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Verification with stochastic games

• How do we formally verify stochastic systems with…
− multiple autonomous agents acting concurrently
− competitive or collaborative behaviour between agents,

often with differing/opposing goals
− e.g. security protocols, algorithms for distributed consensus, 

energy management, autonomous robotics, auctions

• Probabilistic model checking for stochastic games
− synthesis and verification of strategies for agents

to provide guarantees on safety/performance/…
in adversarial settings and stochastic environments
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are added to encode the random delays. For example, in the case of multiplication, with
probability 1

3 the task completes after 2 time units; with probability 2
3 , the PTA moves to a

location where, with probability 1
2 the task completes after 1 additional time unit (i.e., of a

total of 3 time units) or moves to a location where the task completes after 2 more time units
(i.e., 4 time units in total). When the task completes, the PTA moves to a location where no
time can pass (clock x is reset upon entering and the invariant of the location is x≤0) and
immediately notifies the scheduler the task is computed through action p1 done. To prevent
the scheduler from seeing into the future when making decisions, the probabilistic choice
for task completion is made on completion rather than on initialisation.

Analysing this model, we find that the optimal expected time and energy consumption to
complete all tasks equals 12.226 picoseconds and 1.3201 nanojoules, respectively. This im-
proves on the results obtained using the optimal schedulers for the original model, where the
expected time and energy consumption equal 13.1852 picoseconds and 1.3211 nanojoules.
Examining the optimal schedulers, we find that they change their decision based upon the
delays of previously completed tasks. For example, for elapsed time, the optimal scheduler
starts as for the non-probabilistic case, first scheduling task1 followed by task3 on P1 and
task2 on P2. However, it is now possible for task2 to complete before task3 (if the execution
times for task1, task2 and task3 are 3, 6 and 4 respectively), in which case the optimal sched-
uler now makes a different decision from the non-probabilistic case. Under one possible set
of execution times for the remaining tasks, the optimal scheduling is as follows:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

Adding a Faulty Processor. As a second extension of the scheduling problem, we add a
third processor P3 which consumes the same energy as P2 but is faster (addition takes 3
picoseconds and multiplication 5 picoseconds). However, this comes at a cost: there is a
chance (probability p) that the processor fails and the computation must be rescheduled and
performed again.

In Figure 8(b), we show the PTA for the faulty version of processor P1. In this PTA, when
a task completes, there is a probabilistic choice between moving to a location corresponding
to successful completion and one to failure. In both cases, we move to a location where
no time can pass and immediate notify the scheduler of either the success or failure of the
computation. The automaton for the scheduler also changes for this model since it must
react to the failure signals from the processors. In addition, the reward structure energy is
extended to include the energy consumed by the additional processor.

The graphs in Figure 9 plot the optimal expected time and energy consumption for this
extended model as the failure probability p varies. The dashed lines show the optimal re-
sults for the original model, i.e., when not using the processor P3. As can be seen, once the
probability of failure becomes sufficiently large, there is no gain in using the processor P3

but, while when the probability of failure is small, it uses offers considerable gains in per-
formance. To illustrate this fact, below we give a scheduler that optimises (minimises) the
expected energy consumption when p=0.5. Dark boxes for tasks are used to denote proces-
sor P3 failing to complete a task correctly, meaning that the task needs to be rescheduled.

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task6

P2 task2 task5

P3 task1 task4
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(a) Expected time (b) Expected energy consumption

Fig. 9 Optimal expected time and energy consumption as the failure probability of processor P3 varies

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

P3 task1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task4 task6

P2 task2 task5

P3 task1 task4

Notice that the scheduler uses the processor P3 for task1 and, if this task is completed suc-
cessfully, it later uses P3 for task4. However, if task1 fails to complete, P3 is not used again.

7 Conclusions

In this paper, we have presented an introduction to the model of probabilistic timed au-
tomata and summarised the various techniques developed to perform probabilistic model
checking. Verification of probabilistic real-time systems is an active field of research and
further progress is required in several important directions. Examples include the develop-
ment of verification techniques for probabilistic timed games [43,6] and for probabilistic

hybrid automata [64,36,9]. The former have proved, in the non-probabilistic setting, to be-
ing applicable to a variety of useful synthesis problems [12]. The latter provide essential
modelling capabilities for domains such as embedded systems and cyber-physical systems;
they represent a useful, but more tractable, subclass of the model of stochastic hybrid au-
tomata. Other important issues to investigate in the context of PTAs include robustness [7]
and continuously-distributed time delays [53,1,60].
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PRISM-games

• PRISM-games: prismmodelchecker.org/games
− extension of PRISM for stochastic games
− modelling language + model checking + user interface
− explicit state & symbolic implementations; simulation

• Example applications  (see web site for ~40 case studies)
− attack-defence trees; network protocols; intrusion detection
− human-in-the-loop UAV planning; multi-robot systems
− autonomous driving; self-adaptive software architectures
− collective decision making; team formation; trust models
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Overview

• Models & modelling
− stochastic multi-player games

• Property specification
− temporal logics

• Solving stochastic games
− algorithms, tools, case studies
− turn-based/concurrent games
− zero-sum/equilibria
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Stochastic multi-player games

s0

t1,t2

w1,t2w1,w2

s1

s2
t1,w2

Concurrent stochastic games (CSGs)
(also: Markov games, multi-agent MDPs)

− transition function:
• δ : S×(A1∪{⊥}) × … × (An∪{⊥}) → Dist(S) 

− with joint action space:
• A = A1 × … × An

− actions chosen simultaneously

Turn-based stochastic games
(TSGs)

s0

s1

w1 s2

t1 w2

t2

w2

t2

s3

s4

s5

− transition function:
• δ : S×A → Dist(S)

− with state partition:
• S = S1⊎… ⊎Sn

− player i controls states Si
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Stochastic multi-player games

s0

t1,t2

w1,t2w1,w2

s1

s2
t1,w2

Concurrent stochastic games (CSGs)
(also: Markov games, multi-agent MDPs)

− strategies (for player i)
• σi : (S A)* S → Dist(Ai∪{⊥})

Turn-based stochastic games
(TSGs)

s0

s1

w1 s2

t1 w2

t2

w2

t2

s3

s4

s5

− strategies (for player i)
• σi : (S A)* Si → Dist(A)

− σi can be deterministic/randomised, memoryless/finite-memory/…
− strategy profile σ = (σ1,…,σn) for all n players
− probability space Prsσ (ψ),  or (reward-based) expectation Esσ (X)
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Modelling with turn-based games

• Turn-based stochastic games
− well suited to some (but not all) scenarios

20
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Modelling with concurrent games

• Concurrent stochastic games
− example: CSG for 2 robots on a 3x1 grid
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Modelling with concurrent games

• Concurrent stochastic games
− example: CSG for 2 robots on a 3x1 grid
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PRISM(-games) modelling language

• PRISM modelling language
− de-facto standard for probabilistic model checkers
− key ingredients: modules, variables, guarded commands
− language features: nondeterminism + probability,

parallel composition, costs/rewards, parameters

• PRISM-games modelling language
− adds: player specifications, joint update distributions
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PRISM(-games) modelling language

csg 
player p1 user1 endplayer
player p2 user2 endplayer
// Users (senders)
module user1
 s1 : [0..1] init 0; // has player 1 sent?
 e1 : [0..emax] init emax; // energy level of player 1
 [w1] true -> (s1'=0); // wait
 [t1]  e1>0 -> (s1'=c’ ? 0 : 1) & (e1'=e1-1); // transmit
endmodule
module user2 = user1 [ s1=s2, e1=e2, w1=w2, t1=t2 ] endmodule
// Channel: used to compute joint probability distribution for transmission failure
module channel 
 c : bool init false; // is there a collision?
 [t1,w2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 1 transmits
 [w1,t2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 2 transmits
 [t1,t2]  true -> q2 : (c'=false) + (1-q2) : (c'=true); // both users transmit
endmodule

Example CSG model
(medium access

control)
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PRISM(-games) modelling language

csg 
player p1 user1 endplayer
player p2 user2 endplayer
// Users (senders)
module user1
 s1 : [0..1] init 0; // has player 1 sent?
 e1 : [0..emax] init emax; // energy level of player 1
 [w1] true -> (s1'=0); // wait
 [t1]  e1>0 -> (s1'=c’ ? 0 : 1) & (e1'=e1-1); // transmit
endmodule
module user2 = user1 [ s1=s2, e1=e2, w1=w2, t1=t2 ] endmodule
// Channel: used to compute joint probability distribution for transmission failure
module channel 
 c : bool init false; // is there a collision?
 [t1,w2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 1 transmits
 [w1,t2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 2 transmits
 [t1,t2]  true -> q2 : (c'=false) + (1-q2) : (c'=true); // both users transmit
endmodule

A module
is one (parallel)

component
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PRISM(-games) modelling language

Variables define 
the model state

Guarded commands
describe (probabilistic)

state updates

csg 
player p1 user1 endplayer
player p2 user2 endplayer
// Users (senders)
module user1
 s1 : [0..1] init 0; // has player 1 sent?
 e1 : [0..emax] init emax; // energy level of player 1
 [w1] true -> (s1'=0); // wait
 [t1]  e1>0 -> (s1'=c’ ? 0 : 1) & (e1'=e1-1); // transmit
endmodule
module user2 = user1 [ s1=s2, e1=e2, w1=w2, t1=t2 ] endmodule
// Channel: used to compute joint probability distribution for transmission failure
module channel 
 c : bool init false; // is there a collision?
 [t1,w2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 1 transmits
 [w1,t2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 2 transmits
 [t1,t2]  true -> q2 : (c'=false) + (1-q2) : (c'=true); // both users transmit
endmodule
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PRISM(-games) modelling language

Each player
comprises one

or more modules

csg 
player p1 user1 endplayer
player p2 user2 endplayer
// Users (senders)
module user1
 s1 : [0..1] init 0; // has player 1 sent?
 e1 : [0..emax] init emax; // energy level of player 1
 [w1] true -> (s1'=0); // wait
 [t1]  e1>0 -> (s1'=c’ ? 0 : 1) & (e1'=e1-1); // transmit
endmodule
module user2 = user1 [ s1=s2, e1=e2, w1=w2, t1=t2 ] endmodule
// Channel: used to compute joint probability distribution for transmission failure
module channel 
 c : bool init false; // is there a collision?
 [t1,w2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 1 transmits
 [w1,t2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 2 transmits
 [t1,t2]  true -> q2 : (c'=false) + (1-q2) : (c'=true); // both users transmit
endmodule

Players have
distinct actions,

executed
simultaneously
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PRISM(-games) modelling language

Variable updates
can refer to other
variables updated

simultaneously

Action lists
used to specify
synchronisation

csg 
player p1 user1 endplayer
player p2 user2 endplayer
// Users (senders)
module user1
 s1 : [0..1] init 0; // has player 1 sent?
 e1 : [0..emax] init emax; // energy level of player 1
 [w1] true -> (s1'=0); // wait
 [t1]  e1>0 -> (s1'=c’ ? 0 : 1) & (e1'=e1-1); // transmit
endmodule
module user2 = user1 [ s1=s2, e1=e2, w1=w2, t1=t2 ] endmodule
// Channel: used to compute joint probability distribution for transmission failure
module channel 
 c : bool init false; // is there a collision?
 [t1,w2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 1 transmits
 [w1,t2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 2 transmits
 [t1,t2]  true -> q2 : (c'=false) + (1-q2) : (c'=true); // both users transmit
endmodule
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PRISM(-games) modelling language

• PRISM modelling language
− de-facto standard for probabilistic model checkers
− key ingredients: modules, variables, guarded commands
− language features: nondeterminism + probability,

parallel composition, costs/rewards, parameters

• PRISM-games modelling language
− adds: player specifications, joint update distributions

• Some observations:
− simple/low-level: no control flow/functions, limited types, …
+ uniform language for many types of probabilistic model
+ translations exist from more expressive languages
+ well suited to symbolic methods (NB: but not to simulation)



Temporal
logic
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Temporal logic: rPATL

• Temporal logic for stochastic games 
− unambiguous, flexible & tractable behavioural specification 

− basis: rPATL (reward probabilistic alternating temporal logic)

• rPATL is a branching-time logic (extending CTL) with:
− coalition operator ⟨⟨C⟩⟩ of ATL
− probabilistic operator P of PCTL
− generalised (expected) reward operator R from PRISM
− i.e.: zero-sum, probabilistic reachability + exp. cumul. reward

• Example:
− ⟨⟨{r1,r3}⟩⟩ P>0.99 [ F≤10 (goal1∨ goal3) ]
− “robots 1 and 3 have a strategy to ensure that the probability 

of reaching a goal location within 10 steps is >0.99, 
regardless of the strategies of other players”
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Temporal logic: rPATL

• Temporal logic for stochastic games 
− unambiguous, flexible & tractable behavioural specification 

− basis: rPATL (reward probabilistic alternating temporal logic)

• rPATL is a branching-time logic (extending CTL) with:
− coalition operator ⟨⟨C⟩⟩ of ATL
− probabilistic operator P of PCTL
− generalised (expected) reward operator R from PRISM
− i.e.: zero-sum, probabilistic reachability + exp. cumul. reward

• Semantics:
−  s ⊨ ⟨⟨C⟩⟩P⋈q[ψ] iff:
− “there exist strategies for players in coalition C such that,

for all strategies of the other players, the probability of path 
formula ψ being true from state s satisfies ⋈ q” 
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Temporal logic

• Simple examples (rPATL)

− Probabilistic reachability
⟨⟨r1⟩⟩ P≥0.7 [ F goal1 ]
⟨⟨r1⟩⟩ P≥0.6 [ F≤10 goal1 ]

− Probabilistic safety/invariance
⟨⟨r1⟩⟩ P≥0.99 [ G¬hazard ]

− Probabilistic reach-avoid
⟨⟨r1⟩⟩ P≥0.99 [¬hazard U goal1 ]

− Expected cost/reward
⟨⟨r1⟩⟩ R≤4   [ F goal1 ]

− Numerical (“optimise”) queries
⟨⟨r1⟩⟩ Pmax=? [ F goal1 ]

− ⟨⟨r1⟩⟩ Rmin=? [ F goal1 ]

Example TSG: robot navigation
(players = robots r1, r2)
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rPATL and beyond

• Nested specifications in rPATL
− ⟨⟨{r1,r3}⟩⟩ Rmin=? [ ⟨⟨{r1}⟩⟩ P≥0.99 [ F≤10 base ] U (goal1∨ goal3) ]
− “minimise expected time for joint task between r1 and r3,

whilst ensuring r1 can always reliably return to base”

• More expressive temporal specifications
− e.g. (co-safe) linear temporal logic (LTL)
− ⟨⟨{r1}⟩⟩ Pmax=? [ (G¬hazard) ∧ (GF goal1) ]
− “maximise the probability visiting goal1

infinitely often and avoiding hazards”

• Non-zero-sum: e.g. Nash equilibria
− ⟨⟨{r1}:{r3}⟩⟩ (Rmin=? [ F  goal1 ] + Rmin=? [ F  goal3 ])
− “minimise the time to reach the goal for each robot”



Solving
stochastic

games
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Model checking rPATL for TSGs

• Main task: checking individual P and R operators
− reduces to solving a (zero-sum) 2-player TSG
− e.g. max/min reachability probability: supσ1

infσ2
 Prsσ1,σ2 (F✓)

− optimal strategies are memoryless/deterministic 
− complexity: NP ∩ coNP   (if we omit some reward operators)

• We use value iteration
− values p(s) are the

least fixed point of:

− and more: graph-algorithms, sequences of fixed points, …

p(s) = 
1         if s⊨✓
maxa Σs’ δ(s,a)(s’)·p(s’)    if s⊭✓ and s∈S1

mina Σs’ δ(s,a)(s’)·p(s’)    if s⊭✓ and s∈S2

s0

s1

w1 s2

t1 w2

t2

w2

t2

s3

s4

s5
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rPATL for TSGs: Implementation

• Value iteration for TSGs
− similar efficiency and scalability to MDPs
− (TSGs of, say, 107 states easily solvable)

• Also symbolic (BDD-based) implementation
− exploits model structure/regularity
− big gains on some models
− also benefits for strategy compactness

• Other solution methods (and tools) exist
− strategy iteration, quadratic programming
− interval/optimistic value iteration (for accuracy guarantees)
− PRISM-games (and extensions), Tempest, PET, EPMC, …
− see QComp’23 [ABB+24]
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Example: Energy protocols

• Demand management protocol for microgrids [CFK+13b]
− randomised back-off to minimise peaks

• Stochastic game model + rPATL
− users can collaboratively cheat

(i.e., ignore the protocol)
− TSGs of up to ~6 million states
− exposes protocol weakness

(incentive to act selfishly)
− propose/verify simple

protocol fix using penalties Adding 
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Model checking rPATL for CSGs

• Reduces to solving (zero-sum) 2-player CSGs
− optimal strategies are now randomised (problem is in PSPACE)

• We again use a value iteration based approach
− e.g. max/min reachability probabilities
− supσ1

 infσ2
 Prsσ1,σ2 (F ✓) for all states s

− values p(s) are the least fixed point of:

   
 
− where Z is the matrix game with zij = Σs’ δ(s,(ai,bj))(s’)·p(s’)

s0

t1,t2

w1,t2w1,w2

s1

s2
t1,w2

p(s) = 
1  if s⊨✓
val(Z) if s⊭✓
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Model checking rPATL for CSGs

• Reduces to solving (zero-sum) 2-player CSGs
− optimal strategies are now randomised (problem is in PSPACE)

• We again use a value iteration based approach
− e.g. max/min reachability probabilities
− supσ1

 infσ2
 Prsσ1,σ2 (F ✓) for all states s

− values p(s) are the least fixed point of:

   
 
− where Z is the matrix game with zij = Σs’ δ(s,(ai,bj))(s’)·p(s’)

s0

t1,t2

w1,t2w1,w2

s1

s2
t1,w2

p(s) = 
1  if s⊨✓
val(Z) if s⊭✓• Implementation

§ need to solve a matrix game at
every state and every iteration

§ LP problem of size |A|
§ this is the main

performance bottleneck 
§ solve CSGs of ~3 million states
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Example: Future markets investor

• Model of interactions between:
− stock market, evolves stochastically
− two investors i1, i2 decide when to invest
− market decides whether to bar investors

• Modelled as a 3-player CSG
− extends simpler model originally from [McIver/Morgan’07]
− investing/barring decisions are simultaneous
− profit reduced for simultaneous investments
− market cannot observe investors’ decisions

• Analysed with rPATL model checking & strategy synthesis
− distinct profit models considered: ‘normal market’, ‘later 

cash-ins’ and ‘later cash-ins with fluctuation’
− comparison between TSG and CSG models
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Example: Future markets investor

• Example rPATL query:
− ⟨⟨investor1,investor2⟩⟩ Rmax=?  [ F finished1,2 ]
− i.e. maximising joint profit

• Results: with (left) and without (right) fluctuations
− optimal (randomised) investment strategies synthesised
− CSG yields more realistic results (market has less power

due to limited observation of investor strategies)

profit1,2

Too pessimistic:
unrealistic strategy

for adversary



Equilibria-based
properties
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Equilibria-based properties

• Non-zero-sum CSGs
− player objectives are distinct, but not directly opposing

• For now: Nash equilibria (NE)  (we will later use other equilibria)
− no incentive for any player to unilaterally change strategy
− actually, we use ε-NE, which always exist for CSGs
− a strategy profile σ=(σ1,…,σn) for a CSG

is an ε-NE for state s and objectives X1,…,Xn iff:
− Prsσ (Xi) ≥ sup { Prsσ’ (Xi) | σ’=σ-i[σi’] and σi’∈ Σi } – ε for all i
− we use subgame-perfect ε-NE, where this holds for all states s

• To formulate the model checking (strategy synthesis)
problem, we use social-welfare Nash equilibria (SWNE)
− these are NE which maximise the sum Esσ (X1) + … Esσ (Xn)
− i.e., optimise the players combined goal
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Extending rPATL: Equilibria

• We extend rPATL accordingly:

Zero-sum
properties

Equilibria-based
properties

⟨⟨r1⟩⟩max=? P [ F≤k goal1 ] ⟨⟨r1:r2⟩⟩max=? (P [ F≤k goal1 ]+P [F ≤k goal2])

find a robot 1 strategy
which maximises

the probability of it
reaching its goal,

regardless of robot 2

find (SWNE) strategies for robots 1 and 2
where there is no incentive to change actions

and which maximise joint goal probability
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Equilibria model checking for CSGs

• Model checking for CSGs with equilibria
− first: 2-coalition case [KNPS19]
− we need “stopping game” assumptions
− requires solution of bimatrix games

• We further extend the value iteration approach:

− where Z1 and Z2 encode matrix games similar to before

p(s) = 

(1,1)    if s ⊨ ✓1∧✓2

(pmax(s,✓2),1)  if s ⊨ ✓1∧¬✓2

(1,pmax(s,✓1))  if s ⊨ ¬✓1∧✓2

val(Z1,Z2)   if s ⊨ ¬✓1∧¬✓2

s0

t1,t2

w1,t2w1,w2

✓1

✓2
t1,w2

standard
MDP analysis

bimatrix game
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Equilibria model checking for CSGs

• Model checking for CSGs with equilibria
− first: 2-coalition case [KNPS19]
− we need “stopping game” assumptions
− requires solution of bimatrix games

• We further extend the value iteration approach:

− where Z1 and Z2 encode matrix games similar to before

p(s) = 

(1,1)    if s ⊨ ✓1∧✓2

(pmax(s,✓2),1)  if s ⊨ ✓1∧¬✓2

(1,pmax(s,✓1))  if s ⊨ ¬✓1∧✓2

val(Z1,Z2)   if s ⊨ ¬✓1∧¬✓2

s0

t1,t2

w1,t2w1,w2

✓1

✓2
t1,w2

standard
MDP analysis

bimatrix game

• Implementation
§ we adapt a known approach

using labelled polytopes,
implemented via SMT

§ optimisations: filtering
of dominated strategies 

§ solve CSGs of ~2 million states

• Extension
§ n-coalition case in [QEST’20]
§ can’t use labelled polytopes
§ needs nonLPs for each state
§ poorer scalability
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Example: multi-robot coordination

• 2 robots navigating an N x N grid
− start at opposite corners, goals are

to navigate to opposite corners
− obstacles modelled stochastically: navigation

in chosen direction fails with probability q

• Results (10 x 10 grid)
− better performance obtained

than using zero-sum methods,
i.e., optimising for robot 1,
then robot 2

− ε-NE found typically have ε=0

⟨⟨robot1:robot2⟩⟩max=? (P [ F≤k goal1 ]+P [F ≤k goal2])
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Faster and fairer equilibria

• Limitations of (social welfare) Nash equilibria for CSGs:
1. can be computationally expensive, especially for >2 players
2. social welfare optimality is not always equally beneficial

• Correlated equilibria
− shared (probabilistic) signal

+ map to local strategies
− synthesis: support enumeration

+ LP (>2 players needs nonLP for NE)
− much faster to synthesise (4-20x faster)

• Social fairness
− alternative optimality criterion:

minimise difference in objectives
− applies to both Nash/correlated:

slight changes to optimisation

Example: Aloha
communication 
protocol

Signals:
randomised coordination
of next message sender,

adapting over time

s0

t1,t2

w1,t2w1,w2

s1

s2
t1,w2
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Faster and fairer equilibria

• Limitations of (social welfare) Nash equilibria for CSGs:
1. can be computationally expensive, especially for >2 players
2. social welfare optimality is not always equally beneficial

• Correlated equilibria
− shared (probabilistic) signal

+ map to local strategies
− synthesis: support enumeration

+ LP (>2 players needs nonLP for NE)
− much faster to synthesise (4-20x faster)

• Social fairness
− alternative optimality criterion:

minimise difference in objectives
− applies to both Nash/correlated:

slight changes to optimisation

Example: Aloha
communication 
protocol

14 Marta Kwiatkowska, Gethin Norman, David Parker, Gabriel Santos

0.4 0.6 0.8 1
1

2

3

4

5

q

E
xp

ec
te

d
ti

m
e

two users
SFNEi

SW1

SW2

SFCEi

0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

9

q

E
xp

ec
te

d
ti

m
e

three users
SW1

SW2

SW3

SFi

0.4 0.6 0.8 1
2
3
4
5
6
7
8
9

10
11

q

E
xp

ec
te

d
ti

m
e

four users
SW1

SW2

SW3

SW4

SFi

Fig. 2: Aloha: 〈〈usr1: · · · :usrm〉〉(!1, !2)min=?(Rtime [ F s1 ]+· · ·+Rtime [ F sm ])

i for both SWNE and SWCE for the cases of two, three and four users. We see
that the optimal values for the different users under SFNE and SFCE coincide,
while under SWNE and SWCE they are different for each user (with the user
sending first having the lowest and the user sending last the highest). Comparing
the sum of the SWNE (and SWCE) values and that of the SFCE values, we see
a small decrease in the sum of less than 2% of the total, while for SFNE there
is a greater difference as the players cannot coordinate, and hence try and send
at the same time.

Power control. This case study is based on a model of power control in cel-
lular networks from [7]. In the network there are a number of users that each
have a mobile phone. The phones emit signals that the users can strengthen by
increasing the phone’s power level up to a bound (powmax). A stronger signal
can improve transmission quality, but uses more energy and lowers the qual-
ity of the transmissions of other phones due to interference. We use the ex-
tended model from [22], which adds a probability of failure (qfail) when a power
level is increased and assumes each phone has a limited battery capacity (emax).
There is a reward structure associated with each phone representing transmis-
sion quality, which is dependent on both the phone’s power level and the power
levels of other phones due to interference. We consider the nonzero-sum prop-
erty 〈〈p1:· · ·:pm〉〉(!1, !2)max=?(Rr1 [ F e1 ]+· · ·+Rrm [ F em ]), where each user tries
to maximise their expected reward before their phone’s battery is depleted.

In Figure 3 we have presented the expected rewards of the players under
the synthesised SWCE and SFCE joint strategies. When performing strategy
synthesis, in the case of two users the SWNE and SWCE yield the same profile
in which, when the users’ batteries are almost depleted, one user tries to increase
their phone’s power level and, if successful, in the next step, the second user then
tries to increase their phone’s power level. Since the first user’s phone battery
is depleted when the second tries to increase, this increase does not cause any
interference. On the other hand, if the first user fails to increase their power
level, then both users increase their battery levels. For the SFCE, the users
can coordinate and flip a coin as to which user goes first: as demonstrated by
Figure 3 this yields equal rewards for the users, unlike the SWCE. In the case of
three users, the SWNE and SWCE differ (we were only able to synthesise SWNE
for powmax = 2 as for larger values the computation had not completed within

social fairness (SF)
more equitable

than social welfare 
(WFi)



Wrapping up
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Summary

• Probabilistic model checking for stochastic games

− turn-based and concurrent stochastic games

− tools for modelling, construction & analysis of large games

− temporal logics for property specification

− value iteration based verification and strategy synthesis

− wide range of interesting application domains & queries
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Challenges & directions

• Partial information/observability
− needed for practical applications
− POSGs? DEC-POMDPs?

• Other game theory tools
− e.g. Stackelberg equilibria

• Managing model uncertainty
− learning + robust verification

• Accuracy of model checking results
− value iteration improvements; exact methods

• Scalability & efficiency
− e.g. symbolic methods, abstraction, symmetry reduction
− sampling-based strategy synthesis methods

Running example: Robust control
• An IMDP for the robot example 
‣ uncertainty added to two state-action pairs 

‣ Note: the degree of uncertainty (e) 
in states s1 and s2 is correlated here 
(but the actual transition probabilities are not) 
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•  Robust control 

‣ for any e, we can pick a “robust” 
(optimal worst-case) policy 

‣ and give a safe lower bound 
on its performance
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PRISM-games

• See the PRISM-games website for more info
− prismmodelchecker.org/games/

− documentation, examples, case studies, papers

− downloads:

− open source (GPLV2): 

http://www.prismmodelchecker.org/games/

