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Motivation

e Quantum observables may be incompatible:

position/momentum, polarisation, spin ...

e In traditional quantum logic approaches these observables are

simply incomparable in the lattice.

e However if one wants to compute with quantum mechanics we

need know how these observables relate to each other.



No Cloning? No Deleting?

Quanutm physics doesn’t like copying or deleting:

Concrete version: There are no quantum operations which can
copy or erase non-orthogonal quantum states. [Wooters and Zurek,
1982; Pati and Braunstein, 2000)]

Abstract Version: If a {-compact category C has natural

transformations

then C(A, A) =2 C(I,I). [Abramsky, 2005].



Classical Objects

Classical Objects were introduced by Coecke and Pavlovic to
axiomatise exactly what is means to be clonable and deletable —

these properties are taken to be the definition of classicality.

In a f-category C, a triple (A, d,€) is called a classical object if :
e 0:A—- AR Aand e: A — I form a cocommutative comonoid;
e )1:A®A— Aand € : I — A form a commutative monoid;

e they jointly satisfy the special frobenius condition.



Classical Objects

Represent maps constructed from 0 and € as graphs built up from:

0= ET of = eTi



Algebraic Laws

Comonoid laws:

(And their duals, the monoid laws)




Special Frobenius laws:

Algebraic Laws




Spider Theorem

Theorem 1. Any map constructed by composing 6 and €, and their

adjoints, is uniquely determined by the number of inputs and outputs.

Therefore the graphical calculus for one classical object is rather

uninteresting.



Cloning

Consider the map:
0z :Q — Q®Q ::|i) — |i1)
0z is the cloning map for the basis |0) , |1).

Obviously 0z is cannot clone all states:

0z |+) = 02(|0) +[1)) = 100) + |11)

However, since quantum states are indistinguishable upto global
phase the vectors €@ |0) and e’ |1), are also cloned, when viewed as
quantum states; hence can view ¢ as fixing an observable i.e. an axis
of the Bloch sphere.






Deleting

Q: How to “erase” a quantum state [1)) known to be in some given

basis?

A: Use a measurement which gives no information about the existing

state — i.e measurement in a basis {b;} such that

i [ P)] = 1<b; [9)
= [i [ ar)| = [(b; [ ar)
= (b | ar)| = % (in finite dim.)

Hence the idea of Mutually Unbiased Bases arise very naturally from
the idea of deleting a classical value embedded in a quantum state

space.
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If we take the basis |0),|1) as the “classical” basis then the maps
€2 :Q —I::]0)+e*1)—1

give a uniform erasing of the Z-basis for every value of a.
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However if we compose €7 with dz:

0

(d®ReZ)ody=2_o = |
0 e

Hence we need o = 0 if (Q,dz,€z) to be a classical object. (Will
come back to this a bit later).

Thus, we have a classical structure:
e §z is the cloning map for the basis |0), [1).
e ¢y is the uniform deleting of this basis.

Together these maps describe how to embed classical data into the

quantum state space.
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Another Classical Structure

Can equally well use the X basis to define a classical structure:

+) = [
(5)(: ‘>'_>| > EXZ\/5‘0>l—>1

=)= ==)

These obey all the same algebraic laws as 0z, €.

5X: EXT 5:;,:
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Relating the X-Structure and the Z-Structure

These two structures enjoy a very special relationship:
¢ V20) = €;
o 526;( = d7|0) = |00) = e& ® e&;
¢ V2I+) =€}
o Sxel =Ox|+)=|++) =, @€,

Don’t read this: In fact, by choosing a different € one could have the same relationships between

any pair from X, Y, or Z bases.
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Bialgebraic Laws for Mutually Unbiased
Observables

Cloning Laws:

Yoll Yl
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Bialgebraic Laws for Mutually Unbiased

Observables

Bialgebra Law:
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Bialgebraic Laws for Mutually Unbiased
Observables

Dimension Law:

The pair of non-commuting observables fails to be a true bialgebra:
every equation has a (hidden) scalar factor. Call this structure a

scaled bialgebra.

18



Bialgebraic Laws for Mutually Unbiased
Observables

66-()

The pair of non-commuting observables fails to be a true bialgebra:

Dimension Law:

every equation has a (hidden) scalar factor. Call this structure a

scaled bialgebra.
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Scaled Bialgebra Laws




A Useful Lemma
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A Useful Lemma

N
.

23






A Useful Lemma
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A Useful Lemma

Therefore, the scaled bialgebra is in fact a scaled Hopf algebra, whose

antipode is the identity times the dimension of the underlying space.
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Temporality?

We have the following equation:
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Temporality?

Hence the following is well defined:

Unlike usual logic gate notation, both vertical and horizontal lines

have the same meaning.
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Representing Quantum Logic Gates (1)

(100 0)

e oo
00 0 1 79
\ 0 0 1 0
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Example: 3 x AX = swap
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Example: 3 x AX = swap

-
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Example: 3 x AX = swap
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Example: 3 x AX = swap

o
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The Hadamard Map

1 1
The Hadamard map H = = enjoys a number of useful

1 -1

S

properties:

o Self adjointness: H = H'; and unitarity: HH = id;

]

]

e The Hadamard exchanges the X and Z bases.

Hence:
5X:(H®H)52H ex — ez H
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Hadamard as a Mediating Map

We can define the red classical structure in terms of H and the green

\ /

structure:

H

We can immediately derive a law for changing the colour of dots by

introducing H boxes — in fact this gives a general “colour duality”.
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Representing Quantum Logic Gates (2)

(100 0 )

oo o |
001 0 P e
\0 00 -1/
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Example: ANZ o ANZ =id

ll
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Example: ANZ o ANZ =id
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Example: ANZ o ANZ =id
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Example: ANZ o ANZ =id
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Example: NZ o AZ =1id
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Example: AZ o AZ =1id
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Preparing a 1D-Cluster State

The cluster state can be prepared by applying a AZ operation
between pairs of qubits in the |+) state:

50



Preparing a 1D-Cluster State

Alternatively, the cluster state can be prepared by fusion of states of
the form |0+) + |1—). Recalling that 5TZ is the fusion operation, this
method of preparation can be represented as:
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Preparing a 1D-Cluster State

By the spider law, these are equivalent:
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Incorporating Phases

Let o € (0,27); consider the maps:
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Incorporating Phases

Za o Zﬁ = Za+5 =

)
Q Q®Q
Lo 7, ®id
Q QeQ

J
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Generalised Spider Law
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General unitary U

Proposition 2. If U is a unitary on C? there exist o, 3, such that
U=2,XgZ.

Here is (part of) a measurement based program to compute this:
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General unitary U

Sala




General unitary U
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General unitary U
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General unitary U

\
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General unitary U

= ZoXpZ,
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How do phases interact?

Za |0) = 10) Zo|1) =€ [1) = 1)
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How do phases interact?
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How do phases interact?
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“Negation”

(o 1) {0>H1>
X=X = ::
1 0 1) — |0)

0
Q Q&
X X®X
Q Q&

J
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“Negation”
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“Negation”

X 2 |0) 4 €™ [1) = ™ |1) 4 |0) = |0) + e "> |1)

® - @
@
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Representing Controlled Phase

0 oc/2$

(10 0

o100 |
00 1 0

\0 0 0 o) -2
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Example: Quantum Fourier Transform

Among the most important quantum algorithms, the quantum

fourier transform is a key stage of factoring.
Jogi - gn) = (10) + €270 [1))(|0) + €™ [1)) -+ (0) + €2 1))

where ag = 0.5k Jn = D1y J1/2"
For 2 qubits:

100) = (]0) + [1))([0) + [1)) 10) — (10) + €™ [1))(10) + [1))
01) = (|0) + €™/ [1))([0) + e [1)) |11} = (|0) + €7/ [1))(|0) + e |1))
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Example: Quantum Fourier Transform

70



Example: Quantum Fourier Transform
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Example: Quantum Fourier Transform
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Example: Quantum Fourier Transform
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Example: Quantum Fourier Transform
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Example: Quantum Fourier Transform
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Example: Quantum Fourier Transform

o—
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Example: Quantum Fourier Transform

‘7

7t/2

which is the correct result! YAY!
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Conclusions

e Pairs of incompatible observables form a Hopf algebra-like

structure.

e This structure captures a fundamental aspect of quantum

mechanics.

e The axioms are sufficiently strong to derive the properties of
quantum logic gates and prove the correctness of important

quantum algorithms.
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Ongoing Work
Relating the general theory of MUBs to the underlying classical
operations;
Graphical characterisations of multipartite entangled states;

Flow and GFlow?

Formal properties:

— Rewriting: Confluence? Termination?

— Mechanisation (in progress with Lucas Dixon)

— Induction principles for reasoning about graphical rewriting?

— Model-theoretic completeness?
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