PRISM-games

Model Checking for Stochastic Games

Dave Parker

University of Oxford

Dagstuhl seminar "Stochastic Games" June 2024

European Research Council Established by the European Commission

Verification with stochastic games

- How do we formally verify stochastic systems with...
 - multiple autonomous agents acting concurrently
 - competitive or collaborative behaviour between agents, often with differing/opposing goals
 - e.g. security protocols, algorithms for distributed consensus, energy management, autonomous robotics, auctions

- Probabilistic model checking for stochastic games
 - synthesis and verification of strategies for agents to provide guarantees on safety/performance/... in adversarial settings and stochastic environments

Probabilistic model checking

PRISM-games

- PRISM-games: prismmodelchecker.org/games
 - extension of PRISM for stochastic games
 - modelling language + model checking + user interface
 - explicit state & symbolic implementations; simulation

- Example applications (see web site for ~40 case studies)
 - attack-defence trees; network protocols; intrusion detection
 - human-in-the-loop UAV planning; multi-robot systems
 - autonomous driving; self-adaptive software architectures
 - collective decision making; team formation; trust models

Overview

- Models & modelling
 - stochastic multi-player games
- Property specification
 - temporal logics
- Solving stochastic games
 - algorithms, tools, case studies
 - turn-based/concurrent games
 - zero-sum/equilibria

Models & modelling

Stochastic multi-player games

Turn-based stochastic games (TSGs)

- transition function:
 - δ : S × A \rightarrow Dist(S)
- with state partition:

 $\boldsymbol{\cdot} \ \boldsymbol{S} = \boldsymbol{S}_1 \boldsymbol{\uplus} \ldots \, \boldsymbol{\uplus} \boldsymbol{S}_n$

- player i controls states S_i

Concurrent stochastic games (CSGs)

(also: Markov games, multi-agent MDPs)

- transition function:

• $\delta : S \times (A_1 \cup \{\bot\}) \times ... \times (A_n \cup \{\bot\}) \rightarrow Dist(S)$

- with joint action space:

• $A = A_1 \times \dots \times A_n$

- actions chosen simultaneously

Stochastic multi-player games

Turn-based stochastic games (TSGs)

- strategies (for player i) $\cdot \sigma_i : (S A)^* S_i → Dist(A)$

Concurrent stochastic games (CSGs)

(also: Markov games, multi-agent MDPs)

- strategies (for player i) $· σ_i : (S A)* S → Dist(A_i∪{⊥})$

- $-\sigma_i$ can be deterministic/randomised, memoryless/finite-memory/...
- strategy profile $\sigma = (\sigma_1, ..., \sigma_n)$ for all n players
- probability space $Pr_s^{\sigma}(\psi)$, or (reward-based) expectation $E_s^{\sigma}(X)$ 9

Modelling with turn-based games

Turn-based stochastic games

- well suited to some (but not all) scenarios

Shared autonomy: human-robot control

Uncontrollable/unknown navigation interference

Modelling with concurrent games

- Concurrent stochastic games
 - example: CSG for 2 robots on a 3x1 grid

Modelling with concurrent games

- Concurrent stochastic games
 - example: CSG for 2 robots on a 3x1 grid

- PRISM modelling language
 - de-facto standard for probabilistic model checkers
 - key ingredients: modules, variables, guarded commands
 - language features: nondeterminism + probability, parallel composition, costs/rewards, parameters
- PRISM-games modelling language
 - adds: player specifications, joint update distributions

```
csg
player pl userl endplayer
                                                              Example CSG model
player p2 user2 endplayer
                                                                (medium access
// Users (senders)
                                                                     control)
module user1
     s1 : [0..1] init 0; // has player 1 sent?
     e1 : [0..emax] init emax; // energy level of player 1
     [w1] true -> (s1'=0); // wait
     [t_1] e_1 > 0 -> (s_1'=c'? 0:1) \& (e_1'=e_1-1); // transmit
endmodule
module user2 = user1 [s1=s2, e1=e2, w1=w2, t1=t2] endmodule
// Channel: used to compute joint probability distribution for transmission failure
module channel
     c : bool init false; // is there a collision?
     [t_1,w_2] true -> q_1: (c'=false) + (1-q_1): (c'=true); // only user 1 transmits
     [w1,t2] true -> q1: (c'=false) + (1-q1): (c'=true); // only user 2 transmits
     [t1,t2] true \rightarrow q2 : (c'=false) + (1-q2) : (c'=true); // both users transmit
endmodule
```


- PRISM modelling language
 - de-facto standard for probabilistic model checkers
 - key ingredients: modules, variables, guarded commands
 - language features: nondeterminism + probability, parallel composition, costs/rewards, parameters
- PRISM-games modelling language
 - adds: player specifications, joint update distributions
- Some observations:
 - simple/low-level: no control flow/functions, limited types, ...
 - + uniform language for many types of probabilistic model
 - + translations exist from more expressive languages
 - + well suited to symbolic methods (NB: but <u>not</u> to simulation)

Temporal logic

Temporal logic: rPATL

- Temporal logic for stochastic games
 - unambiguous, flexible & tractable behavioural specification
 - basis: rPATL (reward probabilistic alternating temporal logic)
- rPATL is a branching-time logic (extending CTL) with:
 - coalition operator $\langle\langle C \rangle\rangle$ of ATL
 - probabilistic operator P of PCTL
 - generalised (expected) reward operator R from PRISM
 - i.e.: zero-sum, probabilistic reachability + exp. cumul. reward
- Example:
 - $\left<\!\left<\!\left<\!\left<\!r_1,\!r_3\!\right>\!\right>\!\right> P_{>0.99}\left[\begin{array}{c} F^{\le 10}\left(goal_1 \lor \ goal_3\right) \right] \right.$
 - "robots 1 and 3 have a strategy to ensure that the probability of reaching a goal location within 10 steps is >0.99, regardless of the strategies of other players"

Temporal logic: rPATL

- Temporal logic for stochastic games
 - unambiguous, flexible & tractable behavioural specification
 - basis: rPATL (reward probabilistic alternating temporal logic)
- rPATL is a branching-time logic (extending CTL) with:
 - coalition operator $\langle\langle C \rangle\rangle$ of ATL
 - probabilistic operator P of PCTL
 - generalised (expected) reward operator R from PRISM
 - i.e.: zero-sum, probabilistic reachability + exp. cumul. reward
- Semantics:
 - $s \models \langle \langle C \rangle \rangle P_{\bowtie q}[\psi]$ iff:
 - "<u>there exist</u> strategies for players in coalition C such that, <u>for all</u> strategies of the other players, the probability of path formula ψ being true from state s satisfies $\bowtie q$ "

Temporal logic

- Simple examples (rPATL)
 - $\begin{array}{l} \ \mbox{Probabilistic reachability} \\ \langle \langle r_1 \rangle \rangle \ \mbox{P}_{\geq 0.7} \ [\ \mbox{F goal}_1 \] \\ \langle \langle r_1 \rangle \rangle \ \mbox{P}_{\geq 0.6} \ [\ \mbox{F}^{\leq 10} \ \mbox{goal}_1 \] \end{array}$
 - Probabilistic safety/invariance $\langle \langle r_1 \rangle \rangle P_{\geq 0.99}$ [G¬hazard]
 - Probabilistic reach-avoid $\langle \langle \mathbf{r}_1 \rangle \rangle P_{\geq 0.99}$ [¬hazard U goal₁]
 - Expected cost/reward $\langle \langle r_1 \rangle \rangle R_{\leq 4}^{steps}$ [F goal₁]
 - Numerical ("optimise") queries
 ((r₁)) P_{max=?} [F goal₁]
 - $\langle \langle \mathbf{r}_1 \rangle \rangle R_{min=?}^{time} [Fgoal_1]$

Example TSG: robot navigation (players = robots r_1 , r_2)

rPATL and beyond

- Nested specifications in rPATL
 - $\left\langle \left\langle \left\{ r_{1}, r_{3} \right\} \right\rangle R_{min=?} \left[\left\langle \left\langle \left\langle \left\{ r_{1} \right\} \right\rangle \right\rangle P_{\geq 0.99} \left[F^{\leq 10} \text{ base } \right] U \left(\text{goal}_{1} \lor \text{goal}_{3} \right) \right] \right.$
 - "minimise expected time for joint task between r_1 and r_3 , whilst ensuring r_1 can always reliably return to base"
- More expressive temporal specifications
 - e.g. (co-safe) linear temporal logic (LTL)
 - $\langle \langle \{r_1\} \rangle \rangle P_{max=?} [(G \neg hazard) \land (GF goal_1)]$
 - "maximise the probability visiting goal, infinitely often and avoiding hazards"
- Non-zero-sum: e.g. Nash equilibria
 - $\langle \langle \{r_1\}:\{r_3\} \rangle \rangle (R_{min=?} [F goal_1] + R_{min=?} [F goal_3])$
 - "minimise the time to reach the goal for each robot"

Solving stochastic games

Model checking rPATL for TSGs

- Main task: checking individual P and R operators
 - reduces to solving a (zero-sum) 2-player TSG
 - e.g. max/min reachability probability: $sup_{\sigma_1}inf_{\sigma_2} Pr_s^{\sigma_1,\sigma_2}(F\checkmark)$
 - optimal strategies are memoryless/deterministic
 - complexity: $NP \cap coNP$ (if we omit some reward operators)
- We use value iteration
 - values p(s) are the least fixed point of:

 $p(s) = \begin{cases} 1 & \text{if } s \vDash \checkmark \\ \max_a \Sigma_{s'} \delta(s,a)(s') \cdot p(s') & \text{if } s \nvDash \checkmark \text{ and } s \in S_1 \\ \min_a \Sigma_{s'} \delta(s,a)(s') \cdot p(s') & \text{if } s \nvDash \checkmark \text{ and } s \in S_2 \end{cases}$

- and more: graph-algorithms, sequences of fixed points, ...

 S_4

S₂

W₂

rPATL for TSGs: Implementation

- Value iteration for TSGs
 - similar efficiency and scalability to MDPs
 - (TSGs of, say, 10⁷ states easily solvable)
- Also symbolic (BDD-based) implementation
 - exploits model structure/regularity
 - big gains on some models
 - also benefits for strategy compactness

- Other solution methods (and tools) exist
 - strategy iteration, quadratic programming
 - interval/optimistic value iteration (for accuracy guarantees)
 - PRISM-games (and extensions), Tempest, PET, EPMC, ...
 - see QComp'23 [ABB+24]

Example: Energy protocols

- Demand management protocol for microgrids [CFK+13b]
 - randomised back-off to minimise peaks
- Stochastic game model + rPATL
 - users can collaboratively cheat (i.e., ignore the protocol)
 - TSGs of up to \sim 6 million states
 - exposes protocol weakness (incentive to act selfishly)
 - propose/verify simple protocol fix using penalties

Model checking rPATL for CSGs

- Reduces to solving (zero-sum) 2-player CSGs
 - optimal strategies are now randomised (problem is in PSPACE)
- We again use a value iteration based approach
 - e.g. max/min reachability probabilities
 - $sup_{\sigma_1} inf_{\sigma_2} Pr_s^{\sigma_1,\sigma_2}$ (F \checkmark) for all states s
 - values p(s) are the least fixed point of:

$$\mathbf{p(s)} = \begin{cases} 1 & \text{if } s \vDash \checkmark \\ \text{val}(\mathsf{Z}) & \text{if } s \nvDash \checkmark \end{cases}$$

- where Z is the matrix game with $z_{ij} = \Sigma_{s'} \delta(s,(a_i,b_j))(s') \cdot p(s')$

Model checking rPATL for CSGs

- Reduces to solving (zero-sum) 2-player CSGs
 - optimal strategies are now randomised (problem is in PSPACE)
- We again use a value iteration based approach
 - e.g. max/min reachability probabilities
 - $sup_{\sigma_1} inf_{\sigma_2} Pr_s^{\sigma_1,\sigma_2}$ (F \checkmark) for all states s
 - values p(s) are the least fixed point of:

- need to solve a matrix game at every state and every iteration
- LP problem of size |A|
- this is the main performance bottleneck
- solve CSGs of ~3 million states

 $\delta(s,(a_i,b_j))(s') \cdot \mathbf{p}(s')$

Example: Future markets investor

- Model of interactions between:
 - stock market, evolves stochastically
 - two investors i_1 , i_2 decide when to invest
 - market decides whether to bar investors
- Modelled as a 3-player CSG

- investing/barring decisions are simultaneous
- profit reduced for simultaneous investments
- market cannot observe investors' decisions
- Analysed with rPATL model checking & strategy synthesis
 - distinct profit models considered: 'normal market', 'later cash-ins' and 'later cash-ins with fluctuation'
 - comparison between TSG and CSG models

Example: Future markets investor

- Example rPATL query:
 - $\langle (investor_1, investor_2) \rangle R_{max=?}^{profit_{1,2}} [F finished_{1,2}]$
 - i.e. maximising joint profit
- Results: with (left) and without (right) fluctuations
 - optimal (randomised) investment strategies synthesised
 - CSG yields more realistic results (market has less power due to limited observation of investor strategies)

Equilibria-based properties

Equilibria-based properties

- Non-zero-sum CSGs
 - player objectives are distinct, but not directly opposing
- For now: Nash equilibria (NE) (we will later use other equilibria)
 - no incentive for any player to unilaterally change strategy
 - actually, we use ϵ -NE, which always exist for CSGs
 - a strategy profile $\sigma = (\sigma_{1,...}, \sigma_n)$ for a CSG is an ϵ -NE for state s and objectives $X_1, ..., X_n$ iff:
 - $\operatorname{Pr}_{s}^{\sigma}(X_{i}) \geq \sup \left\{ \operatorname{Pr}_{s}^{\sigma'}(X_{i}) \mid \sigma' = \sigma_{-i}[\sigma_{i}'] \text{ and } \sigma_{i}' \in \Sigma_{i} \right\} \varepsilon \text{ for all } i$
 - we use subgame-perfect ϵ -NE, where this holds for all states s
- To formulate the model checking (strategy synthesis) problem, we use social-welfare Nash equilibria (SWNE)
 - these are NE which maximise the sum $E_s^{\sigma}(X_1) + \dots E_s^{\sigma}(X_n)$
 - i.e., optimise the players combined goal

Extending rPATL: Equilibria

• We extend rPATL accordingly:

Zero-sum properties

Equilibria-based properties

 $\langle \langle \mathbf{r}_1 \rangle \rangle_{max=?} \mathsf{P} [\mathsf{F}^{\leq k} \mathsf{goal}_1]$

 $\langle \langle r_1:r_2 \rangle \rangle_{max=?} (P [F^{\leq k} goal_1] + P [F^{\leq k} goal_2])$

find a robot 1 strategy which maximises the probability of it reaching its goal, regardless of robot 2

find (SWNE) strategies for robots 1 and 2 where there is no incentive to change actions and which maximise joint goal probability

Equilibria model checking for CSGs

- Model checking for CSGs with equilibria
 - first: 2-coalition case [KNPS19]
 - we need "stopping game" assumptions
 - requires solution of bimatrix games

• We further extend the value iteration approach:

$$p(s) = \begin{cases} (1,1) & \text{if } s \vDash \sqrt{1} \wedge \sqrt{2} \\ (p_{max}(s,\sqrt{2}),1) & \text{if } s \vDash \sqrt{1} \wedge \sqrt{2} \\ (1,p_{max}(s,\sqrt{1})) & \text{if } s \vDash \sqrt{1} \wedge \sqrt{2} \\ \text{val}(Z_1,Z_2) & \text{if } s \vDash \sqrt{1} \wedge \sqrt{2} \end{cases} \text{ standard MDP analysis}$$

- where Z_1 and Z_2 encode matrix games similar to before

Equilibria model checking for CSGs

- Model checking for CSGs with equilibria
 - first: 2-coalition case [KNPS19]
 - we need "stopping game" assumptions
 - requires solution of bimatrix games

Implementation

- we adapt a known approach using labelled polytopes, implemented via SMT
- optimisations: filtering of dominated strategies
- solve CSGs of ~2 million states

• Extension

- n-coalition case in [QEST'20]
- can't use labelled polytopes
- needs nonLPs for each state
- poorer scalability

x games similar to before

Example: multi-robot coordination

- + 2 robots navigating an N x N grid
 - start at opposite corners, goals are to navigate to opposite corners
 - obstacles modelled stochastically: navigation in chosen direction fails with probability q

- Results (10 x 10 grid)
 - better performance obtained than using zero-sum methods, i.e., optimising for robot 1, then robot 2
 - ϵ -NE found typically have ϵ =0

 $\langle (robot1:robot2) \rangle_{max=?}$ (P [$F^{\leq k} goal_1$]+P [$F^{\leq k} goal_2$])

Faster and fairer equilibria

- Limitations of (social welfare) Nash equilibria for CSGs:
- 1. can be computationally expensive, especially for >2 players
- 2. social welfare optimality is not always equally beneficial
- Correlated equilibria
 - shared (probabilistic) signal
 - + map to local strategies
 - synthesis: support enumeration
 + LP (>2 players needs nonLP for NE)
 - much faster to synthesise (4-20x faster)
- Social fairness
 - alternative optimality criterion: minimise difference in objectives
 - applies to both Nash/correlated: slight changes to optimisation

Signals: randomised coordination of next message sender, adapting over time

Faster and fairer equilibria

- Limitations of (social welfare) Nash equilibria for CSGs:
- 1. can be computationally expensive, especially for >2 players
- 2. social welfare optimality is <u>not</u> always equally beneficial
- Correlated equilibria
 - shared (probabilistic) signal
 - + map to local strategies
 - synthesis: support enumeration
 + LP (>2 players needs nonLP for NE)
 - much faster to synthesise (4-20x faster)
- Social fairness
 - alternative optimality criterion: minimise difference in objectives
 - applies to both Nash/correlated: slight changes to optimisation

Example: Aloha communication protocol

than social welfare (WF_i) Wrapping up

Summary

- Probabilistic model checking for stochastic games
 - turn-based and concurrent stochastic games
 - tools for modelling, construction & analysis of large games
 - temporal logics for property specification
 - value iteration based verification and strategy synthesis
 - wide range of interesting application domains & queries

Challenges & directions

- Partial information/observability
 - needed for practical applications

Max. prob. reach goal

- POSGs? DEC–POMDPs?
- Other game theory tools
 - e.g. Stackelberg equilibria
- Managing mo
 - learning + r
- Accuracy of m
 - value iterati
- Scalability & e
 - e.g. symbol
 - sampling-b

 $\frac{1}{\frac{q}{2}}$

 $1 - \frac{q}{2}$

PRISM-games

- See the PRISM-games website for more info
 - prismmodelchecker.org/games/
 - documentation, examples, case studies, papers
 - downloads: 🗯 💩 태
 - open source (GPLV2): GitHub