
SeCaS: Secure Capability Sharing Framework
for IoT Devices in a Structured P2P Network

Angeliki Aktypi

Department of Computer Science

University of Oxford

angeliki.aktypi@cs.ox.ac.uk

Kubra Kalkan

Department of Computer Science

Ozyegin University

kubra.kalkan@ozyegin.edu.tr

Kasper B. Rasmussen

Department of Computer Science

University of Oxford

kasper.rasmussen@cs.ox.ac.uk

ABSTRACT
The emergence of the internet of Things (IoT) has resulted in the

possession of a continuously increasing number of highly heteroge-

neous connected devices by the same owner. To make full use of the

potential of a personal IoT network, there must be secure and effec-

tive cooperation between them. While application platforms (e.g.,

Samsung SmartThings) and interoperable protocols (e.g., MQTT)

exist already, the reliance on a central hub to coordinate commu-

nication introduces a single-point of failure, provokes bottleneck

problems and raises privacy concerns. In this paper we propose

SeCaS, a Secure Capability Sharing framework, built on top of a

peer-to-peer (P2P) architecture. SeCaS addresses the problems of

fault tolerance, scalability and security in resource discovery and

sharing for IoT infrastructures using a structured P2P network, in

order to take advantage of the self-organised and decentralised

communication it provides. SeCaS brings three main contributions:

(i) a capability representation that allows each device to specify

what services they offer, and can be used as a common language to

search for, and exchange, capabilities, resulting in flexible service

discovery that can leverage the properties on a distributed hash

table (DHT); (ii) a set of four protocols that provides identification

of the different devices that exist in the network and authenticity

of the messages that are exchanged among them; and (iii) a thor-

ough security and complexity analysis of the proposed scheme that

shows SeCaS to be both secure and scalable.

CCS CONCEPTS
• Security and privacy → Security protocols;

KEYWORDS
IoT; DHT; Resource Sharing; Scalability; Fault-Tolerance; Privacy.

ACM Reference Format:
Angeliki Aktypi, Kubra Kalkan, and Kasper B. Rasmussen. 2020. SeCaS:

Secure Capability Sharing Framework for IoT Devices in a Structured P2P

Network. In Proceedings of the Tenth ACMConference on Data andApplication
Security and Privacy (CODASPY ’20), March 16–18, 2020, New Orleans, LA,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3374664.

3375739

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7107-0/20/03. . . $15.00

https://doi.org/10.1145/3374664.3375739

1 INTRODUCTION
The achievements of new technological advances and the appealing

services they provide result in a proliferation of Internet of Things

devices in our life. These smart embedded systems are increasingly

ubiquitous and notoriously heterogeneous allowing seamless inte-

gration between the physical and the cyber world. The possession

of a large variety of such smart appliances by the same owner forms

the owner’s IoT ecosystem, a personal network where each con-

nected device provides specific services for the user. This ecosystem

can enable the available smart devices to unite their strengths and

overcome individual weaknesses (e.g., the lack of storage in one de-

vice) or provide more advanced functionalities (e.g., smart cameras

to add with elderly care). To realise such potential and permit the

owners to make the most out of the infrastructure they possess, a

secure discovery and access control mechanism that allows device

collaboration must be in place [19].

Typically, the mechanisms, which allow devices to collaborate,

follow a centralised operation, where a central managerial entity

(e.g., a search engine [15], a broker [8], a central hub [6]) controls

the information flow and orchestrates the interactions of devices,

mediating among their communication [43]. Regardless of their

well-established application, the dependency of these centralised

mechanisms on the availability of the connection link between the

central administrative point and each device makes them vulner-

able to single-point failures as when the connection link is down,

collaboration among devices cannot be achieved. From a privacy

perspective, relying on an external infrastructure that aggregates

and controls crucial personal information on users raises signifi-

cant threats [33]; if the central server is breached the whole system

is compromised, whereas users do not control the way their data

are handled or by whom they are processed [40]. Also, the fact

that the same entity handles all the requests can result in network

bottlenecks making this solution not inherently scalable, an es-

sential property of IoT infrastructures that have to accommodate

a significant and continuously increasing number of connected

devices.

These well-known issues [1, 4, 17] motivate the use of decen-

tralised communication models to be used to allow for all of these

endowed components to interact with each other by discovering the

resources that are available in the network. In this paper, we study

the use of structured peer-to-peer (P2P) overlays in such a use-case.

In structured P2P overlays, nodes communicate with each other

in a decentralised manner without being obliged to communicate

with a hub or a cloud backend, making the system more reliable

and robust. The load is uniformly distributed among the network

devices themselves; thus all the data are handled locally mitigat-

ing personal information leaks. The distributed hash table (DHT)

Session 7: IoT CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

271

https://doi.org/10.1145/3374664.3375739
https://doi.org/10.1145/3374664.3375739
https://doi.org/10.1145/3374664.3375739
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3374664.3375739&domain=pdf&date_stamp=2020-03-16

CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA A. Aktypi, et al.

routing scheme that is followed by the peers provides scalability as

queries can be resolved with logarithmic complexity in the size of

the network, without creating bandwidth bottlenecks or requiring

the nodes to be within distance to directly communicate with each

other.

However, employing structured P2P networks to enable IoT de-

vice collaboration is not a trivial task [35, 36]. First of all, the exact

match query that DHT performs necessitates devices to initiate sev-

eral communication sessions that are proportional to the resources

they search, even if they can be closely related (e.g., they can refer

to the possibility to occupy storage but of different space amount).

The design of an appropriate expression format that is both (i) com-

patible with the exact query discovery that DHT performs and (ii)

provides discovery flexibility by allowing nodes to search for the

capability they want with as little communication cost as possible,

is needed.

Enabling device collaboration in a structured P2P manner is also

a challenging task from a security point of view. Firstly, the struc-

tured P2P networks do not have an administrative entity that can

invigilate peers’ communication. Also, IoT topologies are highly

dynamic due to the mobility of devices and their constrained re-

sources that can lead them to fall in sleep-mode regularly. However,

to accomplish such a task it is fundamental to guarantee that only

authorised nodes can access the network, that only proper members

of the network can access the capabilities of other nodes and that

any malicious activity or configuration error can be detected. The

heterogeneity of IoT devices concerning their resources further cre-

ates the need for the proposed techniques to apply to both powerful

and lightweight devices in order to provide scalability.

Our contributions are three-fold:
• We introduce a flexible way of representing device services

that we call capabilities, which enables collaboration among

peers that are organised in a structured P2P network.

• We design four protocols that achieve an authenticated boot-

strapping, an authorised access to the capabilities of nodes

and render peers accountable for the messages they ex-

change; thus allowing them to collaborate securely by dis-

covering and exchanging services.

• We provide a complete security analysis with respect to our

threat model for the four protocols and we analyse the com-

plexity of our proposal based on the computational, memory

and communication overhead that is introduced to the peers.

We prove that our framework can achieve both secure collab-

oration and good performance for large deployed connected

environments.

2 BACKGROUND AND RELATEDWORK
In this section, we provide background on DHT schemes, the rout-

ing mechanism of structured P2P networks [24], on top of which we

construct our proposed communication framework. SeCaS is not

tied with any particular structured P2P overlay. For concreteness

reasons and without loss of generality we use Chord [31] to indicate

examples and underline the performance analysis of our proposal.

We briefly elaborate on its design here. Also, in this section we

position our paper versus existing work on P2P overlays and other

Figure 1: The organisation in Chord, an identifier ring mod-
ulo 2

6 consisting of ten nodes that stores five keys. Dashed
lines show how the finger table is generated for Node8,
whereas solid lines show the path of a lookup query for
Object54 starting at Node8.

already proposed platforms that enable the discovery and sharing

of resources provided by different devices that coexist in the same

network.

P2P networks allow for decentralised communication, by en-

abling nodes to act both as clients and servers. In structured P2P

networks, the nodes and the application-specific data are assigned

unique identifiers (i.e., NodeID and ObjectID , respectively) that
place them on a large ID space structure. Figure 1, shows how

Chord organises the identifiers on a circle modulo 2
m
. The routing

of messages is based on these unique identifiers. All nodes maintain

a routing table (indicated as finger table in Chord) consisting of

the NodeID and the communication address (e.g., IP) of several

other nodes. Nodes route messages after advising their routing

table by following a forward mechanism that leads progressively

closer to the identifier that is each time specified. DHT provides the

same functionality as a traditional hash table, by storing the corre-

lation between an object and a value, which is location information

concerning the nodes on which the data can be found. A defined

function maps each object to a different node called the object’s

responsible node. In Chord, as a responsible node is chosen the first

node whose NodeID is equal to or follows the data’s identifier in

the identifier space.

Our proposal is general and agnostic to the DHT used, which

means that any structured P2P network (e.g., CAN [28], Chord [31],

Pastry [29], Kademlia [25]) can be employed. SeCaS relies only

on a simple DHT abstraction (API) [14, 21] that can provide three

primary methods:

• Join(IDNC,NodeBS): This method provides the possibility a

new nodeNC to join the networkwith the help of a bootstrap-

ping node BS. BS, which already takes part in the overlay,

assigns a NodeID to NC, which is used as its identifier in

the DHT. BS creates this NodeID according to an identifying

Session 7: IoT CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

272

SeCaS Framework CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

property (ID) of the newcomer (e.g., its IP address). Conse-

quently, with the help of BS and other peers in the network,

the NC initialises its routing table, TableID .
• Store(ObjectID,NodeID): This method associates the unique

identifier of a peer, NodeID with a specific Object,ObjectID
in the DHT, and stores it at the responsible node for this

specified Object.

• Lookup(ObjectID): This method returns when available the

location information (i.e., a list with all the nodes’ identifiers,

{ListID }) that is associated with the indicated ObjectID ,
which is stored in its responsible node; or an empty list.

A large variety of different applications adopt the distributed op-

eration that P2P overlays provide such as file sharing (e.g., Napster,

Freenet), instant messaging (e.g., Skype) and multimedia streaming

(e.g., Peertube) [9]. However, each one demands a different configu-

ration as it is bound to the discovery of a specific resource, related

to the context of each use case (e.g., a file, a username). The lack

of flexibility in the resources that are discovered within each P2P

network and the absence of interconnection mechanisms that can

enable different P2P deployments to interact between each other

prevents the broader and faster adoption of P2P systems in IoT

environments. These ecosystems demand interoperable discovery

mechanisms to be in place that can support the heterogeneous

services, which are provided by the different connected devices.

SeCaS enables a holistic discovery of all the available resources

that are registered and are to be shared in an IoT environment. We

achieve that by introducing capabilities, a way to represent all the

different services that nodes can contribute to the network. In the

literature, there have been proposed ways of denoting the compe-

tence of devices in IoT ecosystems. In general, semantic ontologies

have been introduced to solve interoperability and heterogeneity

challenges [7, 34, 37]. Despite the effectiveness of semantic models

on providing support for resource and service discovery in the

IoT environments, the multiple annotations they use to describe

specific services do not fit well with DHT exact terms search. Our

hierarchical service representation can associate to each service

a unique identifier by hashing. In this way, we enable the use of

DHT routing in the context of our application—achieving a co-

operative operation of devices. In industry, companies follow a

more programmable way to coordinate and control accessories in

home automation platforms [6, 30], where devices are abstracted

to their underlying commands and attributes. Even if all the above

structures achieve a detailed representation of device capabilities,

they are targeting services explicitly. Hence, they do not allow the

possibility of searching the network in a more advanced way (i.e.,

starting from a more general to a more specific sought-after service

and vice-versa); on the contrary, our proposal benefits from such

retrieval flexibility during the search operations.

SeCaS, by using a DHT scheme, achieves scalability and avoids

spatial constraints and network flooding, limitations that are en-

countered in other distributed resource discovery frameworks that

use the broadcast communication channel [41] and social links [20]

to advertise available services. Compared to other proposals that

also rely on a structured P2P overlay to enable resource discovery in

IoT environments [2, 12, 27], SeCaS achieves guaranteeing a secure

and reliable collaboration among the devices relying just on the

DHT structure and without either needing the peers to be organ-

ised in different neighbourhoods nor introducing extra organisation

layers to the system architecture. To the best of our knowledge, our

scheme with the capabilities representation together with the intro-

duced protocols is the first to leverage the use of P2P networks to

safely discover and exchange the services provided by a plethora of

IoT devices without increasing the deployment cost of the system.

3 CAPABILITIES
The purpose of our framework is to enable devices to work collabo-

ratively in a secure context, by exchanging services. In this section,

we elaborate on capabilities, our hierarchical service representa-

tion that allows denoting all the different services that nodes can

contribute to the network. We start by underlining the objectives

that need to be achieved by the proposed structure and then we

present our proposal and its advantages.

3.1 Prerequisites
P2P networks have been widely used in different applications that

were primarily dedicated to file-sharing by distributing network

bandwidth [13]. However, throughout the years they have also

enabled the simultaneous exchange of other resources such as

processing power [5] and disk storage space [22]. Nowadays, IoT

ecosystem presents a significant heterogeneity regarding the abil-

ities of the devices that constitute it. To enable their exchange a

mechanism that provides an easy way to represent them must be

in place. In particular, this representation must provide a coherent

registration and management of the different things that each de-

vice can do. It needs to be comprehensive and human-readable and

easily extended to adapt any newly introduced device benefits.

To be able to use the DHT and take advantage of the accurate

discovery of objects that it provides, the representation mechanism

must be able to generate objects by hashing. Furthermore, it needs

to allow searching the network in an advanced way, for example,

by executing queries that provide the possibility to locate similar

objects that fall under the same group. An easy way to achieve that

is by using range queries, where the value of the given attribute

is between an upper and lower boundary. However, in the DHT,

the object to be searched is specified by its unique identifier [3],

allowing for only exact-match queries. The challenge that arises is

to enable the check of a range by using one and not multiple exact-

match queries, as this redundancy increases the communication

cost for the nodes.

3.2 Representation mechanism
In our study, we define capabilities as all the different ways in which

devices can contribute services in the network [32]. The services

can emanate from any resource that the device has, a software

(e.g., communication interfaces), a hardware (e.g., memory) or a

transducer (e.g., sensor, actuator). For example, an “Amazon Echo”

device can access the web through its WiFi interface for a device

that only has Bluetooth connectivity, can save data for a peer that

is running out of memory or it can produce an alarm sound for a

sensor device that does not have a speaker.

Capabilities, our representation mechanism, are described in

plain-text following a hierarchical model depicted in Backus-Naur

Session 7: IoT CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

273

CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA A. Aktypi, et al.

form [26] expression illustrated below. The representation of each

capability is the name of a service with any number of refine-

ments, separated by dots. The Service is used as the group label

of each capability and refers to the functionality that is provided

by a device acting as a general description of the capability. The

Refinements are used in order to give more details concerning the

different capabilities. If we regard the service as the general group

within which a functionality is categorised, we can consider the

refinements as the concrete identifiers of the subcategories that

constitute the group. Refinements specification walks through the

different subgroups of an initial category going from something

more general to something more specific. Following that different

capabilities have a different number of refinements. For example,

Communication.TCP.HTTPS.TLS12 capability corresponds to the

existence of a specific communication interface and the refinement

specifies the exact communication module that is provided.

Object = hash(Capability)

where ⟨Capability⟩::=⟨Service⟩{"."⟨Refinement⟩}

The plain-text of the capabilities’ representation is hashed by

using a collision resistance function creating the Objects. For each
capability a different number of objects can be generated depending

on the specified Refinements that accompany the used Service. In

particular, for a capability that has n refinements there will exist

n + 1 associated objects inserted in the network. After the Objects

have been obtained by hashing, a device can invoke the lookup

operation by specifying any of the specific objects that is associated

with the capability it is looking for.

Capability = Service.Ref
1
. . . Refn ⇒
Objects = {Object

0
, . . . ,Objectn},

where

Object
0
= hash(Service),

Object
1
= hash(Service.Ref

1
),

...

Objectn = hash(Service.Ref
1
. . . Refn).

Our proposal provides a convenient way for manufacturers to

define new capabilities by introducing new Services or extending

the Refinement list for the already created ones. It can also preserve

compatibility with the way that capabilities are represented in

already implemented protocols for automation control in smart-

home environments such as Samsung’s SmartThings [30], Google’s

Weave [18] and Apple’s HomeKit [6]. In particular, the different

information that they specify for each capability in their description

(e.g., commands, attributes, status), can be included as a different

refinement in our proposal.

This representation mechanism introduces a lightweight way

to generate Objects that incorporate all the necessary information

that needs to be defined so that a specific capability can be located

efficiently into a broader set; thus compatibility with the DHT is

provided, and the execution of exact-match queries is possible.

The hierarchical representation offers a retrieval flexibility dur-

ing the search operations. If the precise name of a capability is not

known (i.e., compatibility issues stem from non-unified naming of

capabilities by different vendors) or when the invoked lookup oper-

ation of a sought-after capability returns an empty list, nodes can

choose to search for a more generalised capability taking advantage

of the hierarchy’s peel-off property. As a result, we can achieve a

reduction of the misleading indicated unavailability cases when

not the specified but similar objects exist in the network. For exam-

ple, if a node searches for Thermostat.TemperatureState but this
service is stored as Thermostat.TemperatureMeasurement by an-

other peer, the requester can peel off the refinement and search only

for Thermostat. Similarly, MemoryProvision.Level2 provides a

capability of offering storage to another device to save data and

the refinement indicates the available space, depicted in different

levels that correspond to different storage magnitudes. If the com-

municated node does not have Level2 amount of free space, then

it can define the level of free space that it has available, for example

Level1. The above-mentioned described lookup search achieves

performing general/range queries by using only one exact-match

query; thus, there is no need to perform multiple exact-queries to

examine a specific range that increases the bandwidth usage and

the communication overhead for the nodes.

The creation of multiple hashed values proportional to the num-

ber of defined refinements for each capability renders more fault

tolerance to the system. In particular, each capability has associated

with it multiple objects. Hence, the disappearance from the network

of a capability demands the failure of multiple nodes. Thus, the

possibility of unintentional deficient lookup queries is restricted.

The proposed representation in conjunction with the Fulfilment

protocol presented in section 5.4 achieves the exchange of any

capability that can be encountered in an IoT ecosystem, despite

their heterogeneity. In particular, both capabilities that demand one

communication session (e.g., the download of a software update)

or more (e.g., the storage and retrieval of data from the memory of

a device) can be satisfied. To carry and transmit all the necessary

information that needs to be specified for each capability separately,

we harness a Data structure. Each time this structure is decomposed

into different components (e.g., commands, attributes, methods)

and the associated semantics and values vary based on the defined

capability and the kind of message (e.g., sending or responding) for

which it is used.

4 SYSTEM AND ADVERSARY MODEL
In this section, we introduce the system model, on which we base

our work, and we specify the adversarial model against which our

framework is secure.

4.1 System Model
In our model, we assume a group of connected devices from light-

weight to powerful ones, equippedwith a set of different capabilities

owned by the same person or organisation. Nodes can directly reach

each other to discover and use services, which they have advertised

on the system. Potential use case scenarios can be a user’s home

network or a factory, where several devices are deployed across

the same network. We consider a dynamic topology where nodes

can join and leave at any time. To join the network, nodes broad-

cast their presence to discover a bootstrapping node. After joining

the overlay, peers follow a DHT routing scheme to communicate.

Session 7: IoT CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

274

SeCaS Framework CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

Figure 2: The system and adversary model. Nodes are organ-
ised in a structured P2P network, legitimate peers that are
already a member in the network are depicted with the let-
ter “P”, whereas the legitimate newcomer is denoted with
the letter “L”; malicious nodes are shownwith the letter “M”.
Red arrows demonstrate the different attacks that we con-
sider during the communications.

We leverage the decentralised communication of DHT to provide

scalability and fault tolerance to the IoT infrastructure; peers can

resolve their requests addressing them to other participating nodes

rather than to a specialised directory (e.g., a centralised hub) or to

all the registered ones (i.e., flooding). Both the underlying DHT’s

inherent load balancing for keys, by use of consistent hashing and

our scheme protocols’ random choice over the returned node list,

improves fairness among nodes for the provision of services, which

means that a single node will not be a repeated bottleneck. We

allow for any structured P2P (e.g., CAN, Chord) to be used. Without

loss of generality, we choose Chord in our system model depicted

in Figure 2. Peers can specify the service they want to utilise by

making use of the capabilities representation we specify in section 3.

The communication protocols we define in section 5, which deter-

mine the way peers interact, guarantee specific security properties

throughout their collaboration.

4.2 Threat Model
We assume a Dolev-Yao attacker [16] who fully controls the com-

munication channel, i.e., can eavesdrop, manipulate, replay and

intercept all communication and can also non-deterministically

inject his messages into the network. For our analysis, we con-

sider an active adversary who aims at manipulating the network

without being detected; thus denial-of-service (DoS) and jamming

attacks are out-of-scope. The goals of the attacker, depicted in red

in Figure 2, are:

(1) to join the network and get the rights of an authenticated

node

(2) to manipulate the DHT operations, i.e., initiating fake store

operations or responding erroneously to lookup requests

(3) to break the confidentiality and the integrity of the commu-

nication among peers that collaborate

Our proposal provides a concrete secure solution that underlines

and addresses the guarantees that have to be safeguarded in this

new IoT ecosystem, assuming only on a simple DHT API and that

an authentication mechanism is in place. We do not make any

security assumptions about the DHT functions (i.e., join, store

and lookup); as long as those functions are provided, the security

properties of SeCaS remain unchanged regardless of the specific

type of the underlying peer-to-peer network, which makes the

framework more applicable in different scenarios. For our proposal,

wemade the design choice to adopt an authentication schemawhich

assumes that the network owner possesses a public-private key pair

with which she validates out-of-band the identities of legitimate

peers. However, other authentication schemas [23] or off-the-shelf

authentication protocols such as IPsec or TLS can also be employed.

The protocols we specify provide strong accountability for the

messages that nodes exchange. In the event of a compromised

node, there will be a cryptographic proof of the node’s malicious

behaviour; thus, the node can be identified and removed from the

system out-of-band.

5 FRAMEWORK PROTOCOLS DESCRIPTION
In this section, we present the four protocols that constitute our

proposed communication framework. The protocols allow devices

to execute an authenticated bootstrapping at any structured P2P

network and to check the authenticity of the messages they re-

ceived from the DHT. Peers that follow the protocols by using the

capabilities representation we introduce in section 3 can collabo-

rate in a secure manner by reserving and granting access to others

peers capabilities. For all the protocols it is true that if any of the

verification steps fails, the protocol terminates with an error.

5.1 Bootstrapping Protocol
One device withC number of capabilities, henceforth referred to as

Alice, that has already obtained her certificate (i.e., she is a legiti-

mate node) and wants to join the overlay, follows the Bootstrapping

protocol, depicted in Figure 3. After picking a random nonce NA, Al-

ice initiates the communication by broadcasting her certificate, the

freshly picked nonce NA and her signature on the wireless channel,

waiting to hear back responses from neighbouring nodes. Upon re-

ceiving the broadcast message, one of the devices already a member

of the overlay, henceforth referred to as Bob, authenticates Alice by

examining the received certificate and checking the integrity of the

nonce based on the provided signature. Subsequently, Bob picks

a nonce NB and replies to Alice by providing his certificate, his

node unique identifier in the DHT and the freshly picked nonce NB
that he signs together with the nonce that was indicated in Alice’s

initiated message. Alice authenticates Bob based on his certificate

and she inspects the integrity and freshness of his response based

on the provided signature and the included nonces. She responds

back to Bob, by signing the nonce that he picked together with his

node identifier. Bob after receiving Alice’s signature knows that

he really talks to Alice, thus, he is safeguarded from the unneces-

sary execution of the Join operation that is invoked immediately

afterwards. Thereafter the two devices execute together the Join

Session 7: IoT CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

275

CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA A. Aktypi, et al.

Alice

Initiator

Bob

Responder

Pick NA

CertA∥NA∥SignA(NA)

Check CertA, SignA
Pick NB

CertB ∥NodeB ∥NB ∥SignB (NA∥NodeB ∥NB)

Check CertB , SignB ,NA

SignA(NB ∥NodeB)

Check SignA,NB ,NodeB

NodeA, TableA ← Join(IDA,NodeB)

SignB (NA∥NodeA)

Check SignB ,NA,NodeA
Accept NodeA

∀ID ∈ C : Store(ObjectID, NodeA)

Figure 3: Bootstrapping Protocol. A node that wants to be
registered in the network initiates a broadcast message wait-
ing a response from a SeCaS peer. Nodes obtain their certifi-
cates out-of-band.

operation provided by the DHT, which returns the unique identifier

that is assigned to Alice and her initialised routing table. Finally,

Bob signs Alice’s identifier together with the nonce that she chose.

After receiving Bob’s signature, Alice accepts the node identifier

that she was assigned NodeA, as valid and she then invokes the

Store operation in order to update the records of each responsible

node of the C capabilities that she can contribute to the network.

At the end of the protocol, a legitimate and alive node Alice has

successfully joined the network and the network is both acquainted

of her presence and of the capabilities that she can provide.

5.2 Resource Reservation Protocol
When a node, referred to as Alice searches for a capability in the

overlay, she initiates the Resource Reservation protocol, illustrated

as Figure 4. At first, Alice invokes the Lookup operation of the DHT

specifying the unique identifier,ObjectID of the capability that she

is looking for. The invoked operation returns a list with all the peers,

which have denoted that can provide the requested service. How-

ever, as the DHT provides no security, the obtained list is considered

to be potentially tampered. After obtaining the list, Alice selects

Alice

Initiator

Bob

Responder

{ListID } ← Lookup(ObjectID)

Select NodeB ∈ ListID
Pick NA

CertA ∥NA ∥Capability ∥SignA(NA ∥Capability)

Check CertA, SignA
Check Capability
Generate Token

CertB ∥m∥SignB (NA∥m)

Check CertB , SignB ,NA

SignA(Token∥NodeB)

Check SignB, Token, NodeB
Register Token

Figure 4: Resource Reservation Protocol. The initiator who
needs a capability invokes the lookup operation from the
DHT specifying itsObjectID . Then she selects arbitrarily one
of the available peers from the return list and verifies if he
has the sought-after service. If the service is available, she
reserves it.

arbitrarily one peer, called Bob to which she sends a signed capabil-

ity request message that contains her certificate, a freshly picked

nonce, NA and the queried capability, Capability. Bob checks the
authenticity of the message by examining the received certificate

and signature and inspects if he can provide the requested service.

If this holds, he generates a Token (i.e., a random number) that

he associates with Alice’s NodeID and the sought-after Capability.
Subsequently, he replies to Alice’s request by providing his certifi-

cate and a messagem, that includes an acknowledgement and the

freshly generated token,m = Ack | |Token. He also signs messagem
together with the nonce, NA that was chosen by Alice. When Alice

receives Bob response, she checks its authenticity by inspecting the

included certificate and the provided signature and assures that it

corresponds to her initial request based on the returned nonce. She

then signs the provided token together with Bob’s node identifier

and sends it to him. Finally, after checking the received signature

Bob registers the token as issued. In case Bob cannot provide the

requested service, he replies to Alice’s request by providing his

Session 7: IoT CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

276

SeCaS Framework CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

certificate and a message m, that includes a negative acknowledge-

ment,m = Nack . He also signs message m together with the nonce,

NA that was chosen by Alice, and the protocol terminates. If the

sought-after capability is not currently available in the network

(e.g., Bob was the only one who could provide it), Alice can take

advantage of the peel-off property of the proposed capability repre-

sentation to look for other capabilities that are related to the sought

after one. At the end of this protocol, the requester node Alice re-

serves the capability from another peer Bob who has this capability

in the network. The nodes that are looking for a specific capability

after executing this protocol will know if such capability is really

registered in the network and they will have also identify the node

that is able and committed to providing it. Also, the contacted peer

will be aware of the interest of another node for its specific service

and will have reserved it for as long as the provided token is in

effect (e.g., for a time interval T).

5.3 Key Agreement Protocol
Two peers jointly agree on a secret key following the Key Agree-

ment protocol depicted as Figure 5. The protocol is based on the

Diffie-Hellman algorithm. The predefined base д is a primitive root

in the group of integers modulo p. Alice, who initiates the pro-

tocol, chooses a secret integer a and picks a random nonce NA.

She then sends to Bob her certificate, дa mod p and the freshly

picked nonce NA. In her message, she also includes her signature

for the дa mod p, NA and Bob’s identifier. Bob upon receiving the

message checks the correspondence of the indicated certificate and

the provided signature and also inspects the node identifier of the

message’s receiver assuring that this message is addressed to him.

If the check is successful, Bob chooses, in turn, a secret integer

b and constructs the shared secret key KAB = (д
a)b mod p. He

sends back to Alice his certificate and дb mod p that he signs to-

gether with the nonce NA that she picked at the beginning. As

soon as Alice receives Bob’s response, she checks the correspon-

dence of the indicated certificate with the provided signature and

the returned nonce, and she then calculates the shared secret key

KAB = (д
b)a mod p. If the protocol terminates, it guarantees that

the secret key is only known to Alice and Bob. The resulting secret

will be used in subsequent communication between the devices,

enabling them to authenticate each other and exchange capabilities

over a confidential secret channel. The protocol takes into consid-

eration the storage consumption at each node and the dynamic

character of the network. By following it, nodes can establish keys

with any of the peers registered in the system if they choose to

do so; thus the number of keys that each node has to store in its

memory is not in direct proportion to the network size.

5.4 Fulfilment Protocol
When a node wants to make use of a peer’s commitment to the pro-

vision of a capability, it initiates the Fulfilment protocol delineated

in Figure 6. Primarily, the initiator, Alice sends the possessed token

that has been obtained from the execution of the Resource Reserva-

tion protocol, a data structure that forms her request and her node

identifier. The message is sent encrypted together with its MAC,

by using the secret key that is established from the completion

of the Key Agreement protocol between Alice and the responder,

Alice

Initiator

Bob

Responder

Pick a,NA

CertA∥дa ∥NA∥SignA(д
a ∥NA∥NodeB)

Check CertA, SignA, NodeB
Pick b

KAB = (дa)b

CertB ∥дb ∥SignB (д
b ∥NA)

Check CertB , SignB ,NA
KAB = (д

b)a

Figure 5: Key Agreement Protocol. Two peers that want to
establish a shared secret key follow an authenticated Diffie-
Hellman key algorithm.

Bob. The responder upon receiving the node’s request retrieves

their shared secret key, checks its integrity based on the provided

MAC and then decrypts it. Subsequently, he ensures that she did

not create the message in the past by inspecting the sender’s in-

cluded node identifier. Then, he examines if the specified token is

still valid, if it is associated with the initiator’s NodeID and if it is

in accordance with the capability ObjectID to which the defined

data structure refers. If the checking is successful, he provides the

specified capability. Hence, he responds back by encrypting the ini-

tially provided token, a data structure that contains his respond, his

node identifier and a new generated token in case of a long lasting

capability. This token will be used in a subsequent execution of the

Fulfilment protocol to refer back to a capability that is still under

sharing. Finally, the responder includes the MAC of his encrypted

response that will then be used from the initiator for checking

the integrity of the replied message. The protocol provides access

control to the nodes’ capabilities. The responder is able to control

which device is going to be the beneficiary of the service provided

with the help of the token. The initiator at the end of the protocol’s

execution will have taken advantage of the other peer’s capability

and will have an acknowledgement for the provided service. All

the communication is encrypted providing confidentiality to the

communication between the collaborative parties.

6 SECURITY ANALYSIS
Based on the threat model that we describe in section 4.2 we now

evaluate the security of the protocols of our framework by dis-

cussing the likelihood of an adversary breaking the security guar-

antees of each protocol to achieve his attacking goals. We will base

our analysis on the following four main assumptions:

Session 7: IoT CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

277

CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA A. Aktypi, et al.

Alice

Initiator

Bob

Responder

EKAB (Token∥DataA∥NodeA)∥MACKAB

Check MACKAB,Token, NodeA

EKAB (Token∥DataB ∥Tokennew ∥NodeB) ∥MACKAB

Check MACKAB,Token, NodeB

Figure 6: Fulfilment Protocol. The responder grants access
to the initiator to one of his services based on the indicated
token. The nodes are authenticated based on the secret key
they share.

(1) The signature scheme used by the protocol participants and

the CA is secure, i.e., it is not possible to forge a signature

without access to the private key.

(2) The same nonce is only picked twice with negligible proba-

bility.

(3) The same token is only picked twice by the same device with

negligible probability.

(4) Each device registers only one token for any given capability

each time it is requested, along with the NodeID of the node

to whom it was issued. The tokens are maintained for a time

T (enough for nodes to execute the protocols in Figures 5

and 6). After this time the tokens are discarded.

6.1 Bootstrapping Protocol
The Bootstrapping protocol, Figure 3 provides two guarantees, one

for Alice and one for Bob.

Guarantee 1. If the protocol completes successfully, Alice is as-
signed a NodeID sent by Bob (a valid node), and she correctly joins
the overlay network.

Proof. For an adversary to break this guarantee and falsely

convince Alice that she has been assigned a valid NodeID , the ad-
versary would have to successfully send Message 4, as this is the

only way for Alice to get the NodeID that is signed by Bob. The ad-

versary only has two options to send Message 4. He can either craft

the message or replay a previously captured message. To craft Mes-

sage 4 the adversary has to produce a signature over the message

content that matches a certificate signed by the CA. This means

he must either forge the signature or obtain the private keys. The

adversary cannot forge the signature by assumption 1, so assuming

the private keys are kept private, the adversary cannot craft the

message. For replay to work, the adversary has to make sure that

the content of Message 4 expected by Alice, corresponds to one

of the messages available to her. Because the nonce NA selected

by Alice is part of the signature of Message 4, this means that the

adversary either has to force Alice to choose a nonce that corre-

sponds to one of his captured messages, or predict the choice and

force Bob to construct a valid message ahead of time. The adversary

cannot influence Alice’s choice of NA and by assumption 2 previous

nonces (picked by Alice or other nodes) will only be useful with

negligible probability. This means he would have to predict the

choice and make Bob generate Message 4 ahead of time. However,

Bob will only send Message 4 (containing NA) in response to a

signed response (Message 3), and we prove subsequently that the

adversary cannot forge such responses. □

Guarantee 2. For Bob, this protocol guarantees that the join
request is fresh and originated from Alice (a valid node).

Proof. For an adversary to break this guarantee and falsely

convince Bob that he is Alice, the adversary would have to send

Message 3 successfully. The adversary has two options: he can either

create or replay Message 3. To create Message 3, the adversary

has to produce a signature over the message content, which is

not possible according to assumption 1. To replay Message 3, the

adversary has to control Bob’s choice of NB , or predict it and force

Alice to generate Message 3. However, these options are not viable

for similar reasons to those explained above related to the replay

of Message 4. □

6.2 Resource Reservation Protocol
The Resource Reservation protocol, Figure 4 has two guarantees,

one for Alice and one for Bob.

Guarantee 3. At the end of the protocol, Alice obtains a token
which proves that she has reserved a resource from Bob (a valid node).

Proof. For an adversary to break this guarantee and falsely

convince Alice that she has received a valid token, the adversary

has to send Message 2 successfully. The adversary only has two

options to send Message 2. He can either create the message or

replay a previously captured message. To create the message, the

adversary has to produce a signature over the message, which is

not possible according to assumption 1. To replay, the adversary

has to control Alice’s choice of NA, or predict it and force Bob to

generate Message 2, nevertheless for similar reasons to the ones

explained in section 6.1 for the Bootstrapping Protocol, this cannot

be achieved. □

Guarantee 4. For Bob, the protocol guarantees that the request
is fresh and really from Alice, i.e., that it has not been changed or
submitted by someone else.

Proof. For an adversary to make Bob register a token as "is-

sued", he must confirm the token with Message 3 (in Figure 4).

The adversary only has two options to send Message 3. He can

either craft the message or replay a previously captured message.

To craft Message 3 the adversary has to produce a signature over

the message which is not possible according to assumption 1. For

replay to work, the adversary has to control the choice of the token,

or predict it and force Alice to generate Message 3. With the help

Session 7: IoT CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

278

SeCaS Framework CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

of assumption 3 and similar reasons of the replay of messages as

above, these options are not viable. □

6.3 Key Agreement Protocol
The Key Agreement protocol, Figure 5 provides a guarantee that

holds for both Alice and Bob.

Guarantee 5. If the protocol is completed successfully, a secret
key is created which is only known by Alice and Bob.

Proof. For an adversary to break this guarantee he has two

options: he can create the secret key by using the information

obtained from Message 1 and Message 2, or he can control the

choice of a or b. To obtain the key, he gets the information дa

from Message 1 and дb from Message 2. To craft the key from

this information he needs to solve the discrete logarithm problem

which is computationally infeasible. Assuming the adversary cannot

influence Alice’s choice of a or Bob’s choice of b the adversary

cannot create the shared key between Alice and Bob. □

6.4 Fulfilment Protocol
The Fulfilment protocol, Figure 6 provides two guarantees, one for

Alice and one for Bob.

Guarantee 6. If the protocol completes, Alice will successfully
access one of Bob’s resources.

Proof. In order for an adversary to break this guarantee, the

adversary would have to successfully send Message 2 to take advan-

tage of the provided capability. The adversary can either craft the

message, or replay a previously captured message. To craft Message

2 the adversary has to encrypt the message content; thus he has

to obtain the secret key KAB that is shared between Alice and Bob.

However, as we proved in the Key Agreement Protocol, the adver-

sary cannot obtain the secret key, KAB . To replay the message, the

adversary needs to make the content of the message acceptable by

Alice. According to assumption 3, the same token cannot be appli-

cable twice for the same device. Thus, Alice will understand from

the token number that it is a replay message. However, there can be

a case that Alice has reserved in the past a capability for Bob with

the same token and they have also executed the fulfilment protocol,

the adversary will be able to capture the encryption of the provided

token and perform a replay attack for Message 1 (reflection attack).

However, NodeB in the message will reveal that this message is not

coming from Bob. □

Guarantee 7. For Bob, the protocol guarantees that he shares
with Alice the resource for which he earlier provided a token.

Proof. Alice cannot cheat and take advantage of another re-

source other than what she reserved based on the assumption 4.

For an adversary to trick Bob to share his capability with him will

have to send Message 1 successfully. The adversary can either craft

or replay the message. To craft Message 1 the adversary has to en-

crypt the message content; thus he has to obtain the secret keyKAB
which we proved that it is not possible in the previous section 6.3.

To replay the message, the adversary needs to make the content of

the message acceptable by Alice. According to assumption 3, the

token number will reveal that it is a replay message. However, there

can be a similar case explained above, which can cause a reflection

attack. However, NodeA in Message 1 casts out this threat. □

7 COMPLEXITY ANALYSIS
In this section, we provide a complexity analysis of the SeCaS

framework that runs on top of a structured P2P network. To avoid

duplicating existing work that implements DHT [3, 12, 27] in IoT

environments, we focus on the performance delta (i.e., computa-

tional overhead, storage consumption, communication cost) that

nodes need to sustain when they participate in DHT and when

they follow our proposal. In our analysis, we use as a benchmark

the Chord [31] protocol, for concreteness and consistency reasons.

However, the referred performance is followed by the majority of

the structured P2P networks.

7.1 Computational Overhead
Recent studies have shown that it is feasible to apply public key

cryptography to sensor networks by using the right selection of

algorithms and associated parameters, optimization, and low power

techniques [38]. Following that, we base our analysis on the num-

ber of demanding cryptographic operations (i.e., exponentiations,

signature generations and verifications) that nodes need to perform.

Apart from the hashing operation, which does not impose a

significant computational burden to the nodes, Chord and in gen-

eral the DHT does not demand any other cryptographic operation.

Hence, based on our assumption the computational overhead for

the nodes in Chord is zero.

SeCaS framework provides the security guarantees that we present

in section 6, by using different cryptographic operations. Starting

with the Bootstrapping protocol, both Alice and Bob have to per-

form two signature generations over the messages they initiate.

Also, both of them have to verify signatures three times to authenti-

cate their communicating party based on their provided certificate

or to check the authenticity of the received messages. Hence, the

total computational cost of the Bootstrapping protocol is four sig-

nature generations and six signature verifications. Analogously, we

compute the total introduced overhead for the Resource Reserva-

tion protocol and the Key Agreement protocol, which follows a

Diffie-Hellman key exchange algorithm. The Fulfilment protocol

demands only symmetric encryption-decryption and message au-

thentication code (MAC) verifications; thus following our initial

assumption, its computational cost is zero. Table 1 summarises our

results.

7.2 Storage Consumption
To avoid a linear search of the network [42], nodes in Chord main-

tain a routing table (denoted as finger table) containing at maximum

m entries, wherem is the number of bits of the identifiers. A finger

table entry includes the finger interval and both the Chord identi-

fier and the communication address of the relevant node; thus for

storing their finger table nodes are burdened to reserve O(m) space
in their memory.

In the DHT, nodes are responsible for storing application-specific

data related to a number of different objects that are registered in

Session 7: IoT CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

279

CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA A. Aktypi, et al.

Table 1: Complexity overview of the computational overhead, the storage consumption and the communication cost that nodes
need to sustain when following the Chord P2P protocol and the ones introduced on top of them by SeCaS Framework.

Computational Overhead Storage Consumption Communication Cost

Protocol Alice Bob Chord Introduced Chord Introduced

Bootstrapping 2s + 3v 2s + 3v O(m) + O(r) 4 · ka O
(
(logn)2

)
+ O(logn) 3

Resource Reservation 2s + 2v 1s + 3v – (д +m + t) · nt O(logn) nt

Key Agreement 1s + 2v + 2e 1s + 2v + 2e – (m + ks) · (nt + ns − (nt ∩ ns)) – nt + ns − (nt ∩ ns)

Fulfilment 0 0 – f (Data) – 2

the network. In Chord, assuming h registered objects in a network

with n number of nodes, each node is responsible for r = h/n
objects. Each new entry causes the table and also the space that it

occupies to increase linearly and in direct proportion to the number

of inputs. Hence, the nodes are burdened to reserve O(r) space in
their memory for the data that they are responsible for.

The hierarchical representation that SeCaS introduces for repre-

senting capabilities associates multiple objects with each capability

based on the number of refinements that it has. Despite introduc-

ing a higher load to the total network, the load balancing feature

that is inherent in DHTs such as in Chord promotes the uniform

distribution of the extra objects among all the nodes in the network.

By having all the nodes contributing evenly in the maintenance of

the network, we reduce the collateral damage of the failure of each

node in the total network operation.

In addition to these two tables, the certificate-based authen-

tication mechanism which we adopt for SeCaS schema here re-

quires each participant node to store a few further properties: the

public key of the owner (PKCA), a pair of public-private keys

(PKi, SKi) and its validated identity in the form of a certificate

(Certi = (SiдnCA(IDi , PKi), IDi , PKi)). The amount of storage that

these properties occupy on each node’s memory depends on the

selected cryptographic asymmetric algorithm that is used for gener-

ating key pairs and signing messages, and the selected key-length.

For example, in RSA the signature size depends on the key size, the

RSA signature size is equal to the length of the modulus in bytes.

This means that for a ka -bit key, the resulting signature will be

exactly ka -bit long (e.g., 2048-bit key length will result in a signa-

ture of 256 bytes). Taking the bit length of the chosen key ka as

constant, storing the four preliminary values requires 4 · ka bits of

memory space on each node.

Further to these values, in the proposed framework each node

needs to store two more tables. In the first table, each node has to

maintain the tokens that provide authorised access to its capabilities.

Each entry in this table has to indicate the string value of the

capability, the unique identifier of the node that has reserved it

and the related token. Assuming a д-bit string, an m-bit unique
identifier for the DHT and a t-bit token in use, the amount of

memory that this table requires is (д +m + t) · nt bits, where nt is
the number of nodes that each node serves.

The second table, has to save the shared secret symmetric keys

which the node establishes with other peers from the network. Each

entry in this table will include the unique identifier of the coopera-

tive node and the established symmetric key. The total amount of

memory that this table demands depends on the bit length of the

established symmetric key (e.g., 256-bit for AES algorithm [39]) and

it grows linearly whenever a new key is established. Nodes share a

secret key with all the nodes with which they collaborate. Consider-

ing the establishment of a ks -bit symmetric key between the nodes,

the storage of this table reserves (m +ks) · (nt +ns − (nt ∩ns)) bits
on the memory of each node, where ns is the number of nodes that

serves this node.

Nodes are further burdened to use space in their memory de-

pending on the Data structure of the capability that is exchanged

each time. The Fulfilment protocol, Figure 6 enables capability ex-

change by making use of this structure, which carries and transmits

all the necessary information (e.g., commands, attributes, methods)

for each capability.

7.3 Communication Cost
To maintain a correct mapping in the DHT when a node ni joins
the network, the responsibility of the identifier space is going to be

updated, so as the newcoming node to be assigned certain identi-

fiers previously assigned to other peers. This initiates a message

exchange procedure in the network to update the routing invariants

of the affected nodes. In Chord, such a join procedure demands

O((logn)2) messages, in order to make sure certain identifiers pre-

viously assigned to n’s successor to become assigned to n.
To locate both resources and peers across the network, nodes in

the DHT use their routing table. The communication complexity

achieves a balanced trade-off between the cost of maintaining a full

directory and the network delay of storing one neighbour per node.

The level of routing complexity in a stable n-node Chord overlay

requires O(logn) hops. Hence, both the store and lookup operations
demand O(logn) number of messages if recursive routing [10] is

applied or O(2 logn) in case of iterative routing [11].

In SeCaS, both the Bootstrapping protocol (Figure 3) and the

Fulfilment protocol (Figure 6) of our scheme, add a constant num-

ber of three and two messages, respectively, to the nodes that are

communicating in the structured P2P network. The number of ex-

ecutions of the Resource Reservation protocol (Figure 4) and the

Key Agreement protocol (Figure 5), as already explained in the

previous subsection 7.2, depends on the number of nodes that the

node serves and the number of the nodes that serve it; thus the

introduced communication cost from these protocols will be of nt
and nt + ns − (nt ∩ ns) messages, respectively.

In SeCaS, nodes’ liveliness is inspected by using cryptographic

nonces and not other freshness mechanisms (e.g., timestamps); thus

Session 7: IoT CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

280

SeCaS Framework CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

no time synchronisation is demanded among the different devices

in the network. The communication overhead that is generated in

order the devices to acquire the necessary properties (e.g., their

certificate) for being authenticated and is not a burden that our

proposal imposes but is linked with the authentication schema that

SeCaS uses; thus we do not include it in our calculations.

8 CONCLUSION
In this paper, we introduce SeCaS, a framework that enables efficient

and secure capability sharing between IoT devices. Our framework

takes advantage of the self-organised and decentralised communica-

tion provided by a structured P2P network and is built to utilise the

search capabilities such networks already possess. SeCaS ensures

a number of security properties including only letting authorised

nodes join the network and search for capabilities; message fresh-

ness; authentication of nodes and messages; and accountability to

aid in troubleshooting in case of configuration errors or malicious

behaviours. The security properties hold regardless of the exact

type of underlying P2P network, on the only condition that three

functionalities – Join, Store, and Lookup – are provided. We do not

make any security assumptions about these functions, nor does it

matter how they are implemented. The adversary is considered to

have full control over the data returned by these functions. Despite

this strong adversary model, we provide a complete decentralised

secure capability discovery and resource sharing network solution.

This is accomplished by first introducing a flexible way to represent

device services that we call capabilities. Capabilities act as a com-

mon language to allow nodes to exchange, and search for, services

without the need for a central hub. We design four protocols that

utilise the underlying P2P network as a transport layer and together

implement the framework. These protocols guarantee that only au-

thorised nodes can access the network and only proper members of

the network can access the capabilities of other nodes. We provide a

complete security analysis for all four protocols, with respect to our

threat model. We additionally analyse the computational overhead,

as well as the memory and communication complexity of our pro-

posal showing that our framework scales well and does not impose

a considerable cost to the participating nodes. Both our security and

complexity analyses prove SeCaS to be a scalable architecture that

provides fault-tolerance and addresses privacy concerns, suggest-

ing it as a feasible alternative to the established IoT collaboration

approaches that are either centralised or use flooding mechanisms.

ACKNOWLEDGMENTS
We would wish to thank the UK EPSRC and British Telecommu-

nications who have funded this research through a partial PhD

studentship in Cyber Security for EU Candidates and a Russel Stu-

dentship, respectively.

REFERENCES
[1] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. 2019. Sok:

Security evaluation of home-based iot deployments. In IEEE S&P. 208–226.
[2] Joao Alveirinho, Joao Paiva, Joao Leitao, and Luis Rodrigues. 2010. Flexible

and efficient resource location in large-scale systems. In Proceedings of the 4th
International Workshop on Large Scale Distributed Systems and Middleware. ACM,

55–60.

[3] João Pedro Fernandes Alveirinho. 2010. Resource Location in P2P Systems. Master’s

thesis. Instituto Superior Técnico.

[4] Mahmoud Ammar, Giovanni Russello, and Bruno Crispo. 2018. Internet of Things:

A survey on the security of IoT frameworks. Journal of Information Security and
Applications 38 (2018), 8–27.

[5] David P Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.

2002. SETI@ home: an experiment in public-resource computing. Commun. ACM
45, 11 (2002), 56–61.

[6] Apple. 2018. HomeKit. https://developer.apple.com/documentation/homekit

[7] Garvita Bajaj, Rachit Agarwal, Pushpendra Singh, Nikolaos Georgantas, and

Valérie Issarny. 2017. 4W1H in IoT semantics. IEEE Access (2017).
[8] Andrew Banks and Rahul Gupta. 2014. MQTT Version 3.1. 1. OASIS standard 29

(2014). http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf

[9] John F Buford and Heather Yu. 2010. Peer-to-peer networking and applica-

tions: synopsis and research directions. In Handbook of Peer-to-Peer Networking.
Springer, 3–45.

[10] Farida Chowdhury and Md. Sadek Ferdous. 2017. Performance analysis of

R/Kademlia, Pastry and Bamboo using recursive routing in mobile networks. In-
ternational Journal of Computer Networks & Communications (IJCNC) 9, 5 (2017).

[11] Farida Chowdhury, Jamie Furness, andMario Kolberg. 2017. Performance analysis

of structured peer-to-peer overlays for mobile networks. International Journal of
Parallel, Emergent andDistributed Systems 32, 5 (2017), 522–548. https://doi.org/10.
1080/17445760.2016.1203917 arXiv:https://doi.org/10.1080/17445760.2016.1203917

[12] Simone Cirani, Luca Davoli, Gianluigi Ferrari, Rémy Léone, Paolo Medagliani,

Marco Picone, and Luca Veltri. 2014. A scalable and self-configuring architecture

for service discovery in the internet of things. IEEE Internet of Things Journal 1,
5 (2014), 508–521.

[13] Bram Cohen. 2008. The BitTorrent protocol specification.

[14] Frank Dabek, Ben Zhao, Peter Druschel, John Kubiatowicz, and Ion Stoica. 2003.

Towards a common API for structured peer-to-peer overlays. In Peer-to-Peer
Systems II – International Workshop on Peer-to-Peer Systems (IPTPS). Springer,
33–44.

[15] Soumya Kanti Datta, Rui Pedro Ferreira Da Costa, and Christian Bonnet. 2015. Re-

source discovery in Internet of Things: Current trends and future standardization

aspects. InWorld Forum on Internet of Things (WF-IoT). IEEE, 542–547.
[16] Danny Dolev and Andrew Yao. 1983. On the security of public key protocols.

IEEE Transactions on information theory 29, 2 (1983), 198–208.

[17] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2016. Security analysis

of emerging smart home applications. In 2016 IEEE Symposium on Security and
Privacy (SP). IEEE, 636–654.

[18] Google. 2018. Weave. https://nest.com/weave/

[19] Juan A Holgado-Terriza and Sandra Rodríguez-Valenzuela. 2011. Services com-

position model for home-automation peer-to-peer pervasive computing. In Fed-
erated Conference on Computer Science and Information Systems (FedCSIS). IEEE,
529–536.

[20] Dimitris N Kalofonos, Zoe Antoniou, Franklin D Reynolds, Max Van-Kleek, Jacob

Strauss, and Paul Wisner. 2008. Mynet: A platform for secure p2p personal and

social networking services. In International Conference on Pervasive Computing
and Communications (PerCom). IEEE, 135–146.

[21] Brad Karp, Sylvia Ratnasamy, Sean Rhea, and Scott Shenker. 2004. Spurring adop-

tion of DHTs with OpenHash, a public DHT service. In International Workshop
on Peer-to-Peer Systems. Springer, 195–205.

[22] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton,

Dennis Geels, Ramakrishna Gummadi, Sean Rhea, HakimWeatherspoon, Westley

Weimer, et al. 2000. Oceanstore: An architecture for global-scale persistent storage.

In ACM SIGARCH Computer Architecture News, Vol. 28. ACM, 190–201.

[23] Chaohao Li, Xiaoyu Ji, Xinyan Zhou, Juchuan Zhang, Jing Tian, Yanmiao Zhang,

and Wenyuan Xu. 2018. HlcAuth: Key-free and Secure Communications via

Home-Limited Channel. In Proceedings of the 2018 on Asia Conference on Computer
and Communications Security. ACM, 29–35.

[24] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, and Steven Lim.

2005. A survey and comparison of peer-to-peer overlay network schemes. IEEE
Communications Surveys & Tutorials 7, 2 (2005), 72–93.

[25] Petar Maymounkov and David Mazieres. 2002. Kademlia: A peer-to-peer infor-

mation system based on the xor metric. In International Workshop on Peer-to-Peer
Systems. Springer, 53–65.

[26] Daniel D McCracken and Edwin D Reilly. 2003. Backus-naur form (bnf). Ency-
clopedia of Computer Science (2003), 129–131.

[27] Federica Paganelli and David Parlanti. 2012. A DHT-based discovery service for

the Internet of Things. Journal of Computer Networks and Communications 2012
(2012).

[28] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker.

2001. A scalable content-addressable network. Vol. 31. ACM.

[29] Antony Rowstron. 2001. Pastry: Scalable, distributed object location and routing

for large-scale, persistent peer-to-peer storage utility. In IFIP/ACM International
Conference on Distributed Plarforms.

[30] Samsung. 2018. SmartThings. https://smartthings.developer.samsung.com/

develop/api-ref/capabilities.html

[31] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari Balakrish-

nan. 2001. Chord: A scalable peer-to-peer lookup service for internet applications.

ACM SIGCOMM Computer Communication Review 31, 4 (2001), 149–160.

Session 7: IoT CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

281

https://developer.apple.com/documentation/homekit
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
https://doi.org/10.1080/17445760.2016.1203917
https://doi.org/10.1080/17445760.2016.1203917
http://arxiv.org/abs/https://doi.org/10.1080/17445760.2016.1203917
https://nest.com/weave/
https://smartthings.developer.samsung.com/develop/api-ref/capabilities.html
https://smartthings.developer.samsung.com/develop/api-ref/capabilities.html

CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA A. Aktypi, et al.

[32] Jack Sturgess, Jason R C Nurse, and Jun Zhao. 2018. A capability-oriented

approach to assessing privacy risk in smart home ecosystems. In Living in the
Internet of Things: Cybersecurity of the IoT Conference. IET.

[33] Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng Wang, Blase Ur, XianZheng

Guo, and Patrick Tague. 2017. SmartAuth: User-Centered Authorization for

the Internet of Things. In USENIX Security Symposium. USENIX Association,

361–378.

[34] Matú Tomlein and Kaj Grønbæk. 2016. Semantic Model of Variability and Ca-

pabilities of IoT Applications for Embedded Software Ecosystems. In Working
IEEE/IFIP Conference on Software Architecture (WICSA). IEEE, 247–252.

[35] Guido Urdaneta, Guillaume Pierre, and Maarten Van Steen. 2011. A survey of

DHT security techniques. ACM Computing Surveys (CSUR) 43, 2 (2011), 8.
[36] Dan S Wallach. 2003. A survey of peer-to-peer security issues. In Software

Security—Theories and Systems. Springer, 42–57.
[37] Wei Wang, Suparna De, Ralf Toenjes, Eike Reetz, and Klaus Moessner. 2012. A

comprehensive ontology for knowledge representation in the internet of things.

In International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom). IEEE, 1793–1798.

[38] Yong Wang and Jason Nikolai. 2017. Key Management in CPSs. Security and
Privacy in Cyber-Physical Systems: Foundations, Principles and Applications (2017),
117–136.

[39] Wikipedia contributors. 2018. Key size — Wikipedia, The Free Encyclopedia.

https://en.wikipedia.org/w/index.php?title=Key_size&oldid=834490386. [Online;

accessed 27-July-2018].

[40] Wikipedia contributors. 2019. Facebook-Cambridge Analytica data scandal —

Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=

Facebook\T1\textendashCambridge_Analytica_data_scandal&oldid=892459300.

[Online; accessed 16-April-2019].

[41] David J Wu, Ankur Taly, Asim Shankar, and Dan Boneh. 2016. Privacy, discovery,

and authentication for the internet of things. In European Symposium on Research
in Computer Security. Springer, 301–319.

[42] Jun Xu, A. Kumar, and Xingxing Yu. 2004. On the fundamental tradeoffs between

routing table size and network diameter in peer-to-peer networks. IEEE Journal
on Selected Areas in Communications 22, 1 (Jan 2004), 151–163. https://doi.org/

10.1109/JSAC.2003.818805

[43] Fen Zhu, Matt W Mutka, and Lionel M Ni. 2005. Service discovery in pervasive

computing environments. IEEE Pervasive computing 4 (2005), 81–90.

Session 7: IoT CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

282

https://en.wikipedia.org/w/index.php?title=Key_size&oldid=834490386
https://en.wikipedia.org/w/index.php?title=Facebook\T1\textendash Cambridge_Analytica_data_scandal&oldid=892459300
https://en.wikipedia.org/w/index.php?title=Facebook\T1\textendash Cambridge_Analytica_data_scandal&oldid=892459300
https://doi.org/10.1109/JSAC.2003.818805
https://doi.org/10.1109/JSAC.2003.818805

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Capabilities
	3.1 Prerequisites
	3.2 Representation mechanism

	4 System and Adversary Model
	4.1 System Model
	4.2 Threat Model

	5 Framework Protocols Description
	5.1 Bootstrapping Protocol
	5.2 Resource Reservation Protocol
	5.3 Key Agreement Protocol
	5.4 Fulfilment Protocol

	6 Security Analysis
	6.1 Bootstrapping Protocol
	6.2 Resource Reservation Protocol
	6.3 Key Agreement Protocol
	6.4 Fulfilment Protocol

	7 Complexity Analysis
	7.1 Computational Overhead
	7.2 Storage Consumption
	7.3 Communication Cost

	8 Conclusion
	Acknowledgments
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 2 to page 15
 Mask co-ordinates: Horizontal, vertical offset 38.42, 717.90 Width 543.40 Height 24.70 points
 Origin: bottom left

 1
 0
 BL

 2
 SubDoc
 15

 CurrentAVDoc

 38.422 717.9005 543.3966 24.6999

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 11
 12
 11
 11

 1

 HistoryList_V1
 qi2base

