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Abstract. Stochastic games are a well established model for multi-agent
sequential decision making under uncertainty. In practical applications,
though, agents often have only partial observability of their environment.
Furthermore, agents increasingly perceive their environment using data-
driven approaches such as neural networks trained on continuous data.
We propose the model of neuro-symbolic partially-observable stochastic
games (NS-POSGs), a variant of continuous-space concurrent stochastic
games that explicitly incorporates neural perception mechanisms. We fo-
cus on a one-sided setting with a partially-informed agent using discrete,
data-driven observations and another, fully-informed agent. We present
a new method, called one-sided NS-HSVI, for approximate solution of
one-sided NS-POSGs, which exploits the piecewise constant structure of
the model. Using neural network pre-image analysis to construct finite
polyhedral representations and particle-based representations for beliefs,
we implement our approach and illustrate its practical applicability to
the analysis of pedestrian-vehicle and pursuit-evasion scenarios.

1 Introduction

Strategic reasoning is essential to ensure stable multi-agent coordination in com-
plex environments, e.g., autonomous driving or multi-robot planning. Partially-
observable stochastic games (POSGs) are a natural model for settings involving
multiple agents, uncertainty and partial information. They allow the synthesis
of optimal (or near-optimal) strategies and equilibria that guarantee expected
outcomes, even in adversarial scenarios. But POSGs also present significant
challenges: key problems are undecidable, already for the single-agent case of
partially observable Markov decision processes (POMDPs) [24], and practical
algorithms for finding optimal values and strategies are lacking.

Computational tractability can be improved using one-sided POSGs, a sub-
class of two-agent, zero-sum POSGs where only one agent has partial information
while the other agent is assumed to have full knowledge of the state [40,41]. This
can be useful when making worst-case assumptions about one agent, such as
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in an adversarial setting (e.g., an attacker-defender scenario) or a safety-critical
domain (e.g., a pedestrian in an autonomous driving application).

From a computational perspective, one-sided POSGs avoid the need for
nested beliefs [39], i.e., reasoning about beliefs not only over states but also
over opponents’ beliefs. This is because the fully-informed agent can reconstruct
beliefs from observation histories. Recent advances [19] have led to the first
practical variant of heuristic search value iteration (HSVI) [31] for computing
approximately optimal values and strategies in (finite) one-sided POSGs.

However, in many realistic autonomous coordination scenarios, agents per-
ceive continuous environments using data-driven observation functions, typically
implemented as neural networks (NNs). Examples include autonomous vehicles
using NNs to perform object recognition or to estimate pedestrian intention, and
NN-enabled vision in an airborne pursuit-evasion scenario.

In this paper, we introduce one-sided neuro-symbolic POSGs (NS-POSGs),
a variant of continuous-space POSGs that explicitly incorporates neural percep-
tion mechanisms. We assume one partially-informed agent with a (finite-valued)
observation function synthesised in a data-driven fashion, and a second agent
with full observation of the (continuous) state. Continuous-space models with
neural perception mechanisms have already been developed, but are limited to
the simpler cases of POMDPs [36] and (fully-observable) stochastic games [33].
Our model provides the ability to reason about an agent with a realistic percep-
tion mechanism and operating in an adversarial or worst-case setting.

Solving continuous-space models, even approximately, is computationally
challenging. One approach is to discretise and then use techniques for finite-
state models (e.g., [19] in our case). But this can yield exponential growth of the
state space, depending on the granularity and time-horizon used. Furthermore,
decision boundaries for data-driven perception are typically irregular and can be
misaligned with gridding schemes for discretisation, limiting precision.

An alternative is to exploit structure in the underlying model and work di-
rectly with the continuous-state model. For example, classic dynamic program-
ming approaches to solving MDPs can be lifted to continuous-state variants [12]:
a piecewise constant representation of the value function is computed, based on
a partition of the state space created dynamically during solution. It is demon-
strated that this approach can outperform discretisation and that it can also be
generalised to solving POMDPs. We can adapt this approach to models with
neural perception mechanisms [36], exploiting the fact that ReLU NN classifiers
induce a finite decomposition of the continuous environment into polyhedra.

Contributions. The contributions of this paper are as follows. We first define
the model of one-sided NS-POSGs and motivate it via an autonomous driving
scenario based on a ReLU NN classifier for pedestrian intention learnt from
public datasets [28]. We then prove that the (discounted reward) value function
for NS-POSGs is continuous and convex, and is a fixed point of a minimax
operator. Based on mild assumptions about the model, we give a piecewise linear
and convex representation of the value function, which admits a finite polyhedral
representation and which is closed with respect to the minimax operator.
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In order to provide a feasible approach to approximating values of NS-
POSGs, we present a variant of HSVI, which is a popular anytime algorithm
for POMDPs that iteratively computes lower and upper bounds on values. We
build on ideas from HSVI for finite one-sided POSGs [19] (but there are multiple
challenges when moving to a continuous state space and NNs) and for POMDPs
with neural perception mechanisms [36] (but, for us, the move to games brings
a number of complications); see Section 6 for a detailed discussion.

We implement our one-sided NS-HSVI algorithm using the popular particle-
based representation for beliefs and employing NN pre-image computation [25] to
construct an initial finite polyhedral representation of perception functions. We
apply this to the pedestrian-vehicle interaction scenario and a pursuit-evasion
game inspired by mobile robotics applications, demonstrating the ability to syn-
thesise agent strategies for models with complex perception functions, and to
explore trade-offs when using perception mechanisms of varying precision.

An extended version of this paper is available in [35].

Related work. Solving POSGs is largely intractable. Methods based on exact
dynamic programming [17] and approximations [23,11] exist but have high com-
putational cost. Further approaches exist for zero-sum POSGs, including conver-
sion to extensive-form games [3], counterfactual regret minimisation [42,21,22]
and methods based on reinforcement learning and search [5,26]. In [9], an HSVI-
like finite-horizon solver that provably converges to an ε-optimal solution is pro-
posed; [32] provides convexity and concavity results but no algorithmic solution.

Methods exist for one-sided POSGs: a space partition approach when actions
are public [40], a point-based approximate algorithm when observations are con-
tinuous [41] and projection to POMDPs based on factored representations [7].
But these are all restricted to finite-state games. Closer to our work, but still
for finite models, is [19], which proposes an HSVI method for POSGs.

For the continuous-state but single-agent (POMDP) setting, point-based
value iteration [27,6,38] and discrete space approximation [4] can be used; the
former also uses α-functions but works with (approximate) Gaussian mixtures
or beta-densities, whereas we exploit structure, similarly to [12]. As discussed
above, in earlier work, we proposed models and techniques for extending several
simpler probabilistic models with neural perception mechanisms [36,34,33]. Re-
cent work [37] builds on the one-sided NS-POSG model proposed in this paper,
but focuses instead on online methods for strategy synthesis.

2 Background

POSGs. The semantics of our models are continuous-state partially observable
concurrent stochastic games (POSGs) [21,5,18]. Letting P(X) denote the space
of probability measures on a Borel space X, POSGs are defined as follows.

A two-player POSG is a tuple G = (N,S,A, δ,O, Z), where: N = {1, 2} is a
set of two agents; S a Borel measurable set of states; A ≜ A1×A2 a finite set of
joint actions where Ai are actions of agent i; δ : (S×A) → P(S) a probabilistic
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transition function; O ≜ O1×O2 a finite set of joint observations where Oi are
observations of agent i; and Z : (S×A×S) → O an observation function.

In a state s of a POSG G, each agent i selects an action ai from Ai. The prob-
ability to move to a state s′ is δ(s, (a1, a2))(s

′), and the subsequent observation
is Z(s, (a1, a2), s

′) = (o1, o2), where agent i can only observe oi. A history of G
is a sequence of states and joint actions π = (s0, a0, s1, . . . , at−1, st) such that
δ(sk, ak)(sk+1) > 0 for each k. For a history π, we denote by π(k) the (k+1)th
state, and π[k] the (k+1)th action. A (local) action-observation history (AOH) is
the view of a history π from agent i’s perspective: πi = (o0i , a

0
i , o

1
i , . . . , a

t−1
i , oti).

If an agent has full information about the state, then we assume the agent is
also informed of the history of joint actions. Let FPathsG and FPathsG,i denote
the sets of finite histories of G and AOHs of agent i, respectively.

A (behaviour) strategy of agent i is a mapping σi : FPathsG,i → P(Ai). We
denote by Σi the set of strategies of agent i. A profile σ = (σ1, σ2) is a pair of
strategies for each agent and we denote by Σ = Σ1 ×Σ2 the set of profiles.

Objectives. Agents 1 and 2 maximise and minimise, respectively, the expected
value of the discounted reward Y (π) =

∑∞
k=0 β

kr(π(k), π[k]), where π is an
infinite history, r : (S×A) → R a reward structure and β ∈ (0, 1). The expected
value of Y starting from state distribution b under profile σ is denoted Eσ

b [Y ].

Values and minimax strategies. If V ⋆(b) ≜ supσ1∈Σ1
infσ2∈Σ2

Eσ1,σ2

b [Y ] =
infσ2∈Σ2 supσ1∈Σ1

Eσ1,σ2

b [Y ] for all b ∈ P(S), then V ⋆ is called the value of G.
A profile σ⋆ = (σ⋆

1 , σ
⋆
2) is a minimax strategy profile if, for any b ∈ P(S),

Eσ⋆
1 ,σ2

b [Y ] ≥ Eσ⋆
1 ,σ

⋆
2

b [Y ] ≥ Eσ1,σ
⋆
2

b [Y ] for all σ1 ∈ Σ1 and σ2 ∈ Σ2.

3 One-Sided Neuro-Symbolic POSGs

We now introduce our model, aimed at commonly deployed multi-agent scenarios
with data-driven perception, necessitating the use of continuous environments.

One-sided NS-POSGs. A one-sided neuro-symbolic POSG (NS-POSG) com-
prises a partially informed, neuro-symbolic agent and a fully informed agent in a
continuous-state environment. The first agent has a finite set of local states, and
is endowed with a data-driven perception mechanism, through which (and only
through which) it makes finite-valued observations of the environment’s state,
stored locally as percepts. The second agent can directly observe both the local
state and percept of the first agent, and the state of the environment.

Definition 1 (NS-POSG) A one-sided NS-POSG C comprises agents Ag1 =
(S1, A1, obs1, δ1) and Ag2=(A2), and environment E=(SE , δE), where:

– S1 = Loc1×Per1 is a set of states for Ag1, where Loc1 and Per1 are finite
sets of local states and percepts, respectively;

– SE ⊆ Re is a closed set of continuous environment states;
– Ai is a finite set of actions for Agi and A ≜ A1×A2 is a set of joint actions;
– obs1 : (Loc1×SE) → Per1 is Ag1’s perception function;
– δ1 : (S1×A) → P(Loc1) is Ag1’s local probabilistic transition function;
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– δE : (Loc1×SE×A) → P(SE) is a finitely-branching probabilistic transition
function for the environment.

One-sided NS-POSGs are a subclass of two-agent, hybrid-state POSGs with
discrete observations (S1) and actions for Ag1, and continuous observations
(S1×SE) and discrete actions for Ag2. Additionally, Ag1 is informed of its own
actions and Ag2 of joint actions. Thus, Ag1 is partially informed, without access
to environment states and actions of Ag2, and Ag2 is fully informed. Since Ag2
needs no percepts, its local state and transition function are omitted.

The game executes as follows. A global state of C comprises a state s1 =
(loc1, per1) for Ag1 and an environment state sE . In state s = (s1, sE), the
two agents concurrently choose one of their actions, resulting in a joint action
a = (a1, a2) ∈ A. Next, the local state of Ag1 is updated to some loc′1 ∈ Loc1,
according to δ1(s1, a). At the same time, the environment state is updated to
some s′E ∈ SE according to δE(loc1, sE , a). Finally, the first agent Ag1, based
on loc′1, generates a percept per ′1 = obs1(loc

′
1, s

′
E) by observing the environment

state s′E and C reaches the global state s′ = ((loc′1, per
′
1), s

′
E).

We focus on neural perception functions, i.e., for each local state loc1, we
associate an NN classifier floc1

: SE → P(Per1) that returns a distribution over
percepts for each environment state sE ∈ SE . Then obs1(loc1, sE) = fmax

loc1
(sE),

where fmax
loc1

(sE) is the percept with the largest probability in floc1
(sE) (a tie-

breaking rule is applied if multiple percepts have the largest probability).

Motivating example: Pedestrian-vehicle interaction. A key challenge for
autonomous driving in urban environments is predicting pedestrians’ intentions
or actions. One solution is NN classifiers, e.g., trained on video datasets [29,28].
To illustrate our NS-POSG model, we consider decision making for an au-
tonomous vehicle using an NN-based intention estimation model for a pedestrian
at a crossing [28]. We use their simpler “vanilla” model, which takes two succes-
sive (relative) locations of the pedestrian (the top-left coordinates (x1, y1) and
(x2, y2) of two fixed size bounding boxes around the pedestrian) and classifies
its intention as: unlikely, likely or very likely to cross. We train a feed-forward
NN classifier with ReLU activation functions over the PIE dataset [28].

We build this perception mechanism into an NS-POSG model of a vehicle
yielding at a pedestrian crossing, based on [13], illustrated in Fig. 1. A pedestrian
further ahead at the side of the road may decide to cross and the vehicle must
decide how to adapt its speed. The first, partially-informed agent represents
the vehicle. It observes the environment (comprising the successive pedestrian
locations) using the NN-based perception mechanism to predict the pedestrian’s
intention. This is stored as a percept and its speed as its local state. The vehicle
chooses between selected (positive or negative) acceleration actions. The second
agent, the pedestrian, is fully informed, providing a worst-case analysis of the
vehicle decisions, and can decide to cross or return to the roadside. The goal of
the vehicle is to minimise the likelihood of a collision with the pedestrian, which
is achieved by associating a negative reward with this event.

Fig. 1 also shows selected slices of the state space decomposition obtained
by computing the pre-image [25] of the learnt NN classifier, for each of the
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x2

y2

Fig. 1: Pedestrian-vehicle example. Left: Positions of two agents. Middle: Sample
images from the PIE dataset [28]. Right: Slices of learnt perception function,
where (x1, y1), (x2, y2) are two successive (relative) positions of the pedestrian.

three predicted intentions. The decision boundaries are non-trivial, justifying
our goal of performing a formal analysis, but some intuitive characteristics can
be seen. When x2 ≥ x1, meaning that the pedestrian is stationary or moving
away from the road, it will generally be classified as unlikely to cross. We also
see the prediction model is cautious when trying to make an estimation if its
first observation is made from greater distance. More details are in [35].

One-sided NS-POSG semantics. A one-sided NS-POSG C induces a POSG
JCK, where we restrict to states that are percept compatible, i.e., where per1 =
obs1(loc1, sE) for s = ((loc1, per1), sE). The semantics of a one-sided NS-POSG
is closed with respect to percept compatible states.

Definition 2 (Semantics) Given a one-sided NS-POSG C, as in Definition 1,
its semantics is the POSG JCK = (N,S,A, δ,O, Z) where:

– N = {1, 2} is a set of two agents and A = A1 ×A2;
– S ⊆ S1 × SE is the set of percept compatible states;
– for s = (s1, sE), s

′ = (s′1, s
′
E) ∈ S and a ∈ A where s1 = (loc1, per1) and

s′1 = (loc′1, per
′
1), we have δ(s, a)(s′) = δ1(s1, a)(loc

′
1)δE(loc1, sE , a)(s

′
E);

– O = O1 ×O2, where O1 = S1 and O2 = S;
– Z(s, a, s′) = (s′1, s

′) for s ∈ S, a ∈ A and s′ = (s′1, s
′
E) ∈ S.

Strategies. As JCK is a POSG, we consider (behaviour) strategies for the two
agents. Since Ag2 is fully informed, it can recover the beliefs of Ag1, thus re-
moving nested beliefs. Hence, the AOHs of Ag2 are equal to the histories of JCK,
i.e., FPathsJCK,2 = FPathsJCK. We also consider the stage strategies at a history
of JCK, which will later be required for solving the induced zero-sum normal-
form games in the minimax operator. For a history π of JCK, a stage strategy
for Ag1 is a distribution u1 ∈ P(A1) and a stage strategy for Ag2 is a function
u2 : S → P(A2), i.e., u2 ∈ P(A2 | S).
Beliefs. Since Ag1 is partially informed, it may need to infer the current state
from its AOH. For an Ag1 state s1 = (loc1, per1), we let Ss1

E be the set of
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environment states compatible with s1, i.e., S
s1
E = {sE ∈ SE | obs1(loc1, sE) =

per1}. Since the states of Ag1 are also the observations of Ag1 and states of JCK
are percept compatible, a belief for Ag1, which can also be reconstructed by
Ag2, can be represented as a pair b = (s1, b1), where s1 ∈ S1, b1 ∈ P(SE) and
b1(sE) = 0 for all sE ∈ SE \ Ss1

E . We denote by SB the set of beliefs of Ag1.
Given a belief (s1, b1), if action a1 is selected by Ag1, Ag2 is assumed to take

stage strategy u2 ∈ P(A2 | S) and s′1 is observed, then the updated belief of Ag1
via Bayesian inference is denoted (s′1, b

s1,a1,u2,s
′
1

1 ); see [35] for details.

4 Values of One-Sided NS-POSGs

We establish the value function of a one-sided NS-POSG C with semantics JCK,
which gives the minimax expected reward from an initial belief, and show its
convexity and continuity. Next, to compute it, we introduce minimax and max-
sup operators specialised for one-sided NS-POSGs, and prove their equivalence.
Finally, we provide a fixed-point characterisation of the value function.

Value function. We assume a fixed reward structure r and discount factor β.
The value function of C represents the minimax expected reward in each possible
initial belief of the game, given by V ⋆ : SB → R, where V ⋆(s1, b1) = Eσ⋆

(s1,b1)
[Y ]

for all (s1, b1) ∈ SB and σ⋆ is a minimax strategy profile of JCK.
The value function for zero-sum POSGs may not exist when the state space

is uncountable [14,2,30] as in our case. In this paper, we only consider one-sided
NS-POSGs that are determined, i.e., for which the value function exists.

Convexity and continuity. Since r is bounded, the value function V ⋆ has lower
and upper bounds L = mins∈S,a∈A r(s, a)/(1−β) and U = maxs∈S,a∈A r(s, a)/(1−
β). The proof of the following and all other results can be found in [35].

Theorem 1 (Convexity and continuity). For s1 ∈ S1, V
⋆(s1, ·) : P(SE) →

R is convex and continuous, and for b1, b
′
1 ∈ P(SE) : |V ⋆(s1, b1)− V ⋆(s1, b

′
1)| ≤

K(b1, b
′
1) where K(b1, b

′
1) =

1
2 (U − L)

∫
sE∈S

s1
E

∣∣b1(sE)− b′1(sE)
∣∣dsE.

Minimax and maxsup operators. We give a fixed-point characterisation of
the value function V ⋆, first introducing a minimax operator and then simplifying
to an equivalent maxsup variant. The latter will be used in Section 5 to prove clo-
sure of our representation for value functions and in Section 6 to formulate HSVI.
For f : S → R and belief (s1, b1), let ⟨f, (s1, b1)⟩ =

∫
sE∈SE

f(s1, sE)b1(sE)dsE
and F(SB) denote the space of functions mapping the beliefs SB to reals R.

Definition 3 (Minimax) The minimax operator T : F(SB)→F(SB) is given by:

[TV ](s1, b1) = maxu1∈P(A1) minu2∈P(A2|S) E(s1,b1),u1,u2
[r(s, a)]

+ β
∑

(a1,s′1)∈A1×S1
P (a1, s

′
1 | (s1, b1), u1, u2)V (s′1, b

s1,a1,u2,s
′
1

1 ) (1)

for V ∈ F(SB) and (s1, b1) ∈ SB, where E(s1,b1),u1,u2
[r(s, a)] =

∫
sE∈SE

b1(sE)∑
(a1,a2)∈A u1(a1)u2(a2 | s1, sE)r((s1, sE), (a1, a2))dsE.
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Motivated by [19], which proposed an equivalent operator for the discrete case,
we instead prove that the minimax operator has an equivalent simplified form
over convex continuous functions of F(SB).

For Γ ⊆ F(S), we let ΓA1×S1 denote the set of vectors of elements of
the convex hull of Γ indexed by A1×S1. Furthermore, for u1 ∈ P(A1), α =
(αa1,s

′
1)(a1,s′1)∈A1×S1

∈ ΓA1×S1 and a2 ∈ A2, we define fu1,α,a2
: S → R to be

the function such that, for s ∈ S:

fu1,α,a2
(s) =

∑
a1∈A1

u1(a1)r(s, (a1, a2)

+ β
∑

(a1,s′1)∈A1×S1
u1(a1)

∑
s′E∈SE

δ(s, (a1, a2))(s
′
1, s

′
E)α

a1,s
′
1(s′1, s

′
E) (2)

where the sum over s′E is due to the finite branching of δ(s, (a1, a2)).

Definition 4 (Maxsup) For ∅ ̸= Γ ⊆ F(S), if V (s1, b1) = supα∈Γ ⟨α, (s1, b1)⟩
for (s1, b1) ∈ SB, then the maxsup operator TΓ : F(SB) → F(SB) is defined as
[TΓV ](s1, b1) = maxu1∈P(A1)supα∈ΓA1×S1 ⟨fu1,α, (s1, b1)⟩ for (s1, b1) ∈ SB where
fu1,α(s) = mina2∈A2

fu1,α,a2
(s) for s ∈ S.

In the maxsup operator, u1 and α are aligned with Ag1’s goal of maximising the
objective, where u1 is over action distributions and α is over convex combinations
of elements of Γ . The minimisation by Ag2 is simplified to an optimisation over
its finite action set in the function fu1,α. Note that each state may require a
different minimiser a2, as Ag2 knows the current state before taking an action.

The maxsup operator avoids the minimisation over Markov kernels with con-
tinuous states in the original minimax operator. Given u1 and α, the minimisa-
tion can induce a pure best-response stage strategy u2 ∈ P(A2 | S) such that,
for any s ∈ S, u2(a

′
2 | s) = 1 for some a′2 ∈ argmina2∈A2 fu1,α,a2(s). Using

Theorem 1, the operator equivalence and fixed-point result are as follows.

Theorem 2 (Operator equivalence and fixed point). For ∅ ̸= Γ ⊆ F(S),
if V (s1, b1) = supα∈Γ ⟨α, (s1, b1)⟩ for (s1, b1) ∈ SB, then the minimax operator
T and maxsup operator TΓ are equivalent and their unique fixed point is V ⋆.

5 P-PWLC Value Iteration

We next discuss a representation for value functions using piecewise constant
(PWC) α-functions, called P-PWLC (piecewise linear and convex under PWC ),
originally introduced in [36]. This representation extends the α-functions of
[27,6,38] for continuous-state POMDPs, but a key difference is that we work
with polyhedral representations (induced precisely from NNs) rather than ap-
proximations based on Gaussian mixtures [27] or beta densities [15].

We show that, given PWC representations for an NS-POSG’s perception,
reward and transition functions, and under mild assumptions on model structure,
P-PWLC value functions are closed with respect to the minimax operator. This
yields a (non-scalable) value iteration algorithm and, subsequently, the basis for
a more practical point-based HSVI algorithm in Section 6.
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PWC representations. A finite connected partition (FCP) of S, denoted Φ, is
a finite collection of disjoint connected regions (subsets) of S that cover it.

Definition 5 (PWC function) A function f : S → R is piecewise constant
(PWC) if there exists an FCP Φ of S such that f : ϕ → R is constant for ϕ ∈ Φ.
Let FC(S) be the set of PWC functions in F(S).

Since we focus on NNs for Ag1’s perception function obs1, it is PWC (as for
the one-agent case [36]) and the state space S of a one-sided NS-POSG can be
decomposed into a finite set of regions, each with the same observation. Formally,
there exists a perception FCP ΦP , the smallest FCP of S such that all states
in any ϕ ∈ ΦP are observationally equivalent, i.e., if (s1, sE), (s

′
1, s

′
E) ∈ ϕ, then

s1 = s′1. We can use ΦP to find the set Ss1
E for any agent state s1 ∈ S1. Given

an NN representation of obs1, the corresponding FCP ΦP can be extracted (or
approximated) offline by analysing its pre-image [25].

We also need to make some assumptions about the transitions and rewards
of one-sided NS-POSGs (in a similar style to [36]). Informally, we require that,
for any decomposition Φ′ of the state-space into regions (i.e., an FCP), there is a
second decomposition Φ, the pre-image FCP, such that states in regions of Φ have
the same rewards and transition probabilities into regions of Φ′. The transitions
of the (continuous) environment must also be decomposable into regions.

Assumption 1 (Transitions and rewards) Given any FCP Φ′ of S, there
exists an FCP Φ of S, called the pre-image FCP of Φ′, where for ϕ ∈ Φ, a ∈ A
and ϕ′ ∈ Φ′ there exists δΦ : (Φ×A) → P(Φ′) and rΦ : (Φ×A) → R such
that δ(s, a)(s′) = δΦ(ϕ, a)(ϕ

′) and r(s, a) = rΦ(ϕ, a) for s ∈ ϕ and s′ ∈ ϕ′. In
addition, δE can be expressed in the form

∑n
i=1 µiδ

i
E, where n ∈ N, µi ∈ [0, 1],∑n

i=1 µi = 1 and δiE : (Loc1×SE×A) → SE are piecewise continuous functions.

The need for this assumption also becomes clear in our later algorithms, which
compute a representation for an NS-POSG’s value function over a (polyhedral)
partition of the state space. This partition is created dynamically over the iter-
ations of the solution, using a pre-image based splitting operation.

We now show, using results for continuous-state POMDPs [36,27], that V ⋆ is
the limit of a sequence of α-functions, called piecewise linear and convex under
PWC α-functions, first introduced in [36] for neuro-symbolic POMDPs.

Definition 6 (P-PWLC function) A function V : SB → R is piecewise lin-
ear and convex under PWC α-functions (P-PWLC) if there exists a finite set
Γ ⊆ FC(S) such that V (s1, b1) = maxα∈Γ ⟨α, (s1, b1)⟩ for (s1, b1) ∈ SB, where
the functions in Γ are called PWC α-functions.

If V ∈ F(SB) is P-PWLC, then it can be represented by a set of PWC func-
tions over S, i.e., as a finite set of FCP regions and a value vector. Recall that
⟨α, (s1, b1)⟩ =

∫
sE∈SE

α(s1, sE)b1(sE)dsE , and therefore computing the value for
a belief involves integration. For one-sided NS-POSGs, we demonstrate, under
Assumption 1, closure of the P-PWLC representation for value functions under
the minimax operator and the convergence of value iteration.
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LP, closure property and convergence. By showing that fu1,α,a2
in (2) is

PWC in S (see [35]), we use Theorem 2 to demonstrate that, if V is P-PWLC,
the minimax operation can be computed by solving an LP.

Lemma 1 (LP for minimax and P-PWLC) If V ∈ F(SB) is P-PWLC, then
[TV ](s1, b1) is given by an LP for (s1, b1) ∈ SB.

Using Lemma 1, we show that the P-PWLC representation is closed under the
minimax operator. This closure property enables iterative computation of a se-
quence of such functions to approximate V ⋆ to within a convergence guarantee.

Theorem 3 (P-PWLC closure and convergence). If V ∈ F(SB) is P-
PWLC, then so is [TV ]. If V 0 ∈ F(SB) is P-PWLC, then the sequence (V t)∞t=0,
such that V t+1 = [TV t], is P-PWLC and converges to V ⋆.

An implementation of value iteration for one-sided NS-POSGs is therefore fea-
sible, since each α-function involved is PWC and thus allows for a finite rep-
resentation. However, as the number of α-functions grows exponentially in the
number of iterations, it is not scalable in practice.

6 Heuristic Search Value Iteration for NS-POSGs

To provide a more practical approach to solving one-sided NS-POSGs, we now
present a variant of HSVI (heuristic search value iteration) [31], an anytime
algorithm that approximates the value function V ⋆ via lower and upper bound
functions, updated through heuristically generated beliefs.

Our approach broadly follows the structure of HSVI for finite POSGs [19],
but every step presents challenges when extending to continuous states and NN-
based observations. In particular, we must work with integrals over beliefs and
deal with uncountability, using P-PWLC (rather than PWLC) functions for
lower bounds, and therefore different ingredients to prove convergence. Value
computations are also much more complex because NN perception function in-
duce FCPs, which are used to compute images, pre-images and intersections.

We also build on ideas from HVSI for (single-agent) neuro-symbolic POMDPs
in [36]. The presence of two opposing agents brings three main challenges. First,
value backups at belief points require solving normal-form games instead of max-
imising over one agent’s actions. Second, since the first agent is not informed of
the joint action, in the value backups and belief updates of the maxsup operator
uncountably many stage strategies of the second agent have to be considered,
whereas, in the single-agent variant, the agent can decide the transition proba-
bilistically on its own. Third, the forward exploration heuristic is more complex
as it depends on the stage strategies of the agents in two-stage games.

6.1 Lower and Upper Bound Representations

We first discuss representing and updating the lower and upper bound functions.

Lower bound function. Selecting an appropriate representation for α-functions
requires closure properties with respect to the maxsup operator. Motivated
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by [36], we represent the lower bound V Γ
lb ∈ F(SB) as the P-PWLC function

for a finite set Γ ⊆ FC(S) of PWC α-functions (see Definition 6), for which the
closure is guaranteed by Theorem 3. The lower bound V Γ

lb has a finite represen-
tation as each α-function is PWC, and is initialised as in [19].

Upper bound function. The upper bound V Υ
ub ∈ F(SB) is represented by a

finite set of belief-value points Υ = {((si1, bi1), yi) ∈ SB × R | i ∈ I}, where yi is
an upper bound of V ⋆(si1, b

i
1). Similarly to [36], for any (s1, b1) ∈ SB , the upper

bound V Υ
ub(s1, b1) is the lower envelope of the lower convex hull of the points in

Υ satisfying the following LP problem: minimise∑
i∈Is1

λiyi +Kub(b1,
∑

i∈Is1

λib
i
1) subject to λi ≥ 0 and

∑
i∈Is1

λi = 1 (3)

for i ∈ Is1
where Is1 = {i ∈ I | si1 = s1} and Kub : P(SE) × P(SE) → R

measures the difference between two beliefs such that, if K is the function from
Theorem 1, then for any b1, b

′
1, b

′′
1 ∈ P(SE): Kub(b1, b1) = 0,

Kub(b1, b
′
1) ≥ K(b1, b

′
1) and |Kub(b1, b

′
1)−Kub(b1, b

′′
1)| ≤ Kub(b

′
1, b

′′
1) . (4)

Note that (3) is close to the upper bound in regular HSVI for finite-state spaces,
except for the function Kub that measures the difference between two beliefs
(two continuous-state functions). With respect to the upper bound used in [36],
Kub here needs to satisfy an additional triangle property in (4) to ensure the
continuity of V Υ

ub , for the convergence of the point-based algorithm below. The
properties of Kub imply that (3) is an upper bound after a value backup, as
stated in Lemma 3 below. The upper bound V Υ

ub is initialised as in [19].

Lower bound updates. For the lower bound V Γ
lb , in each iteration we add a

new PWC α-function α⋆ to Γ at a belief (s1, b1) ∈ SB such that:

⟨α⋆, (s1, b1)⟩ = [TV Γ
lb ](s1, b1) = ⟨fp⋆

1 ,α
⋆ , (s1, b1)⟩ (5)

where the second equality follows from Lemma 1 and (p⋆1, α
⋆) is computed via

the optimal solution to the LP in Lemma 1 at (s1, b1).
Using p⋆1, α

⋆ and the perception FCP ΦP , Algorithm 1 computes a new α-
function α⋆ at belief (s1, b1). To guarantee (5) and improve efficiency, we only
compute the backup values for regions ϕ ∈ ΦP over which (s1, b1) has positive

probabilities, i.e., sϕ1 = s1 (where sϕ1 is the unique agent state appearing in ϕ)
and

∫
(s1,sE)∈ϕ

b1(sE)dsE > 0, and assign the trivial lower bound L otherwise.

For each region ϕ either α⋆(ŝ1, ŝE) = fp⋆
1 ,α

⋆(ŝ1, ŝE) or α⋆(ŝ1, ŝE) = L for
all (ŝ1, ŝE) ∈ ϕ. Computing the backup values in line 4 of Algorithm 1 state by
state is computationally intractable, as ϕ contains an infinite number of states.
However, the following lemma shows that α⋆ is PWC, allowing a tractable region-
by-region backup, called Image-Split-Preimage-Product (ISPP) backup, which
is adapted from the single-agent variant in [36]. The details of the ISPP backup
for one-sided NS-POSGs are in [35]. The lemma also shows that the lower bound
function increases and is valid after each update.
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Algorithm 1 Point-based Update(s1, b1) of (V
Γ
lb , V

Υ
ub)

1: (p⋆1, α
⋆)← [TV Γ

lb ](s1, b1) via an LP in Lemma 1
2: for ϕ ∈ ΦP do
3: if sϕ1 = s1 and

∫
(s1,sE)∈ϕ

b1(sE)dsE > 0 then

4: α⋆(ŝ1, ŝE)← fp⋆1 ,α⋆(ŝ1, ŝE) for (ŝ1, ŝE) ∈ ϕ ▷ ISPP backup
5: else α⋆(ŝ1, ŝE)← L for (ŝ1, ŝE) ∈ ϕ

6: Γ ← Γ ∪ {α⋆}
7: y⋆ ← [TV Υ

ub ](s1, b1) via (1) and (3)
8: Υ ← Υ ∪ {((s1, b1), y⋆)}

Lemma 2 (Lower bound) The function α⋆ generated by Algorithm 1 is a
PWC α-function satisfying (5), and if Γ ′ = Γ ∪ {α⋆}, then V Γ

lb ≤ V Γ ′

lb ≤ V ⋆.

Upper bound updates. For the upper bound V Υ
ub , due to representation (3),

at a belief (s1, b1) ∈ SB in each iteration, we add a new belief-value point
((s1, b1), y

⋆) to Υ such that y⋆ = [TV Υ
ub ](s1, b1). Computing [TV Υ

ub ](s1, b1) via
(1) and (3) requires the concrete formula for Kub and the belief representations.
Thus, we will show how to compute [TV Υ

ub ](s1, b1) when introducing belief rep-
resentations below. The following lemma shows that y⋆ ≥ V ⋆(s1, b1) required by
(3), and the upper bound function is decreasing and is valid after each update.

Lemma 3 (Upper bound) Given a belief (s1, b1) ∈ SB, if y
⋆ = [TV Υ

ub ](s1, b1),
then y⋆ is an upper bound of V ⋆ at (s1, b1), i.e., y

⋆ ≥ V ⋆(s1, b1), and if Υ ′ =
Υ ∪ {((s1, b1), y⋆)}, then V Υ

ub ≥ V Υ ′

ub ≥ V ⋆.

6.2 One-Sided NS-HSVI

Algorithm 2 presents our NS-HSVI algorithm for one-sided NS-POSGs.

Forward exploration heuristic. The algorithm uses a heuristic approach to
select which belief will be considered next. Similarly to finite-state one-sided
POSGs [19], we focus on a belief that has the highest weighted excess gap. The
excess gap at a belief (s1, b1) with depth t from the initial belief is defined by
excesst(s1, b1) = V Υ

ub(s1, b1) − V Γ
lb (s1, b1) − ρ(t), where ρ(0) = ε and ρ(t+1) =

(ρ(t) − 2(U − L)ε̄)/β, and ε̄ ∈ (0, (1 − β)ε/(2U − 2L)). Using this excess gap,
the next action-observation pair (â1, ŝ1) for exploration is selected from:

argmax(a1,s′1)∈A1×S1
P (a1, s

′
1 | (s1, b1), uub

1 , ulb
2 )excesst+1(s

′
1, b

s1,a1,u
lb
2 ,s′1

1 ) . (6)

To compute the next belief via lines 8 and 9 of Algorithm 2, the minimax strat-
egy profiles in stage games [TV Γ

lb ](s1, b1) and [TV Υ
ub ](s1, b1), i.e., (u

ub
1 , ulb

2 ), are
required. Since V Γ

lb is P-PWLC, using Lemma 1, the strategy ulb
2 is obtained

by solving an LP. However, the computation of the strategy uub
1 depends on

the representation of (s1, b1) and the measure function Kub , and thus will be
discussed later. One-sided NS-HSVI has the following convergence guarantees.

Theorem 4 (One-sided NS-HSVI). For any (sinit1 , binit1 ) ∈ SB and ε > 0, Al-
gorithm 2 will terminate and upon termination: V Υ

ub(s
init
1 , binit1 )−V Γ

lb (s
init
1 , binit1 ) ≤

ε and V Γ
lb (s

init
1 , binit1 ) ≤ V ⋆(sinit1 , binit1 ) ≤ V Υ

ub(s
init
1 , binit1 ).
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Algorithm 2 One-sided NS-HSVI for one-sided NS-POSGs

1: while V Υ
ub(s

init
1 , binit1 )− V Γ

lb (s
init
1 , binit1 ) > ε do Explore((sinit1 , binit1 ), 0)

2: return V Γ
lb and V Υ

ub via sets Γ and Υ
3: function Explore((s1, b1), t)
4: (ulb

1 , u
lb
2 )← minimax strategy profile in [TV Γ

lb ](s1, b1)
5: (uub

1 , uub
2 )← minimax strategy profile in [TV Υ

ub ](s1, b1)
6: Update(s1, b1) ▷ Algorithm 1
7: (â1, ŝ1)← select according to forward exploration heuristic

8: if P (â1, ŝ1 | (s1, b1), uub
1 , ulb

2 )excesst+1(ŝ1, b
s1,â1,u

lb
2 ,ŝ1

1 ) > 0 then

9: Explore((ŝ1, b
s1,â1,u

lb
2 ,ŝ1

1 ), t+ 1)
10: Update(s1, b1) ▷ Algorithm 1

6.3 Belief Representation and Computations

Implementing one-sided NS-HSVI depends on belief representations, as closed
forms are needed. We use the popular particle-based representation [27,10], which
can approximate arbitrary beliefs and handle non-Gaussian systems. However,
compared to region-based representations [36], it is more vulnerable to distur-
bances and can require many particles for a good approximation.

Particle-based beliefs. A particle-based belief (s1, b1) ∈ SB is represented by a
weighted particle set {(siE , κi)}ns

i=1 with a normalised weight κi for each particle
siE ∈ SE , where b1(sE) =

∑nb

i=1κiD(sE − siE) for sE ∈ SE and D(sE − siE) is a
Dirac delta function centred at 0.

To implement one-sided NS-HSVI using particle-based beliefs, we prove that
V Γ
lb and V Υ

ub are eligible representations, as the belief update b
s1,a1,u2,s

′
1

1 , ex-
pected values ⟨α, (s1, b1)⟩, ⟨r, (s1, b1)⟩ and probability P (a1, s

′
1 | (s1, b1), u1, u2)

are computed as simple summations for a particle-based belief (s1, b1) ([35]).

Lower bound. Since V Γ
lb is P-PWLC with PWC α-functions Γ , for a particle-

based belief (s1, b1) represented by {(siE , κi)}nb
i=1, using Definition 6, V Γ

lb (s1, b1) =
maxα∈Γ

∑nb

i=1 κiα(s1, s
i
E). The stage game [TV Γ

lb ](s1, b1) and minimax strategy
profile (ulb

1 , u
lb
2 ) follow from solving the LP in Lemma 1.

Upper bound. To compute V Υ
ub in (3), we need a function Kub to measure be-

lief differences that satisfies (4). We take Kub = K, which does so by definition.
Given Υ = {((si1, bi1), yi) | i ∈ I}, the upper bound and stage game can be com-
puted by solving an LP, respectively, as demonstrated by the following theorem,
and then the minimax strategy profile (uub

1 , uub
2 ) is synthesised (see [35]).

Theorem 5 (LPs for upper bound). For a particle-based belief (s1, b1) ∈ SB,
V Υ
ub(s1, b1) and [TV Υ

ub ](s1, b1) are the optimal value of an LP, respectively.

7 Experimental Evaluation

We have built a prototype implementation in Python, using Gurobi [16] to solve
the LPs needed for computing lower and upper bound values, and the minimax
values and strategies of one-shot games. We use the Parma Polyhedra Library [1]
to operate over polyhedral pre-images of NNs, α-functions and reward structures.
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Step 0 Step 1 Step 2 Step 3

(a)

(b)

Fig. 2: Simulations of strategies for the pursuer, showing actual location (red),
perceived location (blue), belief of evader location (green) and strategy (pink)
for two different NN perception functions: (a) more precise; (b) coarser.

Our evaluation uses two one-sided NS-POSG examples: a pursuit-evasion
game and the pedestrian-vehicle scenario from Section 3. Below, we discuss the
applicability and usefulness of our techniques on these examples. Due to limited
space, we refer to [35] for more details of the models, including the training of
the ReLU NN classifiers, and empirical results on performance.

Pursuit-evasion. A pursuit-evasion game models a pursuer trying to catch
an evader aiming to avoid capture. We build a continuous-space variant of the
model from [19] inspired by mobile robotics applications [8,20]. The environment
includes the exact position of both agents. The (partially informed) pursuer uses
an NN classifier to perceive its own location, which maps to one of 3×3 grid cells.
To showcase the ability of our methodology to assess the performance of realistic
NN perception functions, we train two NNs, the second with a coarser accuracy.

Fig. 2 shows simulations of strategies synthesised for the pursuer, using the
two different NNs. Its actual location is a red dot, and the pink arrows denote the
strategy. Blue squares show the cell that is output by the pursuer’s perception
function, and black lines mark the underlying polyhedral decomposition. The
pursuer’s belief over the evader’s location is shown by the green shading and
annotated probabilities; it initially (correctly) believes that the evader is in cell
C and the belief evolves based on the optimal counter-strategy of the evader.

The plots show we can synthesise non-trivial strategies for agents using NN-
based perception in a partially observable setting. We can also study the impact
of a poorly trained perception function. Fig. 2(b), for the coarser NN, shows
the pursuer repeatedly mis-detecting its location because the grid cells shapes
are poorly approximated, and subsequently taking incorrect actions. This is ex-
ploited by the evader, leading to considerably worse performance for the pursuer.

Pedestrian-vehicle interaction. Fig. 3 shows several simulations from strate-
gies synthesised for the pedestrian-vehicle example described in Section 3 (Fig. 1),
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(a) (b) (c)

Fig. 3: Simulations of strategies for the vehicle, plotted as the pedestrian’s cur-
rent position (x2, y2) relative to it. Also shown: perceived pedestrian intention
(green/yellow/red = unlikely/likely/very likely to cross), current speed (orange),
acceleration (black) and crash region (shaded purple region).

plotting the position (x2, y2) of the pedestrian, relative to the vehicle. We fix
the pedestrian’s strategy, to simulate a crossing scenario: it moves from right
to left, i.e., decreasing x2. The (partially informed) vehicle’s perception function
predicts the intention of the pedestrian (green/yellow/red = unlikely/likely/very
likely to cross), shown as coloured dots. Above and below each circle, we indicate
the acceleration actions taken (black) and current speeds (orange), respectively,
which determine the distance y2 to the pedestrian crossing.

Again, we investigate the feasibility of generating strategies for agents with
realistic NN-based perception. Here, the goal is to avoid a crash scenario, denoted
by the shaded region at the bottom left of the plots. We find that, in many cases,
safe strategies can be synthesised. Fig. 3(a) shows an example; notice that the
pedestrian intention is detected early. This is not true in (b) and (c), which show
two simulations from a strategy and starting point where the perception function
results in much later detection; (c) shows we were then unable to synthesise a
strategy for the vehicle that is always safe.

8 Conclusions

We have proposed one-sided neuro-symbolic POSGs, designed to reason formally
about partially observable agents equipped with neural perception mechanisms.
We characterised the value function for discounted infinite-horizon rewards, and
designed, implemented and evaluated a HSVI algorithm for approximate solu-
tion. Computational complexity is high due to expensive polyhedral operations.
Nevertheless, our method provides an important baseline that can reason about
true decision boundaries for game models with NN-based perception, against
which efficiency improvements can later be benchmarked. We plan to investigate
ways to improve performance, e.g., merging of adjacent polyhedra or Monte-
Carlo planning methods, and to study restricted cases of two-sided NS-POSGs,
e.g., those with public observations [18].

Acknowledgements. This project was funded by the ERC under the European
Union’s Horizon 2020 research and innovation programme (FUN2MODEL, grant
agreement No.834115).
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