reduce env) operands))
= {property of map}

apply operator (map ((eval env).(reduce env)) operands)
= {IH on each operand}

apply operator (map (eval env) operands)
= {definition of eval}

eval env expr

There are special cases for And, Or, and Divide. Evaluation of the first two can short-

circuit, and reduce applies such short-circuiting where possible. The following lemma, a

kind of converse to Lemma B.1, identifies which operands can be discarded.

Lemma B.2 If bta short circuit env pred [t1, t2, . . . , tn] = D then ∃m ≤ n such that
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(i) ∀i < m, bta env ti = S,

(ii) ∀i < m, pred (eval env ti) = False,

(iii) bta env tm = D.

Proof. We proceed by induction on n. It must be the case that n ≥ 1 else the precondi-

tion is false. If n = 1 then we must have bta env t1 = D and so we can take m = n.

For the inductive step suppose the result holds for n = k and the precondition holds for

n = k + 1. Now if bta env t1 = D then we can take m = 1. If not we must have

pred (eval envs t1) = False, since the precondition would not hold otherwise. Hence by

Theorem 5.2 pred (eval env t1) = False. Also,

bta short circuit env pred [t1, . . . , tk+1] = bta short circuit env pred [t2, . . . , tk+1],

and so by our inductive hypothesis ∃m ∈ [2, k + 1] satisfying (i)–(iii), since we have seen

above that the first two clauses also hold for t1. 2

Let us then consider the case of operator And. By the above lemma, with pred = not,

we have that ∃m ≤ n satisfying (i)–(iii). For i < m, since bta env ti = S we can apply

Theorem 5.2 to (ii) to see that pred (eval envs ti) = False. Hence

eval env (reduce env expr)
= {expand expr}

eval env (reduce env (Apply And [t1, . . . , tn]))
= {definition of reduce, Lemma B.2, and the above}

eval env (Apply And (map (reduce env) [tm, . . . , tn]))
= {definition of eval}

apply And (map (eval env) (map (reduce env) [tm, . . . , tn]))
= {property of map}

apply And (map ((eval env).(reduce env)) [tm, . . . , tn])
= {IH on each ti, m ≤ i ≤ n}

apply And (map (eval env) [tm, . . . , tn])
= {definition of apply}

foldr (&&) True (map (eval env) [tm, . . . , tn])
= {Lemma B.2(ii) and definition of &&}

foldr (&&) True (map (eval env) [t1, . . . , tn])
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foldr (&&) True (map (eval env) [t1, . . . , tn])
= {definition of apply}

apply And (map (eval env)[t1, . . . , tn])
= {definition of eval}

eval env expr

Operator Or follows the same reasoning, replacing And with Or, && with ||, switching

True and False, and using pred = id.

Division is handled differently—we replace division by a static expression with a multi-

plication by the reciprocal, since multiplication is faster to compute than division. If the

denominator is dynamic, therefore, the proof is identical to the general case. With a static

denominator, we have expr = Apply Divide [n, d] and bta env d = S. Also, since expr is

dynamic, bta env n = D. Thus, writing 1 for Num 1 ”dimensionless”, and ignoring wrap-

ping/unwrapping of values as constant expressions,

reduce env expr
= {definition of reduce}

reduce env (Apply Times [n, Apply Divide [1, d]])
= {definition of reduce}

Apply Times [reduce env n, eval envs (Apply Divide [1, d])]
= {Theorem 5.2}

Apply Times [reduce env n, eval env (Apply Divide [1, d])]
= {definition of eval}

Apply Times [reduce env n, 1/(eval env d)]

Therefore,

eval env (reduce env expr)
= {definition of eval and the above}

foldl1 (*) [eval env (reduce env n), eval env (1/(eval env d))]
= {IH on n}

foldl1 (*) [eval env n, eval env (1/(eval env d))]
= {evaluation of a constant}

foldl1 (*) [eval env n, 1/(eval env d)]
= {definition of foldl1}

(eval env n) * (1/(eval env d))
= {properties of arithmetic}

(eval env n) / (eval env d)
= {definitions of eval and apply}

eval env (Apply Divide [n, d])
= {definition of eval}

eval env expr
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iv. Case expr = Piecewise cases Nothing:

This case is made more complex by the partially-online short-circuiting of the reduction,

where initial cases with static conditions evaluating to False are discarded, and if the then

initial case has a static True condition the whole expression is replaced by its associated

result.

Suppose for a contradiction that all the conditions are static, and for each condition /tc,

eval env c = False. Then from the definition of bta, bta env expr = S. However, expr

is dynamic, so it must consist of at least 1 condition which is not statically False. We

therefore have

1) n ≥ 0 cases with static conditions which evaluate to False;

2) a case (Case cond res) that either

a) has a static condition evaluating to True, or

b) has a dynamic condition; and

3) m ≥ 0 further cases.

It is straightforward to show by induction on n that we can assume w.l.o.g. that n = 0. We

then have two possibilities to consider.

a) In this case
eval env (reduce env expr)

= {definition of reduce}
eval env (reduce env res)

= {IH on res}
eval env res

= {definition of eval}
eval env expr

b) Let the case expressions in (2) and (3) together be named cases. We first need a sub-

sidiary result, which essentially proves the theorem for a single case expression.

Lemma B.3 Let c = Case cond res be any case expression in cases. Then for any x,

ecase env (rcase env c) x = ecase env c x.
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Proof. There are three possibilities to consider:

(1) eval env cond = True
ecase env (rcase env c) x

= {definition of rcase}
ecase env (Case (reduce env cond) (reduce env res)) x

= {IH on cond and definition of ecase}
Just (eval env (reduce env res))

= {IH on res}
Just (eval env res)

= {definition of ecase}
ecase env c x

(2) eval env cond = False
ecase env (rcase env c) x

= {definition of rcase}
ecase env (Case (reduce env cond) (reduce env res)) x

= {IH on cond and definition of ecase}
x

= {definition of ecase}
ecase env c x

(3) eval env cond = ⊥
ecase env (rcase env c) x

= {definition of rcase}
ecase env (Case (reduce env cond) (reduce env res)) x

= {IH on cond and definition of ecase}
⊥

= {definition of ecase}
ecase env c x 2

We can now proceed to the main result.

eval env (reduce env expr)
= {definition of reduce}

eval env (Piecewise (map (rcase env) cases) Nothing)
= {definition of eval}

foldr (ecase env) Nothing (map (rcase env) cases)
= {fold-map fusion}

foldr (λc x →ecase env (rcase env c) x) Nothing cases
= {Lemma B.3}

foldr (ecase env) Nothing cases
= {definition of eval}

eval env expr
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CellML Interpreter

module CellML where

import Env i ronmen t
import U n i t s
import Data . L i s t ( nub )
import Maybe

−− D e f i n i t i o n o f CellML i n H a s k e l l .

−− T h i s makes v a r i o u s s i m p l i f y i n g a s s u m p t i o n s .
−− F u r t h e r work c o u l d i n c l u d e removing t h e s e .
−− Examples :
−− A l l e q u a t i o n s are e x p l i c i t ( t h i s i s t h e main one )
−− The CellML f i l e d e s c r i b e s an ODE s y s t e m
−− ( i t must n o t be d e g e n e r a t e , i e have o n l y a l g e b r a i c e q u a t i o n s )
−− Every v a r i a b l e i s assumed t o be r e a l v a l u e d ( i e a Double )
−− ( t h i s a s s u m p t i o n i s i n CellML , t o o )
−− ( r e s u l t s o f l o g i c a l o p e r a t o r s can be boolean , however )
−− No s u p p o r t f o r ( d e f i n i t e ) i n t e g r a l s
−− Only a l l o w s f i r s t d e r i v a t i v e s

−− The s t y l e o f s e m a n t i c s i s t h a t o f a l a z y f u n c t i o n a l language , w i t h
−− e x p r e s s i o n s e v a l u a t e d on demand , i e when t h e v a l u e o f t h e v a r i a b l e
−− t o which t h e e x p r e s s i o n i s bound i s r e q u i r e d .
−− T h i s r e f l e c t s t h e d e c l a r a t i v e n a t u r e o f CellML , and c o n t r a s t s w i t h
−− g e n e r a t e d p r o c e d u r a l code , where a t o p o l o g i c a l s o r t i s used t o
−− d e t e r m i n e an e v a l u a t i o n o r d e r f o r e x p r e s s i o n s .

−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− CellML d a t a t y p e s
−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− I d e n t i f i e r s are c o n s i d e r e d t o be s t r i n g s − we don ' t r e s t r i c t t h e
−− a l l o w a b l e c h a r a c t e r s a t a l l , s i n c e we ' re n o t concerned here abou t
−− v a l i d a t i o n o f t h e XML r e p r e s e n t a t i o n .
type I d e n t = S t r i n g

−− The t o p l e v e l d a t a t y p e f o r a CellML model
data CellML

= Model I d e n t [ UDef ] [ Component ] [ C o n n e c t i o n ]
d e r i v i n g ( Eq , Show )

−− Here , c o n n e c t i o n s are d i r e c t i o n a l , so we don ' t need t o know abou t
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−− t h e e n c a p s u l a t i o n h i e r a r c h y . Map goes from l e f t t o r i g h t .
data C o n n e c t i o n = VarMap ( I d e n t , I d e n t ) ( I d e n t , I d e n t )

d e r i v i n g ( Eq , Show )

−− A component , i d e n t i f i e d by name , c o n t a i n s u n i t s d e f i n i t i o n s and m a t h e m a t i c s .
−− C o n s t a n t v a r i a b l e s are r e p r e s e n t e d by an a s s i g n m e n t e x p r e s s i o n .
data Component

= Component I d e n t [ UDef ] [ VarDecl ] [ MathAss ignment ]
d e r i v i n g ( Eq , Show )

−− A v a r i a b l e d e c l a r a t i o n , a s s o c i a t i n g some u n i t s w i t h t h e v a r i a b l e name .
data VarDecl

= VarDecl I d e n t UName
d e r i v i n g ( Eq , Show )

−− R e f e r e n c e t o u n i t s o f c o n s t a n t s :
−− e i t h e r a name loo ku p or anonymous u n i t s .
type URef = Ei th er UName U n i t s

−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Mathemat i c s d a t a t y p e s
−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

data MathAss ignment
= A s s i g n EnvKey MathTree

d e r i v i n g ( Eq , Show )

data MathTree
= Num Double URef −− A cn e l e m e n t
| Bool Bool −− The r e s u l t o f a r e l a t i o n a l or l o g i c a l o p e r a t o r
| V a r i a b l e I d e n t −− A c i e l e m e n t
| Apply Opera tor [ MathTree ] −− An a p p l y e l e m e n t
| P i e c e w i s e [ Case ] ( Maybe MathTree ) −− A p i e c e w i s e e l e m e n t
| D i f f I d e n t I d e n t −− D i f f v1 v2 = d ( v1 ) / d ( v2 )

d e r i v i n g ( Eq , Show )

−− P i e c e w i s e c a s e s : Case c o n d i t i o n r e s u l t
data Case

= Case MathTree MathTree
d e r i v i n g ( Eq , Show )

−− Opera tor names here are c a p i t a l i s e d MathML e l e m e n t names .
data Opera tor

= Plus | Minus | Times | D i v i d e
| Exp | Log | Ln
| S i n | Cos | Tan
| S q r t | Root | Power
| And | Or | Not | Xor
| Lt | Gt | Leq | Geq
| Floor

d e r i v i n g ( Eq , Show )

−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− The CellML v a l u e space
−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− The DynamicMarker i s used t o i n d i c a t e t o t h e p a r t i a l e v a l u a t o r t h a t
−− a v a r i a b l e i s e x p l i c i t l y marked dynamic , w i t h o u t o v e r r i d i n g i t s
−− d e f i n i t i o n i n t h e model .
data Value

= Number Double
| Boolean Bool
| DynamicMarker

d e r i v i n g ( Eq , Show )

−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− A CellML e n v i r o n m e n t
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−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

type Env = Env i ronmen t EnvKey EnvValue
data EnvKey

= Var I d e n t
| Ode I d e n t I d e n t

d e r i v i n g ( Eq , Show , Ord )
data EnvValue

= Expr MathTree
| Val Value
| I n t e r n a l D a t a ( VarUni tsEnv , Uni t sEnvs , Env )

−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Some c o n v e n i e n c e f u n c t i o n s f o r Env and Value
−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Helper f u n c t i o n s t o e x t r a c t t h e H a s k e l l v a l u e from a CellML v a l u e .
ge t num : : Value → Double
get num ( Number n ) = n
get num v = error ( ” n o t a number : ” ++ show v )
g e t b o o l : : Value → Bool
g e t b o o l ( Boolean b ) = b
g e t b o o l v = error ( ” n o t a b o o l e a n : ” ++ show v )

mgn = map get num
mgb = map g e t b o o l

−− E x t r a c t i n g i n f o from an EnvValue
g e t e x p r : : EnvValue → MathTree
g e t e x p r ( Expr t ) = t
g e t e x p r ev = error ( ” n o t an e x p r e s s i o n : ” ++ show ev )
g e t v a l : : EnvValue → Value
g e t v a l ( Val v ) = v
g e t v a l ev = error ( ” n o t a v a l u e : ” ++ show ev )

−− D i s p l a y o f CellML e n v i r o n m e n t s
i n s t a n c e Show ( EnvValue ) where

show ( Expr t ) = ” Expr : ” ++ show t
show ( Val v ) = ” Val : ” ++ show v
show = error ” u n a b l e t o show i n t e r n a l d a t a ”

show env : : Env → IO ( )
show env env = putStr ( e n v 2 s t r env )
e n v 2 s t r : : Env → S t r i n g
e n v 2 s t r env = concat (map s h o w i t e m ( names env ) )

where
show map : : EnvKey → EnvValue → S t r i n g
show map k v = show k ++ ” → ” ++ show v ++ ”λn ”
s h o w i t e m : : EnvKey → S t r i n g
s h o w i t e m k = case k of

Var ” ” → ” ”
→ show map k ( f i n d env k )

−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− R o u t i n e s f o r i n t e r p r e t i n g a CellML model
−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Run a CellML model , i n an e n v i r o n m e n t g i v i n g v a l u e s f o r t h e s t a t e v a r i a b l e s and t ime ,
−− r e t u r n i n g an e n v i r o n m e n t i n which each d e r i v i a t i v e i s bound t o a v a l u e .
−− In o t h e r words , we d e f i n e t h e meaning o f a model as e v a l u a t i n g t h e RHS o f t h e ODE
−− s y s t e m i n a s u i t a b l e e n v i r o n m e n t .
r u n c e l l m l : : CellML → Env → Env
r u n c e l l m l model i n i t e n v

= r u n e n v mode l env d e r i v s
where ( d e r i v s , mode l env ) = l o a d c e l l m l model i n i t e n v
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−− E v a l u a t e an e n v i r o n m e n t r e p r e s e n t i n g a CellML model .
r u n e n v : : Env → [ EnvKey ] → Env
r u n e n v mode l env d e r i v s

= f o l d r e v a l d e r i v e m p t y e n v d e r i v s
where −− E v a l u a t e t h e RHS o f a s i n g l e ODE

e v a l d e r i v : : EnvKey → Env → Env
e v a l d e r i v d env = d e f i n e env d ( Val ( e l o o k u p mode l env d ) )

−− B u i l d an e n v i r o n m e n t t o e v a l u a t e t h e model in ,
−− and f i n d t h e ODEs .
l o a d c e l l m l : : CellML → Env → ( [ EnvKey ] , Env )
l o a d c e l l m l model ' i n i t e n v

= ( d e r i v s , e x t e n v u )
where mode l env : : Env

mode l env = p r o c e s s c e l l m l model i n i t e n v
d e r i v s : : [ EnvKey ]
d e r i v s = f i n d d e r i v s mode l env
e x t e n v : : Env
e x t e n v = f o l d r a d d s r c d e r i v mode l env d e r i v s
−− Apply model t r a n s f o r m a t i o n s
model = ( ( x form math expand unames ) .

( x form math expand names ) .
( x form math ( f o r g e t t r a n s f o r m p i e c e w i s e ) ) ) model '

−− Add i n u n i t s i n f o r m a t i o n
u n i t s e n v = p r o c e s s u n i t s model
v a r u n i t s = p r o c e s s v a r u n i t s model u n i t s e n v
e x t e n v u = d e f i n e e x t e n v ( Var ” ” )

( I n t e r n a l D a t a ( v a r u n i t s , u n i t s e n v , i n i t e n v ) )

−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− The core m a t h e m a t i c s i n t e r p r e t e r
−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− E v a l u a t e an e x p r e s s i o n t o o b t a i n i t s v a l u e
e v a l : : Env → MathTree → Value
e v a l env (Num n )

= Number n
e v a l env ( Bool b )

= Boolean b
−− Lookup t h e v a r i a b l e ' s d e f i n i t i o n and e v a l u a t e i t
e v a l env ( V a r i a b l e v )

= e l o o k u p env ( Var v )
−− Lookup t h e ODE' s d e f i n i t i o n and e v a l u a t e i t
e v a l env ( D i f f var bvar )

= e l o o k u p env ( Ode var bvar )
−− E v a l u a t i o n o f a p p l y depends on t h e o p e r a t o r .
−− L a z i l y e v a l u a t e t h e operands .
e v a l env ( Apply o p e r a t o r operands )

= a p p l y o p e r a t o r (map ( e v a l env ) operands )
−− E v a l u a t i o n o f a p i e c e w i s e e x p r e s s i o n s h o r t−c i r c u i t s when a True
−− c o n d i t i o n i s found .
e v a l env ( P i e c e w i s e c a s e s Nothing )

= case f o l d r e c a s e Nothing c a s e s of
Jus t v → v
Nothing → error ” f a l l e n o f f end of p i e c e w i s e ”

where
e c a s e : : Case → Maybe Value → Maybe Value
e c a s e ( Case cond r e s ) r e s t = case e v a l env cond of

Boolean F a l s e → r e s t
Boolean True → Jus t ( e v a l env r e s ) −− s h o r t−c i r c u i t
→ error ( ” c o n d i t i o n a l does n o t e v a l u a t e t o a b o o l e a n : ”

++ show cond )

a p p l y : : Opera tor → [ Value ] → Value
a p p l y P lus operands −− nary a d d i t i o n

= Number ( sum ( mgn operands ) )
a p p l y Minus [ operand ] −− unary minus
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= Number (0 − ( get num operand ) )
a p p l y Minus [ a , b ] −− b i n a r y minus

= Number ( ( get num a ) − ( get num b ) )
a p p l y D i v i d e [ a , b ] −− b i n a r y d i v i d e

= Number ( ( get num a ) / ( get num b ) )
a p p l y Times operands −− nary m u l t i p l i c a t i o n

= Number ( f o l d l 1 ( * ) ( mgn operands ) )
a p p l y Exp [ operand ] −− unary e x p o n e n t i a l f n

= Number ( exp ( get num operand ) )
a p p l y Log [ operand , base ] −− l o g a r i t h m t o g i v e n base

= Number ( ( l o g ( get num operand ) ) / ( l o g ( get num base ) ) )
a p p l y Ln [ operand ] −− n a t u r a l l o g a r i t h m

= Number ( l o g ( get num operand ) )
a p p l y S i n [ operand ]

= Number ( s i n ( get num operand ) )
a p p l y Cos [ operand ]

= Number ( cos ( get num operand ) )
a p p l y Tan [ operand ]

= Number ( tan ( get num operand ) )
a p p l y S q r t [ operand ]

= Number ( s q r t ( get num operand ) )
a p p l y Root [ operand , d eg re e ]

= Number ( get num operand ** ( 1 / ( get num de gr ee ) ) )
a p p l y Power [ operand , d eg re e ]

= Number ( get num operand ** ( get num de gr ee ) )
a p p l y And operands −− nary l o g i c a l and

= Boolean ( and ( mgb operands ) )
a p p l y Or operands −− nary l o g i c a l i n c l u s i v e or

= Boolean ( or ( mgb operands ) )
a p p l y Not [ operand ] −− l o g i c a l n e g a t i o n

= Boolean ( not ( g e t b o o l operand ) )
a p p l y Xor operands −− nary l o g i c a l e x c l u s i v e or

= Boolean ( f o l d l xor F a l s e ( mgb operands ) )
where xor a b = ( a && ( not b ) ) | | ( not a && b )

a p p l y L t [ a , b ]
= Boolean ( get num a < ( get num b ) )

a p p l y Gt [ a , b ]
= Boolean ( get num a > ( get num b ) )

a p p l y Leq [ a , b ]
= Boolean ( get num a ≤ ( get num b ) )

a p p l y Geq [ a , b ]
= Boolean ( get num a ≥ ( get num b ) )

a p p l y F loor [ a ]
= Number ( fromInteger ( f l o o r ( get num a ) ) )

a p p l y op
= error ( ” unknown o p e r a t o r ” ++ show op )

−− Lookup a v a l u e from an e n v i r o n m e n t . I f t h e g i v e n name maps t o
−− an e x p r e s s i o n , e v a l u a t e t h e e x p r e s s i o n i n t h i s e n v i r o n m e n t t o
−− f i n d i t s v a l u e .
−− For an ODE we may need t o l o o k up u s i n g s o u r c e v a r i a b l e s i f i t
−− i s d e f i n e d i n a d i f f e r e n t component from t h a t i n which i t i s used .
e l o o k u p : : Env → EnvKey → Value
e l o o k u p env ( Ode var bvar )

= case m a y b e f i n d env ( Ode var bvar ) of
Jus t ( Expr e ) → e v a l env e
Jus t ( Val v ) → v
−− I f we assume no i n v a l i d models , t h e n we c o u l d do
−− Noth ing → e l o o k u p env o d e s r c
Nothing → case f i n d env o d e s r c of

Expr e → e v a l env e
Val v → v

where o d e s r c = ( Ode ( f i n d s r c env var ) ( f i n d s r c env bvar ) )
e l o o k u p env key

= case f i n d env key of
Expr e → e v a l env e
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Val v → v

−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− U t i l i t y f u n c t i o n s used by l o a d c e l l m l , f o r
−− c o n v e r t i n g a CellML model i n t o a c a n o n i c a l
−− CellML e n v i r o n m e n t .
−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− B u i l d up an e n v i r o n m e n t c o n t a i n i n g a l l t h e d e f i n i t i o n s i n a model .
p r o c e s s c e l l m l : : CellML → Env → Env
p r o c e s s c e l l m l ( Model name us comps conns ) env

= l e t env ' = f o l d r p r o c e s s c o m p o n e n t env comps
in f o l d r p r o c e s s c o n n e c t i o n env ' conns

−− Add a component ' s d e f i n i t i o n s t o an e n v i r o n m e n t .
p r o c e s s c o m p o n e n t : : Component → Env → Env
p r o c e s s c o m p o n e n t ( Component cname a s s i g n s ) env

= f o l d r a d d a s s i g n m e n t env a s s i g n s
where
−− Add an a s s i g n m e n t e x p r e s s i o n t o an e n v i r o n m e n t .
a d d a s s i g n m e n t : : MathAss ignment → Env → Env
a d d a s s i g n m e n t ( A s s i g n key expr ) env

= d e f i n e env key ' ( Expr expr )
where key ' = case key of

Var vname → Var ( f u l l i d e n t cname vname )
Ode v1 v2 → Ode ( f u l l i d e n t cname v1 )

( f u l l i d e n t cname v2 )

−− Add a c o n n e c t i o n t o an env i ronmen t , as an a s s i g n m e n t e x p r e s s i o n .
p r o c e s s c o n n e c t i o n : : C o n n e c t i o n → Env → Env
p r o c e s s c o n n e c t i o n ( VarMap ( cname1 , vname1 ) ( cname2 , vname2 ) ) env

= d e f i n e env key v a l
where key = Var ( f u l l i d e n t cname2 vname2 )

v a l = Expr ( V a r i a b l e ( f u l l i d e n t cname1 vname1 ) )

−− I d e n t i f y t h e ODEs d e f i n e d i n an e n v i r o n m e n t .
f i n d d e r i v s : : Env → [ EnvKey ]
f i n d d e r i v s e = f d ( names e )

where f d : : [ EnvKey ] → [ EnvKey ]
f d [ ] = [ ]
f d ( ( Ode v1 v2 ) : ks ) = ( Ode v1 v2 ) : f d k s
f d ( : ks ) = f d k s

−− For each d e r i v a t i v e d e f i n e d , add a d e f i n i t i o n t o t h e e n v i r o n m e n t
−− u s i n g t h e s r c v a r i a b l e s f o r bo th i n d e p e n d e n t and d e p e n d e n t v a r s .
−− T h i s makes a l l o w i n g f o r d e r i v a t i v e s t o appear on t h e RHS o f
−− e x p r e s s i o n s e a s i e r .
a d d s r c d e r i v : : EnvKey → Env → Env
a d d s r c d e r i v ( Ode v1 v2 ) env

= i f v1 == v1 ' && v2 == v2 '
then env
e l s e d e f i n e env ( Ode v1 ' v2 ' ) a l i a s

where v1 ' = f i n d s r c env v1
v2 ' = f i n d s r c env v2
a l i a s = Expr ( D i f f v1 v2 )

−− Apply a t r a n s f o r m a t i o n t o t h e ( e x p l i c i t ) m a t h e m a t i c s w i t h i n a model .
−− The t r a n s f o r m a t i o n o f a t r e e a l s o t a k e s i n t h e name o f t h e component
−− w i t h i n which t h e t r e e o c c u r s .
x form math : : ( I d e n t → MathTree → MathTree ) → CellML → CellML
x form math x form ( Model name u d e f s comps conns )

= Model name u d e f s comps ' conns
where

comps ' = map xform comp comps
xform comp ( Component cname u d e f s v d e c l s a s s i g n s )
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= Component cname u d e f s v d e c l s (map ( x f o r m a s s i g n cname ) a s s i g n s )
x f o r m a s s i g n cname ( A s s i g n k t )

= A s s i g n k ( x form cname t )

−− U s e f u l f u n c t i o n i n c o n n e c t i o n w i t h x form math : changes a t r a n s f o r m a t i o n
−− t h a t i s i n d e p e n d e n t o f component t o t h e n e c e s s a r y form .
f o r g e t : : ( a → b ) → ( c → a → b )
f o r g e t f = λ → f

−− Trans form p i e c e w i s e e x p r e s s i o n s t o remove t h e need f o r s p e c i a l−case h a n d l i n g
−− o f t h e ' o t h e r w i s e ' c l a u s e , by add ing i t i n ( i f p r e s e n t ) as a case w i t h
−− c o n d i t i o n True .
t r a n s f o r m p i e c e w i s e : : MathTree → MathTree
t r a n s f o r m p i e c e w i s e ( P i e c e w i s e c a s e s o t h e r w i s e )

= P i e c e w i s e n e w c a s e s Nothing
where n e w c a s e s = case o t h e r w i s e o f

Nothing → c a s e s
Jus t t → c a s e s ++ [ Case ( Bool True ) t ]

t r a n s f o r m p i e c e w i s e ( Apply o p e r a t o r operands )
= Apply o p e r a t o r (map t r a n s f o r m p i e c e w i s e operands )

t r a n s f o r m p i e c e w i s e l e a f = l e a f

−− Modi fy v a r i a b l e names i n t h e g i v e n e x p r e s s i o n t o i n c l u d e t h e name o f
−− t h e component i n which t h e y occur .
expand names : : I d e n t → MathTree → MathTree
expand names cname = m o d i f y l e a v e s f

where
f ( V a r i a b l e v ) = V a r i a b l e ( f u l l i d e n t cname v )
f ( D i f f v1 v2 ) = D i f f ( f u l l i d e n t cname v1 ) ( f u l l i d e n t cname v2 )
f l e a f = l e a f

−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Some more g e n e r a l l y u s e f u l u t i l i t y f u n c t i o n s
−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Find t h e name o f t h e v a r i a b l e from which a v a r i a b l e o b t a i n s i t s
−− va lue , by f o l l o w i n g c o n n e c t i o n s .
−− I f t h i s i s n ' t a ' mapped ' v a r i a b l e , w i l l j u s t r e t u r n i t s name .
f i n d s r c : : Env → I d e n t → I d e n t
f i n d s r c env v

= case m a y b e f i n d env ( Var v ) of
Jus t ( Expr ( V a r i a b l e sv ) ) → f i n d s r c env sv
→ v

−− Compute t h e f u l l name o f a v a r i a b l e , i n c l u d i n g i t s component ' s name .
f u l l i d e n t : : I d e n t → I d e n t → I d e n t
f u l l i d e n t ” c ” n = n −− Hack t o a l l o w compar i son o f PE i m p l e m e n t a t i o n s
f u l l i d e n t cname vname = cname ++ ” , ” ++ vname

−− Get t h e component name from a f u l l i d e n t i f i e r .
−− I f g i v e n a l o c a l i d e n t i f i e r , r e t u r n s ””.
ge t componen t name : : I d e n t → I d e n t
ge t componen t name n

= i f pre comma == n then ” ” e l s e pre comma
where pre comma = takeWhile ( 6= ' , ' ) n

−− Get t h e v a r i a b l e name from a f u l l i d e n t i f i e r .
−− I f g i v e n a l o c a l i d e n t i f i e r , r e t u r n s i t v e r b a t i m .
g e t v a r i a b l e n a m e : : I d e n t → I d e n t
g e t v a r i a b l e n a m e n

= i f post comma == ” ” then n e l s e post comma
where post comma = ( ( drop 1) . ( dropWhile ( 6= ' , ' ) ) ) n

−− Genera te a l i s t o f v a r i a b l e s / ODEs l o o k e d up i n an e n v i r o n m e n t .
l o o k u p s : : Env → [ EnvKey ]
l o o k u p s env = f o l d r e x p r l o o k u p s e x p r [ ] env
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where
l o o k u p s e x p r : : MathTree → [ EnvKey ] → [ EnvKey ]
l o o k u p s e x p r ( V a r i a b l e v ) l s = ( Var v ) : l s
l o o k u p s e x p r ( D i f f v1 v2 ) l s = ( Ode v1 v2 ) : l s
l o o k u p s e x p r ( Apply t s ) l s = f o l d r l o o k u p s e x p r l s t s
l o o k u p s e x p r ( P i e c e w i s e c a s e s Nothing ) l s

= f o l d r l o o k u p s e x p r l s ( c a s e s 2 l i s t c a s e s )
l o o k u p s e x p r l s = l s

−− C o n v e r s i o n be tween l i s t s o f c a s e s and e x p r e s s i o n s .
c a s e s 2 l i s t : : [ Case ] → [ MathTree ]
c a s e s 2 l i s t [ ] = [ ]
c a s e s 2 l i s t ( Case cond r e s : cs ) = cond : r e s : ( c a s e s 2 l i s t c s )
l i s t 2 c a s e s : : [ MathTree ] → [ Case ]
l i s t 2 c a s e s [ ] = [ ]
l i s t 2 c a s e s ( cond : r e s : t s ) = ( Case cond r e s ) : ( l i s t 2 c a s e s t s )

−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− V a r i o u s h igher−o r d e r u t i l i t y f u n c t i o n s
−− f o r p r o c e s s i n g ( CellML ) e n v i r o n m e n t s .
−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− A r i g h t f o l d over an Env i ronmen t .
f o l d r e n v : : ( Ord k , Show k ) ⇒

( k → v → b → b ) → b → Env i ronmen t k v → b
f o l d r e n v f z env = f o l d r g z ( names env )

where g key z = f key ( f i n d env key ) z

−− F i l t e r an e n v i r o n m e n t a c c o r d i n g t o some p r e d i c a t e on k e y s or v a l u e s
−− ( or bo th ) .
f i l t e r e n v : : ( EnvKey → EnvValue → Bool ) → Env → Env
f i l t e r e n v pred env = f o l d r e n v f e m p t y e n v env

where f : : EnvKey → EnvValue → Env → Env
f k v e = i f pred k v then d e f i n e e k v e l s e e

−− Apply a f u n c t i o n t o each ' r e a l ' e n t r y i n an e n v i r o n m e n t .
−− The f i r s t argument d e t e r m i n e s what i s a ' r e a l ' e n t r y .
map env : : ( Ord k , Eq k , Show k ) ⇒

( k → Bool ) → ( k → v → a ) → Env i ronmen t k v → [ a ]
map env pred f env = map d o f ( f i l t e r pred ( names env ) )

where d o f key = f key ( f i n d env key )

−− Fold a f u n c t i o n over a l l e x p r e s s i o n s i n an e n v i r o n m e n t .
f o l d r e x p r : : ( MathTree → a → a ) → a → Env → a
f o l d r e x p r f a env

= f o l d r f a (map g e t e x p r
( f i l t e r r e a l e x p r

(map ( f i n d env ) ( names env ) ) ) )
where r e a l e x p r : : EnvValue → Bool

r e a l e x p r ( Expr ) = True
r e a l e x p r = F a l s e

−− Fold a f u n c t i o n over a l l e x p r e s s i o n s i n an e n v i r o n m e n t
−− ( where t h e f u n c t i o n a l s o t a k e s t h e key ) .
f o l d r e x p r k e y : : ( MathTree → EnvKey → a → a ) → a → Env → a
f o l d r e x p r k e y f a env

= f o l d r ( uncurry f ) a
(map g e t e x p r k e y ( f i l t e r r e a l e x p r ( names env ) ) )

where r e a l e x p r : : EnvKey → Bool
r e a l e x p r key = case f i n d env key of

( Expr ) → True
→ F a l s e

g e t e x p r k e y : : EnvKey → ( MathTree , EnvKey )
g e t e x p r k e y key = ( g e t e x p r ( f i n d env key ) , key )

−− Apply a t r a n s f o r m a t i o n t o a l l e x p r e s s i o n s i n an e n v i r o n m e n t .
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m o d i f y e x p r s : : ( MathTree → MathTree ) → Env → Env
m o d i f y e x p r s f env = f o l d r e x p r k e y g env env

where g expr key env ' = d e f i n e env ' key ( Expr ( f e xpr ) )

−− Apply a t r a n s f o r m a t i o n t o a l l l e a f nodes i n an e x p r e s s i o n t r e e .
m o d i f y l e a v e s : : ( MathTree → MathTree ) → MathTree → MathTree
m o d i f y l e a v e s f ( Apply o p e r a t o r operands )

= Apply o p e r a t o r (map ( m o d i f y l e a v e s f ) operands )
m o d i f y l e a v e s f ( P i e c e w i s e c a s e s Nothing )

= P i e c e w i s e (map m o d i f y c a s e c a s e s ) Nothing
where m o d i f y c a s e ( Case t 1 t 2 )

= Case ( m o d i f y l e a v e s f t 1 ) ( m o d i f y l e a v e s f t 2 )
m o d i f y l e a v e s f l e a f = f l e a f

−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Working w i t h u n i t s i n CellML
−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− U n i t s can be d e f i n e d i n e i t h e r components , or a t t h e model l e v e l .
−− When a u n i t s d e f i n i t i o n i s l o o k e d up , we must f i r s t l o o k t o s e e i f
−− i t was d e f i n e d i n t h i s component , and o n l y i f n o t do we l o o k a t t h e
−− model l e v e l , t h e n i n t h e s t a n d a r d u n i t s .

−− The d i f f e r e n t s c o p e s f o r u n i t s d e f i n i t i o n s .
−− The k e y s are component names , w i t h s p e c i a l names s t a r t i n g w i t h a .
type U n i t s E n v s = Env i ronmen t I d e n t Uni t sEnv

−− An e n v i r o n m e n t c o n t a i n i n g j u s t t h e pre−d e f i n e d u n i t s .
s t a n d a r d u e n v s = d e f i n e e m p t y e n v ” . s t a n d a r d ” s t a n d a r d u n i t s

−− A mapping be tween v a r i a b l e names and t h e i r u n i t s
type VarUni t sEnv = Env i ronmen t I d e n t ( UName , U n i t s )

−− E x t r a c t i n g d i f f e r e n t u n i t s e n v i r o n m e n t s :
−− Model l e v e l d e f i n i t i o n s .
m o d e l u n i t s : : U n i t s E n v s → Uni t sEnv
m o d e l u n i t s uenvs = f i n d uenvs ” . model ”
−− Component l e v e l d e f i n i t i o n s .
c o m p o n e n t u n i t s : : U n i t s E n v s → I d e n t → Uni t sEnv
c o m p o n e n t u n i t s uenvs cname

= i f cname == ” ” then e m p t y e n v
e l s e case m a y b e f i n d uenvs cname of

Jus t env → env
Nothing → error ( show cname ++ ” i s n o t a component ” )

−− Get t h e u n i t s a s s o c i a t e d w i t h a v a r i a b l e
v a r i a b l e u n i t s : : VarUni t sEnv → I d e n t → U n i t s
v a r i a b l e u n i t s vuenv vname = snd ( f i n d vuenv vname )

−− Get t h e name o f t h e u n i t s a s s o c i a t e d w i t h a v a r i a b l e
v a r i a b l e u n i t s n a m e : : VarUni t sEnv → I d e n t → UName
v a r i a b l e u n i t s n a m e vuenv vname = f s t ( f i n d vuenv vname )

−− Lookup a u n i t s d e f i n i t i o n from w i t h i n t h e g i v e n component .
l o o k u p u n i t s : : U n i t s E n v s → I d e n t → UName → U n i t s
l o o k u p u n i t s envs cname uname

= case m a y b e f i n d ( c o m p o n e n t u n i t s envs cname ) uname of
Jus t u → u
Nothing → case m a y b e f i n d ( m o d e l u n i t s envs ) uname of

Jus t u → u
Nothing → f i n d s t a n d a r d u n i t s uname

l o o k u p u r e f : : U n i t s E n v s → URef → U n i t s
l o o k u p u r e f uenvs = e i t h e r lookup uname id

where lookup uname uname
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= l o o k u p u n i t s uenvs ( ge t componen t name uname )
( g e t v a r i a b l e n a m e uname )

−− E x t r a c t t h e u n i t s d e f i n i t i o n s from a CellML model
p r o c e s s u n i t s : : CellML → U n i t s E n v s
p r o c e s s u n i t s ( Model m u d e f s comps )

= f o l d r proc comp mode l env comps
where

mode l env = d e f i n e s t a n d a r d u e n v s ” . model ”
( f o l d r p r o c u d e f e m p t y e n v m u d e f s )

proc comp : : Component → U n i t s E n v s → U n i t s E n v s
proc comp ( Component cname c u d e f s ) env

= d e f i n e env cname ( f o l d r p r o c u d e f e m p t y e n v c u d e f s )
p r o c u d e f : : UDef → Uni t sEnv → Uni t sEnv
p r o c u d e f ( UDef uname u ) env = d e f i n e env uname u

−− Cr ea t e a mapping be tween v a r i a b l e s and t h e i r u n i t s
p r o c e s s v a r u n i t s : : CellML → U n i t s E n v s → VarUni t sEnv
p r o c e s s v a r u n i t s ( Model comps ) uenv

= f o l d r proc comp e m p t y e n v comps
where proc comp : : Component → VarUni t sEnv → VarUni t sEnv

proc comp ( Component cname v d e c l s ) env
= f o l d r ( p r o c d e c l cname ) env v d e c l s

p r o c d e c l : : I d e n t → VarDecl → VarUni t sEnv → VarUni t sEnv
p r o c d e c l cname ( VarDecl vname uname ) env

= d e f i n e env ( f u l l i d e n t cname vname )
( f u l l i d e n t cname uname ,

( l o o k u p u n i t s uenv cname uname ) )

−− Expand u n i t s names i n numbers w i t h i n mathemat i c s , so t h e y i n c l u d e t h e
−− component name .
expand unames : : I d e n t → MathTree → MathTree
expand unames cname = m o d i f y l e a v e s f

where
f (Num n u r e f ) = Num n ( expand uname cname u r e f )
f l e a f = l e a f

expand uname : : I d e n t → URef → URef
expand uname cname

= e i t h e r ( Lef t . f u l l i d e n t cname ) ( Right . id )

−− E v a l u a t e t h e u n i t s o f an e x p r e s s i o n
e v a l u n i t s i n : : Env → MathTree → U n i t s
e v a l u n i t s i n env expr = e v a l u n i t s vuenv uenv env expr

where I n t e r n a l D a t a ( vuenv , uenv , ) = f i n d env ( Var ” ” )

e v a l u n i t s : : VarUni t sEnv → U n i t s E n v s → Env → MathTree → U n i t s
e v a l u n i t s vuenv uenv env expr = case expr of

(Num u r e f ) → l o o k u p u r e f uenv u r e f
( Bool ) → boo lean
( V a r i a b l e v ) → v a r i a b l e u n i t s vuenv v
( Apply o p e r a t o r operands )

→ a p p l y u n i t s o p e r a t o r
(map ( e v a l u n i t s vuenv uenv env ) operands )
operands

( P i e c e w i s e c a s e s Nothing )
→ p i e c e w i s e u n i t s c a s e s

( D i f f var bvar ) → q u o t i e n t ( v a r i a b l e u n i t s vuenv var )
( v a r i a b l e u n i t s vuenv bvar )

where
eqp : : U n i t s → U n i t s → U n i t s
eqp u1 u2 = i f d i m e q u i v u1 u2

then u1 e l s e error ” d imens ion mismatch ”
boo lp : : U n i t s → U n i t s → U n i t s
boo lp u1 u2 = i f u1 == boo lean && u2 == boo lean then boo lean

e l s e error ” o p e r a n d s a r e n o t b o o l e a n ”
i f u : : U n i t s → [ U n i t s ] → U n i t s → U n i t s
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i f u u us r e s = i f f o l d r 1 eqp ( u : us ) == u
then r e s e l s e error ” d imens ion e r r o r ”

d l e s s p : : [ U n i t s ] → U n i t s
d l e s s p us = i f u d i m e n s i o n l e s s us d i m e n s i o n l e s s

a p p l y u n i t s : : Opera tor → [ U n i t s ] → [ MathTree ] → U n i t s
a p p l y u n i t s P lus us = f o l d r 1 eqp us
a p p l y u n i t s Minus us = f o l d r 1 eqp us
a p p l y u n i t s Times us = f o l d r 1 o t i m e s us
a p p l y u n i t s D i v i d e [ u1 , u2 ] = s i m p l i f y ( q u o t i e n t u1 u2 )
a p p l y u n i t s Exp [ u ] = d l e s s p [ u ]
a p p l y u n i t s Log [ u , b ] = d l e s s p [ u , b ]
a p p l y u n i t s Ln [ u ] = d l e s s p [ u ]
a p p l y u n i t s S i n [ u ] = d l e s s p [ u ]
a p p l y u n i t s Cos [ u ] = d l e s s p [ u ]
a p p l y u n i t s Tan [ u ] = d l e s s p [ u ]
a p p l y u n i t s S q r t [ u ] = e x p o n e n t i a t e u ( 0 . 5 )
a p p l y u n i t s Root [ u , du ] [ , d ]

= i f u d i m e n s i o n l e s s [ du ] ( e x p o n e n t i a t e u (1 / get num ( e v a l env d ) ) )
a p p l y u n i t s Power [ u , du ] [ , d ]

= i f u d i m e n s i o n l e s s [ du ] ( e x p o n e n t i a t e u ( get num ( e v a l env d ) ) )
a p p l y u n i t s And us = f o l d r 1 boo lp us
a p p l y u n i t s Or us = f o l d r 1 boo lp us
a p p l y u n i t s Not us = f o l d r 1 boo lp us
a p p l y u n i t s Xor us = f o l d r 1 boo lp us
a p p l y u n i t s L t ( u : us ) = i f u u us boo lean
a p p l y u n i t s Gt ( u : us ) = i f u u us boo lean
a p p l y u n i t s Leq ( u : us ) = i f u u us boo lean
a p p l y u n i t s Geq ( u : us ) = i f u u us boo lean

p i e c e w i s e u n i t s : : [ Case ] → U n i t s
p i e c e w i s e u n i t s c a s e s

= i f i f u boo lean conds boo lean == boo lean then f o l d r 1 eqp us
e l s e error ” p i e c e w i s e c o n d i t i o n s a r e n o t b o o l e a n ”

where ( conds , us ) = unzip (map g e t u p a i r c a s e s )
g e t u p a i r ( Case cond r e s ) = ( e cond , e r e s )
e = e v a l u n i t s vuenv uenv env
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module U n i t s (
U n i t s ( BaseUni t s , S i m p l e U n i t s , ComplexUni t s ) ,
U n i t s R e f e r e n c e ( Uni t ) ,
UDef ( UDef ) , UName ,
d i m e n s i o n l e s s , boolean ,
expand , s i m p l i f y , o t imes , d im equ i v , e x p o n e n t i a t e , q u o t i e n t , e q u a l u n i t s ,
UnitsEnv , s t a n d a r d u n i t s

) where

−− A f o r m a l i s a t i o n o f t h e CellML model o f p h y s i c a l u n i t s .

import Env i ronmen t

−− The t y p e f o r u n i t s
data U n i t s = ComplexUni t s [ U n i t s R e f e r e n c e ]

| S i m p l e U n i t s M u l t i p l i e r P r e f i x U n i t s O f f s e t
| B a s e U n i t s UName

d e r i v i n g ( Show , Ord )

data U n i t s R e f e r e n c e = Uni t M u l t i p l i e r P r e f i x U n i t s Exponent
d e r i v i n g ( Show , Ord )

type M u l t i p l i e r = Double
type P r e f i x = Double
type Exponent = Double
type O f f s e t = Double
type UName = S t r i n g

−− A u n i t s d e f i n i t i o n f o r use i n a CellML model ,
−− a s s o c i a t i n g an i d e n t i f i e r w i t h some u n i t s .
data UDef = UDef UName U n i t s

d e r i v i n g ( Eq , Show )

−− An e n v i r o n m e n t o f such u n i t s d e f i n i t i o n s ,
−− mapping i d e n t i f i e r s t o u n i t s .
type Uni t sEnv = Env i ronmen t UName U n i t s

−− E q u a l i t y o f u n i t s d e f i n i t i o n s .
−− We need t o compare f l o a t i n g p o i n t v a l u e s w i t h i n a t o l e r a n c e .
i n s t a n c e Eq ( U n i t s ) where

( B a s e U n i t s n1 ) == ( B a s e U n i t s n2 )
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= n1 == n2
( S i m p l e U n i t s m1 p1 u1 o1 ) == ( S i m p l e U n i t s m2 p2 u2 o2 )

= ( e q d e l t a m1 m2 ) && ( e q d e l t a p1 p2 ) && ( e q d e l t a o1 o2 ) && ( u1 == u2 )
( ComplexUni t s us1 ) == ( ComplexUni t s us2 )

= us1 == us2
== = F a l s e

i n s t a n c e Eq ( U n i t s R e f e r e n c e ) where
( Uni t m1 p1 u1 e1 ) == ( Uni t m2 p2 u2 e2 )

= ( e q d e l t a m1 m2 ) && ( e q d e l t a p1 p2 ) && ( e q d e l t a e1 e2 ) && ( u1 == u2 )

−− Approx imate e q u a l i t y o f two d o u b l e s
e q d e l t a : : Double → Double → Bool
e q d e l t a d1 d2 = abs ( d1 − d2 ) < 1e−12

−− Whether two d e f i n i t i o n s are t h e same , when c a n o n i c a l i s e d
e q u a l u n i t s : : U n i t s → U n i t s → Bool
e q u a l u n i t s u1 u2

= s i m p l i f y ( expand u1 ) == s i m p l i f y ( expand u2 )

−− S p e c i a l u n i t s
d i m e n s i o n l e s s = B a s e U n i t s ” d i m e n s i o n l e s s ”
boo lean = B a s e U n i t s ” c e l l m l : b o o l e a n ”

−− M u l t i p l i c a t i v e f a c t o r f o r a u n i t s r e f e r e n c e
mfac : : Double → Double → Double → Double
mfac m p e = m * (10** p )** e

−− C a n o n i c a l i s a t i o n : e x p a n s i o n t o p r o d u c t s o f powers o f base u n i t s
expand : : U n i t s → U n i t s
expand ( B a s e U n i t s n ) = B a s e U n i t s n
expand ( S i m p l e U n i t s m p u o ) =

case expand u of
B a s e U n i t s n
→ S i m p l e U n i t s m p ( B a s e U n i t s n ) o

S i m p l e U n i t s m ' p ' u ' o '
→ S i m p l e U n i t s (m*10** p * m' * 1 0 * * p ' ) 0 u ' ( o + o ' / ( m*10** p ) )

expand ( ComplexUni t s us ) = ComplexUni t s ( expand ' us )
where

expand ' [ ] = [ ]
expand ' ( ( Uni t m p u e ) : u r e f s ) = n e w u r e f s ++ expand ' u r e f s

where
n e w u r e f s = case expand u of

B a s e U n i t s n → [ Uni t m p u e ]
S i m p l e U n i t s m ' p ' u ' → prop mf [ Uni t (m ' * * e ) p ' u ' e ]
ComplexUni t s u r e f s ' → prop mf ( m e r g e s o r t (<) (map p r o p e u r e f s ' ) )

where p r o p e ( Uni t m ' p ' u ' e ' )
= Uni t ( ( mfac m ' p ' e ' ) * * e ) 0 u ' ( e *e ' )

prop mf [ ] = [ ]
prop mf ( ( Uni t m ' p ' u ' e ' ) : us )

= ( Uni t ( ( mfac m p e ) * m ' ) p ' u ' e ' ) : us

−− C a n o n i c a l i s a t i o n : c o l l e c t i o n o f r e f e r e n c e s t o same u n i t s
−− The M u l t i p l i e r i n a S i m p l i f y E n v s t o r e s t h e whole m u l t i p l i c a t i v e f a c t o r
−− ( i . e . mfac m p e ) .
type S i m p l i f y E n v = Env i ronmen t U n i t s ( Exponent , M u l t i p l i e r )
s i m p l i f y : : U n i t s → U n i t s
s i m p l i f y ( B a s e U n i t s n ) = B a s e U n i t s n
s i m p l i f y ( S i m p l e U n i t s m p u o )

= S i m p l e U n i t s m p u o
s i m p l i f y ( ComplexUni t s u r e f s )

= n e w u n i t s
where
−− S t e p 1
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u n i t s m a p : : S i m p l i f y E n v
u n i t s m a p = f o l d r a d d r e f e m p t y e n v u r e f s
a d d r e f : : U n i t s R e f e r e n c e → S i m p l i f y E n v → S i m p l i f y E n v
a d d r e f ( Uni t m p u e ) env = case m a y b e f i n d env u of

Nothing → d e f i n e env u ( e , mfac m p e )
Jus t ( e ' , m ' ) → d e f i n e env u ( e+e ' , m ' * ( mfac m p e ) )

−− S t e p 1 ( b ) − c o n v e r t u ˆ0 t o d ' l e s s
un i t s map ' = f o l d r r e m o v e z e r o p o w e r s e m p t y e n v ( names u n i t s m a p )
r e m o v e z e r o p o w e r s : : U n i t s → S i m p l i f y E n v → S i m p l i f y E n v
r e m o v e z e r o p o w e r s u env = case f i n d u n i t s m a p u of

( 0 , m) → a d d r e f ( Uni t m 0 d i m e n s i o n l e s s 1) env
( e , m) → d e f i n e env u ( e , m)

−− S t e p 2 − remove 1*d ' l e s s i f p r e s e n t
un i t s map ' ' = case m a y b e f i n d un i t s map ' d i m e n s i o n l e s s of

Jus t ( e , 1 ) → c o p y w i t h o u t d i m e n s i o n l e s s un i t s map '
→ un i t s map '

c o p y w i t h o u t : : U n i t s → S i m p l i f y E n v → S i m p l i f y E n v
c o p y w i t h o u t u env = f o l d r c o p y i t e m e m p t y e n v ( names env )

where c o p y i t e m u ' env ' = i f u == u ' then env '
e l s e d e f i n e env ' u ' ( f i n d env u ' )

−− S t e p 3 − g e n e r a t e new u n i t s . L i s t o f r e f e r e n c e s i s s o r t e d a c c o r d i n g
−− t o t h e o r d e r i n g on t h e U n i t s d a t a t y p e .
n e w u n i t s = i f i s e m p t y e n v un i t s map ' ' then d i m e n s i o n l e s s e l s e

ComplexUni t s n e w u r e f s
n e w u r e f s = map n e w u r e f ( names un i t s map ' ' )
n e w u r e f : : U n i t s → U n i t s R e f e r e n c e
n e w u r e f u = Uni t m 0 u e

where ( e , m) = f i n d un i t s map ' ' u

−− Conver t any u n i t s d e f i n i t i o n t o be a ComplexUni t s d e f i n i t i o n
make complex ( S i m p l e U n i t s m p u o ) =

ComplexUni t s [ Uni t m p u 1]
make complex ( B a s e U n i t s n ) =

ComplexUni t s [ Uni t 1 0 ( B a s e U n i t s n ) 1 ]
make complex u = u

−− M u l t i p l i c a t i o n o f u n i t s d e f i n i t i o n s
o t i m e s : : U n i t s → U n i t s → U n i t s
o t i m e s u1 u2 = s i m p l i f y u

where
ComplexUni t s u1 ' = make complex u1
ComplexUni t s u2 ' = make complex u2
u = ComplexUni t s ( u1 ' ++ u2 ' )

−− Dimens iona l e q u i v a l e n c e o f u n i t s
d i m e q u i v : : U n i t s → U n i t s → Bool
d i m e q u i v u1 u2 = s o r t e d e x p s 1 == s o r t e d e x p s 2

where
ComplexUni t s u r e f s 1 = make complex ( s i m p l i f y ( expand u1 ) )
ComplexUni t s u r e f s 2 = make complex ( s i m p l i f y ( expand u2 ) )
exps1 = map e x t r a c t u r e f s 1
exps2 = map e x t r a c t u r e f s 2
s o r t e d e x p s 1 = m e r g e s o r t pred exps1
s o r t e d e x p s 2 = m e r g e s o r t pred exps2
e x t r a c t ( Uni t ( B a s e U n i t s n ) e ) = ( n , e )
pred ( n1 , ) ( n2 , ) = n1 ≤ n2

−− E x p o n e n t i a t i o n o f u n i t s
e x p o n e n t i a t e : : U n i t s → Exponent → U n i t s
e x p o n e n t i a t e ( B a s e U n i t s n ) exp =

ComplexUni t s [ Uni t 1 0 ( B a s e U n i t s n ) exp ]
e x p o n e n t i a t e ( S i m p l e U n i t s m p u o ) exp =

ComplexUni t s [ Uni t m p u exp ]
e x p o n e n t i a t e ( ComplexUni t s u r e f s ) exp =

ComplexUni t s (map expo u r e f s )
where
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expo ( Uni t m p u e )
= Uni t (m** exp ) p u ( e * exp )

−− The q u o t i e n t o f two u n i t s
q u o t i e n t : : U n i t s → U n i t s → U n i t s
q u o t i e n t u1 u2 = ComplexUni t s [ Uni t 1 0 u1 1 , Uni t 1 0 u2 (−1)]

−− SI p r e f i x e s
t e r a = 12 : : P r e f i x
g iga = 9 : : P r e f i x
mega = 6 : : P r e f i x
k i l o = 3 : : P r e f i x
h e c t o = 2 : : P r e f i x
deka = 1 : : P r e f i x
d e c i = −1 : : P r e f i x
c e n t i = −2 : : P r e f i x
m i l l i = −3 : : P r e f i x
micro = −6 : : P r e f i x
nano = −9 : : P r e f i x
p i c o = −12 : : P r e f i x

−− U n i t s from t h e CellML s t a n d a r d d i c t i o n a r y
k e l v i n = B a s e U n i t s ” k e l v i n ”
metre = B a s e U n i t s ” me t re ”
second = B a s e U n i t s ” second ”
k i l o g r a m = B a s e U n i t s ” k i l o g r a m ”
ampere = B a s e U n i t s ” ampere ”
c a n d e l a = B a s e U n i t s ” c a n d e l a ”
mole = B a s e U n i t s ” mole ”

r a d i a n = ComplexUni t s [ Uni t 1 0 metre 1 , Uni t 1 0 metre (−1)]
s t e r a d i a n = ComplexUni t s [ Uni t 1 0 metre 2 , Uni t 1 0 metre (−2)]
h e r t z = ComplexUni t s [ Uni t 1 0 second (−1)]
newton = ComplexUni t s [ Uni t 1 0 k i l o g r a m 1 , Uni t 1 0 metre 1 ,

Uni t 1 0 second (−2)]
p a s c a l = ComplexUni t s [ Uni t 1 0 newton 1 , Uni t 1 0 metre (−2)]
j o u l e = ComplexUni t s [ Uni t 1 0 newton 1 , Uni t 1 0 metre 1]
w a t t = ComplexUni t s [ Uni t 1 0 j o u l e 1 , Uni t 1 0 second (−1)]
coulomb = ComplexUni t s [ Uni t 1 0 second 1 , Uni t 1 0 ampere 1]
v o l t = ComplexUni t s [ Uni t 1 0 w a t t 1 , Uni t 1 0 ampere (−1)]
f a r a d = ComplexUni t s [ Uni t 1 0 coulomb 1 , Uni t 1 0 v o l t (−1)]
ohm = ComplexUni t s [ Uni t 1 0 v o l t 1 , Uni t 1 0 ampere (−1)]
s i e m e n s = ComplexUni t s [ Uni t 1 0 ampere 1 , Uni t 1 0 v o l t (−1)]
weber = ComplexUni t s [ Uni t 1 0 v o l t 1 , Uni t 1 0 second 1]
t e s l a = ComplexUni t s [ Uni t 1 0 weber 1 , Uni t 1 0 metre (−2)]
henry = ComplexUni t s [ Uni t 1 0 weber 1 , Uni t 1 0 ampere (−1)]
c e l s i u s = S i m p l e U n i t s 1 0 k e l v i n (−273.15)
lumen = ComplexUni t s [ Uni t 1 0 c a n d e l a 1 , Uni t 1 0 s t e r a d i a n 1]
l u x = ComplexUni t s [ Uni t 1 0 lumen 1 , Uni t 1 0 metre (−2)]
b e c q u e r e l = ComplexUni t s [ Uni t 1 0 second (−1)]
gray = ComplexUni t s [ Uni t 1 0 j o u l e 1 , Uni t 1 0 k i l o g r a m (−1)]
s i e v e r t = ComplexUni t s [ Uni t 1 0 j o u l e 1 , Uni t 1 0 k i l o g r a m (−1)]
k a t a l = ComplexUni t s [ Uni t 1 0 second (−1) , Uni t 1 0 mole 1]

gram = S i m p l e U n i t s ( 0 . 0 0 1 ) 0 k i l o g r a m 0
l i t r e = ComplexUni t s [ Uni t 1000 c e n t i me t re 3]

s t a n d a r d d i c t i o n a r y l i s t
= [ −− S p e c i a l u n i t s

UDef ” d i m e n s i o n l e s s ” d i m e n s i o n l e s s
, UDef ” c e l l m l : b o o l e a n ” boo lean
−− Base u n i t s
, UDef ” k e l v i n ” k e l v i n
, UDef ” me t re ” metre
, UDef ” second ” second
, UDef ” k i l o g r a m ” k i l o g r a m
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, UDef ” ampere ” ampere
, UDef ” c a n d e l a ” c a n d e l a
, UDef ” mole ” mole
−− Other S I u n i t s
, UDef ” r a d i a n ” r a d i a n
, UDef ” s t e r a d i a n ” s t e r a d i a n
, UDef ” h e r t z ” h e r t z
, UDef ” newton ” newton
, UDef ” p a s c a l ” p a s c a l
, UDef ” j o u l e ” j o u l e
, UDef ” w a t t ” w a t t
, UDef ” coulomb ” coulomb
, UDef ” v o l t ” v o l t
, UDef ” f a r a d ” f a r a d
, UDef ”ohm” ohm
, UDef ” s i emens ” s i e m e n s
, UDef ” weber ” weber
, UDef ” t e s l a ” t e s l a
, UDef ” henry ” henry
, UDef ” c e l s i u s ” c e l s i u s
, UDef ” lumen ” lumen
, UDef ” l u x ” l u x
, UDef ” b e c q u e r e l ” b e c q u e r e l
, UDef ” g ray ” gray
, UDef ” s i e v e r t ” s i e v e r t
, UDef ” k a t a l ” k a t a l
, UDef ” gram ” gram
, UDef ” l i t r e ” l i t r e
]

s t a n d a r d d i c t i o n a r y a l i a s e s
= [ ( ” me te r ” , ” me t re ” ) , ( ” l i t e r ” , ” l i t r e ” ) ]

s t a n d a r d u n i t s : : Uni t sEnv
s t a n d a r d u n i t s = f o l d r a d d a l i a s i n i t i a l e n v s t a n d a r d d i c t i o n a r y a l i a s e s

where i n i t i a l e n v = f o l d r a d d u d e f e m p t y e n v s t a n d a r d d i c t i o n a r y l i s t
a d d u d e f : : UDef → Uni t sEnv → Uni t sEnv
a d d u d e f ( UDef name u ) env = d e f i n e env name u
a d d a l i a s : : ( UName , UName ) → Uni t sEnv → Uni t sEnv
a d d a l i a s ( new name , e x i s t i n g n a m e ) env

= d e f i n e env new name ( f i n d env e x i s t i n g n a m e )

−− P a r a m e t e r i s e d m e r g e s o r t
−− Takes i n a compar i son f u n c t i o n
m e r g e s o r t : : ( a → a → Bool ) → [ a ] → [ a ]
m e r g e s o r t pred [ ] = [ ]
m e r g e s o r t pred [ x ] = [ x ]
m e r g e s o r t pred x x s = merge ( m e r g e s o r t pred xs1 ) ( m e r g e s o r t pred xs2 )

where
( xs1 , xs2 ) = s p l i t x x s
s p l i t xs = s p l i t r e c xs x s [ ]
s p l i t r e c [ ] ys z s = ( r e v e r s e zs , ys )
s p l i t r e c [ x ] ys z s = ( r e v e r s e zs , ys )
s p l i t r e c ( x1 : x2 : xs ) ( y : ys ) z s = s p l i t r e c xs y s ( y : z s )
merge xs [ ] = xs
merge [ ] ys = ys
merge ( x : xs ) ( y : ys ) =

case pred x y of
True → x : merge xs ( y : ys )
F a l s e → y : merge ( x : xs ) ys

−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− T e s t i n g
−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Some u s e f u l u n i t s
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l i t e r = f i n d s t a n d a r d u n i t s ” l i t e r ”
meter = f i n d s t a n d a r d u n i t s ” me te r ”
f a h r e n h e i t = S i m p l e U n i t s ( 5 / 9 ) 0 c e l s i u s 32
kPa = ComplexUni t s [ Uni t 1 k i l o newton 1 , Uni t 1 0 metre (−2)]

−− The t e s t s t o run
t e s t s = [ ( expand ( ComplexUni t s [ Uni t 10 0 second 2 , Uni t 2 0 gram ( −1) ] )

== ComplexUni t s [ Uni t 1 0 . 0 0 . 0 ( B a s e U n i t s ” second ” ) 2 . 0 ,
Uni t 2000 .0 0 . 0 ( B a s e U n i t s ” k i l o g r a m ” ) ( −1 .0 ) ]

) ,
( expand f a h r e n h e i t

== S i m p l e U n i t s ( 5 / 9 ) 0 . 0 ( B a s e U n i t s ” k e l v i n ” ) (32 − 273 .15 * ( 9 / 5 ) )
) ,
( o t i m e s ( ComplexUni t s [ Uni t 1 0 coulomb 1 , Uni t 1 0 v o l t ( −1) ] )

( ComplexUni t s [ Uni t 1 0 v o l t 1 ] )
== ComplexUni t s [ Uni t 1 0 coulomb 1]

) ,
s i m p l i f y r a d i a n == d i m e n s i o n l e s s ,
d i m e q u i v l i t e r ( ComplexUni t s [ Uni t 1 0 metre 3 ] ) ,
( o t i m e s k i l o g r a m ( expand ( ComplexUni t s [ Uni t 1 0 gram ( −1 ) ] ) )

== ComplexUni t s [ Uni t 1000 .0 0 . 0 ( B a s e U n i t s ” d i m e n s i o n l e s s ” ) 1 . 0 ]
) ,
( expand ( ComplexUni t s [ Uni t 1 1 l i t r e 2 ] )

== ComplexUni t s [ Uni t ( ( mfac 1000 (−2) 3)**2 * mfac 1 1 2) 0 meter 6 . 0 ]
) ,
( expand ( ComplexUni t s [ Uni t 1 1 l i t r e 2 ] )

== ComplexUni t s [ Uni t 1e−4 0 meter 6 . 0 ]
) ,
o t i m e s ( ComplexUni t s [ Uni t 1 0 meter ( −1) ] ) metre == d i m e n s i o n l e s s ,
( s i m p l i f y ( expand ( ComplexUni t s

[ Uni t 1 k i l o ( ComplexUni t s [ Uni t 1 0 metre 1 ,
Uni t 1 0 k i l o g r a m 1 ,
Uni t 1 0 second ( −2) ] ) 1 ,

Uni t 1 0 metre ( −2 ) ] ) )
== s i m p l i f y ( expand ( ComplexUni t s

[ Uni t 1 k i l o ( ComplexUni t s [ Uni t 1 0 k i l o g r a m 1 ,
Uni t 1 0 metre 1 ,
Uni t 1 0 second ( −2) ] ) 1 ,

Uni t 1 0 metre ( −2 ) ] ) )
) ,
( s i m p l i f y ( ComplexUni t s [ Uni t 1 c e n t i me t re 2 , Uni t 10 0 metre 1 ] )

== ComplexUni t s [ Uni t 0 .001 0 metre 3]
) ,
( o t i m e s ( ComplexUni t s [ Uni t 1 c e n t i me te r 2 , Uni t 1 0 k i l o g r a m 1 ] )

( ComplexUni t s [ Uni t 10 0 metre ( −1) ] )
== ComplexUni t s [ Uni t 1 0 k i l o g r a m 1 , Uni t 0 .001 0 metre 1]

)
]

r u n t e s t s = ( and t e s t s , t e s t s )
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Haskell Partial Evaluator for CellML

module PE where

import CellML
import Env i ronmen t
import U n i t s
import q u a l i f i e d Data . S e t as S e t
import Maybe

−− H a s k e l l i m p l e m e n t a t i o n o f t h e P a r t i a l E v a l u a t i o n o f CellML .

−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− B i n d i n g t i m e a n a l y s i s
−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− T h i s i s a p a r t i a l l y −o n l i n e a n a l y s i s , r e l y i n g on t h e dependency graph
−− ha v i ng no c y c l e s .

−− A d a t a t y p e f o r b i n d i n g t i m e s . The d e r i v e d o r d e r i n g g i v e s us
−− S t a t i c < Dynamic .
data Bind ingT ime = S t a t i c | Dynamic

d e r i v i n g ( Eq , Show , Ord )

−− P a r t i t i o n an e n v i r o n m e n t i n t o s t a t i c and dynamic p o r t i o n s .
p a r t i t i o n : : Env → ( Env , Env )
p a r t i t i o n env = f o l d r f ( empty env , e m p t y e n v ) ( names env )

where
f : : EnvKey → ( Env , Env ) → ( Env , Env )
f k ( envs , envd ) =

case b t of
S t a t i c → ( d e f i n e envs k v , envd )
Dynamic → ( envs , d e f i n e envd k v )

where
v = f i n d env k
b t = b t a k e y env k

−− Compute t h e b i n d i n g t i m e o f an e x p r e s s i o n .
−− T h i s i m p l e m e n t a t i o n i s i n e f f i c i e n t , s i n c e we do n o t a n n o t a t e e x p r e s s i o n
−− t r e e s w i t h a b i n d i n g t i m e t o a v o i d r e c o m p u t a t i o n . T e r m i n a t i o n i s o n l y
−− g u a r a n t e e d i f t h e dependency graph has no c y c l e s .
−− We r e q u i r e an e n v i r o n m e n t d e s c r i b i n g t h e whole CellML model , as w e l l as t h e
−− e x p r e s s i o n t o be a n a l y s e d .
b t a : : Env → MathTree → Bind ingT ime
b t a env (Num ) = S t a t i c −− c o n s t a n t s are a lways s t a t i c
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b t a env ( Bool ) = S t a t i c −− c o n s t a n t s are a lways s t a t i c
b t a env ( V a r i a b l e v ) −− l o o k up t h e d e f i n i t i o n o f t h e v a r i a b l e and a n a l y s e t h a t

= b t a k e y env ( Var v )
b t a env ( D i f f v1 v2 ) −− a n a l y s e t h e ODE d e f i n i t i o n

= b t a k e y env ( Ode v1 v2 )
b t a env ( Apply o p e r a t o r operands )

= b t a a p p l y env o p e r a t o r operands −− s e e below
b t a env ( P i e c e w i s e c a s e s Nothing )

= b t a p i e c e w i s e env c a s e s −− s e e below

−− Compute t h e b i n d i n g t i m e o f w h a t e v e r i s bound t o t h e g i v e n key i n
−− t h e g i v e n e n v i r o n m e n t .
b t a k e y : : Env → EnvKey → Bind ingT ime
b t a k e y env ( Var ” ” ) = S t a t i c −− a r b i t r a r y c h o i c e
b t a k e y env key

= case m a y b e f i n d d y n e n v key of
Jus t → Dynamic −− s t a t e or f r e e v a r i a b l e , or u s e r a n n o t a t e d
Nothing → case f i n d env key of

Expr t → b t a env t −− a n a l y s e t h e d e f i n i n g e x p r e s s i o n
Val → S t a t i c −− c o n s t a n t s are s t a t i c

where ( I n t e r n a l D a t a ( , , d y n e n v ) ) = f i n d env ( Var ” ” )

−− The b i n d i n g t i m e o f an o p e r a t o r a p p l i c a t i o n i s s p e c i a l−cased f o r
−− some o p e r a t o r s .
b t a a p p l y : : Env → Opera tor → [ MathTree ] → Bind ingT ime
b t a a p p l y env And operands −− s h o r t−c i r c u i t i f s t a t i c operand i s F a l s e

= b t a s h o r t c i r c u i t env ( not . g e t b o o l ) operands
b t a a p p l y env Or operands −− s h o r t−c i r c u i t i f s t a t i c operand i s True

= b t a s h o r t c i r c u i t env g e t b o o l operands
b t a a p p l y env operands −− g e n e r a l case : maximum o f operand b i n d i n g t i m e s

= maximum (map ( b t a env ) operands )

−− S h o r t c i r c u i t b i n d i n g t i m e a n a l y s i s i f a s t a t i c operand s a t i s f i e s t h e
−− g i v e n p r e d i c a t e .
b t a s h o r t c i r c u i t : : Env → ( Value → Bool ) → [ MathTree ] → Bind ingT ime
b t a s h o r t c i r c u i t env pred ( t : t s )

= i f b t a env t == S t a t i c
then i f pred ( e v a l env t ) then S t a t i c

e l s e b t a s h o r t c i r c u i t env pred t s
e l s e Dynamic

b t a s h o r t c i r c u i t env pred [ ] = S t a t i c

−− In g e n e r a l we t a k e t h e maximum o f c h i l d b i n d i n g t i m e s , b u t t h e r e i s some
−− s h o r t−c i r c u i t i n g and e v a l u a t i o n o f s t a t i c c o n d i t i o n s .
b t a p i e c e w i s e : : Env → [ Case ] → Bind ingT ime
b t a p i e c e w i s e env ( Case cond r e s : cs )

= i f b t a env cond == S t a t i c
then i f g e t b o o l ( e v a l env cond ) then b t a env r e s

e l s e b t a p i e c e w i s e env cs
e l s e Dynamic

b t a p i e c e w i s e env [ ] = S t a t i c

−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− P a r t i a l e v a l u a t i o n
−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− P a r t i a l e v a l u a t i o n o f a model s i m p l y r e d u c e s each ODE.
−− The p r o v i d e d e n v i r o n m e n t c o n t a i n s e n t r i e s f o r each dynamic v a r i a b l e .
r e d u c e c e l l m l : : CellML → Env → Env
r e d u c e c e l l m l model d y n e n v

= r e d u c e e n v mode l env d e r i v s d y n e n v
where ( d e r i v s , mode l env ) = l o a d c e l l m l model d y n e n v

r e d u c e a n d r u n c e l l m l : : CellML → Env → Env
r e d u c e a n d r u n c e l l m l model d y n e n v

= r u n e n v r e d u c e d m o d e l d e r i v s
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where ( d e r i v s , mode l env ) = l o a d c e l l m l model d y n e n v
r e d u c e d m o d e l = r e d u c e e n v mode l env d e r i v s d y n e n v

−− P a r t i a l e v a l u a t i o n o f a CellML e n v i r o n m e n t .
r e d u c e e n v : : Env → [ EnvKey ] → Env → Env
r e d u c e e n v mode l env d e r i v s d y n e n v

= ( m o v e c o m p o n e n t u n i t s . d e f i n e p e u n i t s )
( r e c r e d u c e d e r i v s mode l env )

where i d a t a = f i n d mode l env ( Var ” ” )
r e d u c e d e r i v s env

= f o l d r ( r e d u c e d e r i v env ) i n i t e n v d e r i v s
i n i t e n v = f i l t e r e n v r e a l v a l u e d y n e n v

where r e a l v a l u e ( Val DynamicMarker ) = F a l s e
r e a l v a l u e = True

r e c r e d u c e d e r i v s env
= i f h a s i n s t a n t i a b l e k e y new env

then r e c r e d u c e d e r i v s new env
e l s e new env

where new env = d e f i n e
( head ( dropWhile h a s u n d e f i n e d v a r

( i t e r a t e ( a d d r e d u c e d d e f i n i t i o n s env )
( r e d u c e d e r i v s env ) ) ) )

( Var ” ” ) i d a t a
−− Reduce t h e RHS o f a s i n g l e ODE
r e d u c e d e r i v : : Env → EnvKey → Env → Env
r e d u c e d e r i v menv d env = d e f i n e env d ( r e d u c e k e y menv d )

−− Reduce t h e d e f i n i t i o n o f an EnvKey
r e d u c e k e y : : Env → EnvKey → EnvValue
r e d u c e k e y env k

= r e d u c e v a l env ( f i n d env k )

r e d u c e v a l : : Env → EnvValue → EnvValue
r e d u c e v a l env ( Expr t ) = Expr ( r ed uc e env t )
r e d u c e v a l env v a l u e = v a l u e

−− The main workhorse o f t h e p a r t i a l e v a l u a t o r :
−− Reduce an e x p r e s s i o n t o a s i m p l e r form by e v a l u a t i n g s t a t i c p o r t i o n s
−− w i t h i n t h e g i v e n e n v i r o n m e n t .
r ed uc e : : Env → MathTree → MathTree
r ed uc e env expr

= case b t a env expr of
S t a t i c → l e t ( , e ) = e v a l t o e x p r expr in e
Dynamic → reduce ' expr

where
−− E v a l u a t e an e x p r e s s i o n t o g e t a c o n s t a n t e x p r e s s i o n
e v a l t o e x p r : : MathTree → ( Value , MathTree )
e v a l t o e x p r e

= l e t v = e v a l envs expr in
( v , case v of

Number n → Num n ( Right ( e v a l u n i t s i n env expr ) )
Boolean b → Bool b

)

( envs , envd ) = p a r t i t i o n env

−− Reduce an e x p r e s s i o n known t o be dynamic .
reduce ' ( V a r i a b l e var )

= r e d u c e l o o k u p ( Var var ) ( V a r i a b l e var )
reduce ' ( D i f f v1 v2 )

= r e d u c e l o o k u p ( Ode v1 v2 ) ( D i f f v1 v2 )
reduce ' ( P i e c e w i s e c a s e s Nothing ) −− s h o r t−c i r c u i t s t a t i c c o n d i t i o n s

= f c a s e s
where −− expr Dyn ⇒ a t l e a s t 1 cond != S t a t i c F a l s e

f a l lcs@ ( Case cond r e s : cs )
= i f b t a env cond == S t a t i c
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then case e v a l envs cond of
Boolean True → r ed uc e env r e s
Boolean F a l s e → f c s

e l s e P i e c e w i s e (map ( r c a s e env ) a l l c s ) Nothing
r c a s e env ( Case cond r e s ) = Case cond ' res '

where cond ' = r ed uc e env cond
res ' = r ed uc e env r e s

reduce ' ( Apply And operands ) −− s h o r t−c i r c u i t i f s t a t i c operand i s F a l s e
= s h o r t c i r c u i t And ( not . g e t b o o l ) operands

reduce ' ( Apply Or operands ) −− s h o r t−c i r c u i t i f s t a t i c operand i s True
= s h o r t c i r c u i t Or g e t b o o l operands

reduce ' ( Apply D i v i d e [ n , d ] ) −− c o n v e r t d i v i d e−by−s t a t i c t o t i m e s
= i f b t a env d == S t a t i c

then r ed uc e env ( Apply Times [ n , Apply D i v i d e [ one , d ] ] )
e l s e Apply D i v i d e ( r e d u c e l i s t [ n , d ] )

where one = Num 1 ( Lef t ( f u l l i d e n t ” . model ” ” d i m e n s i o n l e s s ” ) )
reduce ' ( Apply op operands ) −− r ed uc e operands

= Apply op ( r e d u c e l i s t operands )

s h o r t c i r c u i t : : Opera tor → ( Value → Bool ) → [ MathTree ] → MathTree
s h o r t c i r c u i t op pred ( t : t s )

= i f b t a env t == S t a t i c
then i f pred v a l then e −− n e v e r happens as expr i s dynamic

e l s e s h o r t c i r c u i t op pred t s
e l s e Apply op ( r e d u c e l i s t ( t : t s ) )

where ( va l , e ) = e v a l t o e x p r t

−− Reduce a l i s t o f e x p r e s s i o n s
r e d u c e l i s t : : [ MathTree ] → [ MathTree ]
r e d u c e l i s t e x p r s = map ( r ed uc e env ) e x p r s

−− Reduce an e n v i r o n m e n t lo oku p ( var /ODE)
r e d u c e l o o k u p key k e y a s e x p r

= i f m a y i n s t a n t i a t e k e y env key
then r ed uc e env e −− i n s t a n t i a t e reduced d e f i n i t i o n
e l s e k e y a s e x p r −− r e t a i n l oo ku p

where Expr e = f i n d envd key
−− I t must be d e f i n e d by an Expr s i n c e o / w i t would be s t a t i c

−− Determine whe ther we s h o u l d i n s t a n t i a t e t h e d e f i n i t i o n o f t h e g i v e n key .
−− We s h o u l d i f
−− ( 1 ) i t i s n o t e x p l i c i t l y marked dynamic ; and
−− ( 2 ) i t i s d e f i n e d by an e x p r e s i o n ; and
−− (3 a ) i t i s o n l y used once , or
−− (3 b ) i t i s j u s t an a l i a s f o r a n o t h e r key .
−− C o n d i t i o n ( 2 ) i s a lways t r u e f o r dynamic k e y s ( so c o u l d be o m i t t e d ) .
m a y i n s t a n t i a t e k e y : : Env → EnvKey → Bool
m a y i n s t a n t i a t e k e y env key

= not a n n o t a t e d && i s e x p r && ( u s e d o n c e | | a l i a s )
where

I n t e r n a l D a t a ( , , d y n e n v ) = f i n d env ( Var ” ” )
a n n o t a t e d = i s J u s t ( m a y b e f i n d d y n e n v key )
u s e d o n c e = c h e c k u s a g e env key == 1
d e f n = f i n d env key
i s e x p r = case d e f n of

Expr → True
→ F a l s e

a l i a s = case d e f n of
Expr ( V a r i a b l e ) → True
Expr ( D i f f ) → True

→ F a l s e

−− −−−−−−−−−−−−−−−−−−−−−−−−−
−− Check ing v a r i a b l e usage
−− −−−−−−−−−−−−−−−−−−−−−−−−−
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−− Env i ronmen t t r a c k i n g v a r i a b l e usage c o u n t s . Counts s i m p l e usage and
−− ODE usage s e p a r a t e l y .
type UsageCounts = Env i ronmen t EnvKey I n t

−− Find how o f t e n a v a r i a b l e has been used . R e t u r n s 0 i f no c o u n t i s found .
c h e c k u s a g e : : Env → EnvKey → I n t
c h e c k u s a g e env key

= case m a y b e f i n d c o u n t s key of
Jus t n → n
Nothing → 0

where c o u n t s = v a r i a b l e u s a g e env

−− Count v a r i a b l e usage i n a whole model .
v a r i a b l e u s a g e : : Env → UsageCounts
v a r i a b l e u s a g e env

= f o l d r e x p r v a r u s a g e e m p t y e n v env

−− Count v a r i a b l e usage i n an e x p r e s s i o n .
v a r u s a g e : : MathTree → UsageCounts → UsageCounts
v a r u s a g e ( V a r i a b l e v ) env

= i n c r c o u n t env ( Var v )
v a r u s a g e ( D i f f v1 v2 ) env

= i n c r c o u n t env ( Ode v1 v2 )
v a r u s a g e ( Apply operands ) env

= f o l d r v a r u s a g e env operands
v a r u s a g e ( P i e c e w i s e c a s e s Nothing ) env

= f o l d r c a s e u s a g e env c a s e s
where c a s e u s a g e ( Case cond r e s ) env

= v a r u s a g e cond ( v a r u s a g e r e s env )
v a r u s a g e env = env

i n c r c o u n t : : UsageCounts → EnvKey → UsageCounts
i n c r c o u n t env k

= case m a y b e f i n d env k of
Jus t c o u n t → d e f i n e env k ( c o u n t + 1)
Nothing → d e f i n e env k 1

−− −−−−−−−−−−−−−−−−−−−−−−−−−
−− U t i l i t y f u n c t i o n s f o r
−− a v o i d i n g code d u p l i c a t i o n
−− −−−−−−−−−−−−−−−−−−−−−−−−−

−− Check i f any key lo ok up i n t h e model i s p e r m i t t e d t o be
−− i n s t a n t i a t e d by r ed uc e .
h a s i n s t a n t i a b l e k e y : : Env → Bool
h a s i n s t a n t i a b l e k e y env

= f o l d r ( | | ) F a l s e (map ( m a y i n s t a n t i a t e k e y env ) ( l o o k u p s env ) )

−− Check i f a v a r i a b l e /ODE i s l o o k e d up b u t n o t d e f i n e d
h a s u n d e f i n e d v a r : : Env → Bool
h a s u n d e f i n e d v a r env

= not ( u s e d s e t ` S e t . i s S u b s e t O f ` d e f s e t )
where d e f s e t = S e t . f r o m L i s t ( names env )

u s e d s e t = S e t . f r o m L i s t ( l o o k u p s env )

−− Copy d e f i n i t i o n s used by t h e second Env b u t o n l y p r o v i d e d i n t h e
−− f i r s t t o t h e second , r e d u c i n g them i n t h e p r o c e s s
a d d r e d u c e d d e f i n i t i o n s : : Env → Env → Env
a d d r e d u c e d d e f i n i t i o n s f r o m e n v t o e n v

= f o l d r a d d d e f t o e n v ( S e t . t o L i s t ( S e t . d i f f e r e n c e u s e d s e t d e f s e t ) )
where d e f s e t = S e t . f r o m L i s t ( names t o e n v )

u s e d s e t = S e t . f r o m L i s t ( l o o k u p s t o e n v )
a d d d e f key env = d e f i n e env key ( r e d u c e k e y f r o m e n v key )

−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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−− Adding a p p r o p r i a t e u n i t s t o t h e reduced model
−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Add a l l anonymous u n i t s t o t h e env i ronmen t , and change r e f e r e n c e s
−− t o l o o k them up .
d e f i n e p e u n i t s : : Env → Env
d e f i n e p e u n i t s env

= f o l d r e x p r k e y f env env
where

f : : MathTree → EnvKey → Env → Env
f expr key env ' = d e f i n e env ' ' ( Var ” ” ) i d a t a '

where
( I n t e r n a l D a t a ( vuenv , uenvs , d y n e n v ) ) = f i n d env ' ( Var ” ” )
i d a t a ' = I n t e r n a l D a t a ( vuenv , uenvs ' , d y n e n v )
env ' ' = d e f i n e env ' key ( Expr expr ' )
( uenvs ' , expr ' ) = d e f u n i t s e x p r uenvs expr

−− P r o c e s s an e x p r e s s i o n t r e e , add ing anonymous u n i t s t o t h e u n i t s
−− env i ronmen t , chang ing r e f e r e n c e s t o l o o k them up .
d e f u n i t s e x p r : : U n i t s E n v s → MathTree → ( Uni t sEnvs , MathTree )
d e f u n i t s e x p r uenvs (Num x u r e f )

= case u r e f of
Le f t uname → ( uenvs , Num x u r e f )
Right u n i t s → ( uenvs ' , Num x ( Lef t uname ' ) )

where
( uname ' , uenvs ' ) = d e f i n e u n i t s uenvs u n i t s

d e f u n i t s e x p r uenvs ( Apply op operands )
= ( uenvs ' , Apply op operands ' )
where ( uenvs ' , operands ' ) = m a p f o l d r d e f u n i t s e x p r uenvs operands

d e f u n i t s e x p r uenvs ( P i e c e w i s e c a s e s Nothing )
= ( uenvs ' , P i e c e w i s e cases ' Nothing )
where ( uenvs ' , t s ) = m a p f o l d r d e f u n i t s e x p r uenvs ( c a s e s 2 l i s t c a s e s )

cases ' = l i s t 2 c a s e s t s
d e f u n i t s e x p r uenvs l e a f = ( uenvs , l e a f )

−− Add u n i t s t o t h e env i ronmen t , i f t h e r e are n o t a l r e a d y t h e r e .
−− R e t u r n s t h e name bound t o t h e s e u n i t s , and t h e new e n v i r o n m e n t .
−− I f n o t a l r e a d y d e f i n e d , u n i t s w i l l be d e f i n e d i n t h e ' model ' p o r t i o n
−− o f t h e e n v i r o n m e n t .
d e f i n e u n i t s : : U n i t s E n v s → U n i t s → ( UName , U n i t s E n v s )
d e f i n e u n i t s uenvs u n i t s

= case u n i t s d e f i n e d uenvs u n i t s of
Jus t uname → ( uname , uenvs )
Nothing → ( uniq uname ,

d e f i n e uenvs ” . model ”
( d e f i n e menv uniq uname u n i t s ) )

where menv = m o d e l u n i t s uenvs
uniq uname = u n i q k e y menv

−− Are t h e g i v e n u n i t s a l r e a d y d e f i n e d ?
u n i t s d e f i n e d : : U n i t s E n v s → U n i t s → Maybe UName
u n i t s d e f i n e d uenvs u n i t s

= f o l d r ud ' Nothing (map ( f i n d uenvs ) ( names uenvs ) )
where

ud ' : : Uni t sEnv → Maybe UName → Maybe UName
ud ' uenv r e s t = f o l d r ( ud ' ' uenv ) r e s t ( names uenv )
ud ' ' : : Uni t sEnv → UName → Maybe UName → Maybe UName
ud ' ' uenv uname r e s t

= i f f i n d uenv uname == u n i t s then Jus t uname
e l s e r e s t

−− A l i t t l e t y p e used i n m o v e c o m p o n e n t u n i t s
type RenameEnv = Env i ronmen t UName UName
−− Move any component−l e v e l u n i t s d e f i n i t i o n s i n t o t h e model−l e v e l
−− e n v i r o n m e n t .
m o v e c o m p o n e n t u n i t s : : Env → Env
m o v e c o m p o n e n t u n i t s env
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= m o d i f y e x p r s ( m o d i f y l e a v e s r e n a m e u r e f s ) env '
where

I n t e r n a l D a t a ( vuenv , uenvs , d y n e n v ) = f i n d env ( Var ” ” )
i d a t a ' = I n t e r n a l D a t a ( vuenv , new uenvs , d y n e n v )
env ' = d e f i n e env ( Var ” ” ) i d a t a '
new uenvs = d e f i n e s t a n d a r d u e n v s ” . model ” new mode l env
( new model env , renamed )

= f o l d r e n v do comp ( m o d e l u n i t s uenvs , e m p t y e n v ) uenvs

r e n a m e u r e f s : : MathTree → MathTree
r e n a m e u r e f s (Num n ( Lef t uname ) )

= case m a y b e f i n d renamed uname of
Jus t new name → Num n ( Lef t new name )
Nothing → Num n ( Lef t uname )

r e n a m e u r e f s l e a f = l e a f

do comp : : I d e n t → Uni t sEnv → ( UnitsEnv , RenameEnv )
→ ( UnitsEnv , RenameEnv )

do comp cname c u e n v ( uenv , renames )
= i f head cname == ' . '

then ( uenv , renames )
e l s e f o l d r e n v ( d o u d e f cname ) ( uenv , renames ) c u e n v

d o u d e f : : I d e n t → UName → U n i t s → ( UnitsEnv , RenameEnv )
→ ( UnitsEnv , RenameEnv )

d o u d e f cname uname u n i t s ( uenv , renames )
= i f new name == f u l l n a m e

then ( new env , renames )
e l s e ( new env , d e f i n e renames f u l l n a m e new name )

where f u l l n a m e = f u l l i d e n t cname uname
new name = ( head . dropWhile used )

( i t e r a t e (++ ” ” ) f u l l n a m e )
used name = i s J u s t ( m a y b e f i n d uenv name )
new env = d e f i n e uenv new name u n i t s

−− Find a u n i que key , unused i n t h e g i v e n e n v i r o n m e n t
u n i q k e y : : Uni t sEnv → UName
u n i q k e y uenv

= head ( dropWhile used (map num2uname [ 0 . . ] ) )
where n a m e s s e t = S e t . f r o m L i s t ( names uenv )

num2uname n = ” ” ++ show n
used n = S e t . member n n a m e s s e t

−− Combined map and ( r i g h t ) f o l d .
m a p f o l d r : : ( b → a → ( b , a ) ) → b → [ a ] → ( b , [ a ] )
m a p f o l d r f i n i t [ ] = ( i n i t , [ ] )
m a p f o l d r f i n i t ( x : xs ) = ( acc , ( x ' : xs ' ) )

where ( acc , x ' ) = f r e s t x
( r e s t , xs ' ) = ( m a p f o l d r f i n i t xs )
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