On Functional Aggregate Queries with Additive Inequalities

fdbresearch.github.io

relational.ai

relational<u>A</u>

Carnegie Mellon University

Maximilian Schleich University of Oxford

Mahmoud Abo Khamis, relational<u>Al</u> Ryan R. Curtin, relational<u>Al</u> Benjamin Moseley, CMU Hung Q. Ngo, relational<u>Al</u> XuanLong Nguyen, University of Michigan Dan Olteanu, University of Oxford

ACM PODS

June, 2019

Given: Relations R, S of size O(N).

Task: Count number of tuples that satisfy

 $R(a,b) \wedge S(b,c) \wedge a \leq c$

Existing approaches take $O(N^2)$ time.

- 1. Join R and S
- 2. Count number of tuples that satisfy $a \le c$

• Our approach takes $O(N \log N)$ time.

R	а	b	S	b b	С
	1	1		1	1
	1	2		1	2
	2	1		2	0
	2	2		2	2
	3	2		2	3
	3	3		2	4

R and S are sorted

 $\text{Hypergraph}\ \mathcal{H}$

Given: Relations R, S of size O(N).

Task: Count number of tuples that satisfy

 $R(a,b) \wedge S(b,c) \wedge a \leq c$

- Existing approaches take $O(N^2)$ time.
 - 1. Join R and S
 - 2. Count number of tuples that satisfy $a \le c$

• Our approach takes $O(N \log N)$ time.

S R 2 2 2 0 2 3 2 2 2 3 2 2 3 2 3 3 2

 $\text{Hypergraph}\ \mathcal{H}$

Given: Relations R, S of size O(N).

Task: Count number of tuples that satisfy

 $R(a,b) \wedge S(b,c) \wedge a \leq c$

- Existing approaches take $O(N^2)$ time.
 - 1. Join R and S
 - 2. Count number of tuples that satisfy $a \le c$

• Our approach takes $O(N \log N)$ time.

 $\text{Hypergraph}\ \mathcal{H}$

Step 2: For each R(a, b), locate S(b, c) with $c \ge a$

Given: Relations R, S of size O(N).

Task: Count number of tuples that satisfy

 $R(a,b) \wedge S(b,c) \wedge a \leq c$

- Existing approaches take $O(N^2)$ time.
 - 1. Join R and S
 - 2. Count number of tuples that satisfy $a \le c$

• Our approach takes $O(N \log N)$ time.

 $\text{Hypergraph}\ \mathcal{H}$

Step 4: Return pre-aggregated count

Given: Relations R, S, T of size O(N).

Task: Count number of tuples that satisfy

 $R(a,b) \wedge S(b,c) \wedge T(c,d) \wedge a \leq d$

Existing approaches take $O(N^2)$ time.

• Our approach takes $O(N^{1.5} \log N)$ time.

 $\text{Hypergraph}\ \mathcal{H}$

Given: Relations R, S, T of size O(N).

Task: Count number of tuples that satisfy

 $R(a,b) \wedge S(b,c) \wedge T(c,d) \wedge a \leq d$

- Existing approaches take $O(N^2)$ time.
- Our approach takes $O(N^{1.5} \log N)$ time.

 $\text{Hypergraph}\ \mathcal{H}$

Like Example I

Given: Relations R, S, T of size O(N).

Task: Count number of tuples that satisfy

 $R(a,b) \wedge S(b,c) \wedge T(c,d) \wedge a \leq d$

- Existing approaches take $O(N^2)$ time.
- Our approach takes $O(N^{1.5} \log N)$ time.

 $\text{Hypergraph}\ \mathcal{H}$

Like Example I

Example III: Linear SVM over Databases

Task: Compute $J(\beta)$ over dataset **D** defined by query Q over database \mathcal{I} .

$$J(\beta) = \sum_{(\mathbf{x}, y) \in \mathbf{D}} \underbrace{\max\{0, 1 - y \cdot f_{\beta}(x)\}}_{\text{Hinge Loss}}$$
$$= \sum_{(\mathbf{x}, y) \in \mathbf{D}} \begin{cases} 1 & \text{if } y \cdot f_{\beta}(x) < 1\\ 0 & \text{otherwise} \end{cases}$$
$$= \underbrace{\sum_{(\mathbf{x}, y) \in \mathbf{D}} (1 - y \cdot f_{\beta}(x)) \cdot \mathbf{1}_{y \cdot f_{\beta}(x) \le 1}}_{\mathbf{U}(\mathbf{x}, y) \in \mathbf{D}}$$

Aggregate with inequality

Existing approaches:

- 1. materialize D
- 2. learn model in favorite ML tool

Our Approach:

1. avoid materialization of D

1

2. learn model using aggregates with inequalities

We can learn the SVM model in time sublinear in the size of D.

Relational Machine Learning over Databases

We can express range of models as aggregates with inequalities, including:

- Support Vector Machines (SVM)
- k-Means Clustering
- Robust Regression with Huber Loss
- Boolean Principle Component Analysis (PCA)
- Low Rank Matrix Factorization
- ... and several other models trained with Non-Polynomial Loss functions

Functional Aggregate Queries with Additive Inequalities

FAQ-Als encode:

- 1. Relations as factors $R_{\kappa} : \prod_{i \in \kappa} Dom(X_i) \to \mathbf{D}$
- 2. Additive Inequality E as Kronecker delta $\mathbf{1}_E$
- 3. Sum-Product Operations over Semiring

Examples for Sum-Product Semiring $(\mathbb{R}, +, \times)$:

$$Q() = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot \mathbf{1}_{a \le c}$$
(Example I)

$$Q() = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot \mathbf{1}_{a \le c} \cdot \mathbf{1}_{\frac{b}{2} \le c} \cdot \mathbf{1}_{a^2 + \frac{b}{2} + 5c \le 0}$$
(more Als)

$$Q(a,b) = \sum_{c} R(a,b) \cdot S(b,c) \cdot \mathbf{1}_{a \le c} \cdot \mathbf{1}_{\frac{b}{2} \le c} \cdot \mathbf{1}_{a^2 + \frac{b}{2} + 5c \le 0}$$
(with free variables)

Functional Aggregate Queries with Additive Inequalities

FAQ-Als encode:

- 1. Relations as factors $R_{\kappa} : \prod_{i \in \kappa} Dom(X_i) \to \mathbf{D}$
- 2. Additive Inequality E as Kronecker delta $\mathbf{1}_E$
- 3. Sum-Product Operations over Semiring

Examples for Sum-Product Semiring $(\mathbb{R}, +, \times)$:

$$\begin{aligned} Q() &= \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot \mathbf{1}_{a \leq c} \\ Q() &= \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot \mathbf{1}_{a \leq c} \cdot \mathbf{1}_{\frac{b}{2} \leq c} \cdot \mathbf{1}_{a^{2} + \frac{b}{2} + 5c \leq 0} \\ Q(a,b) &= \sum_{c} R(a,b) \cdot S(b,c) \cdot \mathbf{1}_{a \leq c} \cdot \mathbf{1}_{\frac{b}{2} \leq c} \cdot \mathbf{1}_{a^{2} + \frac{b}{2} + 5c \leq 0} \\ Change the semiring to get different aggregates: \\ Q(a,b) &= \bigvee_{c} R(a,b) \wedge S(b,c) \wedge \mathbf{1}_{a \leq c} \wedge \mathbf{1}_{\frac{b}{2} \leq c} \wedge \mathbf{1}_{a^{2} + \frac{b}{2} + 5c \leq 0} \\ Q(a,b) &= \bigcup_{c} R(a,b) \wedge S(b,c) \wedge \mathbf{1}_{a \leq c} \wedge \mathbf{1}_{\frac{b}{2} \leq c} \wedge \mathbf{1}_{a^{2} + \frac{b}{2} + 5c \leq 0} \\ Q(a,b) &= \max_{c} R(a,b) \cdot S(b,c) \cdot \mathbf{1}_{a \leq c} \cdot \mathbf{1}_{\frac{b}{2} \leq c} \cdot \mathbf{1}_{a^{2} + \frac{b}{2} + 5c \leq 0} \\ Q(a,b) &= \bigoplus_{c} R(a,b) \otimes S(b,c) \otimes \mathbf{1}_{a \leq c} \otimes \mathbf{1}_{\frac{b}{2} \leq c} \otimes \mathbf{1}_{a^{2} + \frac{b}{2} + 5c \leq 0} \\ Q(a,b) &= \bigoplus_{c} R(a,b) \otimes S(b,c) \otimes \mathbf{1}_{a \leq c} \otimes \mathbf{1}_{\frac{b}{2} \leq c} \otimes \mathbf{1}_{a^{2} + \frac{b}{2} + 5c \leq 0} \\ Q(a,b) &= \bigoplus_{c} R(a,b) \otimes S(b,c) \otimes \mathbf{1}_{a \leq c} \otimes \mathbf{1}_{\frac{b}{2} \leq c} \otimes \mathbf{1}_{a^{2} + \frac{b}{2} + 5c \leq 0} \\ Q(a,b) &= \bigoplus_{c} R(a,b) \otimes S(b,c) \otimes \mathbf{1}_{a \leq c} \otimes \mathbf{1}_{\frac{b}{2} \leq c} \otimes \mathbf{1}_{a^{2} + \frac{b}{2} + 5c \leq 0} \\ Q(a,b) &= \bigoplus_{c} R(a,b) \otimes S(b,c) \otimes \mathbf{1}_{a \leq c} \otimes \mathbf{1}_{\frac{b}{2} \leq c} \otimes \mathbf{1}_{a^{2} + \frac{b}{2} + 5c \leq 0} \\ Q(a,b) &= \bigoplus_{c} R(a,b) \otimes S(b,c) \otimes \mathbf{1}_{a \leq c} \otimes \mathbf{1}_{\frac{b}{2} \leq c} \otimes \mathbf{1}_{a^{2} + \frac{b}{2} + 5c \leq 0} \\ Q(a,b) &= \bigoplus_{c} R(a,b) \otimes S(b,c) \otimes \mathbf{1}_{a \leq c} \otimes \mathbf{1}_{\frac{b}{2} \leq c} \otimes \mathbf{1}_{a^{2} + \frac{b}{2} + 5c \leq 0} \\ Q(a,b) &= \bigoplus_{c} R(a,b) \otimes S(b,c) \otimes \mathbf{1}_{a \leq c} \otimes \mathbf{1}_{\frac{b}{2} \leq c} \otimes \mathbf{1}_{a^{2} + \frac{b}{2} + 5c \leq 0} \\ Q(a,b) &= \bigoplus_{c} R(a,b) \otimes S(b,c) \otimes \mathbf{1}_{a \leq c} \otimes \mathbf{1}_{\frac{b}{2} \leq c} \otimes \mathbf{1}_{a^{2} + \frac{b}{2} + 5c \leq 0} \\ Q(a,b) &= \bigoplus_{c} R(a,b) \otimes S(b,c) \otimes \mathbf{1}_{a \leq c} \otimes \mathbf{1}_{\frac{b}{2} \leq c} \otimes \mathbf{1}_{a^{2} + \frac{b}{2} + 5c \leq 0} \\ Q(a,b) &= \bigoplus_{c} R(a,b) \otimes S(b,c) \otimes \mathbf{1}_{a \leq c} \otimes \mathbf{1}_{a \geq c} \otimes \mathbf$$

Functional Aggregate Queries with Additive Inequalities

$$Q(\mathbf{x}_{F}) = \bigoplus_{\mathbf{x}_{\mathcal{V}\setminus F}} \left(\bigotimes_{K \in \mathcal{E}_{s}} R_{K}(\mathbf{x}_{K}) \right) \otimes \left(\bigotimes_{K \in \mathcal{E}_{\ell}} \mathbf{1}_{\sum_{\mathbf{v} \in K} \theta_{\mathbf{v}}^{K}(\mathbf{x}_{\mathbf{v}}) \leq \mathbf{0}} \right)$$

Query Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E} = \mathcal{E}_s \cup \mathcal{E}_{\ell})$

- Set of variables $\mathcal{V} = \{X_1, \ldots, X_n\}$
- Set of "skeleton" hyperedges *E*_s
 - Each hyperedge is defined by a factor $R_{\mathcal{K}}(\mathbf{x}_{\mathcal{K}})$
- Set of "ligament" hyperedges *E*_ℓ
 - Each hyperedge is defined by sum of univariate functions

For this talk:

Queries without free variables.

The paper:

Generalizes all results via notion of FAQ-width.

Generalized Hypertree Decompositions

Generalized Hypertree Decomposition (TD) for $\mathcal{H} = (\mathcal{V}, \mathcal{E})$:

- Tree T = (V(T), E(T))
- Bag $\chi(t) \subseteq \mathcal{V}$ for each tree-node $t \in V(\mathcal{T})$

A TD must satisfy:

- 1. Running intersection property
- 2. Containment property
 - every hyperedge in \mathcal{E} is covered by some bag $\chi(t)$.

 $\text{Hypergraph}\ \mathcal{H}$

TD for ${\mathcal H}$

State-of-the-art for evaluating FAQs and FAQ-Als

We can do better for FAQ-AI! Using Relaxed Tree Decompositions.

Relaxed Tree Decompositions

Containment for Tree Decompositions:

1. every hyperedge is covered by some bag

Containment for Relaxed Tree Decompositions:

- 1. every 'skeleton' hyperedge is covered by some bag
- 2. every 'ligament' hyperedge is covered by two adjacent bags

Relaxed Tree Decompositions

Containment for Tree Decompositions:

1. every hyperedge is covered by some bag

Containment for Relaxed Tree Decompositions:

- 1. every 'skeleton' hyperedge is covered by some bag
- 2. every 'ligament' hyperedge is covered by two adjacent bags

Evaluation of ligament hyperedges over two adjacent bags based on

Chazelle's geometric data structure (GDS)

Width Measures for FAQs and FAQ-AIs

Width Measures for FAQs and FAQ-AIs

GDS = Chazelle's geometric data structure

= new result

#PANDA: A PANDA Variant for Arbitrary Semirings

PANDA decomposes the query into several sub-queries

Based on information theoretic inequalities

Each sub-query is:

- Computed over partitions of factors corresponding to skeleton hyperedges
- Defined by a different tree decomposition

Challenge: The results of sub-queries may overlap

- Boolean semiring: OK (✓)
- Arbitrary semiring: Not OK (X)

#PANDA ensures that the results of sub-queries are disjoint

- Allows for aggregate computation with Arbitrary Semirings
- Recall Example II

Width Measures for FAQs and FAQ-AIs

Appendix

Width Measures for FAQs and FAQ-AIs + free variables

GDS = Chazelle's geometric data structure

= new result

What are we hiding?

