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Example I
Given: Relations R,S of size O(N).

Task: Count number of tuples that satisfy

R(a, b) ∧ S(b, c) ∧ a ≤ c

Existing approaches take O(N2) time.
1. Join R and S
2. Count number of tuples that satisfy a ≤ c

Our approach takes O(N logN) time.

a b
1 1
1 2
2 1
2 2
3 2
3 3

R b c
1 1
1 2
2 0
2 2
2 3
2 4

S

R and S are sorted
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Example I
Given: Relations R,S of size O(N).

Task: Count number of tuples that satisfy

R(a, b) ∧ S(b, c) ∧ a ≤ c

Existing approaches take O(N2) time.
1. Join R and S
2. Count number of tuples that satisfy a ≤ c

Our approach takes O(N logN) time.

a b
1 1
1 2
2 1
2 2
3 2
3 3

R b c #
1 1 2
1 2 1
2 0 4
2 2 3
2 3 2
2 4 1

S

Step 1: Pre-aggregate S

2 / 17

b

a c

Hypergraph H



Example I
Given: Relations R,S of size O(N).

Task: Count number of tuples that satisfy

R(a, b) ∧ S(b, c) ∧ a ≤ c

Existing approaches take O(N2) time.
1. Join R and S
2. Count number of tuples that satisfy a ≤ c

Our approach takes O(N logN) time.

a b
1 1
1 2
2 1
2 2
3 2
3 3

R b c #
1 1 2
1 2 1
2 0 4
2 2 3
2 3 2
2 4 1

S

lookup b = 2

find smallest c ≥ 1

Step 2: For each R(a, b), locate S(b, c) with c ≥ a
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Example I
Given: Relations R,S of size O(N).

Task: Count number of tuples that satisfy

R(a, b) ∧ S(b, c) ∧ a ≤ c

Existing approaches take O(N2) time.
1. Join R and S
2. Count number of tuples that satisfy a ≤ c

Our approach takes O(N logN) time.

a b
1 1
1 2
2 1
2 2
3 2
3 3

R b c #
1 1 2
1 2 1
2 0 4
2 2 3
2 3 2
2 4 1

S

lookup b = 2

find smallest c ≥ 1

count = 3

Step 4: Return pre-aggregated count
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Example II
Given: Relations R,S,T of size O(N).

Task: Count number of tuples that satisfy

R(a, b) ∧ S(b, c) ∧ T (c, d) ∧ a ≤ d

Existing approaches take O(N2) time.

Our approach takes O(N1.5 logN) time.

Partition S

R(a, b) ∧ (S light(b, c) ∨ Sheavy(b, c)) ∧ T (c, d) ∧ a ≤ d

Turn into DNF

R(a, b) ∧ S light(b, c)︸ ︷︷ ︸
U(a,b,c)

∧T (c, d) ∧ a ≤ d
∨

R(a, b) ∧ Sheavy(b, c) ∧ T (c, d)︸ ︷︷ ︸
W (b,c,d)

∧ a ≤ d

Compute U,W

U(a, b, c) ∧ T (c, d) ∧ a ≤ d
∨

R(a, b) ∧W (b, c, d) ∧ a ≤ d

Like Example I
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Example II
Given: Relations R,S,T of size O(N).

Task: Count number of tuples that satisfy
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Example II
Given: Relations R,S,T of size O(N).

Task: Count number of tuples that satisfy

R(a, b) ∧ S(b, c) ∧ T (c, d) ∧ a ≤ d

Existing approaches take O(N2) time.

Our approach takes O(N1.5 logN) time.

Partition S

R(a, b) ∧ (S light(b, c) ∨ Sheavy(b, c)) ∧ T (c, d) ∧ a ≤ d

Turn into DNF

R(a, b) ∧ S light(b, c)︸ ︷︷ ︸
U(a,b,c)

∧T (c, d) ∧ a ≤ d
∨

R(a, b) ∧ Sheavy(b, c) ∧ T (c, d)︸ ︷︷ ︸
W (b,c,d)

∧ a ≤ d

Compute U,W

U(a, b, c) ∧ T (c, d) ∧ a ≤ d
∨

R(a, b) ∧W (b, c, d) ∧ a ≤ d

Like Example I

S light = {t ∈ S : |σb=t.bS| ≤
√

N} Sheavy = S \ S light

O(N1.5) O(N1.5)
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Example III: Linear SVM over Databases
Task: Compute J(β) over dataset D defined by query Q over database I.

J(β) =
∑

(x,y)∈D

max{0, 1− y · fβ(x)}︸ ︷︷ ︸
Hinge Loss

=
∑

(x,y)∈D

{
1 if y · fβ(x) < 1

0 otherwise

=
∑

(x,y)∈D

(1− y · fβ(x)) · 1y·fβ(x)≤1

︸ ︷︷ ︸
Aggregate with inequality

Existing approaches:

1. materialize D

2. learn model in favorite ML tool

Our Approach:

1. avoid materialization of D

2. learn model using
aggregates with inequalities

We can learn the SVM model in time sublinear in the size of D.
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Relational Machine Learning over Databases

We can express range of models as aggregates with inequalities, including:

Support Vector Machines (SVM)

k-Means Clustering

Robust Regression with Huber Loss

Boolean Principle Component Analysis (PCA)

Low Rank Matrix Factorization

... and several other models trained with Non-Polynomial Loss functions
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Functional Aggregate Queries with Additive Inequalities
FAQ-AIs encode:

1. Relations as factors RK :
∏

i∈K Dom(Xi)→ D

2. Additive Inequality E as Kronecker delta 1E

3. Sum-Product Operations over Semiring

Examples for Sum-Product Semiring (R,+,×):

Q() =
∑
a,b,c

R(a, b) · S(b, c) · 1a≤c (Example I)

Q() =
∑
a,b,c

R(a, b) · S(b, c) · 1a≤c · 1 b
2≤c · 1a2+ b

2 +5c≤0 (more AIs)

Q(a, b) =
∑

c

R(a, b) · S(b, c) · 1a≤c · 1 b
2≤c · 1a2+ b

2 +5c≤0 (with free variables)

Change the semiring to get different aggregates:

Q(a, b) =
∨
c

R(a, b) ∧ S(b, c) ∧ 1a≤c ∧ 1 b
2≤c ∧ 1a2+ b

2 +5c≤0 Boolean: ({1, 0},∨,∧)

Q(a, b) = max
c

R(a, b) · S(b, c) · 1a≤c · 1 b
2≤c · 1a2+ b

2 +5c≤0 Max-Product: (R,max,×)

Q(a, b) =
⊕

c

R(a, b)⊗ S(b, c)⊗ 1a≤c ⊗ 1 b
2≤c ⊗ 1a2+ b

2 +5c≤0 Arbitrary: (D,⊕,⊗)
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Functional Aggregate Queries with Additive Inequalities

Q(xF ) =
⊕
xV\F

(⊗
K∈Es

RK (xK )

)
⊗

⊗
K∈E`

1∑
v∈K θ

K
v (xv )≤0



Query Hypergraph H = (V, E = Es ∪ E`)

Set of variables V = {X1, . . . ,Xn}

Set of “skeleton” hyperedges Es

I Each hyperedge is defined by a factor RK (xK )

Set of “ligament” hyperedges E`
I Each hyperedge is defined by sum of univariate functions

Xi - variable xi - value in Dom(Xi ) xK - tuple of values in
∏

i∈K Dom(Xi )
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For this talk:

Queries without free variables.

The paper:

Generalizes all results via notion of FAQ-width.
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Generalized Hypertree Decompositions

Generalized Hypertree Decomposition (TD) for H = (V, E):

Tree T = (V (T ),E(T ))

Bag χ(t) ⊆ V for each tree-node t ∈ V (T )

A TD must satisfy:

1. Running intersection property

2. Containment property
I every hyperedge in E is covered by some bag χ(t).

b

a

c

d

Hypergraph H

a,b,c

a,d,c

TD for H
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State-of-the-art for evaluating FAQs and FAQ-AIs

Single TD Data Partitioning
Multiple TDs

fhtw

InsideOut

subw

PANDA

fhtw

InsideOut

subw

PANDA

FAQ

FAQ-AI

Arbitrary semiring Boolean semiring

≥

≥

unbounded gap

We can do better for FAQ-AI! Using Relaxed Tree Decompositions.
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Relaxed Tree Decompositions

Containment for Tree Decompositions:

1. every hyperedge is covered by some bag

Containment for Relaxed Tree Decompositions:

1. every ‘skeleton’ hyperedge is covered by some bag

2. every ‘ligament’ hyperedge is covered by two adjacent bags

Evaluation of ligament hyperedges over two adjacent bags based on

Chazelle’s geometric data structure (GDS)
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Width Measures for FAQs and FAQ-AIs

Single TD Data Partitioning
Multiple TDs

fhtw

InsideOut

subw

PANDA

fhtwrelaxed

InsideOut+GDS

subwrelaxed

PANDA+GDS

FAQ

FAQ-AI

≥

≥

≤ ≤

Arbitrary Semiring Boolean Semiring

unbounded gap

po
ly

no
m

ia
lg

ap

GDS = Chazelle’s geometric data structure = new result
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Width Measures for FAQs and FAQ-AIs

Single TD Data Partitioning
Multiple TDs

fhtw

InsideOut

subw

PANDA

fhtwrelaxed

InsideOut+GDS

subwrelaxed

PANDA+GDS

FAQ

FAQ-AI

≥

≥

≤ ≤

Arbitrary Semiring Boolean Semiring

unbounded gap

po
ly

no
m

ia
lg

ap

Multiple TDs for
arbitrary semiring?

GDS = Chazelle’s geometric data structure = new result
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#PANDA: A PANDA Variant for Arbitrary Semirings

PANDA decomposes the query into several sub-queries

Based on information theoretic inequalities

Each sub-query is:

Computed over partitions of factors corresponding to skeleton hyperedges

Defined by a different tree decomposition

Challenge: The results of sub-queries may overlap

Boolean semiring: OK (3)

Arbitrary semiring: Not OK (7)

#PANDA ensures that the results of sub-queries are disjoint

Allows for aggregate computation with Arbitrary Semirings

Recall Example II
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Width Measures for FAQs and FAQ-AIs

Single TD Disjoint Partitioning
Multiple TDs

General Partitioning
Multiple TDs

fhtw

InsideOut

#subw

#PANDA

subw

PANDA

fhtwrelaxed

InsideOut+GDS

#subwrelaxed

#PANDA+GDS

subwrelaxed

PANDA+GDS

FAQ

FAQ-AI

Arbitrary semiring Boolean semiring

≥ ≥

≥ ≥

≤ ≤ ≤

unbounded gap

po
ly

no
m

ia
lg

ap

GDS = Chazelle’s geometric data structure = new result
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Appendix
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Width Measures for FAQs and FAQ-AIs + free variables

Single TD Disjoint Partitioning
Multiple TDs

General Partitioning
Multiple TDs

faqw

InsideOut

#smfw

#PANDA

smfw

PANDA

faqwrelaxed
InsideOut+GDS

#smfwrelaxed

#PANDA+GDS

smfwrelaxed

PANDA+GDS

FAQ

FAQ-AI

Arbitrary semiring Boolean semiring

≥ ≥

≥ ≥

≤ ≤ ≤

unbounded gap

po
ly

no
m

ia
lg

ap

GDS = Chazelle’s geometric data structure = new result
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What are we hiding?

Single TD Disjoint Partitioning
Multiple TDs

General Partitioning
Multiple TDs

fhtw #subw subw

log(N)

InsideOut

polylog(N)

#PANDA

polylog(N)

PANDA

fhtwrelaxed #subwrelaxed subwrelaxed

logmax{k−1,1}(N)

InsideOut+GDS

polylog(N)

#PANDA+GDS

polylog(N)

PANDA+GDS

FAQ

FAQ-AI

Arbitrary semiring Boolean semiring

unbounded gap

po
ly

no
m

ia
lg

ap
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