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ABSTRACT
In this work we address three overlooked practical challenges of
continuous authentication systems based on eye movement biomet-
rics: (i) changes in lighting conditions, (ii) task dependent features
and the (iii) need for an accurate calibration phase. We collect eye
movement data from 22 participants. To measure the effect of the
three challenges, we collect data while varying the experimental
conditions: users perform four different tasks, lighting conditions
change over the course of the session and we collect data related to
both accurate (user-specific) and inaccurate (generic) calibrations.

To address changing lighting conditions, we identify the two
main sources of light, i.e., screen brightness and ambient light,
and we propose a pupil diameter correction mechanism based on
these. We find that such mechanism can accurately adjust for the
pupil shrinking or expanding in relation to the varying amount
of light reaching the eye. To account for inaccurate calibrations,
we augment the previously known feature set with new features
based on binocular tracking, where the left and the right eye are
tracked separately. We show that these features can be extremely
distinctive even when using a generic calibration. We further apply
a cross-task mapping function based on population data which
systematically accounts for the dependency of features to tasks
(e.g., reading a text and browsing a website lead to different eye
movement dynamics).

Using these enhancements, even while relaxing assumptions
about the experimental conditions, we show that our system achieves
significantly lower error rates compared to previous work. For intra-
task authentication, without user-specific calibration and in variable
screen brightness and ambient lighting, we achieve an equal error
rate of 3.93% with only two minutes of training data. For the same
setup but with constant screen brightness (e.g., as for a reading
task) we can achieve equal error rates as low as of 1.88%.
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1 INTRODUCTION
Authentication based on various biometric modalities has become
increasingly popular in recent years. This surge has been mostly
driven by the integration of biometric sensors in smartphones,
with fingerprint scanning and face recognition being nowadays
available in most devices. With the increasing use of deep models,
both fingerprint and face recognition can now offer low error rates
and convenient recognition times.

While such physiological biometrics offer accurate and fast recog-
nition, they are easily observable: both fingerprints and faces can
be easily obtained and forged by adversaries. While there have
been extensive efforts to detect spoofed samples (e.g., fake fingers),
this often unfolds into an arms race with attackers improving their
artifact to circumvent liveness detection. In comparison, behav-
ioral biometrics rely on distinctive behaviour rather than physical
characteristics. As such, behavioral traits are inherently less observ-
able compared to physiological ones. Different behaviour-based
modalities have been proposed by the academic community, in-
cluding keystroke dynamics [19], touchscreen input dynamics [16],
gait [5, 24], mouse movements [38], electrocardiography (ECG) [14]
and mobile device pickups (MDP) [15]. These systems may com-
bine both behavioural and physiological components, e.g., touch
dynamics make use of touch pressure, which partially depends on
the size of the user’s finger.

Eye movements have recently gained interest as a behavioural
biometric with a strong physiological component [3, 11, 12, 17,
20, 21, 31, 32, 35]. With advances in technology, video-based eye
trackers are increasingly cheap and integrated in consumer devices.
Eye movement biometrics (not to be confused with iris recognition)
combine the steadiness of gaze, rapid short-term movements, the
shape and duration of visual fixations and the (changes in) size
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of the person’s pupil. While eye movements has been shown to
achieve relatively low error rates, there are three major practical
challenges of using eye movements in realistic settings: (i) the need
for a precise calibration, (ii) the eye movements’ task-dependency
and (iii) the pupil light-sensitivity.

A precise calibration is required in order to obtain good eye track-
ing accuracy and subsequently accurate eye movements features.
While calibration itself may be relatively quick (<10 seconds), it is
highly sensitive to changes in the user’s interaction (e.g., posture,
distance between eyes and screen, head movements), leading to
poor stability over time. Additionally, previous work has shown
that eye movements are highly task-dependant, and that authen-
tication across different tasks (i.e., enrolling the user on one task
and authenticating on another) leads to significant increases in
error rates. Finally, given the importance of pupil-based features,
changes in pupil diameter caused by changing lighting environment
(e.g., ambient light, screen brightness) compromise the stability and
accuracy of the recognition.

In this paper, we propose new methods to address the three
challenges of using eye movements biometrics in realistic settings
and combine them to develop an authentication system. We collect
data from 22 participants recruited from the general public, across
two different sessions. For each partipant, we collect eye movement
data across different tasks, different lighting conditions (including
both screen brightness and ambient light) and different calibrations
accuracies. We augment the eye movements feature set used in
previous work to include binocular features based on the difference
of tracking between left and right eye. We show that the full set
of features can successfully discriminate users without requiring
user-specific calibrations. We propose a pupil diameter correction
mechanism that accounts for the screen brightness and level of
ambient light in order to refine the pupil diameter measurement
coming from the sensor. We further show that using a population
based cross-task mapping function, we can automatically adjust for
the task-dependent changes in feature distributions, improving the
accuracy of authentication across tasks.

The contributions of this paper can be summarized as follows:

• Wedevelop a new eyemovements recognition pipelinewhich
accounts for imprecise calibrations, changes in lighting en-
vironment and cross-task authentication.

• We test the system on 22 participants recruited from the
general public, across two separate sessions. We test a set
of different lighting conditions (i.e., screen brightness and
ambient light), tasks and calibration quality.

• We make our dataset and the code used for the experiments
available online1.

The remainder of the paper is organised as follows: Section 2
outlines background and related work on eye movement biometrics.
Section 3 and 4 describe our experimental design and methods. In
Section 5 we present our results. We discuss the security of our
approach in Section 6 and conclude the paper in Section 7.

2 RELATEDWORK
In this section, we provide an overview of the medical foundation
of eye movements, eye tracking technology and eye movement
authentication systems.

2.1 Eye movement background
The human eye moves within six degrees of freedom with six mus-
cles responsible for the movement of the eyeball. The main types of
eye movements can be categorized into saccades and fixations, while
the neural signs controlling these movements can be categorized as
voluntary, involuntary and reflexive. Saccades are rapid stepwise
movements of both eyes in the same direction that typically last
10-100 ms, depending on the distance covered [8] and are used to
shift the gaze to another location. In contrast to saccades, fixations
are relatively focused, low-velocity eye movements with a typical
duration of 100-400 ms and are used to stabilize the retina over a
stationary object of interest. Yet, eyes are never perfectly still and
exhibit involuntary movements even during visual fixations. The
main reason for such movements is to counteract retinal fatigue
and to prevent visual fading. One type of such movements are mi-
crosaccades, characterized by high velocity and acceleration often
away from the fixation centre [29].

Besides the eye movements, the pupil diameter is also an distinc-
tive feature which can be included in the analysis of eye behaviour.
The range for this feature in an individual is largely determined
by eye physiology, gender and ethnicity and is relatively constant
during adulthood [28]. Nevertheless, multiple causes that affect the
pupil diameter have been found, including memory and cognitive
workload [25], lighting conditions [36] and drug consumption [23].
The pupil size also shrinks as a person ages, an effect which is
particularly pronounced in low lighting conditions [37].

2.2 Eye tracking technology
Eye tracking is the process of tracking the position and movements
of a person’s eye. When these movements are calibrated with re-
gard to an external screen (i.e., the system determines gaze points),
the process is called gaze tracking. There are two main approaches
to eye tracking: electrooculography (EOG) and video-based track-
ing. EOG is a tracking technique that measures electrical potential
between two adhesive electrodes which are placed around the eyes.
This approach is popular in the medical field, as it enables accurate
recordings of eye movements even while the eyes are closed (e.g.,
during blinks or while the subject is sleeping). However, this is
a rather invasive technique which is unlikely to be acceptable to
users outside medical and research trials.

On the other hand, video-based eye tracking involves the record-
ing of the user’s eyes through cameras with high frame rates. While
tracking is possible with conventional RGB cameras, accuracy is
usually enhanced by using an infrared camera and an additional
infrared light source. The users retinas reflect the light source allow-
ing for a more accurate tracking of the eye’s positions. As infrared
light is invisible to the human eye, the tracking itself is completely
non-invasive and not noticeable to the user. In order to determine
the user’s gaze point on a screen, the system has to be calibrated.
The calibration process requires the user to look at a sequence of
1https://simonizor.github.io/28blinkslater
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Study Mode Stimulus Feature types Cross-task Calibration optional Pupil correction EER [%]

[32] Login Movie trailer Fixation density map ✗ ✗ ✗ 14
[17] Login Human faces Distribution of area of interest ✗ ✗ ✗ 36.1
[31] Login Human faces Graph matching ✗ ✗ ✗ 30
[3] Login Human faces Scan paths ✗ ✗ ✗ 25
[35] Login Moving dot Fixation and saccade shape ✗ ✗ ✗ 6.3

[12] Continuous Various tasks Fixation and pupil features ✓ ✗ ✓ 0.04 - 4.9
[11] Continuous Moving dot Fixation and pupil features ✗ ✗ ✗ 3.98
[20] Continuous Reading Scan paths ✗ ✗ ✗ 23
[21] Continuous Reading Fixation and saccade shape ✗ ✗ ✗ 16.5

Table 1: Summary of biometric eye movement authentication. Cross-task indicates whether the study measures cross-task
authentication accuracy. Pupil correction indicates whether the study corrects for the effect of light on the pupil diameter.

points shown on the screen and is sensitive to posture, including
the distance to the screen. Video-based eye tracking is increas-
ingly available in consumer devices, laptops in particular, but even
integrated in virtual or agumented reality headsets.

2.3 Eye movement authentication
The body of work on eye movement biometrics can be divided
into three parts: Eye movements as an input channel, continuous
authentication and login-time authentication.

Eye movements as an input channel. In the past, eye move-
ments have been used as a mechanism to input conventional cre-
dentials (such as PINs [26, 27], passwords [26] and patterns). The
main benefit lies in increased resistance to shouldersurfing (per-
formed either by a human or through CCTV).

Bulling et al. propose an image-based gaze authentication sys-
tem [2]. During enrolment, the user is shown a specific image and
chooses a gaze path within the image as their secret. During authen-
tication, the user is then shown the same image and has to replicate
their enrolment-time gaze trace. In order to increase the entropy of
these traces, the authors use saliency masks. The mask covers parts
of the image that are most likely to attract the user’s attention (such
as faces) to prompt them to choose more random gaze paths. In the
second part of the study, the authors showed participants close-up
videos of another person’s gaze, while entering an image-based
password, and asked them to guess the “password”. Users were
successful in guessing a PIN-based password in 19 out of 81 cases,
which dropped to 1/82 and 8/72 for image based passwords with
and without saliency masks, respectively.

Login time biometric authentication.While the techniques in
the previous section are used at login time, they merely use gaze as
an input channel without making use of the biometric component
of eye movements. Their benefit lies in their resistance to replay
attacks (e.g., shouldersurfing) but they still require memorizing a
secret (a PIN, password or image gaze sequence). If this secret is
revealed, these techniques do not provide any further protection.

There are several proposed technique to achieve login time bio-
metric recognition based on eye movement patterns, a summary
is given in Table 1. Login time authentication systems have the
advantage of being able to use controlled stimuli (rather than hav-
ing to work with the user’s normal system interactions). Therefore,

they can measure the user’s visual response to a controlled and
fixed stimulus, without the user’s eye movement patterns being
influenced by changing stimuli. In addition, as the system knows
the screen content at any moment it can use “high-level” features
that make use of the user’s gaze positions, rather than the more
“low-level” saccadic or fixational movements. These high-level fea-
tures include scan paths (i.e., the shape and position of the user’s
time-varying gaze points) or distribution of areas of interest and
density maps (i.e., which part of an image the user focuses on the
most). Techniques based on these high-level features exhibit rela-
tively high error rates with the EER ranging from 6.3% to 30%. In
addition, it is not yet known how time-stable these patterns are
as users become more familiar with the (static) stimuli used for
authentication.

The best error rates (an EER of 6.3%) have been achieved by
Sluganovic et al., who propose a login time system using low-level
eye movement features. They test their approach using a desktop-
based eyetracking system with an SMI RED500 eye tracker and 30
participants [35]. During login and enrolment, users are asked to
look at a red dot on the screen. Once the user’s gaze focuses on
the dot, it moves to a new, random position on the screen. The
authentication process is then two-fold: To prevent replay attacks,
the system confirms whether the newly recorded gaze positions
match the (randomized) positions of the dots. If the data were
simply replayed from a prior login, the positions would be unlikely
to match (the reported success rate for the replay attack is 0.06%).
The actual biometric verification is based on raw eye movement
data without using the state of the stimulus.

All the systems [3, 17, 31, 32, 35] heavily rely on accurate cali-
brations. In fact, these studies make use of the relationship between
the user’s gaze and the visual stimulus position (e.g., red dot on a
black screen). Imprecise calibrations, which could occur with slight
posture changes or head movements, will affect the system perfor-
mance, leading to recognition errors [17, 31] or to compromised
replay detection [35].

Continuous authentication. The idea of continuous authentica-
tion is to establish the user’s identity not just once at login time
but also continuously while the person is using the system. As
such, it is able to detect a change in user identity even after the
initial login. Continuous authentication is only possible when the
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authentication system does not rely on creating specific stimuli
(as the process of authentication would otherwise interfere with
the user’s work). In this case, the system needs to account for the
fact that a person’s visual response may change as the stimulus
changes, therefore it is necessary to choose biometric features that
are as independent of the stimulus as possible.

There are a number of papers that propose eye movement-based
continuous authentication systems [11, 12, 20, 21] (see Table 1), but
most of them focus on scenarios where the user is working on a
single specific task. In this case, the system can use the specific
characteristics of the users’ responses within such a task to de-
velop distinctive task-dependent features (e.g., scan paths in [20]).
However, as users carry out several different tasks while using a
computer, a continuous system should be able to authenticate users
across tasks, either by training the classifier for each task or by
making cross-task predictions. Eberz et al. [11, 12] investigated
authentication with several real-world tasks (i.e.,reading, typing,
web browsing and watching different videos). Similarly to [35], the
biometric features are low-level, i.e., do not relate to the state of a
stimulus. The authors use three feature types: (a) spatial features
reflect the size and shape of fixations, (b) temporal features mea-
sure the speed of (micro-)saccades and (c) pupil features measure
changes in the size of the pupil. Out of this feature set, the pupil
diameter contributed the biggest amount of information, followed
by temporal features and spatial features.

In [11, 12], same-task recognition rates vary depending on the
task: 0.04% (browsing) to 4.9% (typing). However, recognition per-
formance drops significantly when authenticating on a task the
system was not trained on (e.g., enrolment data is for browsing,
test data is for typing). In particular for typing, the study shows
that typing is quite problematic, leading to EERs close to 50% (i.e.,
random guessing) when using eye movements data collected during
typing to authenticate the user during other tasks. For some tasks
combination, an improvement is achieved by correcting the pupil
diameter for the brightness of the screen content, see Section 2.1.
While (non-controlled) changes in screen brightness are accounted
for, the authors do not consider changes in ambient light. In ad-
dition, they only use a small user sample (10 users) for the task
dependence and brightness adjustment experiment which questions
the robustness of their results.

3 EXPERIMENTAL DESIGN
Here we describe our experimental goals and the setup and outline
of our data collection procedure.

3.1 Design Goals
The main challenges raised by previous work are three-fold: (a)
requirement of a precise calibration, (b) effects of changing ambient
light and screen brightness and (c) task dependence of features. The
objective to eliminate these effects is reflected in our design goals:

• Calibration-free operation: The system should not rely on
an accurate calibration. As all commercial eyetrackers require
calibration data, this design goal can be satisfied by either using
random calibration data or by using a generic calibration not
tailored to the current user.

~35̊

60cm

Side View

˚

Top View

user eye
tracker

monitor

lamp

user

lamp

eye
tracker

monitor

80cm

~50

Figure 1: Experimental setup. Users are sat on a chair around
60cm away from themonitor. The eye tracker sits at the base
of the monitor. The lamp is positioned around 80cm above
the desk and to the right of the user. The reported angles
vary slightly depending on the participant’s height and pos-
ture.

• Task independence: The system should reduce the effect of
task dependent features on error rates during cross-task au-
thentication (i.e., when training and testing on different tasks).

• Light-invariant features: The system’s error rates should not
change significantly if the levels of ambient light or the bright-
ness of the screen content changes during training, testing or
between training and testing.

3.2 Experiment Setup
Figure 1 shows a representation of our experimental setup. We use
an SMI RED500 eye tracker capturing samples at 500Hz. Unlike pre-
vious work, we use binocular eye tracking, which reports separate
gaze positions and pupil diameters for both eyes. The user is facing
a 22" screen with a 1920x1080 resolution positioned about 60cm
away. The screen is set to the same brightness for all users (although
the screen content brightness varies throughout the experiment
as discussed below). In order to vary the ambient light, we use a
desk lamp with a Philips Hue light bulb placed to the right of the
screen. The bulb’s brightness can be programmatically controlled.
The lamp is angled towards the keyboard to avoid blinding the user
on higher brightness settings. The room itself is illuminated with a
ceiling light dimmed to a moderate level in order to achieve suffi-
cient variation in brightness by using the desk lamp. Table 2 shows
the complete experiment data collection for a single participant.
In the following we explain how we designed the experiment to
collect data which allows us to test our goals: (i) effect of calibration,
(ii) effect of task selection and (iii) effect of light sensitivity.

Calibration. The RED500 eye tracker requires to be calibrated
in order to collect accurate gaze. The calibration maps different
rotations of each eyeball to the respective gaze positions on the
screen. As such, calibration depends on a set of factors including
the size and resolution of the screen, position of the eyetracker, the
distance of the user to the screen, the distance between the eyes
and the user’s viewing angle.

In order to test the effect of calibration on the collected data, we
conduct two separate sessions for each study participant. In the first
session, we calibrate the eye tracker with a user-specific calibration.
To create such calibration, we use a 9-point calibration procedure
(T0 in Table 2), followed by a 4-point validation procedure that
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TaskId Performed task User-specific calibration Screen brightness Ambient light Duration (s)

T0 User calibration — — — 60
T1 Calibration validation (pre) ✓ — — 10
T2 Slideshow ✓ increasing constant 180
T3 Reading ✓ constant increasing 300
T4 Browsing ✓ constant increasing 300
T5 Slideshow ✓ random increasing 300

C
al
ib
ra
te
d
se
ss
io
n

T6 Calibration validation (post) ✓ — — 10

— Load random calibration — — — —
T7 Calibration validation (pre) ✗ — — 10
T8 Slideshow ✗ increasing constant 180
T9 Reading ✗ constant increasing 300
T10 Browsing ✗ constant increasing 300
T11 Slideshow ✗ random increasing 300

U
nc
al
ib
ra
te
d
se
ss
io
n

T12 Calibration validation (post) ✗ — — 10
Table 2: Outline of the complete experiment for each participant. Each participant undergoes two sessions: in the first one
we compute a user-specific calibration (T0), in the second one we load a random calibration profile. Within one session, each
participant completes four tasks: slideshow (T2, T8), reading (T3, T9), browsing (T4, T10) and slideshow again (T5, T11). During
each taskwe vary the screen brightness, the ambient light, or both. At the beginning and at the end of each session, wemeasure
the calibration error with a validation procedure (T1, T6, T7, T12). The table reports the tasks in chronological order (from the
top) and the two sessions for one participant are collected at least two hours apart from each other.

measures the accuracy of the calibration (T1). In order to obtain
precise data, we repeat the calibration (T0 and T1) until the mean
calibration error across both eyes and the X- and Y-direction is
less than 1 degree in the validation phase. We then save both the
calibration accuracy and the calibration coefficients of the accepted
calibration. We perform another 4-point validation at the end of the
session (T6) to test whether the tracking accuracy changed over the
course of the session (e.g., due to changes in posture or excessive
head movements).

In the second session, rather than computing a user-specific
calibration, we load a different participant’s calibration profile in-
stead. While the position of the screen and eye tracker are fixed
for each session, the remaining factors affecting the calibration are
uncontrolled (e.g., participants height, posture, head angle). Simi-
larly to the first session, we measure the accuracy resulting from
the different calibration profile with the same 4-point validation
procedure, both at the beginning (T7) and at the end of the session
(T12). We always use the previous participant’s calibration profile,
i.e., the calibration profile of the participant who was measured last.
The reason we use the previous user’s calibration, rather than a
single generic calibration for all users, is to limit the effect of how
the calibration is chosen. As the eye tracker can not retroactively
apply different calibrations to raw video data, we are limited to one
calibration setting per session. Throughout the rest of the paper, we
refer to these two sessions, the one with a user-specific calibration
and the one using a different user calibration, as the calibrated and
the uncalibrated sessions, respectively.

Task selection. Similar to previous work [11, 12], we choose three
main tasks inspired by day-to-day activities: reading (T3 and T9 in
Table 2), web browsing (T4, T10) and an image slideshow (T2, T5,
T8, T11). Each task lasts approximately 3-5 minutes, after which the

Figure 2: Four images used in the slideshow task. Images are
sorted by increasing brightness. The brightnesses computed
with the root mean squared method are 47.4, 123.8, 142.2,
192.2 (left to right, top to bottom).

experiment continues automatically. The reading task consists of
reading an excerpt of Alice in Wonderland [4]. The text is shown in
a centred column on the screen on a grey background.We instructed
users to flip pages using the keyboard once they reached the end
of a page. Typically, users flipped page around three times during
the task. For the web browsing task, users browse Wikipedia: they
are shown a random Wikipedia article and asked to use (chains
of) links within the article to reach a target (Wikipedia) article.
This type of activity involves both skimming and reading and is
therefore similar to typical browsing patterns. During the slideshow
task, users watch a sets of images in a slideshow, where each image
is shown for two seconds before being substituted with the next
one. While conceptually very close to the videos used in previous
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work (e.g., [12, 32]), using images instead of videos allows to better
control the variation of brightness levels. We repeat the slideshow
task twice within one session to collect additional information
about the effect of varying light (see next paragraph). We choose a
set of nature-themed images while filtering images that may elicit
extreme user responses, such as spiders. Figure 2 shows four of
the images used in the slideshow, sorted in terms of increasing
brightness (left to right, top to bottom).

Light variability. As mentioned before, two factors mainly affect
the amount of light perceived by the pupil: the screen brightness
and the ambient light. Therefore, within one session, we vary one
or both factors within each task. In particular, for the first repetition
of the slideshow (T2, T8) we increase the brightness of the images
shown on the screen (these are sorted beforehand and shown in in-
creasing brightness order) while keeping the ambient light constant.
During the reading and browsing tasks (T3, T4, T9, T10), the screen
brightness is constant (the largely text-based nature of both tasks
results in negligible brightness differences), but we increase the
amount ambient light. For the second repetition of the slideshow
(T5, T11), we instead choose a random order for the images, while
again increasing the amount of ambient light. We determine an
image’s brightness by calculating the average root mean squared
pixel brightness of its greyscale representation. We always vary
the light (both ambient and screen) with increments rather than
decrements. We choose this ascending order as the pupil’s adap-
tation to increasing light is near-instantaneous, whereas adaption
to darkness occurs over time. For tasks with increasing ambient
light, we linearly increase the brightness of the desk lamp from the
minimum value to the maximum one. Varying the amount of light
which the participant is subjected to allows us to re-create realistic
uncontrolled lighting conditions.

3.3 Data Collection Process
We recruited 22 participants (11 male, 11 female) from the general
public, the only selection criteria were a minimum age of 18 and
normal or corrected-to-normal vision. The age distribution and the
presence of glasses and contact lenses are shown in Figure 3. We
collect whether the user is wearing glasses or contact lenses as we
found that, these often lead to less precise calibrations (due to the
glasses lenses reflecting or altering the reflection of the infrared
light used by the eye tracker). We advertised the study through
social media and participants were compensated for their time. The
data collection was approved by Oxford’s Interdivisional Research
Ethics Committee, reference R50977/RE002.

4 METHODS
In this section, we present the methods used to authenticate users
based on their eye movement patterns. The source code for each
of the steps and the data needed to precisely reproduce our results
are available online.

4.1 Preprocessing
The SMI RED500 used for this study reports two different types of
samples: raw gaze samples and fixation events. Raw samples are
measured at a rate of 500Hz while fixations are computed auto-
matically as they occur. Raw samples consist of a timestamp, X/Y
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Figure 3: Age and eye sight correction (glasses, lenses or nei-
ther) distribution among the experiment participants. Note
that each participant’s session is counted separately as some
participants wore glasses only for one of them.

coordinates and the pupil diameter. Since we use the tracker in
binocular mode, the coordinates and pupil diameters are reported
separately for each eye. For some samples, the eyetracker is unable
to determine the pupil diameter for one or both eyes (which leads to
them being reported as zero). This indicates an incorrectly tracked
sample (e.g., following or during a blink). We therefore discard
these samples. Fixations are calculated by the eyetracker using a
proprietary algorithm. Conceptually, raw samples are clustered
into fixations if they occur within a short window of low-velocity
movements. Each fixation is associated with a centre point as well
as start and end timestamps which enable us to find the associated
raw samples. We only use an event if it contains at least 10 samples.
This filters both unnaturally short fixations (10 samples correspond
to 20 milliseconds) and those with an excessive number of missing
or corrupt samples. Since our features are based on fixations, we
discard all raw samples not belonging to a fixation (i.e., saccades,
blinks and various noise).

4.2 Feature Extraction
Following the preprocessing, we compute a set of features for each
fixation, so that each fixation leads to a feature vector used by the
system classifier. In our data, we observe roughly five fixations per
second on average, which leads to five biometric samples per second.
In the following we describe the features used in our system.

Spatial-based features. These features relate to the spatial distri-
bution of samples within a fixation. To capture the size of a fixation,
we calculate each sample’s distance to the fixation centre and use
this measure’s 10th percentile, 90th percentile, mean and standard
deviation as features. As a measure of a fixation’s shape, we com-
pute the maximal pairwise distance between any two (potentially
not consecutive) samples in the fixation. We use both Euclidean
distance as well as individual distance in X and Y direction.

Temporal-based features. These features represent the eye move-
ment speed during fixations. We measure pairwise speed and accel-
eration between consecutive samples and use the 10th percentile,
90th percentile, mean and standard deviation as features. We also
compute the duration of a fixation.

Session 6A: Biometrics Security CCS ’19, November 11–15, 2019, London, United Kingdom

1192



Pupil-based features. Pupil features of the min, max and mean of
the pupil diameter of the respective eye during the fixation. As pupil
diameter measurements are far less noisy than coordinates, we use
the min and max values, rather than percentiles. An individual’s
pupil diameter is not constant over their lifespan, in fact, as a person
ages, their pupil diameter shrinks [6]. However, the timescale of
these changes is too long to significantly impact the authentication
system. A far bigger concern is its susceptibility to light. Both the
light of the screen (which is changed by the brightness of the image
shown) and ambient light change an individual’s pupil size. The
issue of screen light has been previously identified as a problem for
eye movement authentication [12] and changing ambient light has
been used as an attack vector [18]. We address these challenges in
Section 4.3.

Binocular-based pupil features.We augment the set of features
leveraging the binocular tracking offered by the eye tracker. In
particular, we focus on pupil based features for each individual
eye as medical work has shown that, even given stable lighting
conditions, the pupil diameter of the left and right eye is not always
identical [30]. Besides possible differences in actual pupil size, the
tracking itself may cause differences between the left and right eye
(e.g., depending on the user’s posture, or head inclination). We use
the min, max and mean tracking difference between the left and
right eye as well as the difference in pupil size as binocular features.

Measuring feature quality. In order to compute the distinctive-
ness of each feature, we use the Relative Mutual Information (RMI).
The RMI is defined as follows:

RMI(uid, F ) =
H (uid) − H (uid |F )

H (uid)

where H(A) is the entropy of A and H(A|B) denotes the entropy of A
conditioned on B. The uid (i.e., the set of user identities) is discrete,
but the feature space for most features is continuous. Therefore,
binning would be required to discretize the features (as is done
in, e.g., [11, 12]). However, the reported RMI would depend on
the binning strategy and number of bins (with more bins leading
to a higher calculated RMI). To avoid this problem, we use the
non-parametric approach proposed by Ross et al. to estimate the
mutual information between the discrete user ID and continuous
features [33].

4.3 Pupil diameter correction
We use linear regression to model the pupil’s response to changing
levels of light, both screen brightness and ambient light. Figure 4
shows an example of the effect of increasing ambient light on one
participants pupil diameter. As expected, across the entire dataset,
we find on average a negative correlation between pupil diameter
and amount of light: r -values of −0.5818 ± 0.05 and −0.2140 ± 0.07
for screen brightness and ambient light, respectively. In order to in-
fer an approximation of one user’s sensitivity to screen brightness,
we use the data recorded during first slideshow task (T2 and T8, sep-
arately for the two sessions) to fit a regression model. As described
in Section 2.3, during these tasks the ambient light is constant, al-
lowing us to isolate the effect of varying screen brightness. We pair
each pupil diameter measurement with the image on the screen
brightness at the time it was recorded. Using all of these pairs, we
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Figure 4: Relationship between (increasing) screen bright-
ness andmeasured pupil diameter during the first slideshow
task (T2) under constant ambient light (r = −0.8417).
use linear regression to determine the slope of the fitted line (see
Figure 4 for an illustration). For each newly recorded sample, we
determine the corrected pupil diameter diamcor as follows:

diamcor = diamraw − sscr ∗ brscr , (1)

where diamraw is the original measurement, sscr is the slope
obtained through linear regression and brscr is the screen bright-
ness at the time the sample was measured. We use the same method
to establish the user’s sensitivity to ambient light, by using the dim
setting of the lamp as input. In this case, for reading (T3, T9) and
browsing (T4, T10) tasks we use data from the same task to fit the
regression, while for the second slideshow (T5, T11) we use the
data from the reading task. This results in a separate slope, samb .

With these two adjustment factors, we can correct for both image
brightness and ambient light changes as follows:

diamcor = diamraw − samb ∗ bramb − sscr ∗ brscr . (2)

In particular we use the complete correction for the second
slideshow tasks (T5, T11), where both image brightness and ambient
light change over the course of the task. We attempted to fit a
single light-sensitivity model considering the totality of users, but
we found in our data that the slope coefficients samb , sscr vary
greatly across users, suggesting that individual models will perform
significantly better.

4.4 Cross-task feature prediction
Medical work shows that eye movement patterns vary according to
the task performed by the user. The fixation duration is of particular
interest and well-studied for a variety of tasks [34]. While task-
specific changes in pupil diameter are partially corrected through
the light-based adjustment proposed in the previous section, the
task itself can also have an influence.

This method follows the assumption that task-specific changes
in feature distributions exhibit a certain consistency between users.
For example, fixation times are expected to be longer when reading
a text compared to watching a video. Naturally, the magnitude of
these differences can be user-specific and any prediction without
user-specific knowledge will be an approximation.

Eberz et al. presented a system to automatically predict changes
in Electrocardiography (ECG) features caused by different measure-
ment devices [9, 10]. We adapt their extended approach to predict
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changes in features caused by changing tasks (rather than different
devices). The goal is to train the user model on a source task and
authenticating on a different target task without the need for re-
enrolment. In order to achieve this, we use population data to train
a mapping function that transforms a feature vector measured in
the source task to account for the task-specific changes expected
during the target task.

The core of this method is to find an optimal mapping, i.e., a set
of transformation functions F = { fj }j ∈J with fj : R −→ R, such
that, for each feature j and subject i , they minimise the statisti-
cal distance between the transformed source distribution fj (D

S
i , j )

and the corresponding target distribution DT
i , j . In other words, fj

transforms values of feature j from task S in order to be as close
as possible, statistically speaking, to the values of the same feature
from task T . As in [10], we restrict the search to linear functions,
of the form:

fj (x) = ajx + bj (3)

Naturally, a mapping function can not be specific to the user, as it
would require samples from both tasks to train it and if these were
available one could train on the target task directly. Instead, we find
the ideal mapping function for the set of remaining users in a leave-
one-out fashion. In practice, this means that a mapping function
for any task combination can be derived based on population data.

4.5 Authentication pipeline
Following feature extraction (see Section 4.2), we use the following
methods in our experimental evaluation.

Training data selection. Given all the data collected for a certain
user, the training (enrolment) data for the authentication system
can be chosen either randomly or sequentially. Previous work has
shown that random selection (e.g., repeated random sampling or
stratified cross-validation) leads to greatly overstated performance
as the temporal distance between training and testing samples is
kept artificially low [1, 13]. In order to avoid this, within each task,
we select the first part of the data for training and all following
samples for testing. We analyze the effect of varying training data
amounts in the following section. For completeness and easier
comparison with previous work, we also report the results obtained
with random training data selection. For cross-task authentication,
we select the complete source task for training and the complete
target task for testing.

Pupil diameter correction. We apply the method described in
Section 4.3 to both the training and testing data. In the following
section, we report results with and without this correction.

Cross-taskmapping function. For cross-task authentication (i.e.,
different training and testing tasks), we apply the corresponding
mapping function to the target task to resemble the feature distribu-
tion of the source. In practice, when we are looking for a mapping
from a source task to a target task for a specific user, we take the
remaining users data from the target and source task and solve an
optimization problem to find the coefficients in Equation 3, see [10].

Classification. We choose to use a support vector machine (SVM)
for the recognition. Since our goal is authentication rather than

identification, a one-class model is the natural choice. Some previ-
ous works instead train a binary model using data from all users
in the dataset (e.g., [11, 16]). This is disadvantageous as data from
other users is required for training and, depending on which users
are included in the negative class, the classifier performance may
not represent accurately the actual error rates of the system. We use
a radial basis function kernel and set the SVM hyper-parameters ν
to 0.5 and γ to 1

| J | , J being the feature set. At test time, rather than
using the (binary) output of the classifier for the decision, we use
each sample’s distance to the learnt decision boundary.

Normalization. In order to account for the varying feature ranges
of different features, we independently normalize all feature values
in input to the classifier:

zi =
xi − µ

σ
.

This way, each feature is replaced by the number of standard devia-
tions it lies away from the distribution mean. The values for µ and
σ are computed on the training data, the transformation is applied
to both training and testing data.

Sample aggregation. Similarly to previous work, we aggregate
multiple samples into a single window to make an authentication
decision. For eye movements, this does not particularly slow down
the authentication time as the eye tracker produces several samples
over short windows (on average we obtain around five samples per
second). We choose to use a fixed-size sliding window, i.e., each
window contains exactly n samples. Within each window, we feed
each sample to the classifier, collect the distance of each sample
from the decision boundary and select the median distance for the
decision. Selecting the median rather than the mean allows us to
better account for outliers. As a result, we would expect an attacker
to go undetected for roughly n

2 samples. As n should be chosen
based on the system security requirements, we further investigate
the choice of n in the following section.

Setting the decision threshold. Using the median boundary dis-
tance obtained through sample aggregation, we then select a thresh-
old for acceptance. If the median of the aggregation window is
above the threshold, this window of samples is accepted. Varying
this threshold controls the tradeoff between the system’s FAR and
FRR. Note that this threshold is selected on a per-user basis, as
users with more erratic behaviour (i.e., a larger mismatch between
training and testing data) will require a more lenient threshold to
achieve acceptable performance.

5 ANALYSIS AND RESULTS
In this section, we first present an analysis of the features and then
show the authentication performances of the system. It should be
noted that throughout the results, we always present and treat
calibrated and uncalibrated sessions separately. Additionally, we
refer to “reading” as tasks T3, T9 (see Table 2), to “browsing” as
tasks T4, T10 and to “slideshow” as tasks T5, T11, and consider these
six tasks as the ones we use to evaluate the authentication. The first
slideshow (tasks T2, T8) is only used to fit the screen brightness
model of Equation 1.
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Table 3: RMI values for each individual feature. The val-
ues are computed by using the data from all the tasks and
users, and are shown separately for the calibrated and un-
calibrated session.

RMI [%]

Feature Cal Ucal

Pupil Diameter Difference (min) 21.90 27.03
Pupil Diameter Difference (mean) 21.54 26.27
Pupil Diameter Difference (max) 21.07 26.15
Pupil Diameter (min) 14.19 15.82
Pupil Diameter (mean) 13.88 15.61
Pupil Diameter (max) 13.87 15.84
Left-Right difference (max) 8.81 34.58
Left-Right difference (mean) 8.62 34.92
Left-Right difference (min) 6.85 33.94
Pupil Diameter Difference (std-dev) 6.29 8.97
Pupil Diameter (std-dev) 3.29 6.47
Duration of Fixation 3.28 4.46
Pairwise Speed (mean) 2.09 2.52
Pairwise Acceleration (10 Perc) 1.96 2.22
Pairwise Speed (90 Perc) 1.94 2.43
Pairwise Acceleration (90 Perc) 1.69 2.35
Pairwise Speed (10 Perc) 0.87 1.38
Pairwise Speed (std-dev) 0.87 0.89
Distance to Centre (mean) 0.55 0.85
Distance to Centre (90 Perc) 0.42 0.77
Maximal Pairwise Distance (Y-direction 0.27 0.61
Maximal Pairwise Distance (X-direction) 0.25 0.30
Distance to Centre (std-dev) 0.16 0.24
Maximal Pairwise Distance 0.12 0.33
Distance to Centre (10 Perc) 0.04 0.37

5.1 Feature Analysis
The RMI (see Section 4.5 for details of its computation) of each
feature is given in Table 3.

Pupil-based features. Features coming from the pupil diameter
measurements contribute the highest amount of information in the
calibrated dataset. This is consistent with previous work [11, 12, 18].
Similar to previous work, the static ranges (e.g., min, max and mean)
are significantly more distinctive than the changes within a fixation
(as measured by the standard deviation).

Temporal-based features.. These features exhibit minimal changes
in distinctiveness when using uncalibrated data. This confirms our
initial hypothesis that our features depend on precision (i.e., the
gaze tracker reports similar coordinates for similar gaze values)
rather than accuracy (i.e., the gaze tracker reports the correct gaze
position) and that linear shifts in gaze positions will not affect them.

Binocular-based pupil features.. These features have not been
explored in previous work. We found that the difference in size
between the left and right pupil diameter is even more distinctive
than the raw measurements themselves. This can be explained
through two factors: inherent size differences between the left and

calibrated uncalibrated

Task raw corrected raw corrected

Reading 4.79 1.88 5.54 2.18
Browsing 7.24 3.92 5.01 2.82
Slideshow 7.57 4.97 6.85 3.93

Table 4: EER [%] for intra-task authentication, considering
both calibrated and uncalibrated session, and for both raw
pupil measurements and pupil-corrected measurements.
Values are computedusing 100 aggregated samples and a 50%
training data percentage.

right pupil and different light exposure. In our experimental setup,
the desk lamp is placed on one side of the screen (to the right),
which leads to each pupil being exposed to different amounts of
light. The difference in size between both pupils would therefore
be a function of their baseline size, their light sensitivity (which
has been shown to be different between individuals) and the user’s
posture (e.g., when a user is not sitting centred in front of the
screen). The results show that the features using the pupil diameter
contribute the highest amount of information.

A noteworthy observation is that most binocular features per-
form significantly better in the uncalibrated setting (RMI of 34.58%
vs 8.81%). This suggests that the feature is at least partially depen-
dent on the quality of the calibration. During the experiment we
observed that inaccurate calibrations often led to one eye being
tracked more accurately than the other and the distance between
left and right eye gaze positions being large, but relatively consis-
tent. In the calibrated session, we require a minimum calibration
accuracy before starting the tasks (see Section 2.3). This limits the
range of calibration errors between users. Despite this apparent
relationship, we argue that this feature is not merely a technical
“fluke”, but still reflects user-specific properties. As outlined in Sec-
tion 3, a design goal is that the system can be set up with a “generic”
calibration in order to avoid having to recalibrate it for each user.
Due to a multitude of changes in the user’s height, posture, distance
between eyes and distance to the screen, this generic calibration
will lead to a unique calibration error for each user and result in
high distinctiveness for the relevant features. Based on our data,
it is evident that these factors remain stable enough during our
20-minute session. We leave a further exploration of the long-term
stability of these binocular features for future work.

5.2 Classification Results
The system overall performance depends on several factors, in-
cluding the combination of training and testing tasks, aggregation
window size, whether calibration was used or not, proportion of
training data, pupil diameter correction and cross-task mapping
adjustment. For brevity, we report in Table 4 the EER results of a
reasonable combinations of these factors, where we perform intra-
task authentication, use a window size of 100 aggregated samples
and 50% of data for training. 100 samples are collected, on average,
after 20 seconds, which means an attacker would be detected af-
ter roughly 10 seconds (i.e., once half the sliding window is filled
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Figure 5: EER depending on number of aggregated samples
for the calibrated slideshow (T5) task.
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Figure 6: EER depending on number of aggregated samples
for the uncalibrated slideshow (T11) task.

with the attacker’s samples) due to the median-score aggregation
strategy. Table 4 shows the system EER for both calibrated and
uncalibrated session and for both light-corrected pupil diameter
and raw pupil diameter. The table shows that error rates are lowest
for the reading task across all configurations. The slideshow, which
includes randomly changing ambient and screen light, shows the
highest error rates. All tasks benefit significantly from the pupil
diameter correction.

Sample Aggregation. The influence of the number of aggregated
samples is shown in Figures 5 and 6 for the calibrated and uncal-
ibrated case, respectively. In both cases, the EER is reduced with
increasing window size. The effect becomes less pronounced over
time. This is intuitive, as the EER of most users reaches zero after a
moderate number of samples (i.e., a further increase in the number
of aggregated samples won’t improve it further).

Amount of training data. The effect of using varying fractions
of the entire dataset for training is shown in Figure 7. Across all
three tasks, we can observe that the average EER decreases as more
training data is used. While the EER barely changes beyond 10%
training data for the browsing and reading tasks, diminishing return
only set in after about 40% for the slideshow task. This shows that
it is beneficial for the classifier to observe different illumination
patterns despite the pupil diameter correction. As discussed in
Section 4.5, our system uses sequential training data in order to
closely reflect how it would be run in the real world. The fact that
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Figure 7: EER depending on the amount of training data for
the slideshow task (T5).

low error rates can be achieved even with comparatively small
amounts of training data shows that the user’s behaviour does not
vary significantly across the duration of each task.

Error rate distribution. While a system’s average EER gives a
rough idea of its expected security against zero-effort imperson-
ations, it is insufficient in the context of continuous authentication
without knowing the distribution of errors between users. The
highly skewed nature of error rates of biometric systems and the
resulting security implications has been previously shown by Dod-
dington et al. in 1998 [7]. Figure 9 shows that the average EER is
highly skewed by few users while most users show an EER close
to 0%. Previous work has suggested the use of the Gini Coefficient
(GC) to capture this property, with a high GC close to 1 indicating
skewed error rates [13]. Figure 11 shows a graphical representation
of our system’s Gini Coefficient for both the FAR and FRR. The
FAR in particular is highly skewed with a GC of .94. Despite this
skew, the highest FAR achieved across all victim-attacker pairs is
72%. Due to the continuous nature of the authentication system,
even this attacker would be detected after a short time span. Unlike
previous work [11, 12], we did not observe any systematic false
negatives (i.e., perpetually undetected attackers).

Impact of training data selection. As discussed in Section 4.5,
we use sequential training data in order to make our analysis as re-
alistic as possible. Nevertheless, in order to allow comparison with
other works that use random training data selection we show both
selection methodologies in Figure 8. It is evident that randomly sam-
pling the training data improves the overall system performance.
The effect is particularly pronounced when not applying the pupil
diameter correction. This is a result of the system not observing
the entire range of lighting changes when sequential data is used.
The effect is particularly strong for the reading and wiki tasks with-
out pupil diameter correction as the lighting changes sequentially
rather than randomly (see Table 2).

Cross-task authentication andmapping function. The results
of using one task for training and another for testing (i.e., cross-task
authentication) can be seen in Figure 10. In the raw data case (no
pupil diameter correction and no mapping function, see Figure 10a)
the error rates are, not surprisingly, the highest. Intuitively, using
the pupil diameter correction only marginally affects the error rates
between the reading and browsing task as the brightness differences
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Figure 8: Effect of training data selection, random vs sequential.
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Figure 9: Distribution of EER between users for the cali-
brated reading task (T3). The horizontal line shows the aver-
age EER.

are low. For cross-task authentication between the slideshow task
and the others, the system benefits greatly from the pupil diameter
correction as the slideshow images are, on average, much darker
than text on white background. Applying the mapping function to
the reading task greatly reduces error rates for both target tasks
(by 39% and 59%, respectively). Interestingly, the EER increases
when applying the function to the slideshow task as a source. In
practice, it would be sensible to use the mapping function only
for relatively predictable source-target combinations (e.g., reading
to browsing). This test can be performed on population statistics
without input from a particular user. Since the system can be trained
on an arbitrary task, choosing a training task that allows easy
predictions of other tasks’ features is particularly valuable.

Influence of calibration. Table 4 showed that similar or even
lower error rates are possible when using a generic (i.e., highly
inaccurate) calibration. However, this decrease is partially driven
by binocular features which grow in distinctiveness if users show
highly diverse calibration errors. In order to measure the effect
of calibration error in the calibrated experiment (where users will
generally have similar, high-quality calibrations), we compute the
correlation between the EER and calibration errors. The results of
this computation are shown in Table 5. The table shows the corre-
lation of the EER with the pre-experiment accuracy (i.e., measured
directly after calibration), post-experiment accuracy (i.e., after the

pre post change

Task r p-value r p-value r p-value

Reading 0.31 0.16 -0.14 0.55 -0.38 0.08
Browsing 0.31 0.16 -0.17 0.44 -0.41 0.06
Slideshow 0.21 0.34 -0.13 0.55 -0.31 0.16

Table 5: Correlation between calibration error and EER for
the calibrated sessions. Values are computed using the cali-
bration accuracy measured at the beginning of the session
(T1) and the calibration accuracy measured at the end of the
session (T6).

final task) and their absolute difference. While we observed a mod-
erate positive correlation between pre-experiment calibration error
and EER, this was not statistically significant (p > 0.05) for any task.
This result supports our hypothesis that the system’s effectiveness
is not significantly affected by the quality of eye tracker calibration.

6 DISCUSSION AND SECURITY ANALYSIS
In this section, we will discuss four possible attacks on this system
and possible countermeasures.

Manual imitation. Imitation attacks involve the imposter modi-
fying their own eye movement behaviour to appear more similar
to the victim. This first requires the attacker to obtain information
about the victim’s eye movement patterns. This can be achieved
through observation if the victim is using an attacker-controlled or
otherwise compromised device with a (covert) eye tracker. How-
ever, the involuntary nature of eye movements make them hard
to consciously control. Microsaccades have been shown to be ex-
tremely hard to consciously suppress and controlling them to such
a degree to deliberately alter biometric features seems virtually
impossible. The pupil diameter is probably the most likely target,
as some conscious actions (such as memory cognitive load) cause
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Figure 10: EERs for cross-task authentication.
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Figure 11: The Gini Coefficient (the fraction of the area under the line of equality that is shaded) shows the skewness of error
rate distributions.

dilations and contractions of the pupil. Nevertheless, this is still dif-
ficult to achieve, especially if the attacker is focusing on the attack
at the same time. Assuming the legitimate user’s calibration config-
uration is unknown to the attacker, it will be difficult to reproduce
the binocular tracking-based features in the uncalibrated setting.
While it might be possible to infer some calibration information
based on the user’s height, seat position and posture, we believe
this is unlikely to be sufficient.

Light stimulation. Attacks which use light stimulation have been
presented in [18]. The idea is to change the ambient light (in this
case, through a dimmable desk lamp) to cause changes in the at-
tacker’s pupil diameter. While this has been shown to be effective
in [18], the system the authors attacked did not use ambient light
correction. In order to defeat this attack, it would be possible to use
an ambient light sensor, rather than the light source’s dim settings,
as input to the pupil diameter correction. Any attacker-induced
changes in ambient light would then lead to an increased correction
of the pupil diameter and therefore be unable to affect the corrected
measurement that is used for authentication. Therefore, a much
more targeted light source (such as a laser pointer) would be needed.
While this would avoid the ambient light detection, it might still

be possible to detect by analysing the illumination differences be-
tween the eyes and the rest of the face. This could be performed
automatically by the eye tracker’s camera.

Artificial eyes. An eye tracker precision and accuracy can be mea-
sured without the noisy influence of human eyes [22] using artificial
eyes. If two such eyes were attached to a high-precision motor, it
would arguably be feasible to reproduce even short-lived move-
ments (such as microsaccades). Dynamically changing the pupil
diameter of such an eye could be achieved with a controllable shut-
ter around the pupil. Similar to the other attacks, this still requires
the attacker to obtain a (close to) perfect copy of the legitimate
user’s eye movement behaviour. In addition, liveness detection
methods can be used to distinguish an artificial eye from a real one.

7 CONCLUSION
In this paper, we have proposed a continuous authentication system
based on eye movement biometrics. This work addressed three prac-
tical concerns overlooked by previous work: the need for a precise
calibration, the effect of light sensitivity and the task dependence
of biometric features. We proposed new eye tracking features based
on binocular tracking, showing that their distinctiveness remains
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even in presence of generic (i.e., not user-specific) calibrations. We
showed a pupil diameter correction mechanism based on linear re-
gression can account for the differences in pupil diameter caused by
varying screen brightness and ambient light. Lastly, we addressed
task dependence through a cross-task mapping function trained on
population data.

Our results show significantly lower error rates than previous
work while allowing the system to be used in less controlled envi-
ronments. We achieve an intra-task EER of 3.93% while requiring
only two minutes of uncalibrated training data even with random
and frequent changes of lighting conditions. We show that our
proposed cross-task mapping can reduce the EER of cross-task au-
thentication by up to 59% when enrolling on a reading task and
authenticating on an arbitrary task.
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