PRISM-games
Model Checking for Stochastic Games

\‘
Dave Parker
University of Oxford

Dagstuhl seminar “Stochastic Games”
June 2024

OXFORD

Verification with stochastic games

- How do we formally verify stochastic systems with...
— multiple autonomous agents acting concurrently

— competitive or collaborative behaviour between agents,
often with differing/opposing goals

— e.g. security protocols, algorithms for distributed consensus,
energy management, autonomous robotics, auctions

- Probabilistic model checking for stochastic games

— synthesis and verification of strategies for agents

to provide guarantees on safety/performance/...
in adversarial settings and stochastic environments

Probabilistic model checking

High-level Probabilistic \ -
: model checkin umeri
System model/design g results/analysis

= Probabilistic

model checker

@ —} {(ri)Psoo[-h U g]
) Probabilistic

o
° System Specification model
requirements (temporal logic)

PRISM-games

- PRISM-games: prismmodelchecker.org/games
— extension of PRISM for stochastic games
— modelling language + model checking + user interface
— explicit state & symbolic implementations; simulation

201
- 0.2 p1 b2 p3 P4
= 0.8 A " A "
2 151 | - : X : .(«. N

©

g S] Slow 53 | 0 . p2? r :
5 e - ~ | o e
E aSt 1 I N 1 " e
T 104 So (se,ush) p1? | [":
g West fast ., ’ ' 0 |
& - : : F 0 1 pp? T ._’1'
52 slow S4 | | .—”—'< 0 1
° ~ ' ' ! F .—»-I

T T T T T T 1
1 2 3 4 5 6 7 8 0 9

0.1

- Example applications (see web site for ~40 case studies)
— attack-defence trees; network protocols; intrusion detection
— human-in-the-loop UAV planning; multi-robot systems
— autonomous driving; self-adaptive software architectures
— collective decision making; team formation; trust models 4

http://www.prismmodelchecker.org/games

Overview

Models & modelling
— stochastic multi-player games

Property specification
— temporal logics

Solving stochastic games
— algorithms, tools, case studies
— turn-based/concurrent games
— zero-sum/equilibria

Models
&
modelling

Stochastic multi-player games

Turn-based stochastic games Concurrent stochastic games (CSGs)
(TSGs) (also: Markov games, multi-agent MDPs)

— transition function: — transition function:

+ 0 :SXA — Dist(S) . 01 SX(AU{L}) x ... X (A u{L}) — Dist(S)
— with state partition: — with joint action space:

- S =51w... WS, - A=A X L. XA,
— player i controls states S; — actions chosen simultaneously

Stochastic multi-player games

Turn-based stochastic games Concurrent stochastic games (CSGs)
(TSGs) (also: Markov games, multi-agent MDPs)

— strategies (for player i) — strategies (for player i)
. 0y (S A)* S; — Dist(A) . 071 (S A)* S — Dist(AU{L))

— 0; can be deterministic/randomised, memoryless/finite-memory/...
— strategy profile o = (0y,...,0,,) for all n players
— probability space Pr.9 (), or (reward-based) expectation E.% (X) 9

Modelling with turn-based games

- Turn-based stochastic games
— well suited to some (but not all) scenarios

Shared autonomy: Uncontrollable/unknown
human-robot control navigation interference
{hazard}
0.2
0.8 _
slow
east >1 -
. fast
0 Wes, fast
52 slow S4
0.9 -

0.1

10

Modelling with concurrent games

- Concurrent stochastic games
— example: CSG for 2 robots on a 3x1 grid

11

Modelling with concurrent games

- Concurrent stochastic games
— example: CSG for 2 robots on a 3x1 grid

{goali}

@ east >@ east @

(D)=

{goalz}

12

PRISM(-games) modelling language

- PRISM modelling language

— de-facto standard for probabilistic model checkers
— key ingredients: modules, variables, guarded commands

— language features: nondeterminism + probability,
parallel composition, costs/rewards, parameters

- PRISM-games modelling language

— adds: player specifications, joint update distributions

13

PRISM(-games) modelling language

csg

player p1 userl endplayer E le CSG del
xample moae
player p2 user2 endplayer (medium access

// Users (senders) control)
module user]

s1:[0..1]init O; // has player] sent?
el : [0..emax] init emax; // energy level of player 1
[W1] true -> (s1'=0); // wait
[t1] e1>0 -> (s1'=c’?0:1) & (el'=el-1); // transmit
endmodule
module user2 = userl [s1=s52,el=e2, wl=w2, t1=t2] endmodule
// Channel: used to compute joint probability distribution for transmission failure
module channel
c : bool init false; // is there a collision?
[t1,w2] true —> g1 : (c'=false) + (1-ql) : (c'=true); // only user I transmits
[w1,t2] true -> g1 : (c'=false) + (1-ql) : (c'=true); // only user 2 transmits
[t1,t2] true —> g2 : (c'=false) + (1-q2) : (c'=true); // both users transmit
endmodule

PRISM(-games) modelling language

csg
player p1 userl endplayer
player p2 user2 endplayer

A module
// Users (senders) is one (parallel)
module user] component
s1:[0..1]init O; // has player 1 sent? /

el : [0..emax] init emax; // energy level of player 1
[W1] true -> (s1'=0); // wait
[t1] e1>0 -> (s1'=c’?0:1) & (el'=el-1); // transmit
endmodule
module user2 = userl [s1=s52,el=e2, wl=w2, t1=t2] endmodule
// Channel: used to compute joint probability distribution for transmission failure
module channel
c : bool init false; // is there a collision?
[t1,w2] true —> g1 : (c'=false) + (1-ql) : (c'=true); // only user I transmits
[w1,t2] true -> g1 : (c'=false) + (1-ql) : (c'=true); // only user 2 transmits
[t1,t2] true —> g2 : (c'=false) + (1-q2) : (c'=true); // both users transmit
endmodule

PRISM(-games) modelling language

csg

player p1 userl endplayer b tderine

player p2 user2 endplayer the model state

// Users (senders) /

module user] Guarded commands
s1 :[0..1]init O; // has player 1 sent? describe (probabilistic)
el : [0..emax] init emax; // energy level of player 1 state updates

[W1] true -> (s1'=0); // wait
[t1] e1>0 -> (s1'=c’?0:1) & (el'=el-1); // transmit
endmodule
module user2 = userl [s1=s52,el=e2, wl=w2, t1=t2] endmodule
// Channel: used to compute joint probability distribution for transmission failure
module channel
c : bool init false; // is there a collision?
[t1,w2] true —> g1 : (c'=false) + (1-ql) : (c'=true); // only user I transmits
[w1,t2] true -> g1 : (c'=false) + (1-ql) : (c'=true); // only user 2 transmits
[t1,t2] true —> g2 : (c'=false) + (1-q2) : (c'=true); // both users transmit
endmodule

PRISM(-games) modelling language

cs9 Each player
player pl userl endplayer 4 comprises one
player p2 user2 endplayer or more modules

// Users (senders)

module user]
s1:[0..1]init O; // has player] sent?
el : [0..emax] ini

Players have
distinct actions,
executed
energy level of player 1 simultaneously

[W1] true —-> (s1'=0); // wait
[t1] e1>0 -> (s1'=c’?0:1) & (el'=el-1); // transmit
endmodule

module user2 = userl [s1=s52,el=e2, wl=w2, t1=t2] endmodule
// Channel: used to compute joint probability distribution for transmission failure
module channel
c : bool init false; // is there a collision?
[t1,w2] true —> g1 : (c'=false) + (1-ql) : (c'=true); // only user I transmits
[w1,t2] true -> g1 : (c'=false) + (1-ql) : (c'=true); // only user 2 transmits
[t1,t2] true —> g2 : (c'=false) + (1-q2) : (c'=true); // both users transmit
endmodule

PRISM(-games) modelling language

= Variable updates
player p1 userl endplayer can refer to other
player p2 user2 endplayer variables updated
// Users (senders) simultaneously

module user]
s1:[0..1]init O; // has player] sent?
el : [0..emax] init emax; // energylevel of player 1
[W1] true —-> (s1'=0); // wait
[t1] e1>0-> (s1'=c’?0:1) & (el'=el-1); // transmit
endmodule

Action lists
used to specify
synchronisation

module user2 = userl [s1=s2, el=e2, wl=w2 =t2] endmodule

// Channel: used to compute joint probatility distribution for transmission failure
module channel

c : bool init fal / Is there a collision?
[t1,w2] true —> g1 : (c'=false) + (1-ql) : (c'=true); // only user I transmits
[w1,t2] true —> g1 : (c'=false) + (1-ql) : (c'=true); // only user 2 transmits
[t1,t2] true —> g2 : (c'=false) + (1-q2) : (c'=true); // both users transmit

endmodule

PRISM(-games) modelling language

PRISM modelling language
— de-facto standard for probabilistic model checkers
— key ingredients: modules, variables, guarded commands

— language features: nondeterminism + probability,
parallel composition, costs/rewards, parameters

PRISM-games modelling language
— adds: player specifications, joint update distributions

- Some observations:

— simple/low-level: no control flow/functions, limited types, ...
+ uniform language for many types of probabilistic model

+ translations exist from more expressive languages

+ well suited to symbolic methods (NB: but not to simulation)

19

Temporal
logic

Temporal logic: rPATL

- Temporal logic for stochastic games
— unambiguous, flexible & tractable behavioural specification

— basis: rPATL (reward probabilistic alternating temporal logic)

rPATL is a branching-time logic (extending CTL) with:
— coalition operator ((C)) of ATL
— probabilistic operator P of PCTL
— generalised (expected) reward operator R from PRISM
— j.e.: zero-sum, probabilistic reachability + exp. cumul. reward

Example:

— ({{r1,r3})) Poo.o9 [F=1%(goaly Vv goals) |
— “robots 1 and 3 have a strategy to ensure that the probability
of reaching a goal location within 10 steps is >0.99,

regardless of the strategies of other players”
21

Temporal logic: rPATL

- Temporal logic for stochastic games
— unambiguous, flexible & tractable behavioural specification

— basis: rPATL (reward probabilistic alternating temporal logic)

rPATL is a branching-time logic (extending CTL) with:
— coalition operator ((C)) of ATL
— probabilistic operator P of PCTL
— generalised (expected) reward operator R from PRISM
— j.e.: zero-sum, probabilistic reachability + exp. cumul. reward

- Semantics:

— 5 = ((C)Pug[W] iff

— “there exist strategies for players in coalition C such that,
for all strategies of the other players, the probability of path
formula P being true from state s satisfies > q”

22

Temporal logic

Simple examples (rPATL)

— Probabilistic reachability

((r1)) Po7 [F goal;] Example TSG: robot navigation
((r1)) P>o.6[F=10 goal;] (players = robots ry, r»)

— Probabilistic safety/invariance {hazard)}
((r1)) P=o.99 [G—hazard] : _ east {goal,}

— Probabilistic reach-avoid
((r1)) P=0.99 [-hazard U goal;]

— Expected cost/reward
((r1)) REEP*[F goal;]

— Numerical (“optimise”) queries
((I’])) Pmax:?[F goal]]

— ((r1)) R, [F goal;]

23

rPATL and beyond

- Nested specifications in rPATL

— (({r1,r3)) Rmin=z [(({r1})) P=o.09 [F='0 base | U (goal; Vv goals)]

— “minimise expected time for joint task between r; and r3,
whilst ensuring r; can always reliably return to base”

- More expressive temporal specifications

— e.g. (co-safe) linear temporal logic (LTL)
— ({{r})) Pmax=> [(G—hazard) A (GF goal))]

— “maximise the probability visiting goal;
infinitely often and avoiding hazards”

- Non-zero-sum: e.g. Nash equilibria

— ({Ar1}3drsh)) Rmin—2 [F goaly | + Rmin—2 [F goals])
— “minimise the time to reach the goal for each robot”

25

Solving
stochastic
games

Model checking rPATL for TSGs

Main task: checking individual P and R operators
— reduces to solving a (zero-sum) 2-player TSG
— e.g. max/min reachability probability: supc,]inf(72 Pr.c1.92 (Fv)
— optimal strategies are memoryless/deterministic
— complexity: NP N coNP (if we omit some reward operators) @---

- We use value iteration

— values p(s) are the
least fixed point of:

] if sev
p(s) = { max, 2o 8(s,a)(s’)-p(s’) if sv and seS,;
min, 2 0(s,a)(s’)-p(s’) if s#v and sES,

— and more: graph-algorithms, sequences of fixed points, ...

28

rPATL for TSGs: Implementation

- Value iteration for TSGs
— similar efficiency and scalability to MDPs
— (TSGs of, say, 107 states easily solvable)

- Also symbolic (BDD-based) implementation

— exploits model structure/regularity
— big gains on some models

— also benefits for strategy compactness

- Other solution methods (and tools) exist
— strategy iteration, quadratic programming
— interval/optimistic value iteration (for accuracy guarantees)
— PRISM-games (and extensions), Tempest, PET, EPMC, ...

— see QComp’23 [ABB+24]
29

Example: Energy protocols

- Demand management protocol for microgrids [CFK+13b]
— randomised back-off to minimise peaks

o0 A Original Incentive for
. . algorithm (individual)
- Stochastic game model + rPATL B | deviations
z2 15 —
— users can collaboratively cheat - 5 /
. . eviating g
(i.e., ignore the protocol) ooaliton 10 ~.
— TSGs of up to ~6 million states & -s L
8° 5 STT T T T T T households
— exposes protocol weakness o @ 2 3 4 5 6 7
(incentive to act selfishly) A oo 24 Agorithm +
. . pro_oco © penalties
— propose/verify simple oo | E i
. . . 32 15 — N
protocol fix using penalties : penamgs
i‘f reverses
% 10 5 trend
5 1T hoenoiss
2 3 4 5 6 7
(\
((CHRCax—> [FO end] / [C]
PRISM-games

30

Model checking rPATL for CSGs

- Reduces to solving (zero-sum) 2-player CSGs
— optimal strategies are now randomised (problem is in PSPACE)

- We again use a value iteration based approach
— e.g. max/min reachability probabilities
— SUpg, inf(72 Pr.o1.92 (F v') for all states s
— values p(s) are the least fixed point of:

] if sev
val(Z) if s#v

t]!tZ

VV]itZ

p(s) =

VV]!VVZ

— where Z is the matrix game with z; = 25 0(s,(a;,b))(s’)-p(s’)

31

Model checking rPATL for CSGs

- Reduces to solving (zero-sum) 2-player CSGs
— optimal strategies are now randomised (problem is in PSPACE)

- We again use a value iteration based approach
— e.g. max/min reachability probabilities
— SUpg, inf(72 Pr.o1.92 (F v') for all states s
— values p(s) are the least fixed point of:

« Implementation

= need to solve a matrix game at
every state and every iteration

= LP problem of size |A|

= this is the main
performance bottleneck

= solve CSGs of ~3 million states

32

Example: Future markets investor

Model of interactions between: N
— stock market, evolves stochastically .

— two investors i, i, decide when to invest

— market decides whether to bar investors | M

Modelled as a 3-player CSG A
— extends simpler model originally from [Mclver/Morgan’07]

— investing/barring decisions are simultaneous
— profit reduced for simultaneous investments
— market cannot observe investors’ decisions

- Analysed with rPATL model checking & strategy synthesis

— distinct profit models considered: ‘normal market’, ‘later
cash-ins’ and ‘later cash-ins with fluctuation’

— comparison between TSG and CSG models 34

Example: Future markets investor

Example rPATL query:
— ((investor,,investor,)) RAM2 [F finished, ,]
— i.e. maximising joint profit

Results: with (left) and without (right) fluctuations

— optimal (randomised) investment strategies synthesised

— CSG vyields more realistic results (market has less power
due to limited observation of investor strategies)

16
» 15 - 25
B 14 i
& N 8, 22.5
§ L5 ’q'g 20
: - \ Too pessimistic:
5 1ol z . ~ unrealistic strategy
9}
y — for adversar
§ 9 —&— CSG (i1, i2)) 3 12.5 —®— CSG (i1, 12)) y
8 —&— TSG ((il,12)) = - —e— TSG ((il, i2))
T 2 3 4 5 6 7 8 o9 9

1 2 3 4 5 6 7 8 9 35

Nambes: oF months Number of months

Equilibria-based
properties

Equilibria-based properties

Non-zero-sum CSGs
— player objectives are distinct, but not directly opposing

For now: Nash equilibria (NE) (we will later use other equilibria)
— no incentive for any player to unilaterally change strategy
— actually, we use e -NE, which always exist for CSGs

— a strategy profile o=(o, ,0,) for a CSG
is an €-NE for state s and objectives X;,..., X, iff:

— Pr9(X;) = sup { Pr;o° (X)) | 0’=0_[0;’] and g€ %;} - € for all i
— we use subgame-perfect e-NE, where this holds for all states s

- To formulate the model checking (strategy synthesis)
problem, we use social-welfare Nash equilibria (SWNE)

— these are NE which maximise the sum E.o(X;) + ... E.o(X,)

— i.e., optimise the players combined goal 37

Extending rPATL: Equilibria

- We extend rPATL accordingly:

Zero-sum Equilibria-based
properties :> properties
<<r1>>max=? P [FSk goah] <<r1:r2))max=? (P [FSk goal]]+P [F =k goalz])
find a robot 1 strategy _ _
which maximises find (SWNE) strategies for robots 1 and 2
the probability of it where there is no incentive to change actions
reaching its goal, and which maximise joint goal probability

regardless of robot 2

38

Equilibria model checking for CSGs

Model checking for CSGs with equilibria
— first: 2-coalition case [KNPST19]
— we need “stopping game” assumptions
— requires solution of bimatrix games

- We further extend the value iteration approach:

p(s) = <

((1,1)
(pmax(S,/Z);])
(] apmax(s;/l))

. val(Z,,Z,)

if s = viAV> standard
ifse v A-vV, «— _ MDPanalysis
ifseE vV 1AV

ifsE -V A=V, €«— bimatrix game

— where 7, and Z, encode matrix games similar to before

39

Equilibria model checking for CSGs

- Model checking for CSGs with equilibria
— first: 2-coalition case [KNPST19]
— we need “stopping game” assumptions
— requires solution of bimatrix games

 Implementation

dant a k h « EXxtension
= we adapt a known approac . . . ,
using labelled polytopes, n-coalition case in [QEST’20]

implemented via SMT can’t use labelled polytopes
= optimisations: filtering needs nonlLPs for each state
of dominated strategies poorer scalability
= solve CSGs of ~2 million states

40

Example: multi-robot coordination

2 robots navigating an N x N grid

gq
2 g
— start at opposite corners, goals are g
to navigate to opposite corners 1-2 | 44
2

— obstacles modelled stochastically: navigation 5’

N

in chosen direction fails with probability g

[uy

Results (10 x 10 grid)

— better performance obtained
than using zero-sum methods,
i.e., optimising for robot 1,
then robot 2

— €-NE found typically have €=0

probability
e
o

Average success

((robot1:robot2))max=2 (P [F=k goal;]+P [F =k goal,])

41

Faster and fairer equilibria

- Limitations of (social welfare) Nash equilibria for CSGs:

1. can be computationally expensive, especially for >2 players
2. social welfare optimality is not always equally beneficial

- Correlated equilibria

— shared (probabilistic) signal
+ map to local strategies

— synthesis: support enumeration
+ LP (>2 players needs nonLP for NE)

— much faster to synthesise (4-20x faster)

Social fairness

— alternative optimality criterion:
minimise difference in objectives

— applies to both Nash/correlated:
slight changes to optimisation

Example: Aloha
communication

protocol
t],tz

4 ’t2
W1,W>

Signals:
randomised coordination
of next message sender,

adapting over time

42

Faster and fairer equilibria

- Limitations of (social welfare) Nash equilibria for CSGs:

1. can be computationally expensive, especially for >2 players
2. social welfare optimality is not always equally beneficial

. Correlated equilibria Example: Aloha
S communication
— shared (probabilistic) signal protocol
+ map to local strategies BT Sl e
: . 10 —e— SW, |
— synthesis: support enumeration g9 B
+ LP (>2 players needs nonLP for NE) 5 7 e
: S 6
— much faster to synthesise (4-20x faster) & 5|
B 4
[] 37
- Social fairness 20_4/0.6 T
— alternative optimality criterion: !
minimise difference in objectives social fairness (SF)
_ more equitable
— applies to both Nash/correlated: than social welfare

slight changes to optimisation (WF) 43

Wrapping up

Summary

- Probabilistic model checking for stochastic games

— turn-based and concurrent stochastic games

— tools for modelling, construction & analysis of large games
— temporal logics for property specification

— value iteration based verification and strategy synthesis

— wide range of interesting application domains & queries

45

Challenges & directions

Partial information/observability
— needed for practical applications
— POSGs? DEC-POMDPs?

Other game theory tools
— e.g. Stackelberg equilibria

Managing model uncertainty
— learning + robust verification

Accuracy of model checking results
— value iteration improvements; exact methods

Max. prob. reach goal
=)
o
@
QO
(2}

Scalability & efficiency
— e.g. symbolic methods, abstraction, symmetry reduction

— sampling-based strategy synthesis methods 16

PRISM-games

\!
- See the PRISM-games website for more info

— prismmodelchecker.org/games/

— documentation, examples, case studies, papers

— downloads: " & ==
— open source (GPLV2): G{H{b

47

http://www.prismmodelchecker.org/games/

