
Iris: Dynamic Privacy Preserving Search in
Authenticated Chord Peer-to-Peer Networks

Angeliki Aktypi
University of Oxford

angeliki.aktypi@cs.ox.ac.uk

Kasper Rasmussen
University of Oxford

kasper.rasmussen@cs.ox.ac.uk

Abstract—In structured peer-to-peer networks, like Chord,
users find data by asking a number of intermediate nodes
in the network. Each node provides the identity of the closet
known node to the address of the data, until eventually the node
responsible for the data is reached. This structure means that
the intermediate nodes learn the address of the sought after
data. Revealing this information to other nodes makes Chord
unsuitable for applications that require query privacy so in this
paper we present a scheme IRIS to provide query privacy while
maintaining compatibility with the existing Chord protocol. This
means that anyone using it will be able to execute a privacy
preserving query but it does not require other nodes in the
network to use it (or even know about it).

In order to better capture the privacy achieved by the iterative
nature of the search we propose a new privacy notion, inspired
by k-anonymity. This new notion called (α, δ)-privacy, allows us
to formulate privacy guarantees against adversaries that collude
and take advantage of the total amount of information leaked in
all iterations of the search.

We present a security analysis of the proposed algorithm based
on the privacy notion we introduce. We also develop a prototype
of the algorithm in Matlab and evaluate its performance. Our
analysis proves IRIS to be (α, δ)-private while introducing a
modest performance overhead. Importantly the overhead is
tunable and proportional to the required level of privacy, so
no privacy means no overhead.

I. INTRODUCTION

Structured Peer-to-Peer (P2P) networks, provide a scalable
and robust lookup service allowing a requester to identify
the provider of sought-after information. The Chord [45]
lookup service is one of the first structured P2P networks
to be widely deployed, and has been used in systems such
as the Cooperative File System (CFS) [11], UsenetDHT [43],
OverCite [46] and ConChord [1]. It has also been proposed
in the literature as a resource service discovery mechanism in
grid computing [34] and WSN [20] and an alternative to the
traditional centralised design for DNS [10] and telephony [41]
systems. More recently, CFS has been proposed by the Tor
project [12] as an efficient key-value lookup system with
authenticated updates to allow the retrieval of the introductory
points for onion services. Chord also underpins the NKN (New
Kind of Network) [18] blockchain network infrastructure fo-
cused on decentralising network resources used as the base for
many decentralised applications (dapps) including nMobile,
D-chat, nShell and nConnect.

In Chord, the participants only have a partial view of the
network, and there is no central entity to assist with searches.

When a requester needs to resolve a query, it collaborates
with other nodes from the network, asking them if they
have the target information. This poses a privacy challenge,
as all the nodes that participate in the routing will know
what information is being searched for. Malicious nodes can
exploit this information to punish requesters based on their
activity or disrupt their communication. For example, in Tor,
allowing directory nodes to know the query’s target can allow
them compile statistics about which onion services are being
accessed [13].

Although privacy was not initially a design objective in
Chord, achieving it is clearly desirable in many (most?)
situations [44], [48], [42]. In fact, a number of authors already
studied the privacy of structured P2P networks. However, most
existing works propose anonymity schemes that conceal the
requester’s identity [15], [27]. This is a good option if the
P2P network does not need to provide authentication, but
for authenticated connections, and networks with long term
identities, they break the authentication of the communicating
parties.

In this work, we assume a network with authenticated
nodes, and we wish to maintain the authentication while still
providing privacy. Authenticated nodes enable a number of
benefits and there are several existing works proposing differ-
ent schemes, e.g., [7], [4], [36], [2]. Existing P2P applications
such as CFS [11], NKN [18], the Inter Planetary File System
IPFS [5] and the Storj distributed storage platform [19], all
assume authentication is in place, with CFS and NKN being
built on Chord. Our proposed scheme IRIS, achieves search
privacy while maintaining authentication by hiding the content
of the requester’s queries, rather than their identity. This allows
nodes to have long-term identities that can be used to initiate
queries in the network, without revealing the content of their
search queries.

Since the content of a search query forms the basis of the
existing routing procedure in Chord, hiding that information
comes with a number of challenges. First of all we have to
guarantee correctness (i.e., convergence to the target object)
for the new routing algorithm, while concealing the target from
the intermediate nodes. The intermediate nodes need to know
what address the requester is targeting, to determine how to
identify the next hop. We replace the target with a different
one that gets us closer to the real target without revealing too
much information. Getting this right is the crux of IRIS and

ar
X

iv
:2

31
0.

19
63

4v
2

 [
cs

.C
R

]
 5

 D
ec

 2
02

4

the details are described in Section VI.
The search algorithm follows an iterative process in which

the requester queries a new node at every step, gradually
converging on the target. Because of this iterative process, the
adoption of privacy notions such as k-anonymity to quantify
the information leakage, would result in a different privacy
guarantee for each iteration. We need a new privacy guarantee
that can provide an overall value with which we can compare
strategies and quantify requirements. It needs sufficient gran-
ularity to express the level of information leakage achieved
at every step of the iterative retrieval process. For this we
propose (α, δ)-privacy. This notion of privacy will provide the
foundation to argue about the privacy level achieved within a
search.

Because Chord is already being used by deployed applica-
tions, and the peer-to-peer nature of the deployments means
that there is no central authority that can mandate a software
upgrade, it is critical that our solution can co-exist with
regular Chord nodes, i.e., nodes that do not run our IRIS
protocol. The literature contains several proposed schemes that
necessitate significant modification either to the organization
of the nodes [29], [22] or to the data structure [14], and we
believe that that lack of compatibility with existing systems
is partly to blame for the lack of adoption. We make sure
the design of IRIS is backwards-compatible with the existing
search algorithm (and node behavior) for Chord networks.
IRIS makes use of the low-level Chord algorithms as building
blocks to achieve this. The requester has the freedom to decide
the level of privacy he wants to achieve, without demanding
any deviation from the vanilla Chord algorithms from the
queried nodes. In this way, IRIS can be used directly in already
deployed applications.

The act of concealing the real target of a search introduces
a modest overhead in terms of the number of requests needed
to eventually reach the real target. While some overhead is
acceptable as the price of privacy, we want to make sure
IRIS is usable in practice. We show thorough analysis and
simulation that the overhead introduced by IRIS is logarithmic
in the number of hops, which makes it acceptable. More
importantly, the overhead is proportional to the level of privacy
the requester wants to achieve. That level is tunable by
the requester and zero privacy means zero overhead, so a
performance critical application can pick and choose which
searches need (which level of) privacy.

Our contributions can be summarized as follows:
• We propose a new privacy metric, which we call (α, δ)-

privacy, that allows us to quantify the information leakage
in structured P2P networks.

• We design IRIS, a new algorithm that leverages the
lookup operation inherently built in Chord overlay to
allow for query privacy based on the requester’s require-
ments.

• We prove the security of our algorithm with respect to
the new privacy metric we introduce.

• We further confirm empirically through simulations of
the communication overhead that IRIS introduces and the

privacy it achieves for different populations of colluding
adversarial nodes.

Paper Structure: We start with a brief background and
notation on Chord structured P2P lookup service in Section II.
We provide a detailed description of the designing goals and
challenges our proposal addresses in Section III, followed
by a formal definition of its system and adversary model
in Section IV. We then define (α, δ)-privacy, the metric we
introduce to quantify privacy in networks that follow the
Chord lookup service. We continue by describing IRIS, a
privacy-preserving algorithm for Chord. We analyze the pri-
vacy guarantees that IRIS offers in Section VII and evaluate its
performance through simulations in Section VIII. We compare
our approach with prior related works that provide privacy
guarantees in P2P architectures in Section IX, before closing
the paper in Section XI.

II. BACKGROUND

In this section, we provide background on Chord, the
communication scheme on which IRIS builds on enhancing
the privacy guarantees it provides.

Chord is a structured P2P network that offers a decentralized
and scalable search service. It defines how K key-value pairs
are stored across N peers and allows the retrieval of the value
associated with a given key by locating the peer to which
this key is assigned. Both the peers that participate in the
network and the keys that are stored get an m-bit identifier I
from an address space. The address space contains 2m discrete
identifiers from the set {0, 1, ..., 2m−1} and is often visualized
as a ring. The peers and the keys are depicted as anchor points
on the ring, sorted in increasing order in a clockwise direction.
A cryptographic hash function h(·) is used to calculate and
to uniformly distribute the identifiers on the address space.
Often—without that being a functional requirement—a peer’s
identifier is calculated by applying h on its public key or its IP,
while a key identifier is produced by hashing the key (the data)
or its name descriptor. To distinguish between the identifiers
of peers and the identifiers of keys, we refer to them as nodes
and objects, respectively.

Each node stores the value of every object from a range on
the address space in a table referred to as the object table.
Each object is assigned to (stored at) the node that is equal
to or follows the object in the address space. We refer to the
node that stores the value of an object as the responsible node
for this object. Due to their uniform distribution the average
distance between the network nodes and objects is equal to
ν = (2m − 1)/N and κ = (2m − 1)/K, respectively. Thus,
on average every node is responsible for ν/κ objects.

Nodes have a partial view of the network, knowing the
communication information of only selected nodes. Every
node saves the details of their predecessor, namely the node
that comes before them along the address space. They also
save the details of m nodes that succeed them in the address
space in a table referred to as their routing table. The jth

entry of the routing table of a node Ni has the information
of the responsible node for Ni + 2j−1, where 1 ≤ j ≤ m.

2

Algorithm 1 Chord’s Store Algorithm
1: function STORE(RTh, Ok, Data)
2: Nn ←SELECTCLOSESTNODE(RTh, Ok)
3: repeat
4: Nn

′ = Nn

5: Nn ←LOOKUP(Nn
′, Ok)

6: until Nn == Nn
′

7: return PUSH(Nn, Ok, Data)
8: end function

The node stored in the routing table’s first entry is called
the node’s successor. This structure ensures that nodes can
get the communication information of every other node in the
network, asking no more than log2(N) other nodes.

A. Modeling Chord

We model how Chord works, aiming to provide the back-
bone on which IRIS builds upon and enhances. We describe
only protocols that need to be executed to allow specific data
to be stored in the network and retrieved by a requester.
Thus, we exclude from our model protocols used in network
maintenance, e.g., leave and update. We identify four low-
level protocols as described below:

1) bootstrap(Nn) → (Nr, RT r): Protocol executed
between the requester and an existing member of the
network Nn that returns the address of the requester Nr

and the requester’s initial routing table RT r.
2) lookup(Nn, Ok)→ (Nn

′): Protocol executed between
the requester and Nn. The protocol takes the address of
the communication partner node Nn, and the address of
the data object Ok, and returns a new node address that
is closer to the data object. If Nn = Nn

′ the responsible
node for Ok has been found.

3) fetch(Nn, Ok) → data OR nil: Protocol to retrieve
data with address Ok from node Nn.

4) push(Nn, Ok, Data) → Ack OR Nack: Protocol to
upload data with object address Ok to node Nn.

When a node wants to store or to retrieve data from the
network, it invokes a number of the aforementioned low-level
protocols. We abstract the steps that nodes perform in each
case as two high-level algorithms indicated below:

1) store(RTh, Ok, Data) → Ack OR Nack: Algorithm
to store data in the network. As depicted in Algorithm 1,
it takes three arguments, the routing table of the node
that holds the data RTh, the object Ok of the inserted
data and the Data itself. It returns a binary status value
that indicates success or failure.

2) retrieve(RT r, Ok) → Data OR nil: Algorithm to
retrieve data from the network. As depicted in Algo-
rithm 2, it takes the routing table of the requester RT r,
and the object of the requested data. The algorithm
returns the Data or ‘nil’ to indicate that no data can
be found at this address.

In both algorithms the executing node needs to identify
the responsible node for the object that it wants to store or

Algorithm 2 Chord’s Retrieve Algorithm
1: function RETRIEVE(RT r, Ok)
2: Nn ←SELECTCLOSESTNODE(RT r, Ok)
3: repeat
4: Nn

′ = Nn

5: Nn ←LOOKUP(Nn
′, Ok)

6: until Nn == Nn
′

7: return FETCH(Nn, Ok)
8: end function

retrieve. Since in Chord there is no centralized entity that can
assist with the search, and nodes do not have a global view
of the network, the node has to ask other nodes, if they are
responsible for the queried object. The node asks first the
node from its routing table that most closely precedes the
target object. Every queried node checks if the requested object
belongs in the address range between its own and its successor
identifier. If this is not true, the queried node, similar to how
the initiator picked the first node, identifies the next queried
node. If the target object is between the queried node and its
successor—there is no node that is closer to the target than
the queried node—the queried node returns its successor and
the recursive execution of the lookup protocol is terminated.
The initiator then executes with the identified responsible node
the push or fetch protocol and the algorithm terminates.

In Figure 1, we can see an example execution of the
retrieve algorithm in a Chord network. The requester, node
8 searches for the responsible node of object 62. Initially, the
requester checks its routing table to identify the node that most
closely precedes object 62 and selects node 42 with which
it executes the lookup protocol first. As object 62 is not
between node 42 and its successor, i.e., node 46, node 42
relays the requester to node 61. Next, node 8 executes lookup
with node 61. For node 61, the queried object 62 is between
its own and its successor identifier, i.e., node 3; thus, node
3 is the responsible node for object 62. Node 61 responds to
node 8 by specifying node 3. Node 8 executes with node 3 the
fetch protocol and the retrieve algorithm is terminated.

III. PROBLEM STATEMENT AND DESIGN GOALS

This section explains the challenges of developing a private
query mechanism in Chord, followed by an outline of the
design goals such a mechanism must achieve.

A. Problem Statement

The adoption of Chord P2P networks in real-world appli-
cations such as CFS and NKN, underscores the critical need
to provide robust privacy guarantees in these networks.

When a node is asked for the location of a target, as
part of the search process, the target is an address that does
not by itself reveal much information. It is essentially a
hash of the content. However, the node is free to request
that same target himself, and obtain the corresponding data.
This allows any node in the network to monitor and track
the data that is being searched for by others. Because each

3

56
8

51

18

42

30

14

28

54
+4

+32 +16

+2

+8

lookup(62)

42+16

42+32

Interval Node

ip46 , port46

13

46 8+1

8+2

8+4

8+8

8+16

8+32

Interval Node

30

42

18

13

13

1342+1

42+2

42+4

42+8

46

46

51

61

62

Object Table

Value
 V62

Object

V11

ip46 , port46

ip46 , port46

ip51 , port51

ip13 , port13

ip61 , port61

ip13 , port13

ip13 , port13

ip13 , port13

ip18 , port18

ip30 , port30

ip42 , port42

+1

Routing Table
35 ip35, port35

Predecessor Comm. Info

Routing Table
3 ip3, port3

Predecessor

 Comm. Info Comm. Info

 Comm. Info

26

61 3

35

46

25

13

62 1

looku
p(62)

61+16

61+32

Interval Node

ip3 , port3

25

361+1

61+2

61+4

61+8

3

3

8

13

ip3 , port3

ip3 , port3

ip8 , port8

ip25 , port25

ip13 , port13

Routing Table

Predecessor Comm. Info

 Comm. Info

1s
t hop

2nd hop

56 ip56, port56

-1

Fig. 1. An example of the Chord’s retrieve algorithm. Node 8 executes
retrieve to fetch the data associated with object 62. The participating
nodes in the network are depicted as grey circles and the registered objects
as white squares.

node in an authenticated Chord network has a long-term
identity, it is possible to build a profile of each identity by
tracking network activity, and reveal additional information
over time. This information, when exploited by actors such as
surveillance agencies, advertisement companies, or states that
apply censorship, can have severe implications.

As described in Section II, the Chord lookup protocol
requires that the requester reveals the target object to every
queried node. The nodes decide where to forward a message
based on the target address. In every hop, the distance to
this address gets smaller, guaranteeing convergence. A trivial
solution that replaces the target with a random identifier cannot
guarantee convergence (in a reasonable amount of time) and
thus, cannot be applied. Picking a fixed address calculated
based on a predefined offset may not reveal the target directly,
but it still allows for easy discovery if the offset is known or
can be guessed.

Even assuming we can hide the target address in the request,
some information can be obtained by looking at the relative
position (address) of the requester. The Chord search algorithm
dictates that requester selects the node from its routing table
that most closely precedes the target. Knowing the address
of the requester, and the structure of the nodes in a normal
routing table, a node can narrow down where in the address
space the target object is likely to be.

B. Design Goals

In the design of a privacy preserving lookup algorithm for
IRIS, we consider the following objectives:

1) Correctness: convergence to the node responsible for the
target must be guaranteed in a reasonable amount of time
(hops). Ideally the trade-off between the level of privacy
and the convergence speed should be determined by the
requester, on a per-object basis.

2) Query privacy: given an authenticated requester, the in-
ference that any malicious queried node makes regarding

the target of the query should not violate the level of
(α, δ)-privacy chosen by the requester for that query.

3) Interoperability: hiding the target object should leverage
already deployed infrastructure without any change in
the network organization or in the communication of
the queried nodes—IRIS should work, and be secure,
even if the requester is the only node using it.

Finally there is the question of whether to conceal the target
address from the final node in the search process. The one that
is responsible for the target. We have chosen not to incorporate
that into IRIS, if such a property is required one can use a
number of existing options to accomplish that, e.g., Private
Information Retrieval, or a more naive solution where the
nodes sends all the objects it controls. We consider this to be
an orthogonal problem to the one of providing privacy from
the nodes along the search path, and we will not address that
further in this paper.

IV. SYSTEM AND ADVERSARY MODEL

We assume a set of N nodes and K named data objects,
organized in an authenticated Chord peer-to-peer network as
described in Section II. Nodes can communicate directly as
long as they have each other’s communication details (IP ad-
dress, etc.). Communication is done on top of an authenticated
channel, e.g., [31], [7], [2], and as a consequence nodes cannot
lie about their long term identity or network address. The
requester’s goal is to be able to search for arbitrary data objects
without revealing the nature of the data to any intermediary
nodes as part of the search process.

We consider an internal attacker who participates in the
routing process by controlling a fraction f of the nodes of
the network. The attacker can act through all the nodes under
his control by initiating requests or responding to incoming
connections, but cannot identify or listen to connections among
the remaining honest nodes. The attacker is active, deviating
from the Chord algorithm at will, e.g., redirecting the requester
to another malicious node, claiming responsibility for an object
or initiating requests to enumerate the registered nodes and
objects. However, the attacker cannot break the underlying
authentication scheme used in the routing algorithm; thus
cannot lie about the address they control. The adversary knows
IRIS and to make the adversary as powerful as possible we give
him full knowledge of the α and δ parameters the requester
chooses. This would not normally be known to an attacker
but we choose to provide them to the attacker in our model,
to account for the possibility that these parameters could be
guessable in a practical scenario. They are chosen by the
user after all, so maybe some common choices (or software
defaults) emerges.

The attacker’s goal is to discover the target object of a query.
Specifically the attacker must know the target object with
a probability higher than that allowed by the (α, δ)-privacy
notion described in Section V, for parameters α and δ chosen
by the requester.

4

0

𝑁𝒊

𝑁𝒓

𝑂𝒑

𝑈𝐵𝒊

𝐼𝒊

Fig. 2. The privacy metric. The orange dashed line indicates the priori range
of Ni against Nr . The green dashed line shows the posteriori range of Ni

after knowing Ii. Both ranges are computed based on UBi, i.e., the upper
bound of node Ni’s estimate regarding the range in which belongs the actual
target of node Nr .

V. ALPHA-DELTA PRIVACY

The development of a privacy preserving algorithm neces-
sitates the need for a way to measure the privacy guarantees it
provides. Due to the iterative process of the Chord retrieve
algorithm, during which different nodes with different dis-
tances to the target are queried every time, privacy notions such
as k-anonymity are not suitable as they only allow us to argue
about the privacy achieved at every step of the retrieval process
and not the retrieval algorithm as a whole. To overcome that,
before designing our privacy preserving retrieval algorithm, we
introduce a new privacy notion that offers the granularity to
argue about the privacy achieved at the level of a completed
query, i.e., that simultaneously applies to every step that a
search incorporates.

To solve this problem we define (α, δ)-privacy to measure
the privacy level of an IRIS-request. This notion is param-
eterized by two values α and δ which are chosen freely
by the requester. They can be different for each new search
the requester performs, and could in theory even be changed
between iterations of a single run of IRIS. Despite this, our
adversary model requires that the attacker knows both of these
values. All our results are presented with this in mind and can
thus be considered the worst-case privacy for the requester.

The parameter δ serves a similar role to k in k-anonymity
as it describes the size of the initial anonymity-set in which
the real target object must reside. α describes how quickly
we progress towards the target object, and thus the decay in
privacy per iteration. In order to understand how this works it
is necessary to introduce a few details about the search process.

In each iteration of IRIS a potential attacker is queried for
the address of a target node. We explain this process in detail
in Section VI but for now it is sufficient to know that this query

TABLE I
LIST OF SYMBOLS AND NOTATION USED IN THIS PAPER

2m size of the address space
N number of participating nodes in the network
K number of registered objects in the network
Nr identifier of the requester
RTr routing table of the requester
Op identifier of the target object
Nt identifier of the node responsible for Op

α, δ privacy parameters explained in Section V
S starting address of the search S = Op − δ

Ni identifier of the node being queried
Ni+1 identifier of the next node to be queried
Ri reference point selected against node Ni: Ri ∈R [Ni, Op)

Ii identifier for which Ni is queried: Ii = Ri + (Ni −Ri) · α
di distance between Ni and Op

UBi upper bound of the target range that node Ni can estimate
priori target range Ni can estimate by knowing δ

posteriori target range Ni can estimate by knowing δ and Ii
f fraction of colluding adversaries in the network

reduces the size of the address range where the actual target
can be by a certain amount. This gives rise to two address
ranges, a priori range that an attacker could deduce from
knowledge of δ and previous search iterations performed with
colluding attackers, and a posteriori range that incorporates
the knowledge gained from the ongoing request. These two
ranges are visualized in Figure 2, note that posteriori is
always smaller than priori. With this we can describe α as
the minimum allowable ratio between the posterior and prior
knowledge of a requester in any iteration.

α ≤ mini

(
posteriori
priori

)
∀i

An equivalent way to think about α is as (one minus) the
maximum allowable gain in knowledge by any intermediate
node. We can now state the definition of (α, δ)-privacy.

Definition 1 ((α, δ)-privacy). A search algorithm is (α, δ)-
private if the following two conditions hold: (1) prior0 ≥ δ
for the first queried node N0; and (2) posteriori/priori ≥ α
for every iteration i > 0

Choices for δ are values in the interval [0, 2m−1] where 2m

is the size of the address space. Similarly choosing α ∈ [0, 1)
allows a requester to tune the trade off between privacy
and performance. The closer α is to 1 the less additional
information Ni gains about the intended target.

VI. IRIS

In this section, we describe IRIS, the mechanism we develop
to allow for (α, δ)-private queries in Chord. Table I defines the
symbols and notation we use. We start by outlining the core
idea behind its design. We then provide a detailed description
with an execution example.

5

A. Overview

The ordered address space that is leveraged by the nodes in
Chord provides a numerical basis to position nodes and cal-
culate the distance between them. In every hop, the requester,
by asking for the target object, finds nodes that have a smaller
distance than the requester to the target. Yet, finding nodes
that satisfy this condition can also be achieved if instead of
the target object the requester queries for another identifier
that is between the requester and the target object. Due to
the ordered address space, getting closer to this intermediate
identifier allows simultaneously the requester to get closer to
the target object.

We built on this observation to develop IRIS. In IRIS, the
requester, rather than asking the queried node for the target
object, asks for an intermediate identifier. In this way, the
requester gets closer to the target without however revealing
the target. The requester iterates this process asking every time
for another intermediate identifier so as to find the responsible
node for the target object. In the section below we define how
this process is done. We make IRIS such as achieving (α, δ)-
privacy when using Chord.

B. Mechanism Description

IRIS replaces the regular retrieve algorithm from
Chord. It takes two additional parameters, α and δ that
determine the level of privacy to use for the request:
iris(RT r, Op, α, δ)→ Data OR nil.

The δ parameter allows the requester to control the size
of the address range to which the target belongs, which the
queried node can estimate. In Chord’s retrieve algorithm,
the requester asks first the node in its routing table that is
closest and does not succeed the target address. This greedy
heuristic gives to the queried nodes an estimate regarding
the target of the request—the target does not succeed the
requester’s successor, which is deterministically defined, that
comes after the queried node. Because nodes have a more
dense view of the address space closer to them, this estimate
becomes more accurate the closer the queried node is to the
requester. To overcome this leakage IRIS modifies Chord’s
retrieve protocol node selection by changing how the
requester picks the first node to query. The δ parameter is
used by the requester to calculate an address S that precedes
the target object Op by δ. The requester selects the first node
to query to be its successor that most closely succeeds S but
precedes Op. If none of its successors belongs in this interval
the first node to be queried is the requester’s successor that
most closely precedes S. With this selection process every
queried node Ni, regardless of how close to the requester is,
assuming that the node knows δ, can only deduce that the
target of the request is one out of δ addresses from the address
space that succeed Ni.

The α parameter controls how fast the request converges
to the target. The requester hides the target of the query from
the intermediate nodes by substituting Op with another address
Ii, which succeeds the queried node but precedes the target.
To pick Ii the requester firstly selects a reference point Ri

Algorithm 3 IRIS’s Retrieve Algorithm
1: function IRIS(RT r, Op, α, δ)
2: Ni ←SELECTSTARTNODE(RT r, Op, δ)
3: repeat
4: Ni

′ = Ni

5: Ri ←RANDOMADDRESSBETWEEN(Ni, Op)
6: Ii ←LERP(Ri, Ni, α)
7: Ni ←LOOKUP(Ni

′, Ii)
8: until Ni == Ni

′

9: return FETCH(Ni, Op)
10: end function

by selecting uniformly at random an address in the interval
[Ni, Op). By bounding the range selection of the randomly
picked points to the actual target of the query, IRIS guarantees
correctness with the least possible number of steps, at the cost
of allowing colluding attackers that get closer to the target
to have a better guess regarding the target, i.e., being able to
calculate a prior range of smaller size. The requester then
calculates Ii as the linear interpolation between the address
of the queried node and the reference point, based on the
α parameter, i.e., Ii = Ri + (Ni − Ri) · α. The reference
point provides privacy to the requester against a colluding
adversary. Calculating Ii as the linear interpolation between
the address of the queried node and the target, based on the
α parameter, i.e., Ii = Op + (Ni − Op) · α, would provide
no privacy against our strong adversary model. By querying
Ni for Ii the requester in every hop converges by a rate α
to the reference point. As Ri comes after the queried node
and precedes the target, the requester by converging to Ri

converges simultaneously to Op.
Algorithm 3 depicts IRIS’s pseudo-code. After calculating

Ii, the requester asks Ni for Ii leveraging the Chord lookup.
The queried node following the Chord lookup algorithm
replies to the requester by indicating either another node closer
to Ii or its responsible node. If the node to which the requester
is relayed still precedes the target identifier, the requester
repeats the process. The requester is free to renew the value
of α between iterations.

The requester stops querying nodes when being relayed to a
node that succeeds Op. In this case, due to how the ownership
of objects is defined in Chord, the responsible node of the
target is simultaneously responsible for the queried identifier.
The requester then precedes by executing the fetch protocol
with the node responsible for Op, getting back either the Data
or nil if this object does not exist, and the iris algorithm
terminates.

Application Example: An example execution of IRIS is
depicted in Figure 3. Let’s assume a requester node 44 wants
to find the node that stores the values of a service by the name
′secret′. To achieve that, 44 needs to identify the responsible
node of the targeted object Op = h(′secret′) = 75. To avoid
revealing the targeted object to the network, node 44 executes
IRIS. First, 44 tunes the δ parameter to be equal to 22 and
calculates S = 53 by abstracting 22 from 75. Node 44 after

6

7059 7154 5655 61 65 6962 75

𝑶𝒑

𝑹𝟎

63

𝑑#

𝑺

𝑵𝟎 𝑵𝟏 𝑵𝟐

𝑑&

76

𝑵𝒕

67 68 73

𝑑(

𝑰𝟏𝑰𝟎

𝑹𝟐𝑹𝟏

𝑰𝟐
𝛿

Fig. 3. IRIS’s application example. The requester targeting object Op = 75 selects δ = 22 and α = 0.25. queries back to back nodes for identifiers chosen
in the interval [53, 75). In every iteration the interval degrades, converging at the end to node Nt = 76.

consulting its routing table selects N0 = 55, as this is the
first of its successors belonging in the interval [53, 75]. Node
44 then selects parameter α = 0.25 to control the rate of
convergence of the query. After picking randomly R0 = 68 in
the interval [55, 75), node 44 calculates I0 based on |I0−68| =
0.25·|55−68|, thus, queries node 55 for the identifier 65. Node
55 relays the requester to node 62. The requester then checks
if node 62 comes after the targeted object 75. As this is not the
case, it continues by picking a new random identifier R1 = 73
from the range [62, 75) and calculating a new queried identifier
I1 = 70. Node 44 queries node 62 for 70 having, as a result, to
be relayed to node 69. Finally, the node 69 when queried for
73—calculated based on the reference point 74—relays node
44 to node 76 that comes after the target object 75. Node 44
executes the fetch protocol with node 76 asking for object
75 to retrieve the stored mapped data.

VII. SECURITY ANALYSIS

In this section we analyze IRIS’s correctness and we prove
that IRIS is an (α, δ)-private algorithm. We further analyze
theoretically the advantage that IRIS gives to a powerful
adversary.

A. Correctness

We start the security analysis of IRIS by formally proving
its correctness, i.e., guaranteeing that the requester upon ex-
ecuting the algorithm succeeds in identifying the node that
stores the searched value.

Let Nt be the first successor of the requester’s target object
Op, i.e., Nt is the responsible node of Op. Consider the i-
th iteration of the algorithm where the requester executes
the Chord lookup with node Ni specifying the address Ii,
getting back Ni+1 that is the next node to query. Recall from
Section VI-B that the requester queries node Ni+1 for another
address Ii+1; thus, Ni+1 is not necessarily the predecessor of
Ii, yet, due to how the lookup progresses Ni+1 is closer
than Ni to Ii.

Let di be the distance between Ni and Op, and Ri be a
uniformly randomly picked address in [Ni, Op). On average,
Ri is picked in the middle of the interval, thus, |Ri −Ni| =
|Op −Ri| = di/2. The queried address Ii is calculated based
on Ri and the parameter α that the requester selects. More

precisely, Ii is selected such as |Ri − Ii| = α · |Ri − Ni|;
thus, |Ri− Ii| = α ·di/2. Assuming that the distance between
Ni+1 and Ii is zero we have that |Ri − Ni+1| = α · di/2.
From Figure 3, we observe that the distance the requester has
to Op at the (i + 1)-th iteration is the sum of the distance
the queried node has to Ri plus the distance of Ri to Op.
Considering the above calculations, this distance is equal to
di+1 = α ·di/2+di/2. By referencing every step to the initial
distance the requester has to the target object d0, we have
that in the n-th iteration the distance of the requester to Op

is given by Equation (1). Because α ∈ [0, 1), we have that
limn→∞ dn = 0, thus, the algorithm converges on the target.

dn = d0 ·
(
α+ 1

2

)n

(1)

Nodes are responsible for the identifiers that fall between
their predecessor and their own node identifier; thus, the
responsible node for Op, follows Op on the address space
and there is no other node placed between them. IRIS has
the selection interval of the selected queried identifiers not
to exceed the targeted object. Querying identifiers that only
precede the targeted object guarantees that if a randomly
picked object has its responsible node succeeding Op, this
node is also responsible for Op. The iris algorithm is
terminated to the predecessor of the node that is responsible
for the queried identifier. Thus, IRIS terminates when the
distance the requester has to the target object becomes equal
to the average distance the nodes have on the address space ν.
Setting dn = ν, the number of iterations the requester needs
on average to identify Nt while executing IRIS is:

dn = ν ⇒ (α+ 1)n · d0
2n

= ν

⇒ n =
logαd0 − logαν

logα2− logα(α+ 1)
(2)

1) Secure Routing: Based on the lookup protocol, the
requester is relayed to every other but the first node by the
previous queried node. This can be leveraged by a colluding
attacker who can relay the requester to a malicious node that—
given that it succeeds the target—will be accepted by the
requester as the responsible node, thus, learn the target.

7

Let’s assume that the requester is relayed to Ni+1 from Ni.
The requester to conclude if Ni+1 is the responsible node for
Op, can use bound checking [8]. Assuming N active nodes, the
distances between consecutive active nodes can be modeled
as approximately independent exponential random variables
with mean equal to ν = (2m − 1)/N . Given f ·N colluding
nodes, the distances between consecutive colluding nodes can
also be modeled as approximately independent exponential
random variables with mean equal to da = (2m− 1)/(f ·N).
Let F1 and F2 be the distributions of active and colluding
nodes, respectively. The requester can identify if Ni+1 is the
responsible node for Op by determining if dx, that is the
distance between Ni+1 and Ni, is drawn from distribution
F1 and not F2. The requester does not know N but based
on its routing table and its distance to its predecessor, can
make an estimation dr concerning the address range for which
each node is responsible. For Ni+1 to be Nt we need to have
dx ≥ T where T = γ · dr and γ ∈ (1, 1/f). Based on our
threat model the attacker does not control the responsible node,
thus dx > T . According to [8], to obtain the minimum false
positives and false negatives, γ must be equal to γ = 1/f .

B. Query Privacy

Here we prove that IRIS is an (α, δ)-private algorithm
following the definition introduced in Section V. We start
by analyzing the query privacy guarantees that IRIS provides
against an adversary that has no more than one node under
control that can, however, be any of the queried nodes. We
then continue by considering a more powerful adversary that
controls multiple nodes in the network. Based on our system
and adversary model, in our analysis we assume that nodes
are authenticated, i.e., they cannot lie about the address they
control.

1) Lone Adversary: Let us now consider a lone adversary
that controls only node Ni. Recall from Section VI-B the
way the requester selects the queried nodes, i.e., N0 is the
requester’s successor immediate after or before address S that
precedes the target by δ. Based on this selection process, Ni

can deduce the following about the requester’s target. If one
of the requester’s successors belongs in [Ni, Ni + δ] then the
requester searches something that belongs in [Ni, UBi] where
UBi = Ni + δ. If there are no successors of the requester in
[Ni, Ni+δ] then the requester searches something that belongs
in [Ni, UBi] where UBi = Ni+δ+x, denoting as x the larger
than δ distance a queried node can have from the actual target.
Based on our adversary model we assume that the δ parameter
is known to the attacker. Thus, the worst scenario is the prior
knowledge of Ni to be equal to |UBi −Ni| = δ.

Node Ni is queried by the requester for the identifier Ii;
thus, the posterior knowledge of Ni is |UBi−Ii|. Ii is picked
based on the reference point Ri that succeeds Ii but precedes
Op thus UBi on the address space. Thus, the following holds
|UBi−Ri|+ |Ri− Ii| = |UBi− Ii| and |UBi−Ri|+ |Ri−
Ni| = |UBi − Ni|. By definition |Ri − Ii| = α · |Ri − Ni|,
thus, we have:

posteriori
priori

=
|UBi − Ii|
|UBi −Ni|

=
|UBi −Ri|+ |Ri − Ii|
|UBi −Ri|+ |Ri −Ni|

=
|UBi −Ri|+ α · |Ri −Ni|
|UBi −Ri|+ |Ri −Ni|

= α ·
|UBi−Ri|

α
+ |Ri −Ni|

|UBi −Ri|+ |Ri −Ni|
= α · ca (3)

In Equation (3), as ca has in its numerator the parameter
α ∈ [0, 1) as denominator we can conclude that ca > 1, thus,
the ratio between the posterior and prior knowledge of the
adversary is greater than α. Hence, we can conclude that IRIS
is an (α, δ)-private algorithm against a lone adversary.

2) Colluding Adversary: Let us now consider the case of a
colluding adversary that controls a fraction f of the nodes in
the network with Nj and Ni being two consecutive adversarial
nodes, both queried by the requester when searching for Op.
The worst case scenario is for the attacker correctly to assume
that the two different queries serve the same search. Due to
the random reference point in the calculation of the queried
address at step 6 in Algorithm 3, the attacker cannot calculate
Op. However, from Figure 4, we observe that node Ni can
use as an upper bound UBj instead of UBi. Thus, the prior
knowledge of Ni is equal to |UBj − Ni|. Now considering
that UBj = Nj + δ, we have:

priori = δ − |Ni −Nj | (4)

A colluding attacker with average distance between col-
luding nodes bigger than δ is only queried once, hence, this
case is equal to a lone attacker from a security perspective.
From Equation (4), we observe that for a colluding attacker
for whom the nodes under control have average distance da,
the minimum distance the first adversarial node has to the
estimate upper bound is equal to δ. However, assuming that t
colluding nodes are queried throughout the iris execution,
at the end the minimum distance the adversarial node has to
the estimate upper bound is equal to δ′ = δ − t · da.

Regarding the prior and posterior knowledge ratio of Ni,
if in Equation (3) we replace UBi with UBj we have
posteriori/priori = α · cb. As UBi succeeds UBj , we have
that |UBi − Ri| > |UBj − Ri|, thus, ca > cb. Hence,
IRIS achieves a lower ratio between the posterior and prior
knowledge against a colluding adversary compared to a lone
adversary, yet still lower bounded by α. From the above we
can conclude that IRIS is an (α, δ)-private algorithm against
a colluding adversary.

C. Attacker Advantage

Let us now consider the advantage that IRIS gives to the
attacker, what the attacker can deduce regarding the target of
the requester based on the information available to the attacker.
We consider the worst case scenario, assuming the attacker
knows the α and the δ parameters the requester has chosen.
Following IRIS, the requester chooses Ii based on α and the
randomly picked address Ri. Assuming the attacker knows α,
when queried for an identifier Ii, the attacker can calculate
the Ri the requester picked. Based on this deduction, in our

8

𝑵𝒊 𝑵𝒕𝑶𝒑

𝑰𝒋

𝑈𝐵!𝑵𝒋 𝑈𝐵"

𝑰𝒊

𝑝𝑟𝑖𝑜𝑟%
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟%

Fig. 4. A colluding adversary. Assuming that Nj is the first asked colluding adversary, every other colluding node that the requester queries can use UBj

instead of UBi in their calculation to infer the target.

analysis we examine the probability IRIS gives for the target
address to have a specific value o given a randomly picked
value x by the requester.

We have assumed that the attacker knows the δ parameter.
This prior knowledge, as in previous section explained, can be
used by the attacker to calculate an upper bound for the address
of the target, i.e., the target will be an address that is no further
away than δ addresses from the attacker’s address. However,
this is only true for the attackers that succeed S address,
where S = Op − δ. Any attacker preceding S, even with the
knowledge of δ, cannot calculate a correct upper bound, i.e.,
the target will succeed the attacker’s address by more than δ
addresses. The attacker has no way to conclude where on the
address space is placed in reference to the address S, thus,
the best thing the attacker can do is to guess that succeeds S
even if this might not be the case.

Without loss of generality we can position the attacker
at the start of the address space Ni = 0. As described in
Section VI-B, Ri is selected uniformly at random in the
interval that extends from the address of the attacker to one
address before the address of the target Ri ∈ [Ni, Op−1], thus,
x ∈ [0, o−1]. The UBi is δ addresses away from the address of
the attacker. Assuming Ni = 0 we will have UBi = δ. Given
a specified value of the random point x, from the attacker’s
perspective it is equally likely the target address to be any of
the addresses that succeeds x and precedes δ (with δ included).

In Figure 5 we illustrate by O the possible addresses that the
target can have given that the randomly picked address is equal
to or equal and less than a specific value x. Given Ri = x,
in Figure 5(a) and in Figure 5(c), we examine what are the
possible case(s) for the target to be equal to value o whereas,
in Figure 5(b) and in Figure 5(d) we consider the cases for the
target to be equal or less than o. Counting down the number
all the examined events o and all possible addresses O (that
incorporate the number of o) for every x ∈ [0, o−1], we have
that:

P (Op = o|Ri = x) =
1

δ − x
(5)

P (Op <= o|Ri = x) =
o− x

δ − x
(6)

P (Op = o|Ri <= x) =
x

x(δ − x) +
x(x−1)

2

=
2

2δ − x− 1
(7)

P (Op <= o|Ri <= x) =
x(o− x) +

x(x−1)
2

x(δ − x) +
x(x−1)

2

=
2o− x− 1

2δ − x− 1
(8)

From Equations (5) to (8) we observe that given the infor-
mation the attacker has it is equally likely that the target is any
of the possible addresses. Thus, while considering a powerful
adversary that knows both the α and the δ parameters still
IRIS succeeds in hiding the target from the attacker.

VIII. EVALUATION

We have created a Chord network simulation where we can
vary any of the network parameters independently, and run
experiments with any combination of parameters. We use this
to run a large number of simulations with networks that differ
in size, number of nodes, fraction of adversaries, number of
data objects, etc.

We simulate IRIS in this environment with a range of
choices for the α and δ parameters, and analyze how they
affect performance and correctness. We simulate different
fractions of adversaries in the network and analyze the privacy
degree we achieve, accounting for colluding adversaries and
perfect ability to guess the requester’s parameters, in accor-
dance with our threat model. We confirm the probabilistic
advantage an attacker has, and find that no attacker advantage
exceeds α, thus confirming the (α, δ)-privacy of IRIS.

We start by describing the setup of our simulation before
moving on to the presentation of the results of our experiments.

A. Simulation Setup

We simulate IRIS using the Matlab programming language.
We model an address space of 223 addresses, on which we
position 1000 nodes uniformly at random, selecting a fraction
f of them to be colluding adversaries. We implement Chord
lookup and run the network until a steady state has been
reached. Each node keeps a routing table with m = 23
other nodes as specified by the Chord protocol. Given such
a network, our implementation selects a requester and a target
object at random from the set of non-attackers, and executes
IRIS as defined in Algorithm 3. The requester is free to choose
the α and δ parameters.

We have open-sourced our simulation code, the evaluation
scripts, and the presented benchmarks as artifacts, and the code
is available at https://github.com/angakt/iris.

9

https://github.com/angakt/iris

𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂𝑂 𝑂 𝑂 𝑂 𝑂𝑥 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂𝑂 𝑂 𝑂 𝑂 𝑂 𝒐

𝑈𝐵!𝑅!𝑁! 𝑂"

(a) P (Op = o|Ri = x)

𝑈𝐵!𝑅!𝑁! 𝑂"

𝒐𝒐 𝒐 𝒐 𝒐 𝒐 𝒐 𝒐 𝒐 𝒐 𝒐 𝒐 𝒐 𝑂 𝑂 𝑂 𝑂 𝑂𝒐 𝑂 𝑂 𝑂 𝑂𝑂 𝑂 𝑂 𝑂 𝑂𝑥 𝑂𝒐

(b) P (Op <= o|Ri = x)

𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂𝑂 𝑂 𝑂 𝑂 𝑂𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂𝑂 𝑂 𝑂 𝑂 𝑂
𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂𝑂 𝑂 𝑂 𝑂 𝑂𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂𝑂 𝑂 𝑂 𝑂 𝑂
𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂𝑂 𝑂 𝑂 𝑂 𝑂𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂𝑂 𝑂 𝑂 𝑂 𝑂
𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂𝑂 𝑂 𝑂 𝑂 𝑂𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂𝑂 𝑂 𝑂 𝑂 𝑂

𝑂
𝑂
𝑂

𝑥
𝑥

𝑥
𝑥

𝑈𝐵!𝑅!𝑁! 𝑂"

𝑂 𝑂
𝑂 𝑂
𝑂 𝑂

𝒐
𝒐
𝒐
𝒐

𝑂

𝑂
𝑂

𝑂
𝑂

𝑂

(c) P (Op = o|Ri <= x)

𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂𝑂 𝑂 𝑂 𝑂 𝑂
𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂𝑂 𝑂 𝑂 𝑂 𝑂
𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂𝑂 𝑂 𝑂 𝑂 𝑂
𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂𝑂 𝑂 𝑂 𝑂 𝑂

𝑈𝐵!𝑅!𝑁! 𝑂"

𝒐 𝒐 𝒐 𝒐 𝒐 𝒐 𝒐 𝒐 𝒐𝒐 𝒐 𝒐 𝒐 𝒐
𝒐 𝒐 𝒐 𝒐 𝒐 𝒐 𝒐 𝒐𝒐 𝒐 𝒐 𝒐 𝒐
𝒐 𝒐 𝒐 𝒐 𝒐 𝒐 𝒐 𝒐𝒐 𝒐 𝒐 𝒐 𝒐
𝒐 𝒐 𝒐 𝒐 𝒐 𝒐 𝒐 𝒐𝒐 𝒐 𝒐 𝒐 𝒐

𝒐
𝒐
𝒐

𝒐
𝒐
𝒐

𝑥
𝑥

𝑥
𝑥

𝑜

𝑜
𝑜

𝑜
𝑜

𝑜 𝒐

(d) P (Op <= o|Ri <= x)

Fig. 5. Probability Calculation: We mark with O the addresses that Op can obtain and with o and x the explicit value(s) of Op and Ri, we examine.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

(a) IRIS’s convergence for δ = 1/16.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

(b) IRIS’s convergence for α = 0.35.

Fig. 6. Comparing IRIS’s performance for different values of α and δ parameters. The x-axis indicates the number of iterations needed to converge to the
target, whereas the y-axis indicates the distance the queried nodes have to the target normalised by 1/16 of the address space.

Each experiment is run k times, with an entirely new
network each time. This way, our results are independent of
the requester and the target positions in the network, as well as
any particular distribution of attackers. When examining the
communication overhead, i.e., the number of iterations IRIS
needs to terminate, we execute every experiment k = 100
times and we report the average distance in every iteration
across all the executions. When examining the privacy guar-
antees IRIS provides, we execute every experiment k = 500
times and we calculate the minimum ratio of posterior to prior
knowledge across every execution.

B. Simulation Results

Performance: To understand the performance overheads
introduced by IRIS we vary the α and δ parameters and
compare the performance with the vanilla Chord algorithm. To
avoid an impact from differences in attacker strategy, we run
the performance experiments in a network with no adversaries,
i.e., f = 0.

In Figure 6(a) we report the average distance to the target
on every hop, in a network of 1000 participants. We evaluate
IRIS with α equal to 0.25, 0.35, 0.50, and 0.75 keeping

δ constant and equal to 2m/16. The performance of IRIS
is compared to vanilla Chord and averaged over k = 100
experiments. The dashed vertical lines indicate the maximum
(worst case) number of hops the requester needed to identify
the responsible node for the target object.

We observe that the α parameter has a dominant effect
on IRIS’s convergence time: the smaller the value of α the
faster the convergence. This is due to the fact that bigger α
values result in more conservative steps towards the target.
This gives away less information to intermediate nodes, but it
also comes with a performance penalty. This result highlights
an important quality of IRIS, namely the fact that the trade-off
between performance and privacy can be tuned to only pay the
performance penalty for the amount of privacy needed.

To asses the performance impact of δ we keep α constant
(α = 0.35) and vary the δ parameter. We again run the
experiment 100 times with f = 0, and the results can be
seen in Figure 6(b). We observe only minor difference in
the average number of hops, which matches the prediction
produced by Equation (2) where it is clear that the dominant
factor determining IRIS’s performance is α. Changes in the δ

10

Privacy Ratio

C
ou

nt

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

Fig. 7. The posterior and prior knowledge rate for different fractions of
colluding adversaries.

parameter affect the fraction’s numerator and have a negligible
influence on the final calculated value. The intuitive explana-
tion for this is while a larger δ causes us to start the search
further from the target, we also take larger steps when we are
far from the target, so the overall effect on performance is
minor.

Query Privacy: To validate the query privacy guaran-
tees that IRIS achieves with respect to the privacy notion
introduced in Section V, we execute IRIS by varying the
fraction of colluding adversaries. Following the analysis in
Section VII-B, we examine the posterior-to-prior knowledge
ratio IRIS achieves for each node along the routing path.
Each adversarial node is provided the value of α and δ (even
though these values would not be available to the adversaries
in practice), and colluding attackers are allowed to compare
values.

For most attackers δ is an upper bound of where the target
object could be. By knowing δ, the queried nodes that are
more than δ addresses away will know that, and they do not
contribute to the estimate of later nodes. If they did, the nodes
would be wrong about the target location, so this represents
a further advantage for the attackers that would not exist in
practice. By doing this we get the absolute worst case results
for the requester, and therefore a lower bound on the privacy.

In Figure 7 we illustrate the minimum achieved privacy
ratios we get across k = 500 experiments when we keep
α = 0.25 and δ = 2m/4 and we vary the fraction of colluding
nodes from f = 0% to f = 50%. We notice that regardless
of the fraction of attackers, the privacy ratio does not drop
below α = 0.25, and is in fact much higher than α in most
runs, sometimes as high as 0.7. This confirms what we proved
in Section VII, namely that IRIS is an (α, δ)-private algorithm.
We also observe that the greater the fraction of colluding

adversaries, the more frequently we get smaller values of the
privacy ratio, i.e., the histogram move to the left. However,
even for large values of f we remain above α at all times.

Attacker Advantage: To demonstrate the knowledge gain a
non-colluding attacker gets from being used as an intermediate
node, we execute IRIS with α = 0.75 and δ = 2m/128, and
the fraction of colluding adversaries f = 0. We then calculate
the distance between an intermediary node and the target (and
to the randomly picked point Ri), for every queried node, and
we execute 500 experiments.

In Figure 8, we plot a histogram of the normalized distance
to the target (and the random point Ri). The distance is nor-
malized so it corresponds to a percentage of the δ parameter,
since δ is an upper bound on the distance for almost all nodes.
We observe that the distance to the target follows a uniform
distribution, i.e., every node in the interval [Op − δ,Op] is
equally likely to be the target. For the position of the random
point, we observe a right skewed distribution. This occurs
because as the distance between the queried node and the
target gets smaller, the probability of getting a high value for
Ri tapers off. Thus, for a uniformly distributed distance to
the target we have more lower than higher values for Ri. A
uniform distance to the target is ideal, since it means that a
non-colluding intermediate node has effectively no information
about the location of the target, other than it is likely to be at
most δ addresses away.

In Figure 9, we validate out implementation of Iris by
plotting the probabilities we get from experiments (in blue)
against the probability expressions we get from Equations (5),
(6), (7) and (8) (in yellow). We observe that for Figures 9(a)
and 9(c) the data from our experiments fully confirm our
calculations. For Figures 9(b) and 9(d) the plots follow the
equation’s trend, however, they are higher than expected. This
bias occurs due to the very common low values we get, that
is reflected when we simultaneously examine more than one
value for Op. In Figure 9(b), we observe that the deviations
are getting smaller as x gets bigger. In Figure 9(d), we observe
that the deviations are maintained as the x gets bigger. This
happens because for this case we examine a range for values
for x, thus, any bias in smaller values is inherited to the bigger
ones. Figure 9 illustrates that IRIS data from our simulation
agrees with the calculated probabilities, or are lower bounded
by them. This acts as a sanity check on the code used for our
simulations and confirms our results described above.

IX. RELATED WORK

In this section, we provide background on decentralized
privacy schemes with a focus on the ones applied to Chord.
We start by elaborating on already proposed privacy metrics
before describing other privacy architectures and examining
how they compare to IRIS.

A. Privacy Metrics

In the literature, many works have studied the privacy
guarantees of decentralized systems [47]. To measure the
privacy provided in structured P2P architectures some works

11

0 20 40 60 80 100

Distance

0

50

100

150

200

250

300
C

ou
nt

o*100/UB
r*100/UB

Fig. 8. The distance that queried nodes have to the target and to the randomly
picked point expressed as a percentage of the δ value.

extract an anonymity score based on the size of the anonymity
set, either solely [15], [30] or by normalizing it by the best
possible value [6]. In both cases, the calculated score changes
between nodes according to the distance the node has to the
target of the request. Adopting such a metric to measure the
query privacy that is provided as underlined in Section V does
not reflect the average privacy achieved but the worst-case
scenario. In [6], the authors also propose another anonymity
metric based on entropy that takes into consideration the
probabilistic advantage an attacker can have in identifying ini-
tiators. The authors underline that computing the probability of
the distribution of events given an observation can be difficult
to apply to complex, dynamic systems. In [38] to calculate
the degree of privacy the authors use the rate between the
posterior and the prior entropy after and before a compromise
has occurred. (α, δ)-privacy builds on the last metric, but
comparing to that it necessitates no demanding calculations
by replacing the entropy with the size of the possible set in
which the target can belong.

B. Privacy Architectures

Structured P2P architectures have been used in anonymous
communication systems such as TOR as a scalable way to
select the nodes to build anonymous circuits. This led many
works [8], [26], [17], [49], [50], [29], [9] to focus on the
security of routing, i.e., guarantee an unbiased and correct
retrieve process. IRIS tries to enhance the privacy aspect
that is inherently built in Chord so as privacy guarantees can
be achieved without demanding other infrastructures.

A major line of research focused on enhancing the
anonymity of the sender and the receiver in structured P2P
architectures [15], [39], [49], [33], [24], [27], [28], [32]. IRIS
focuses on a different problem, i.e., hiding the information
that is queried from the intermediate nodes that participate in

the routing while allowing authentication for the participating
nodes.

There is a more limited bibliography regarding the de-
terrence of user profiling in structured P2P architectures.
The work in [14] split the data and publish every share
under a different overlay address, guaranteeing privacy against
an adversary that can capture a small set of shares. Other
works [3], [22], [51] organize nodes in quorums; the client
uses threshold cryptography to obtain the index of the wanted
item without revealing the item and without the individual
quorum nodes knowing which item was extracted. More
recently, Peer2PIR [23] applies private information retrieval
(PIR) techniques to limit privacy leakage on peer routing,
provider advertisements and content retrieval in the IPFS
network, which is based on the Kademlia [21] DHT. IPFS
is also in the process of performing a privacy upgrade by
implementing Double Hashing [25]. Double Hashing has the
requester query for a prefix of the target identifier and receive
the records corresponding to any object that matches this
prefix, thus guaranteeing k-anonymity, where k is the number
of objects that match this prefix. These schemes propose
changes in the overlay structure and operations that have to
be followed by all the nodes in the network. IRIS does not
demand global changes.

X. DISCUSSION

In this section we provide further guidance on the selection
of the α and δ parameters, and discuss limitations of IRIS and
its extension to other DHTs.

A. Selection of α and δ Parameters

The α and δ parameters must be selected to be in the ranges
[0, 1) and [0, 2m − 1], respectively. Conceptually, the bigger
the values, the better the provided privacy. However, as shown
in Figure 6 there is a trade-off between IRIS’s privacy and
performance, i.e., the gain that IRIS provides comes at a cost
of increased steps to reach the target. Thus, it makes sense to
consider what a good selection of the privacy parameters look
like; one that will guarantee a sufficient privacy level without
sacrificing too much performance.

Staring with the δ parameter, we see in Figure 6(b) that its
value does not significantly affect the number of iterations until
convergence. This parameter specifies a minimum distance to
the target, and thus directly controls the anonymity we get
against the first queried node in a group of colluding nodes.
This is because such a distance removes the link between the
choice of intermediate node and the target itself, that vanilla
chord would have. Intermediate nodes can no longer make
assumptions about the location of the target, based on the fact
that they are being used as intermediaries. We should pick
a value that contains enough network objects to constitute a
good anonymity set.

As an example consider the Tor network. In Tor we have
roughly 900, 000 onion addresses [35]. Assuming a space of
223 addresses that are uniformly distributed, on average every

12

0 20 40 60 80 100

Random Point

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

(a) P (Op = 35|Ri = x)

0 20 40 60 80 100

Random Point

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

(b) P (Op <= 35|Ri = x)

0 20 40 60 80 100

Random Point

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

(c) P (Op = 35|Ri <= x)

0 20 40 60 80 100

Random Point

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

(d) P (Op <= 35|Ri <= x)

Fig. 9. Probabilities for Op = 35: The probabilities we get from our prototype implementation.

9th address will be a valid onion address. To achieve an
anonymity degree of k, we must set δ = k ∗ 9.

The selection of the α parameter has a more dominant effect
on performance. This is shown in Figure 6(a) but we can see it
more clearly in Figure 10, which illustrates the number of steps
IRIS needs to converge to the target, across 100 experiments
altering α with a step of 0.025 in the interval [0, 1), keeping
δ = 1/16 ∗ 223 and f = 0.

We observe that the number of steps IRIS needs to converge
increases exponentially with respect to α, starting at 10, which
is the number of steps that vanilla Chord achieves. For α < 0.7
the increase in the steps looks almost linear, however above
that, the number of steps starts to increase drastically. We still
get stronger and stronger privacy guarantees, but with high
performance overheads. For that reason a good practical choice
of α is around 0.7 which will roughly double the steps (and
search time) of vanilla chord.

Note that each search can be done with a different choice
of parameters, so sensitive searches might need (.7, 500k)-
privacy, where as normal ones can use no privacy at all.

B. Other P2P Architectures

IRIS can be directly applied to any existing system that
implements the Chord protocol, e.g., [11], [18], [43], [46], [1],
[34], [20], [10], [41]. IRIS can be used without any support
from the other nodes in the network, even when all other nodes
in the network use the vanilla Chord protocol, which makes
it easy to adopt for privacy conscious clients.

In addition to Chord, several other DHTs exist in the liter-
ature, such as Kademlia [21], Tapestry [52], Pastry [40] and
CAN [37]. These are, in principle, similar enough to Chord
to provide a way that allows nodes to query their neighbours
and choose the next hop when routing a message [16]. The
general schema that these protocols offer intuitively suggests

13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

Fig. 10. The number of steps that are needed to reach the target for different
values of the α parameter.

that IRIS can be applied to these systems as well. However,
the differences that exist between them, such as the distance
metric they define, may affect the provided guarantees. For
example Chord uses the distance between node addresses
whereas Kademlia uses an XOR metric. We leave a detailed
analysis of the application of IRIS to other architectures as
future work.

C. Limitations

As the requester progressively queries nodes that are closer
and closer to the target, intermediate nodes will get a more
and more precise range of possible targets if they are col-
luding with previously chosen intermediate nodes. This is an
unavoidable consequence of our very strong threat model, but
it is accounted for in the definition of (α, δ)-privacy and even
in the worst case, the additional information each adversarial
node gets is bounded by 1− α.

XI. CONCLUSION

In this paper, we study the privacy guarantees of a search
request when using Chord. To reason about the query privacy
that a privacy-preserving mechanism provides, we introduce a
new notion called (α, δ)-privacy. This privacy notion allows to
measure the privacy level of a request even in the presence of
strong colluding adversaries. We further design IRIS, an algo-
rithm that replaces the regular retrieve algorithm in Chord
to allow a requester to conceal the target of a query from the
intermediate nodes that take part in the search. By performing
a thorough security analysis we prove IRIS to be both correct
and (α, δ)-private. We also perform an empirical analysis using
simulations to evaluate the privacy levels that IRIS achieves
and to study the trade-offs our proposal introduces between the
achieved query privacy and performance. The results confirm
our theoretical analysis and indicate a modest communication

overhead that can be tuned by the requester based on the
privacy level each query demands.

ACKNOWLEDGMENTS

We want to thank the paper and the artifacts’ anonymous
reviewers for their time and the valuable feedback they have
provided us.

REFERENCES

[1] Sameer Ajmani, Dwaine E. Clarke, Chuang-Hue Moh, and Steven
Richman. ConChord: Cooperative SDSI certificate storage and name
resolution. In First International Workshop on Peer-to-Peer Systems
(IPTPS), number 2429 in Lecture Notes in Computer Science, pages
141–154, March 2002.

[2] Angeliki Aktypi, Dimitris Karnikis, Nikos Vasilakis, and Kasper Ras-
mussen. Themis: A secure decentralized framework for microservice
interaction in serverless computing. In Proceedings of the 17th Interna-
tional Conference on Availability, Reliability and Security, ARES ’22,
New York, NY, USA, 2022. ACM.

[3] Michael Backes, Ian Goldberg, Aniket Kate, and Tomas Toft. Adding
query privacy to robust dhts. In Proceedings of the 7th ACM Symposium
on Information, Computer and Communications Security, AsiaCCS ’12,
page 30–31, New York, NY, USA, 2012. Association for Computing
Machinery.

[4] Ingmar Baumgart and Sebastian Mies. S/kademlia: A practicable
approach towards secure key-based routing. In 2007 International
Conference on Parallel and Distributed Systems, pages 1–8, 2007.

[5] Juan Benet. IPFS - content addressed, versioned, P2P file system. CoRR,
abs/1407.3561, 2014.

[6] Nikita Borisov and Jason Waddle. Anonymity in structured peer-to-peer
networks. Technical report, Computer Science Division, University of
California, 2005.

[7] Kevin R.B. Butler, Sunam Ryu, Patrick Traynor, and Patrick D. Mc-
Daniel. Leveraging identity-based cryptography for node id assignment
in structured p2p systems. IEEE Transactions on Parallel and Dis-
tributed Systems, 20(12):1803–1815, 2009.

[8] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and
Dan S. Wallach. Secure routing for structured peer-to-peer overlay
networks. SIGOPS Oper. Syst. Rev., 36(SI):299–314, dec 2003.

[9] Giuseppe Ciaccio. Improving sender anonymity in a structured overlay
with imprecise routing. In George Danezis and Philippe Golle, editors,
Privacy Enhancing Technologies, pages 190–207, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[10] Russ Cox, Athicha Muthitacharoen, and Robert T. Morris. Serving dns
using a peer-to-peer lookup service. In Peter Druschel, Frans Kaashoek,
and Antony Rowstron, editors, Peer-to-Peer Systems, pages 155–165,
Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[11] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and
Ion Stoica. Wide-area cooperative storage with cfs. In Proceedings
of the Eighteenth ACM Symposium on Operating Systems Principles,
SOSP ’01, page 202–215, New York, NY, USA, 2001. Association for
Computing Machinery.

[12] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The
second-generation onion router. In Proceedings of the 13th Conference
on USENIX Security Symposium - Volume 13, SSYM’04, page 21, USA,
2004. USENIX Association.

[13] Edward Eaton, Sajin Sasy, and Ian Goldberg. Improving the privacy of
tor onion services. In International Conference on Applied Cryptography
and Network Security, pages 273–292. Springer, 2022.

[14] Benjamin Fabian, Tatiana Ermakova, and Cristian Muller. Shardis: A
privacy-enhanced discovery service for rfid-based product information.
IEEE Transactions on Industrial Informatics, 8(3):707–718, 2012.

[15] Michael J Freedman and Robert Morris. Tarzan: A peer-to-peer
anonymizing network layer. In Proceedings of the 9th ACM Conference
on Computer and Communications Security, CCS ’02, pages 193–206,
New York, NY, USA, 2002. ACM.

[16] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker,
and I. Stoica. The impact of dht routing geometry on resilience and
proximity. In Proceedings of the 2003 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications,
SIGCOMM ’03, page 381–394, New York, NY, USA, 2003. Association
for Computing Machinery.

14

[17] Apu Kapadia and Nikos Triandopoulos. Halo: High-assurance locate
for distributed hash tables. In Proceedings of the 16th Network and
Distributed System Security Symposium, volume 8 of NDSS ’08, page
142. Citeseer, 2008.

[18] NKN Lab. NKN: A scalable self-evolving and self-incentivized decen-
tralized network. Whitepaper, 2018.

[19] Storj Lab. Storj: A decentralized cloud storage network framework.
Whitepaper, 2018.

[20] T Labbai and S Jothi Prasanna. T2wsn: Titivated two-tired chord
overlay aiding robustness and delivery ratio for wireless sensor networks.
Journal of Theoretical & Applied Information Technology, 91(1), 2016.

[21] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer
information system based on the xor metric. In International Workshop
on Peer-to-Peer Systems, pages 53–65, Cham, 2002. Springer.

[22] Miti Mazmudar, Stan Gurtler, and Ian Goldberg. Do you feel a chill?
using pir against chilling effects for censorship-resistant publishing. In
Proceedings of the 20th Workshop on Privacy in the Electronic Society,
WPES ’21, page 53–57, New York, NY, USA, 2021. Association for
Computing Machinery.

[23] Miti Mazmudar, Shannon Veitch, and Rasoul Akhavan Mahdavi.
Peer2pir: Private queries for ipfs, 2024.

[24] Jon McLachlan, Andrew Tran, Nicholas Hopper, and Yongdae Kim.
Scalable onion routing with torsk. In Proceedings of the 16th ACM
Conference on Computer and Communications Security, CCS ’09, page
590–599, New York, NY, USA, 2009. Association for Computing
Machinery.

[25] Guillaume Michel. Ipip-373: Double hash dht spec. Technical report,
IPFS, 2023.

[26] Alan Mislove, Gaurav Oberoi, Ansley Post, Charles Reis, Peter Dr-
uschel, and Dan S. Wallach. Ap3: Cooperative, decentralized anonymous
communication. In Proceedings of the 11th Workshop on ACM SIGOPS
European Workshop, EW ’04, page 30–es, New York, NY, USA, 2004.
Association for Computing Machinery.

[27] Prateek Mittal and Nikita Borisov. Shadowwalker: Peer-to-peer anony-
mous communication using redundant structured topologies. In Proceed-
ings of the 16th ACM Conference on Computer and Communications
Security, CCS ’09, page 161–172, New York, NY, USA, 2009. ACM.

[28] Prateek Mittal, Matthew Caesar, and Nikita Borisov. X-vine: Secure
and pseudonymous routing using social networks. In Proceedings of the
2012 Network and Distributed System Security Symposium, NDSS ’12,
2012.

[29] Arjun Nambiar and Matthew Wright. Salsa: A structured approach to
large-scale anonymity. In Proceedings of the 13th ACM Conference on
Computer and Communications Security, CCS ’06, page 17–26, New
York, NY, USA, 2006. Association for Computing Machinery.

[30] C.W. O’Donnell and V. Vaikuntanathan. Information leak in the chord
lookup protocol. In Proceedings of the 4th International Conference on
Peer-to-Peer Computing, pages 28–35, Aug 2004.

[31] Esther Palomar, Juan M. Estevez-Tapiador, Julio C. Hernandez-Castro,
and Arturo Ribagorda. A p2p content authentication protocol based on
byzantine agreement. In Emerging Trends in Information and Commu-
nication Security, pages 60–72, Berlin, Heidelberg, 2006. Springer.

[32] Andriy Panchenko, Asya Mitseva, and Sara Knabe. Whisperchord:
Scalable and secure node discovery for overlay networks. In 2021 IEEE
46th Conference on Local Computer Networks, LCN ’21, pages 170–
177, 2021.

[33] Andriy Panchenko, Stefan Richter, and Arne Rache. Nisan: Network
information service for anonymization networks. In Proceedings of
the 16th ACM Conference on Computer and Communications Security,
CCS ’09, page 141–150, New York, NY, USA, 2009. Association for
Computing Machinery.

[34] Giuseppe Pirrò, Domenico Talia, and Paolo Trunfio. A dht-based
semantic overlay network for service discovery. Future Generation
Computer Systems, 28(4):689–707, 2012.

[35] Tor Project. Tor metrics - onion services. https://metrics.torproject.org/
hidserv-dir-v3-onions-seen.html, 2024. Accessed: 2024-10-08.

[36] Bernd Prünster, Dominik Ziegler, Chrisitan Kollmann, and Bojan Suzic.
A holistic approach towards peer-to-peer security and why proof of work
won’t do. In Security and Privacy in Communication Networks: 14th
International Conference, SecureComm 2018, Singapore, Singapore,
August 8-10, 2018, Proceedings, Part II, pages 122–138. Springer, 2018.

[37] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A scalable content-addressable network. In Proceedings of
the 2001 Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communications, pages 161–172, New York,
NY, USA, 2001. ACM.

[38] Souvik Ray and Zhao Zhang. An information-theoretic framework for
analyzing leak of privacy in distributed hash tables. In Proceedings of
the 7th IEEE International Conference on Peer-to-Peer Computing, P2P
’07, pages 27–36, Sep. 2007.

[39] Marc Rennhard and Bernhard Plattner. Introducing morphmix: Peer-
to-peer based anonymous internet usage with collusion detection. In
Proceedings of the 2002 ACM Workshop on Privacy in the Electronic
Society, WPES ’02, page 91–102, New York, NY, USA, 2002. Associ-
ation for Computing Machinery.

[40] Antony Rowstron. Pastry: Scalable, distributed object location and rout-
ing for large-scale, persistent peer-to-peer storage utility. In IFIP/ACM
International Conference on Distributed Plarforms, 2001.

[41] Kundan Singh and Henning Schulzrinne. Peer-to-peer internet telephony
using sip. In Proceedings of the International Workshop on Network and
Operating Systems Support for Digital Audio and Video, NOSSDAV ’05,
page 63–68, New York, NY, USA, 2005. Association for Computing
Machinery.

[42] Emil Sit and Robert Morris. Security considerations for peer-to-peer
distributed hash tables. In Peer-to-Peer Systems, pages 261–269, Berlin,
Heidelberg, 2002. Springer.

[43] Emil Sit, Robert Tappan Morris, and M Frans Kaashoek. Usenetdht: A
low-overhead design for usenet. In NSDI, pages 133–146, 2008.

[44] Mudhakar Srivatsa and Ling Liu. Vulnerabilities and security threats in
structured peer-to-peer systems: A quantitiative analysis. In Proceed-
ings of the 20th Annual Computer Security Applications Conference,
volume 10 of ACSAC ’04, pages 252–261, USA, 2004. IEEE Computer
Society.

[45] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup Service
for Internet Applications. ACM SIGCOMM Computer Communication
Review, 31(4):149–160, 2001.

[46] Jeremy Stribling, Jinyang Li, Isaac G Councill, M Frans Kaashoek, and
Robert Tappan Morris. Overcite: A distributed, cooperative citeseer. In
NSDI, volume 6, pages 11–11, 2006.

[47] Carmela Troncoso, Marios Isaakidis, George Danezis, and Harry Halpin.
Systematizing decentralization and privacy: Lessons from 15 years
of research and deployments. Proceedings on Privacy Enhancing
Technologies, 4:404–426, 2017.

[48] Dan S. Wallach. A survey of peer-to-peer security issues. In Software
Security — Theories and Systems, pages 42–57, Berlin, Heidelberg,
2003. Springer.

[49] Peng Wang, Ivan Osipkov, N Hopper, and Yongdae Kim. Myrmic:
Secure and robust dht routing. Technical report, University of Minnesota,
2006.

[50] Qiyan Wang and Nikita Borisov. Octopus: A secure and anonymous dht
lookup. In 2012 IEEE 32nd International Conference on Distributed
Computing Systems, pages 325–334, June 2012.

[51] Maxwell Young, Aniket Kate, Ian Goldberg, and Martin Karsten. Prac-
tical robust communication in dhts tolerating a byzantine adversary. In
Proceedings of the 30th IEEE International Conference on Distributed
Computing Systems, pages 263–272, June 2010.

[52] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D.
Joseph, and John D. Kubiatowicz. Tapestry: A resilient global-scale
overlay for service deployment. IEEE Journal on Selected Areas in
Communications, 22(1):41–53, 2004.

15

https://metrics.torproject.org/hidserv-dir-v3-onions-seen.html
https://metrics.torproject.org/hidserv-dir-v3-onions-seen.html

APPENDIX A
ARTIFACT APPENDIX

In this work, we introduce IRIS, an algorithm that allows
nodes that participate in authenticated Chord P2P networks to
perform queries without revealing the target of their search to
nodes other than the one holding the information. The provided
artifacts include the source code of our implementation of the
IRIS and the Chord algorithms and the code to execute the ex-
periments we have performed to support our claims (together
with the datasets we have produced). For completeness, we
also include the scripts used to create our plots. The provided
artifacts allow peers to reproduce the experiments we present
in the paper and build upon them, inspiring further research
and development in this area.

A. Artifact Structure

In the repository we provide the code and the data we
use in the paper. As a fist step, users can run the code to
execute the IRIS algorithm, and to collect execution data.
Subsequently, the users can run the provided plot scripts to
recreate the figures used in the paper. The network generation
is randomized, so to fully reproduce the results we present in
the paper, we share the data we generated and used for our
plotting.

In Figure 11 we provide the schema of the coding files in
the repository. The majority of the work is done in these four
files:

• Id_Space_Linear.m creates a circular id space with
a number of participating nodes placed uniformly at
random. A fraction of them, i.e., 0, 1

2 ,
1
3 ,

1
8 , . . ., are chosen

as colluding adversaries.
• Iris.m implements the IRIS algorithm as described

in Section VI of the paper. This function performs an
iterative search for a target object Op, initiated by a
requester Nr keeping the privacy parameters α and δ
constant during the search.

• Privacy.m calculates the loss of privacy at every node
that is queried in a search. This loss is proportional to
the ratio of the posterior and the prior knowledge about
the target object, as specified in Section V of our paper.

• Chord_Lookup.m implements the Chord lookup
protocol, as described in Section II of our paper. Given
a specified target object, the code returns the address of
the next node to be queried.

B. Set Up

1) Access: The complete artifacts and most recent version
of the code can be accessed at https://github.com/angakt/iris. A
snapshot of the release (based on which the artifacts evaluation
has been performed) has also been uploaded at Zenodo and
can be accessed at https://doi.org/10.5281/zenodo.14251874.

2) Hardware Dependencies: Any computer that can run
Matlab or GNU Octave. For our implementation we use a
computer with an Intel Core i7-4820K processor and 16GB
installed RAM memory.

Id_Space_Linear.m
Node_Dist.m

Iris.m
Find_1stNode.m
Iris_Step.m

Distance.m
RandomPoint.m
Privacy.m

AttackerChecks.m
Chord_Lookup.m

script_CreateIdSpaces.m
script_ExecuteIris.m
script_ExecuteChord.m

Fig. 11. The schema of the Iris code base.

3) Software Dependencies: The code can be executed on
any operation system that supports Matlab or Octave, e.g.,
Windows, MacOS, or Ubuntu. We test our code on Windows
10, Education edition, version 22H2, running the Matlab
version R2023a with an academic licence. However, as the
code does not use any special libraries, GNU Octave, an open-
source alternative to Matlab, is also sufficient to run the scripts.
For convenience we link to a GNU Octave docker image
available at https://github.com/gnu-octave/docker

C. Claims

The provided code is used to evaluate the proposed algo-
rithm, IRIS. More specifically the experiments performed help
us attest:
C1 IRIS’s correctness: the algorithm converges to the target

address.
C2 IRIS’s privacy guarantees: the algorithm is (α, δ)-private,

i.e., the privacy ratio against any queried node and collud-
ing adversary does not drop below α, and the algorithm
does not provide an advantage to the attacker’s guess.

D. Execution

In the paper we perform five different experiments. The first
two experiments presented in Figure 6 of the paper, focus on
the evaluation of the performance cost that is introduced by
IRIS, i.e., the extra hops that a query needs to perform. The
third experiment presented in Figure 7, attests that IRIS is
an (α, δ)-private algorithm, whereas the last two experiments
illustrated in Figure 8 and in Figure 9 examines the attacker’s
advantage when executing IRIS.

1) Network Generation: The preliminary step for all
the experiments is the creation of a number of dif-
ferent networks. These networks are generated with the
script_CreateIdSpaces.m script.

The script creates 500 different networks of 1000 nodes
each with 223 number of addresses. These three parameters
are hardcoded in the script but can be changed based on
user’s needs by changing lines 7, 11 and 12, respectively.

16

https://github.com/angakt/iris
https://doi.org/10.5281/zenodo.14251874
https://github.com/gnu-octave/docker

After executing this command 500 mat files, each one con-
taining one initialised network, are created and saved under
the folder ./experiments/networks/1000_nodes/.
After completing this preliminary step we can proceed with
the execution of the experiments.

2) Experiments: For all the experiments we make use of
the script_ExecuteIris.m script. This script allows us
to run IRIS a specified number of times, specifying the α and
δ parameters, and the fraction of colluding adversaries, across
every set of experiments.

For every execution, the script uses a different network
of 1000 nodes by loading a new network file from the
./experiments/networks/1000_nodes/ folder. For
every execution the script selects the address of the target and
the requester uniformly at random, checking that the requester
is not among the colluding nodes.

The experiment parameters are embedded in the script thus
for every new experiment a few lines needs to be changed to
generate the required data for a particular experiment.

To reproduce our experiments and results, the following
lines need to be changed:

• line 12 specifies the number of performed experiments of
every set.

• lines 28, 29 and 34 specify the number of participating
nodes in the network, the number of the id space ad-
dresses and the folder under which the mat file with the
initialised network is saved, respectively.

• line 42 defines the α parameter.
• line 47 defines the δ parameter.
• line 53 defines the fraction of colluding nodes. (Recall

that the colluding nodes are specified in the attackers
variable in the mat file of the address space.)

• line 131 defines the name of the file to be saved with the
experiments data.

To avoid an error-prone reproducibility of the
performed experiments, we provide the parametrized
script_ExecuteIris.m scripts that are to be used for
every experiment. In the next section, we report their use
together with further details regarding the execution of the
experiments.

3) Graphs: Finally, to reproduce the graphs used in the
paper, the data from the experiments can be plotted with the
scripts found in the ./experiments/results/ folder.
These are standard plots in either Matlab or R and we do not
consider these part of our contribution, but we include them
for completeness.

E. Evaluation
[Preparation]
All the experiments in the paper were executed using

networks with 1000 nodes placed on an address space with
223 addresses.

1) Experiment (E1): [Figure 6(a)] [1 human-minute + 1
compute-minute]: In this experiment we examine IRIS’s per-
formance for different values of the α parameter, to support
our first claim.

[Execution]
1) Run the script results\fig_

DistancesPerAlpha\script_ExecuteIris.m,
this will execute IRIS setting α equal to 0.25, 0.35, 0.5 and
0.75, producing 4 csv and 4 mat files. For each value of the
α parameter we execute 100 experiments. Apart from α the
rest parameters remain stable, δ = 1/16 ∗ address space and
f = 0.

2) Run the script results\fig_
DistancesPerAlpha\script_ExecuteChord.m,
this will produce 1 csv file (data a1.csv) that contains the
results when executing Chord using for comparison reasons
the targets and the requesters of one of the other mat files.

[Graph]
Run the results\fig_DistancesPerAlpha\

script_PlotDistancesPerAlpha.m to plot the
average distances to the target for each α value. The plot
needs to be executed in the same folder with the data
produced above.

2) Experiment (E2): [Figure 6(b)] [1 human-minute + 1
compute-minute]: This experiment is also related to our first
claim examining IRIS convergence for different values of the
δ parameter.

[Execution]
1) Run the script results\fig_

DistancesPerDelta\script_ExecuteIris.m,
this will execute IRIS setting δ equal to 1/4, 1/8, 1/16 and
1/32 of the address space, producing 4 csv and 4 mat files. For
each value of the δ parameter we execute 100 experiments.
Apart from δ the rest parameters remain stable, α = 0.35 and
f = 0.

2) Run the script results\fig_
DistancesPerDelta\script_ExecuteChord.m,
this will produce 1 csv file (data a1.csv) that contains the
results when executing Chord using for comparison reasons
the targets and the requesters of one of the other mat files.

[Graph]
Run the results\fig_DistancesPerDelta\

script_PlotDistancesPerDelta.m to plot the
average distances to the target for each δ value. The plot
needs to be executed in the same folder with the data
produced above.

[Preparation]
For the experiments in Figures 7, 8 and 9 we alter IRIS so

as to focus solely on the nodes that have a correct estimation
regarding the target. Thus, we need to comment lines 27-31
and uncomment lines 35-40 in the Iris.m file. The next three
experiments support our second major claim.

3) Experiment (E3): [Figure 7] [1 human-minute + 5
compute-minutes]:

[Execution]
1) Run the script results\fig_

PrivacyPerAttackers\script_ExecuteIris.m,
this will execute IRIS setting the f value equal to 0, 1/2,
1/3, 1/6 and 1/8, producing 5 mat files. For each f value we

17

execute 500 experiments. Apart from f the rest parameters
remain stable, α = 0.25 and δ = 1/4 ∗ address space.

2) Run the script results\fig_
PrivacyPerAttackers\script_
FindMinPrivacyRatio.m, the script loads the privacy
data of the 500 experiments of each f value and finds the
min privacy ratio of every experiment saving the data to 5
csv files.

[Graph]
Run the script results\fig_

PrivacyPerAttackers\script_
PlotMinPrivacyRatioPerAttackers to plot the
minimum acquired privacy ratios as histograms.

4) Experiment (E4): [Figure 8] [1 human-minute + 1
compute-minute]:

[Execution]
1) Run the script results\fig_Probabilities\

fig_DistancesNormalizedByDelta\script_
ExecuteIris.m, this will execute IRIS 500 times with
α = 0.75, δ = 1/128 ∗ address space and f = 0, producing
1 mat file.

[Graph]

Run the results\fig_Probabilities\
fig_DistancesNormalizedByDelta\script_
PlotDistancesNormalizedByDelta.m to plot the
histogram of the results.

5) Experiment (E5): [Figure 9] [1 human-minute + 1
compute-minute]:

[Execution]
1) The script results\fig_Probabilities\

fig_DistancesNormalizedByDelta\script_
PlotDistancesNormalizedByDelta.m from the
previous step, produces 2 csv files with the distances the
queried node has to the target and to the randomly picked
address. If we do not want the plotting but only to extract the
two csv files that are necessary for the fifth experiment, we
have to comment lines 28-45.

[Graphs]
To plot the probabilities we execute the scripts

in the results\fig_Probabilities\fig_
ConditionalProbabilities folder. Each script
corresponds to one subfigure. We can alter the examined x
value by changing line 9.

18

	Introduction
	Background
	Modeling Chord

	Problem Statement and Design Goals
	Problem Statement
	Design Goals

	System and Adversary Model
	Alpha-Delta Privacy
	Iris
	Overview
	Mechanism Description

	Security Analysis
	Correctness
	Secure Routing

	Query Privacy
	Lone Adversary
	Colluding Adversary

	Attacker Advantage

	Evaluation
	Simulation Setup
	Simulation Results

	Related Work
	Privacy Metrics
	Privacy Architectures

	Discussion
	Selection of and Parameters
	Other P2P Architectures
	Limitations

	Conclusion
	References
	Appendix A: Artifact Appendix
	Artifact Structure
	Set Up
	Access
	Hardware Dependencies
	Software Dependencies

	Claims
	Execution
	Network Generation
	Experiments
	Graphs

	Evaluation
	Experiment (E1)
	Experiment (E2)
	Experiment (E3)
	Experiment (E4)
	Experiment (E5)

