
Actions Speak Louder Than Passwords:
Dynamic Identity for Machine-to-Machine Communication

Wil Liam Teng
University of Oxford

Oxford, United Kingdom
wil.teng@cs.ox.ac.uk

Kasper Rasmussen
University of Oxford

Oxford, United Kingdom
kasper.rasmussen@cs.ox.ac.uk

ABSTRACT
Machine-to-Machine (M2M) communication is communication be-
tween computers without a human user involved. This is a very
common paradigm whenever automated tasks are executed rou-
tinely, e.g., backup data to a cloud storage, update a local database
cache, fetch the latest updates for software, etc. One challenge in
this setting is that the credentials to establish secure connections
between machines during execution must be available to the ma-
chines without any human interaction. Typically that means the
credentials must reside on the machine itself, in the form of a secret
such as a password, API key, single sign-on token, etc. In practice
the secret is often embedded directly into an automatically executed
script, but regardless it needs to be stored either in the clear or en-
crypted with another secret that is available to the machine during
execution. This exposes the credentials to anyone who can gain
access to the machine. In this paper we present ActionID, a scheme
that mitigates the problem of credential exposure by making a de-
sired sequence of actions for execution as part of the machine’s
identity. This way, even if the credentials are exposed, they are only
temporarily valid for one particular action sequence that cannot be
changed for future executions. We introduce a trusted third party
who issues new identities, validates new action requests, and acts
as a centralised location for managing access control policies for
an arbitrary number of clients and servers. In addition to yielding
strong security guarantees, it also simplifies the management of
complex access control for an organisation. We present detailed
protocols for ActionID, along with a thorough security analysis. We
implement ActionID as a Python library to show the ease of integra-
tion into existing applications, and to demonstrate the performance
of the scheme, which is on par with SSH.

CCS CONCEPTS
• Security and privacy → Distributed systems security; Au-
thentication; Authorization; Access control.

KEYWORDS
Machine Identity, Machine-to-Machine (M2M) Communication

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ARES 2023, August 29–September 01, 2023, Benevento, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0772-8/23/08. . . $15.00
https://doi.org/10.1145/3600160.3600165

ACM Reference Format:
Wil Liam Teng and Kasper Rasmussen. 2023. Actions Speak Louder Than
Passwords: Dynamic Identity for Machine-to-Machine Communication. In
The 18th International Conference on Availability, Reliability and Security
(ARES 2023), August 29–September 01, 2023, Benevento, Italy. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3600160.3600165

1 INTRODUCTION
Machine-to-machine (M2M) communication refers to the commu-
nication between machines without the interaction of a human
user. M2M communication is used every day by millions of devices
for automated and scheduled tasks that require communication
with other devices. This includes Content Distribution Networks
(CDN); Extract, Transform, Load (ETL) processes; and Development
Operations (DevOps) such as automatic backups, automatic soft-
ware updates, and many, many other things which would otherwise
need manual human labour. In addition M2M communication is the
foundation for the so-called Internet-of-Things (IoT) as well as most
industrial processes. The data aggregation and statistics company
Statista Research Department [37] estimates the projected M2M
total industry size in 2022 to be worth almost 200 billion US dollars.

One of the central security challenges of M2M communication is
how to establish secure communication channels betweenmachines
in an efficient and scalable way. With connections being made
without human interaction, the secret keys needed to bootstrap a
secure channel needs to be available to the machines when needed.
That often means the secrets are stored on the machine or device
in the clear, or perhaps protected by another key which is itself
stored in the clear, which does not provide much more security
from a determined attacker. This is a problem because anyone
with access to such a machine can extract the credentials and use
them to access the service independently from the machine where
they were extracted from. In a business organisation, this could
be anyone from the IT staff to external adversaries who manage
to compromise a machine. In fact, this issue has resulted in many
security breaches at GitHub [21], Uber [4], and npm [31].

In this paper we propose ActionID which is a novel solution to
this problem. It would of course be desirable to entirely prevent
credential theft in the first place, but since it is nearly impossible
to fully prevent theft from, say, the administrator of the machine
of a company, we take a different approach. Rather than trying to
prevent credential theft altogether, we make sure that the stolen
credentials can only be used for a very specific well-defined purpose,
and only for a short amount of time, after which they will have to be
renewed. We achieve this by associating the identity of a machine
with not only its credentials, but also to every action sequence it
wants to execute. Not only does this limit what an adversary with
a compromised credential can do, this association further allows

https://doi.org/10.1145/3600160.3600165
https://doi.org/10.1145/3600160.3600165
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3600160.3600165&domain=pdf&date_stamp=2023-08-29

ARES 2023, August 29–September 01, 2023, Benevento, Italy Wil Liam Teng and Kasper Rasmussen

a central entity to monitor the specific usage of each identity, and
build up a picture of who is doing what in a company’s network.
If an adversary is forced to continuously renew stolen credentials,
the chances of detecting a credential theft is also increased since
the credentials will be renewed more often than before.

ActionID also provides a convenient way to set up and manage
user accounts and access control policies for an entire organisation
in one place. This is desirable because if access control decisions
are made by individual services, then any changes to the access
control policies, including adding new users or removing old ones,
have to be applied locally to each individual service. ActionID en-
ables a unified access control policy to be put in place in a central
location, and gracefully handles both identity management and re-
vocation of access. We present the protocols that make all this work
efficiently along with a thorough security analysis that prove the
necessary security guarantees hold. We also implement ActionID as
a library to show the performance and scalability of the idea. From
that we conclude that even our implementation in Python has a
performance on par with other tools that can establish a secure
connection, e.g., SSH.

We summarise our main contributions as follows:
• We propose a M2M scheme that utilises a novel machine
identity: the assocation of identity with specific actions re-
quested for a specific server. This forms a dynamic machine
identity that reduces the implications of a machine compro-
mise and credential theft.

• We design two protocols that make use of this dynamic
identity to give strong security guarantees to the principals,
even in the presence of a powerful adversary that has the
capability to compromise machines.

• We prove that our protocols are secure with respect to the
relevant security properties.

• We provide an implementation of ActionID as a Python li-
brary which makes it easy to deploy on a large class of
devices and our implementation is available on GitHub. We
use it to document the performance and scalability of the
scheme.

This represents a brand new way to think about machine iden-
tity, not just as the owner of a private or symmetric key, but as
a collection of actions backed up by a traditional identity. If any
of the actions changes, that means the identity changes, so any
access tokens issued are no longer valid. This effectively limits an
adversary that did manage to steal credentials, to do only the same
action as the owner of the credential, and only for a brief time,
within the limits set out by the access control policies.

2 RELATEDWORK
In this section, we discuss the related research areas that inspired
ActionID, namely, the current machine authentication methods, the
state-of-the-art Machine-to-Machine (M2M) authentication proto-
cols, and the developments in Single Sign-On (SSO) systems.

2.1 Machine Authentication Methods
While the authentication methods for a human has been well-
established (what you know, what you have, what you are), this
is not the case for the authentication methods for a machine. The

authentication methods for a machine can be categorised into three
main families: secret-based, context-aware, and hardware-based.
Traditionally the most common method to authenticate a machine
is through its possession of a secret that can come in different forms.
These include passwords, certificates (and the corresponding pri-
vate keys) [7, 9], API keys [2, 16, 17, 25, 30], and SSO access tokens
[22, 28, 36, 38]. Context-aware authentication methods [29] identify
a machine based on the measurements of physical features of a
machine’s surroundings, such as geolocation [10, 42] and proximity
[6, 32], which require making assumptions about the physical en-
vironment of a machine. Hardware-based authentication methods
authenticate a machine by its responses to the challenges issued by
a verifier based on a secret derived from the underlying hardware
of the machine, e.g., through Trusted Module Platforms (TPMs)
[26, 46] or Physical Unclonable Functions (PUFs) [5, 8, 35]. Without
making any assumption on a machine’s physical environment and
its underlying hardware, in this paper we introduce a new type of
machine authentication method based on its sequence of actions
for execution to mitigate the problem of a credential theft in an
organisational network.

2.2 M2M Communication Schemes
As our end goal is to secure M2M connections made between ma-
chines while also reducing the dependence on secret information,
here we look into some of the existing M2M authentication schemes
for various application purposes. The de facto standard for the pur-
pose of a client machine authenticating a server over the web is the
Transport Layer Security (TLS) protocol [11]. TLS ensures a client
that it is connecting to a server which is the legitimate owner of
its public key, and also for establishing a secure channel between
the client and the server. For network administrators, the Secure
Shell (SSH) protocol [41] is the most common protocol to secure
messages exchanged during a remote login from a SSH client to
a SSH server. Internet Key Exchange (IKE) protocol [23] is used
in Internet Protocol Security (IPSec) for creating secure Virtual
Private Networks (VPNs) between two machines. Recently, M2M
authentication protocols have been proposed [13, 15, 24, 27, 34, 39]
specifically for resource-constrained devices in Internet-of-Things
(IoT) networks that put heavy emphasis on the performance of the
protocols. Although these M2M authentication schemes are suffi-
cient for their specific use cases, the security of these protocols rests
on the assumption that machine credentials are being secret. While
this has been the convention for many protocols, as we explain
later in Section 3.1, this assumption might not always be fulfilled
in every M2M communication scenario. To also account for these
additional M2M communication scenarios, we propose ActionID,
a M2M scheme that limits the implications of a compromised ma-
chine credential while also simplifying the credential management
for machines. We provide a comparison between ActionID with
existing M2M communication scheme in Section 3.3.

2.3 SSO Systems
Although not strictly considered as a M2M authentication scheme,
we explore Single Sign-On (SSO) systems here because the goals
and architecture of SSO systems bear some resemblances to our

Actions Speak Louder Than Passwords: Dynamic Identity for M2M Communication ARES 2023, August 29–September 01, 2023, Benevento, Italy

work. SSO systems go hand-in-hand with other user authentica-
tion mechanisms, and the attractiveness of SSO system stems from
the fact that they reduce a user’s reliance on having to manage
multiple secrets which are essentially passwords. Specifically, SSO
systems allow a user to access multiple servers using only a single
password, and simultaneously without having to reveal a user’s
password to the servers. This is done through a trusted third party
called the identity provider, whom a user has registered the pass-
word with. Kerberos [38] is arguably the first deployed SSO system
to secure network services in MIT. Then, a family of SSO systems,
OAuth 2.0 Authorisation Framework (OAuth) [22], OpenID Con-
nect (OIDC) [36], Security Assertion Markup Language 2 (SAML2)
[28] are deployed for cross-organisational user authentication and
authorisation through web browsers. Various research proposals
have since been made to enhance the security and privacy of SSO
systems. One interesting line of research [1, 3, 33, 43] focuses on
distributing the risk of a single identity provider compromise into a
number of identity providers to prevent the identity provider from
becoming a single point of failure. Another research area focuses
on solving the privacy issues of user activity tracking by a curious
identity provider or collusive servers. The proposed SSO schemes
[14, 18–20, 44, 45] provide user untraceability and unlinkability
from the identity provider and servers. This shows that SSO sys-
tems have garnered much research attention and are still an active
research area. However, where SSO systems excel in user authen-
tication, our focus is on M2M communication in which there is
no human user involved. We further compare the differences of
ActionID with existing SSO systems in more detail in Section 3.3.

3 MOTIVATION AND DESIGN
We first look into the specific problems arising from a typical M2M
communication scenario in an organisation’s network as our mo-
tivation. We then show how existing systems are not designed
specifically to handle these problems. To address these problems,
our solution is to associate a machine’s identity not only to its
credentials, but also to its actions and we further list the design
goals that we aim to achieve with this idea.

3.1 Motivation
In Figure 1, we illustrate a general abstracted scenario of M2M
communication in an organisational network between machines
owned by the organisation. Without a human in the loop, a request-
ing machine, or simply a requestor, accesses a server’s services by
running a script. A script typically contains the task to be completed
by a server, which we termed as actions, and the credential a re-
questor uses to authenticate itself to the intended server. Examples
of actions include database scripts, shell commands, or even custom
predefined strings readable and executable by a server; examples
of credentials are mentioned in Section 2.1. We refer to Figure 8
for a concrete example of a requestor’s script. Each server imposes
and enforces access control policies of who can access what and
checks if the execution of a requestor’s actions is allowed, e.g., if a
requestor’s access to a file is authorised.

Without a human to actively input credentials when accessing
a server, a requestor’s credentials must be available locally to the
requestor in the clear, e.g., a hard-coded password embedded in

Requestors

…

Policies A

Servers A

Policies B

Servers B

Adversary

Requestor's
Identities

Script B

Actions B

Credential B
(stored locally)

…

Script A

Actions A

Credential A
(embedded in script)

Figure 1: A general abstracted scenario of a M2M communi-
cation in an organisational network. A requestor runs scripts
specifying actions to be executed and the credential to au-
thenticate to a server.Without a human supplying the creden-
tials, the requestor’s credentials are typically stored locally
in the clear, e.g., hard-coded in the requestor’s script, allow-
ing an adversary who has access to the requestors to extract
the credentials. A server enforces access control policies that
manage the execution of the requestor’s actions. Multiple
servers may share the same policies.

the script of the requestor, or a private key stored locally on the
disk storage of the requestor. The credentials might in turn be en-
crypted by other secrets that are stored on a requestor unencrypted.
Nonetheless, an adversary having physical access to a requestor can
obtain the unencrypted credentials or extract the secrets to decrypt
the wrapped credentials. As the credentials represent a requestor’s
only identity to a server, an adversary with such credentials can
impersonate the victim requestor from another machine.

From a management’s point of view, this scenario of a M2M
communication has several disadvantages. Since the access control
policies are managed by individual servers, changes to the access
control policies shared by several servers require local changes to
the policies at each of the servers. Even with the access control poli-
cies in place, mismanagement of a server’s access control policies,
e.g., resulting from human errors [40], allows for an adversary with
compromised credentials to successfully request for the execution
of arbitrary actions on behalf of the compromised requestor. As for
the credential management of a requestor, each requestor has to
manage a unique credential for each service offered by the servers.
These management issues can quickly become unscalable for an
organisation with a large amount of servers.

On one hand, the problem with relying solely on a secret infor-
mation to identify machines is that the secret information can be
stolen. On the other hand, it is also impossible to establish secure
connections and differentiate machines without using any secret
information. Ideally it would be perfect if there is a foolproof way of
preventing credential theft, but since this is impossible to achieve,
we take a different approach: instead of worrying about a piece of

ARES 2023, August 29–September 01, 2023, Benevento, Italy Wil Liam Teng and Kasper Rasmussen

secret information getting stolen, we limit the consequences of a
credential theft by restricting what the adversary with the stolen
credential can achieve. Building on this approach, we propose a
novel machine identity for use in a M2M communication where a
machine’s identity is not only made up of its credentials but also
the actions it wants to execute. With our proposed system model,
we simplify the management of such machine identities.

3.2 Design Goals
Our solution to address the problems presented in Section 3.1 is
to associate a requestor’s identity to not only its credentials, but
also its actions. Here we list the five design goals based on this
novel idea. The first four design goals focus on the security aspect
of our system and the last design goal focuses on the credential
and policy management of the system. We later discuss how our
system achieves the last design goal in Section 4.1, and prove the
four security-related design goals of the system in Section 6.

3.2.1 Mitigate Implications of Credential Leakage. Unlike existing
systems where machine credentials are only based on secrets, an
adversary with unrestricted access to credentials can impersonate
the victim from a different machine. A server is then unable to
differentiate between an adversary with a compromised credential
from the legitimate machine based solely on a machine’s possession
of some secret. Our goal here is then for a requestor’s actions to
become an additional authentication factor for a certain requestor.
While no protocol can provide security guarantees against an ad-
versary with unrestricted access to a secret, we can mitigate the
implications of such credential leakage. Specifically, we require
such an adversary should not execute arbitrary actions but only the
same set of actions allowed for the victim requestor. Even if the ad-
versary has both the “valid” actions and the credentials, we further
require the actions must first be declared before execution and that
the declared actions can only be executed for a short limited time,
after which the declaration is again needed. Not only do we restrict
what an adversary with compromised credentials can achieve, we
provide a way for detection of credential compromise by observing
if a requestor’s actions deviate from its “normal" actions while also
increasing the chances for such detection.

3.2.2 Bind Identity to Actions. Based on our requirement of re-
questors declaring actions ahead of time, the declared actions es-
sentially forms a part of the requestor’s identity for its session with
the server. An adversary with compromised credentials might at-
tempt to circumvent the requirement by not declaring its actions at
all, or by first declaring “valid” actions, and then sending undeclared
actions for execution. To avoid the adversary from arbitrarily chang-
ing its identity using undeclared actions, we thus need a mechanism
to detect if the integrity of a requestor’s identity has been violated,
i.e., if the declared actions of a requestor has changed. Additionally
we need a way to detect if an adversary tries to evade detection by
executing already declared actions beyond their limited time, i.e.,
extending the expiration time of the already declared actions.

3.2.3 Liveness and Secure Channel Establishment. To prevent man-
in-the-middle attacks and replay attacks, we additionally necessitate
mutual liveness checks to be carried out between a requestor and a
server before the execution of the requestor’s actions. Depending

on the specific application, the execution might involve further
exchange of session data between the requestor and the server. We
would thus want to prevent the session data from being sent as
cleartext since the session data might contain sensitive information.
The secure channel would additionally need to ensure the integrity
of the session data to prevent its modification.

3.2.4 Confidentiality of Actions. A requestor’s actions might con-
tain sensitive application data about the system such as the contents
of a file or the entries of a database. Therefore even the actions has
to be kept secret from anyone other than the requestor’s intended
recipients when a requestor sends its actions for declaration or
execution. To prevent the sensitive data from being leaked during
a transmission, we thus require the confidentiality of a requestor’s
actions so that only intended recipients of a requestor can retrieve
its actions. Although this does not stop an adversary with physical
access to a requestor from obtaining the requestor’s actions, the
only thing the adversary can do with stolen actions is essentially
to execute the actions on the victim requestor’s behalf. Since the
actions are already allowed to be executed by the victim requestor,
the implication for the stolen actions is thus minimised.

3.2.5 Simplified and Centralised Management. Our desire is that
the access control policies of the servers are to be easily managed as
the decision for the authorisation of a requestor’s actions involves
directly the management of these policies. Specifically, a change in
the policies shared by several servers should only be applied once,
instead of the same changes being applied multiple times at each
individual server. This creates a more centralised policy manage-
ment desirable especially in an organisation with a large number of
servers. Additionally, as a requestor’s actions are already specific
to a particular server, we will not require a requestor to manage a
unique long-term credential for each server. We would thus aim for
a requestor to have only a single long-term credential, paired with
its actions to form a disposable short-term credential. This, in turn,
reduces the number of long-term credentials that a requestor has to
manage to only one, regardless of the number of server present in
the system. Since the requestor has to manage its actions anyway
regardless of the number of its long-term credentials, our design
goal, if fulfilled, eases the credential management of a requestor.

3.3 Comparison with Existing Systems
TheM2M scenario described in Section 3.1 is a very common setting
for any organisation running automated tasks and thus it is surpris-
ing that existing systems have still yet to address these problems.
As our focus is machine authentication, the de facto standard for
authenticating machine and establishing secure channels between
machines such as SSH [41] and TLS [11] are still not adequate for
our M2M setting. This is because the security of these protocols
require the assumption that the credential of a machine, i.e., a pri-
vate key, being secret and they do not consider the presence of an
all-powerful adversary having unrestricted access to the creden-
tials of a machine. Similarly, SSO systems and the research work
on SSO systems assume one or more secret information such as
passwords [1, 3, 33, 38, 43] and access tokens [22, 28, 36], which,
if compromised, can lead to impersonation attacks as seen from
real-world scenarios [4, 21, 31]. Additionally, widely deployed SSO

Actions Speak Louder Than Passwords: Dynamic Identity for M2M Communication ARES 2023, August 29–September 01, 2023, Benevento, Italy

Identity Manager
Action Policies

Servers

Requestors

Token

Requestor's
Identity

Scripts

Actions Credential

1
Registration

2
Execution

Figure 2: An overview ofActionID. A requestor’s identity com-
prises of both its actions and its long-term credential. The
identity manager is a trusted entity who manages all servers’
action policies. A requestor registers its identity ahead of
time to get a token for the execution of its actions on a server.

systems such as Kerberos [38], OAuth [22], OIDC [36], SAML2 [28]
are designed for user authentication. This means that the presence
of a user and user interaction, in one form or another, e.g., typing in
passwords or completing Multi-Factor Authentication (MFA) chal-
lenges, are needed during service access to a machine. These SSO
systems are thus not appropriate for application in a M2M setting
where there is no human user involved. We emphasise that our goal
here is not to replace existing systems and protocols, but rather,
since existing systems do not address the more specific security
and management issues that stem from an organisation’s internal
M2M communication processes as described in Section 3.1, we thus
propose a new system that leverages this idea of a machine’s actions
as part of its identity to specifically deal with these issues.

4 OVERVIEW AND MODELS
We give an overview of the design of ActionID in this section. We
later provide the system model and the adversary model in detail,
which include the assumptions made for the entities in the system
and also for the adversaries.

4.1 ActionID Overview
We propose ActionID, a novel M2M scheme for an organisation’s
network where a requestor’s identity comprises of both its cre-
dential and actions. A high-level overview of ActionID is provided
in Figure 2. We introduce a trusted third party called the iden-
tity manager who centrally stores and manages all action policies
of servers. Action policies here refer to more than just authorisa-
tion policies (who can access what), but also fine-grained or even
application-specific conditions for the execution of actions to hap-
pen. For example, some actions should be executed only at a certain
day of the week and are only executed for a fixed number of times
in a certain time period. As the policies are centrally stored at the
identity manager, we have now achieved the last design goal in Sec-
tion 3.2 as changes to the policies shared by several servers are only
applied once at the identity manager, instead of being individually
applied at each server.

For executing actions, we require that a requestor first declares
its actions ahead of time by registering them with the identity

Requestors

2 Action Execution
Protocol

Servers

Server

Identity
Manager

1 Action Registration
Protocol

Figure 3: An overview of the system and adversary model for
ActionID. The system model consists of requestors, servers,
and the trusted identity manager. The adversary model con-
sists of amalicious requestor and an external adversary. Both
adversaries have full control of the communication channel.

manager. If the actions of a requestor comply with the policies of
its intended server, the identity manager issues a short-lived token
to the requestor to be presented to the server for the execution. Our
design not only forces an adversary with compromised credentials
to always reveal its intended actions for execution, but also helps
the identity manager in monitoring for credential compromise
and building up a picture of who does what on the network by
having a centralised log of registered actions. This can further
facilitate anomaly detection on the logged actions to determine
if a requestor’s actions deviate from its “normal” actions, which
could be an indication of a compromised requestor. The short-lived
token limits the time window for action execution. So, even if an
adversary’s actions comply the policies, the adversary can only
execute specific actions only for an allowed duration of time, after
which the registration of actions is again needed, limiting the impact
of a credential leakage and increasing the chances of detection.

Although the identity manager poses the risk of being a single
point of failure, in practice trusted third parties are still being used
in organisational networks as trust anchors for the security of or-
ganisational systems, despite of these risks. Examples include the
Key Distribution Centre in Kerberos [38], and identity providers
in OAuth [22] and OIDC [36]. While a centralised identity man-
ager might raise privacy concerns, privacy of machines from the
organisation that owns them is generally undesirable in an organ-
isational network, e.g., a corporate network, where it is, in fact,
more preferable for organisations to be aware of who is doing what.

4.2 System Model
As depicted in Figure 3, our system model consists of three entities:
the requestors, the identity manager, and the servers. Each entity
possesses a public-private key pair as their long-term credential
and has a copy of the public key of the identity manager. All entities
communicate in a M2M manner without any human interaction.

In addition to its actions, a requestor possesses a certificate
signed by the identity manager and the corresponding private key.
The certificate shows that the requestor has previously been regis-
tered by the identity manager without the identity manager having
to explicitly remember the public key of a requestor.

ARES 2023, August 29–September 01, 2023, Benevento, Italy Wil Liam Teng and Kasper Rasmussen

Each server is previously registered with the identity manager
and a copy of the public key of each server is stored by the identity
manager. A server is associated with its action policies and trusts
that the identity manager enforces the server’s policies when issu-
ing a token to a requestor. Only when it is offering its services to a
requestor should a server be online.

The identity manager is always online. In addition to manag-
ing the public key of each server, the identity manager stores and
enforces all action policies of all servers. We do not restrict the
implementation details of such policies, e.g., the encoding or the
format. Our only requirement is that the identity manager under-
stands the policies’ semantics to perform checks for the compliance
of a requestor’s actions with the policies of the requested server.

4.3 Adversary Model
Also depicted in Figure 3, our adversary model consists of two
adversaries: an internal adversary called a malicious requestor, and
an external adversary. We model both adversaries as Dolev-Yao
adversaries [12] and we assume that the adversaries are incapable
of breaking the underlying cryptographic primitives. We also do
not consider cases involving trivial Denial-of-Service (DoS) attacks
where the adversaries simply drop all communicated messages.

A malicious requestor additionally possesses its own legitimate
certificate issued by the identity manager with the corresponding
private key. A malicious requestor can also compromise other re-
questors and has access to their credentials, i.e., their private keys.
A malicious requestor has two goals. First, to access a server with
actions not already authorised to compromised requestors under its
control. The second is for a server to execute unregistered actions.

We further allow an external adversary to collude with other
servers in the system where it has access to the private keys of
these servers. The only exception to this is the private key of an
honest server who is contacted by a requestor for action execution.
An external adversary has two goals. The first is to impersonate as
either the identity manager or an honest server to a requestor. The
second is to break the confidentiality of a requestor’s actions.

5 PROTOCOLS DESCRIPTION
We introduce two protocols for ActionID to illustrate an example
of utilising this novel idea of a machine identity associated with its
actions, namely, the Action Registration Protocol and the Action
Execution Protocol. A requestor runs both protocols in sequence
for every action execution. We further assume the cryptographic
primitives used are secure as per their own security definitions.

5.1 Action Registration Protocol
Figure 4 depicts the Action Registration Protocol. A requestor runs
this protocol to register its actions to the identity manager and to
receive a fresh token on its registered actions.

A requestor initiates the protocol by sending message𝑚1 con-
taining a nonce 𝑛, its actions 𝐴, and the identifier of its intended
server S. The nonce and the actions are encrypted to, respectively,
serve as a liveness challenge for the identitymanager and ensure the
confidentiality of the actions. Message𝑚1 is sent together with the
requestor’s certificate and the requestor’s signature on the message.

R
Requestor

I
Identity Manager

• Pick 𝑛
𝑚1 = [𝐸𝑝𝑘I (𝑛, 𝐴),S],
𝐶𝑒𝑟𝑡R , 𝑆𝑖𝑔𝑛𝑠𝑘R (𝑚1)

• Verify 𝐶𝑒𝑟𝑡R
• Verify R’s signature
• Verify 𝐴’s compliance with 𝑃RS

• Compute 𝐻 = ℎ(𝐴)
• Set token expiration time 𝐿
•Build𝑇𝑜𝑘𝑒𝑛 = 𝑆𝑖𝑔𝑛𝑠𝑘I (R, 𝐻,S, 𝑃RS , 𝐿)

𝑚2 = [𝑛, 𝑝𝑘S , 𝐿, 𝑃RS , 𝑇𝑜𝑘𝑒𝑛],
𝑆𝑖𝑔𝑛𝑠𝑘I (𝑚2)

• Verify 𝑛
• Verify 𝐿
• Verify I’s signature
• Verify 𝑇𝑜𝑘𝑒𝑛

Figure 4: The Action Registration Protocol involving a re-
questorR and the identitymanagerI. The requestor initiates
the protocol to register its actions and to obtain a token from
the identity manager. The token is required for the later exe-
cution of the requestor’s actions.

After verifying the certificate and the signature, the identity
manager checks if the requestor’s actions comply with the action
policies of the requested server, denoted as 𝑃RS . We give an exam-
ple of how the identity manager completes this task in more detail
in Section 7.2. If so, the identity manager proceeds to generate a
token by first hashing the actions and setting an expiration time
for the token. The identity manager then hashes five information,
namely, the expiration time of the token 𝐿, the policies of the server
𝑃RS , the hashed actions 𝐻 , and the identifiers of the requestor
R and the server S, and signs the resulting hash to construct the
token.

The identity manager further hashes, signs, and sends a reply
message𝑚2 to the requestor, which encompasses the token and the
information needed to verify the token, along with the requestor’s
nonce and the public key of the server. The requestor subsequently
verifies the nonce, the expiration time of the token, the signature
of the identity manager on message𝑚2, and the token.

The token is stored by the requestor for action execution and it
will not have to register the same actions if the token has not expired.
The requestor can simply discard an expired token and request for
a new token by repeating the Action Registration Protocol.

5.2 Action Execution Protocol
Figure 5 illustrates the Action Execution Protocol. The purpose for
this protocol is for the requestor’s registered actions to be executed

Actions Speak Louder Than Passwords: Dynamic Identity for M2M Communication ARES 2023, August 29–September 01, 2023, Benevento, Italy

R
Requestor

S
Server

• Pick 𝑛1
𝑚1 = [𝐸𝑝𝑘S (𝐻), 𝐿, 𝑃RS , 𝑇𝑜𝑘𝑒𝑛, 𝑛1],

𝐶𝑒𝑟𝑡R

• Verify 𝐿
• Verify 𝐶𝑒𝑟𝑡R
• Verify 𝑇𝑜𝑘𝑒𝑛
• Pick 𝑛2
• Build𝐾RS = 𝐾𝐷𝐹 (𝑛1, 𝑛2)

𝑚2 = [𝐸𝑝𝑘R (𝑛2)], 𝑆𝑖𝑔𝑛𝑠𝑘S (𝑚2, 𝑛1)

• Verify S’s signature
• Build𝐾RS = 𝐾𝐷𝐹 (𝑛1, 𝑛2)

𝑚3 = [{𝑛2, 𝐴}𝐾RS]

• Verify 𝑛2
• Verify 𝐻 = ℎ(𝐴)

Action execution using 𝐾RS

Figure 5: The Action Execution Protocol between a requestor
R and a server S. The requestor initiates the handshake
where a fresh session key is agreed. The session key is used
for establishing a secure channel for the exchange of subse-
quent messages during the session resulting from the execu-
tion of actions.

by the server. The action execution is further secured by the secure
channel established at the end of the handshake of the protocol.

The protocol starts with a handshake where the requestor first
commits a nonce 𝑛1 and the hash of its actions to the server. These
are sent along with token and the requestor’s certificate for the
server to verify. To prevent offline guessing attacks against the
requestor’s actions, the hash of the actions is encrypted.

The server first verifies the token and the certificate. If they are
valid, the server encrypts and commits another nonce 𝑛2 to the
requestor. The server then signs the ciphertext and nonce 𝑛1 to
prove the server’s liveness to the requestor, and then computes a
fresh session key using a key derivation function 𝐾𝐷𝐹 (·, ·) with
the two nonces as input.

After verifying the signature and decrypting nonce 𝑛2, the re-
questor computes the session key in the same way as the server.
The requestor then reveals its actions with nonce 𝑛2 to the server,
both of which are encrypted with the freshly established session
key. The server verifies both values and if the verifications passed,
this guarantees the server two things: the liveness of the requestor,
and that the revealed actions are the same as the registered actions.

Once the handshake is completed, the server executes the verified
actions of the requestor. Depending on the application, the session
could involve exchanging further messages between the requestor
and the server. To preserve the confidentiality and integrity of
the session messages, they are to be secured with the established
session key, which forms a secure channel between the requestor
and the server. The protocol ends when the session is terminated.

6 SECURITY ANALYSIS
We now provide the security guarantees for ActionID with respect
to the design goals in Section 3.2 and we informally prove these
security guarantees by contradiction. For each proof we first ex-
haustively enumerate the scenarios in which an adversary, either a
malicious requestor or an external adversary, can choose to break
the guarantee, and prove that all scenarios contradict our assump-
tions. We emphasise that the underlying cryptographic primitives
used in the protocols as described in Section 5 are secure.

Guarantee 1 (Mitigate Implications of Credential Leak-
age). Amalicious requestor in possession of private keys of requestors
can get tokens only for actions authorised to the victim requestors
according to the action policies and can execute the actions only for a
limited period of time.

Proof (sketch). For a malicious requestor to break this guar-
antee, the adversary must possess a token without a restricted set
of actions, i.e., without complying with the action policies, or with
no expiration time. There are three ways a malicious requestor can
achieve this. (i) First, the adversary can attempt to manipulate the
activity of the identity manager to not follow the Action Registra-
tion Protocol for issuing tokens. However, in successfully doing so,
this breaks our system model where the identity manager is trusted.
(ii) Second, the adversary can compromise the private key of a
requestor whose set of authorised actions contain the adversary’s
chosen actions, and use that credential to get a token. This allows
the adversary to register new actions and continuously renew to-
kens, and thus the guarantee may seem to be broken. However,
as the token is issued only when the chosen actions comply with
the policies for the newly compromised requestor, this means the
adversary still has to choose from a restricted set of actions, and
so the guarantee still stands. (iii) Third, to have complete control
over the token, the adversary can forge the token for any arbitrarily
chosen actions or expiration time of the token. This requires the
adversary to possess the private key of the identity manager, and
this can only happen in two ways: either the adversary breaks the
underlying signature scheme, or guesses the private key. The first
is impossible by our assumption of secure cryptographic primitives
and the second is only possible with a negligible probability. □

Guarantee 2 (Bind Identity to Actions). A requestor must
first register its actions, and once registered, the requestor cannot
change the registered actions.

Proof (sketch). Amalicious requestor can break this guarantee
if (i) it executes the actions without registering, or (ii) by changing
the registered actions. (i) To successfully execute actions without
registration, a malicious requestor needs to present a token for
message𝑚1 in the Action Execution Protocol. The adversary can

ARES 2023, August 29–September 01, 2023, Benevento, Italy Wil Liam Teng and Kasper Rasmussen

either forge or replay a token. Forging a token is impossible for
the reasons discussed in Guarantee 1. If the adversary replays a
token, this means that the list of actions associated with the token
has already been previously registered. Thus, the first part of the
guarantee holds. (ii) Even after registering, a malicious requestor
might still attempt to cheat by revealing actions that are different
from the registered actions in message𝑚3 of the Action Execution
Protocol. To bypass a server’s verification for the modified actions,
the modified actions has to produce the same hash as the regis-
tered actions, which is equivalent to searching for a hash collision.
This is only possible with negligible probability as we require the
assumption that a cryptographically secure hash function is used.
Thus the second part of the guarantee holds. □

Guarantee 3 (Liveness and Secure Channel Establishment).
A requestor and a server mutually check each other for liveness and
subsequently establish a fresh session key known only to them for
action execution.

Proof (sketch). For an external adversary to break this guar-
antee, the adversary must establish the session key in the Action
Execution Protocol when a requestor contacts its intended server.
The adversary has three options: (i) impersonate as a server con-
tacted by a requestor, (ii) impersonate as the identity manager to a
requestor, or (iii) impersonate as a requestor to an honest server.
(i) In the first case where the adversary impersonates as an honest
server, the adversary has to convince the requestor by generating a
valid signature of the honest server in message𝑚2 of the Action
Execution Protocol. This requires the adversary to own the pri-
vate key of the honest server. (ii) The adversary can circumvent
this requirement in the second case. The adversary modifies mes-
sage𝑚2 of the Action Registration Protocol to change the honest
server’s public key with the adversary’s own public key, allowing
the adversary to generate the signature in message𝑚2 in the Action
Execution Protocol with the adversary’s own private key. In this
case, however, the adversary has to forge the identity manager’s
signature on message𝑚2 of the Action Registration Protocol and
impersonate the identity manager by having the identity manager’s
private key. (iii) In the third case where the adversary impersonates
as a requestor to an honest server, the adversary has to decrypt
the challenge 𝑛2 issued by the honest server in message𝑚2 of the
Action Execution Protocol, which again requires the adversary to
possess the requestor’s private key. For these three impersonation
attacks by the adversary to succeed, the adversary must be in pos-
session of a private key of some sort. As we have seen before, the
adversary can only either break the underlying cryptographic prim-
itive, or guess the private key (or the challenge nonce). The former
infringes on our assumption of secure cryptographic primitives.
The latter, similar to brute-forcing a session key and guessing a
nonce challenge, can only occur with a negligible probability. □

Guarantee 4 (Confidentiality of Actions). A requestor’s
actions must be known only to the identity manager for registration,
and only to the intended server for execution.

Proof (sketch). Breaking this guarantee means an external ad-
versary can retrieve a requestor’s actions. Since actions (and the
corresponding hash) are encrypted in both protocols, the adversary

Action
Registration

Protocol

Action
Execution
Protocol

token

Requestor

register_actions

access_service

Identity Manager

results

issue_token

get_server_public_key

check_policies

Server

handle_requestor

execute_actions

perform_handshake

Figure 6: An overview of the implementation for ActionID.
Rounded-corner rectangles are functions labelled with the
name of the function. Function names in bold are functions
provided in actionid.py whereas function names in italics
are application-specific functions.

has two methods of achieving this: (i) decrypting the encrypted
actions and subsequently launch offline guessing attacks, or (ii)
deriving the session key. (i) For the first method, the adversary
must decrypt the ciphertext in message𝑚1 from one of the two
protocols. If the adversary chooses to decrypt the encrypted hash
from message 𝑚1 of the Action Execution Protocol, the hash is
brute-forced to further guess the requestor’s actions in an offline
manner. However, the first method requires the adversary to be in
possession of the private key of the identity manager or the server,
and this is only possible if the adversary either breaks the under-
lying encryption scheme or guesses the private key. As we have
seen many times, the former violates our assumption that secure
encryption schemes are used while the probability of the latter
happening is negligible. (ii) For the second method, the adversary
must decrypt the actions encrypted in message𝑚3 of the Action
Execution Protocol by deriving the session key. As we have proved
in Guarantee 3, the adversary successfully deriving the session
key leads to the violation of our assumptions. □

7 IMPLEMENTATION
To demonstrate the practicality of our scheme, we provide an im-
plementation as a proof-of-concept for ActionID. Based on the im-
plementation, we conduct experiments to test the performance of
ActionID against a well-known protocol: SSH. This section covers
the findings for the implementation as well as the experiments.

7.1 Overview
We implement the proof-of-concept for ActionID in Python and
it comprises of two parts: a Python library, actionid.py, and a
working example for actionid.py. Our implementation imagines
an application scenario where a requestor routinely uploads and
retrieves data to and fro a SQL server. Figure 6 illustrates the inter-
actions of the four main functions provided in actionid.py. A re-
questor registers and executes actions via register_actions and
access_service respectively. The identity manager completes the
Action Registration Protocol and issues tokens via issue_token,

Actions Speak Louder Than Passwords: Dynamic Identity for M2M Communication ARES 2023, August 29–September 01, 2023, Benevento, Italy

{
"any":
{

"blocked_actions ": ["DROP", "DELETE "]
}

}

Figure 7: The action policy encoded in the JSON format for
the proof-of-concept. The policy specifies the SQL actions
not permitted for requestors under the user group any.

whereas the server performs the handshake of the Action Execu-
tion Protocol via perform_handshake. To accommodate for vari-
ous application needs, we further demonstrate that actionid.py
works with application-specific functions. In our implementation,
these functions are check_policies, get_server_public_key,
handle_requestor, and execute_actions. Our proof-of-concept
is available on GitHub1 for interested readers.

7.2 Identity Manager
We provide a more concrete idea on how the identity manager ful-
fills its responsibilities in the Action Registration Protocol, mainly,
how the identity manager (a) checks the compliance of a requestor’s
actions with the server’s action policies (check_policies) and (b)
stores the public key of servers. (a) The main responsibility of the
identity manager, i.e., analysing the compliance of the requestor’s
actions, requires the consideration of three design choices: (i) the
encoding of the server’s action policies, (ii) the encoding of the
requestor’s actions, and (iii) the mechanism for analysing the com-
pliance of the requestor’s actions against the action policies. (i) We
choose the encoding of a server’s action policies to be in the JSON
format and as shown in Figure 7, it represents a blocklist of the SQL
actions that the requestors under the user group any are prohibited
to execute. (ii) As the server is a SQL database server, the requestor’s
actions are thus encoded in SQL and should be comprised of syntac-
tically valid SQL statements. (iii) Finally, for the identity manager
to analyse a requestor’s actions so as to enforce the action poli-
cies, the identity manager simply searches for the presence of the
prohibited SQL keywords in the string of the requestor’s actions,
i.e., SQL statements. We acknowledge that static analysis of arbi-
trary statements for a Turing-complete programming language is
undecidable in general. However, as our implementation shows,
static analysis with the purpose of access control can be done by
methods as simple as searching for forbidden strings. Indeed, static
analysis of a requestor’s actions can further be implemented us-
ing other more complicated parsing methods. (b) If the actions of
a requestor comply with the policies, the identity manager com-
putes the token and subsequently retrieves the public key of the
requested server (get_server_public_key) from its database. Our
implementation uses a SQL database for the identity manager for
storing and managing the public key of the servers.

7.3 Server
We give a more detailed explanation here on how a server handles
a connection from a requestor in the Action Execution Protocol.
A server first performs the handshake (perform_handshake) with
1https://github.com/wilteng/actionid

import actionid

Network configurations
IDM_IP = "127.0.0.1"
IDM_PORT = 8081
SERVER_IP = "127.0.0.1"
SERVER_PORT = 8082
server_id = '81258728 '

Execute actions for data pull
actions =
"""
SELECT * FROM fruits;
"""
token = actionid.register_actions(IDM_IP , IDM_PORT , server_id , actions)
results = actionid.access_service(SERVER_IP , SERVER_PORT , actons , token)
print('\n"fruits" table:' + results)

Execute actions for data push and pull
actions =
"""
INSERT INTO fruits ("fruit", "colour ") VALUES (" grapes", "purple ");
SELECT * FROM fruits;
"""
token = actionid.register_actions(IDM_IP , IDM_PORT , server_id , actions)
results = actionid.access_service(SERVER_IP , SERVER_PORT , actions , token)
print('\n"fruits" table:' + results)

Figure 8: An example of the requestor’s script that uses
actionid.py. The requestor’s script uses register_actions
and access_service functions from actionid.py to retrieve
from and insert to the database of the SQL server.

a requestor. After a successful handshake, the server receives the
registered actions from the requestor and proceeds to execute the ac-
tions (execute_actions). Similarly, the encoding of the requestor’s
actions remains an important design choice for the server’s imple-
mentation, as it should recognise and understand the semantics
of the requestor’s actions to execute them. Since the server is an
SQL server in our implementation, the encoding of the requestor’s
actions should obviously be syntactically valid SQL statements. The
action execution ends after the results have been returned to the
requestor encrypted with the session key and appended with a Mes-
sage Authentication Code (MAC). Depending on the application,
the action execution can be implemented in alternative ways. For
example, both the requestor and the server can choose to keep the
connection alive and continue exchanging messages after the hand-
shake. The confidentiality and the integrity of subsequent messages
exchanged during this time can still be secured with the session
key.

7.4 Requestor’s Script
Figure 8 shows a concrete working example of a requestor’s Python
script in our implementation. The script shows the requestor com-
pleting two sets of SQL operations. The result from running the
requestor’s script is shown in Figure 9, which implies a success-
ful execution. Note that since the credential management of the
requestor is implicitly handled by ActionID, the requestor’s script
does not specify any kind of credentials, e.g., through statements
like password = "password123". This reduces unintentional cre-
dentials leakage through the requestor’s script, which aligns with
our motivation for this paper. Each task of the requestor only re-
quires three lines of Python statements. As colour-coded in Figure
8, the requestor first defines the actions (red statements), then the
requestor registers its actions to get a token (blue statements), and
lastly the requestor executes its actions (purple statements).

https://github.com/wilteng/actionid

ARES 2023, August 29–September 01, 2023, Benevento, Italy Wil Liam Teng and Kasper Rasmussen

Figure 9: Output of the requestor.py script that shows the
proof-of-concept for ActionID successfully executes the SQL
actions that are requested by the requestor.

7.5 Performance Overhead
To test for the feasibility and performance of the ActionID, the
implementation is compared with the Secure Shell (SSH) protocol
[41] as a performance benchmark. Our experiments measure and
compare the performance of the requestors to complete the two
protocols of ActionID versus the performance of a SSH client to
transfer its actions over the SSH protocol.

We conduct the experiments in a network-controlled environ-
ment consisting of two individual machines where one acts as a
requestor, and another acts as both the identity manager and the
server. The requestor machine is equipped with an Intel® CoreTM
i7-9750H processor and the Windows 10 operating system. The
identity manager/server machine is equipeed with a processor of
Intel® CoreTM i5-1145G7 and the Ubuntu 20.04 operating system.
The processing time for each requestor to complete both protocols
is measured. Similarly, the experiments for testing the performance
of SSH protocol are set up in the same network environment using
the same machines. The Windows machine acts as a SSH client and
the Ubuntu machine acts as a SSH server. The performance of the
SSH protocol is similarly measured by the execution time for a SSH
client to connect to the SSH server via the ssh command.

For interested readers and results reproducibility, we list the
parameters and the algorithms of the cryptographic primitives
used in the implementation and the experiments. The cryptographic
primitives are from the pyca/cryptography Python library version
37.0.4. The hash function used is SHA-256, and for asymmetric
cryptographic algorithms, RSA with a key size of 2048 bits and
an exponent of 65537 is used. For symmetric key algorithms, the
block cipher AES-128 in CBC mode is used with a key size of 128
bits and for MAC generation, a Hash-based MAC (HMAC) with a
key size of 256 bits is used. The derivation of session key in the
Action Execution Protocol (see Section 5.2) is realised using the
Concatenation Key Derivation Function (ConcatKDFHash) with the
seed being the hash of the two nonces, 𝑛1 and 𝑛2. For experiments
involving SSH connections, the authentication of SSH connections
is made through a RSA keypair with a key size of 2048 bits generated
with the ssh-keygen command during experiment setup.

The experiment results are visualised in Figure 10. The figure
depicts the distribution of the protocol execution time for 10000
requestors and 10000 SSH clients. Note that the generated data take
into account the latency of the network but not the actual execution
of a requestor’s actions, so only the performance of the protocols
are tested. The results show that even as a proof-of-concept, the
performance of ActionID is comparable and fares quite well with

180 230 280 330 380 430 480 530 580 630 680
Execution time (ms)

0

500

1000

1500

2000

2500

3000

Fr
eq

ue
nc

y

Mean:
509.11 ms

Mean:
313.33 ms

Distribution of Protocol Execution Time

ActionID
SSH

Figure 10: The distribution of the time taken by 10000 re-
questors to execute the two protocols of ActionID and the
distribution of the time taken by 10000 SSH clients to connect
and transmit its actions to a SSH server. The experimental
results shows that ActionID has a comparable performance
with the SSH protocol.

the performance of a mature and optimised security protocol like
the SSH protocol, in spite of ActionID requiring more expensive
cryptographic primitives, i.e., signature generation and verification.

8 CONCLUSION
The identity of a machine in the context of protocol execution
has traditionally been associated with just the credentials of that
machine, i.e., knowledge of a private key, or more generally a secret
string. However, this means that anyone obtaining these secrets is
able to assume the identity of that machine.

ActionID is a scheme that extends the idea of the identity of a
machine to the actions that a machine can take when accessing a
remote service in an organisation’s network. We have shown that
with a trusted third party, we can bind the long-term identity of a
machinewith a list of actions allows us to create a “dynamic identity”
that limits the otherwise significant consequences of a theft of
credentials. It prevents an adversary with stolen credentials from
performing arbitrary actions on the server where those credentials
are used. It forces the adversary to always declare and register
its intended actions to get a service access token, which helps to
increase the chances of detection of and identify stolen credentials.

The use of a trusted third party in ActionID also provides a mech-
anism for the management of user accounts and access control
policies of an arbitrary number of clients and servers. These are
centrally stored and enforced thereby reducing the chances of the
mismanagement of policies, e.g., forgetting to update a particu-
lar machine, which, in practice contributes enormously towards
strengthening the operational security in an organisation.

Our implementation is in the form of a Python library. We use it
to show the ease of integration into existing applications, as well
as demonstrate the practical performance of the scheme when we
compare ActionID to a mature and optimised protocol such as SSH.

Actions Speak Louder Than Passwords: Dynamic Identity for M2M Communication ARES 2023, August 29–September 01, 2023, Benevento, Italy

9 ACKNOWLDGEMENTS
This research is partially funded by Venafi, Inc.

REFERENCES
[1] Shashank Agrawal, Peihan Miao, Payman Mohassel, and Pratyay Mukherjee.

2018. PASTA: password-based threshold authentication. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security. 2042–2059.

[2] aws. 2022. Creating and using usage plans with API keys. Available:
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-
api-usage-plans.html.

[3] Carsten Baum, Tore Frederiksen, Julia Hesse, Anja Lehmann, and Avishay Yanai.
2020. PESTO: proactively secure distributed single sign-on, or how to trust a
hacked server. In 2020 IEEE European Symposium on Security and Privacy (Eu-
roS&P). IEEE, 587–606.

[4] Matt Binder. 2022. A teen hacked Uber and announced it in the company Slack.
Employees thought it was a joke. Available: https://mashable.com/article/uber-
teen-hacker-slack-joke.

[5] An Braeken. 2018. PUF based authentication protocol for IoT. Symmetry 10, 8
(2018), 352.

[6] Stefan Brands and David Chaum. 1994. Distance-bounding protocols. In Ad-
vances in Cryptology—EUROCRYPT’93: Workshop on the Theory and Application
of Cryptographic Techniques Lofthus, Norway, May 23–27, 1993 Proceedings 12.
Springer, 344–359.

[7] Matthew Campagna. 2013. SEC 4: Elliptic curve Qu-Vanstone implicit certificate
scheme (ECQV). Standards for Efficient Cryptography, Version 1 (2013).

[8] Urbi Chatterjee, Vidya Govindan, Rajat Sadhukhan, Debdeep Mukhopadhyay,
Rajat Subhra Chakraborty, Debashis Mahata, and Mukesh M Prabhu. 2018. Build-
ing PUF based authentication and key exchange protocol for IoT without explicit
CRPs in verifier database. IEEE transactions on dependable and secure computing
16, 3 (2018), 424–437.

[9] David Cooper, Stefan Santesson, Stephen Farrell, Sharon Boeyen, Russell Housley,
and William Polk. 2008. Internet X. 509 public key infrastructure certificate and
certificate revocation list (CRL) profile. Technical Report.

[10] Dorothy E Denning and Peter F MacDoran. 1996. Location-based authentication:
Grounding cyberspace for better security. Computer Fraud & Security 1996, 2
(1996), 12–16.

[11] Tim Dierks and Eric Rescorla. 2008. The transport layer security (TLS) protocol
version 1.2. Technical Report.

[12] Danny Dolev and Andrew Yao. 1983. On the security of public key protocols.
IEEE Transactions on information theory 29, 2 (1983), 198–208.

[13] Alireza Esfahani, Georgios Mantas, Rainer Matischek, Firooz B Saghezchi,
Jonathan Rodriguez, Ani Bicaku, Silia Maksuti, Markus G Tauber, Christoph
Schmittner, and Joaquim Bastos. 2017. A lightweight authentication mechanism
for M2M communications in industrial IoT environment. IEEE Internet of Things
Journal 6, 1 (2017), 288–296.

[14] Daniel Fett, Ralf Küsters, and Guido Schmitz. 2015. Spresso: A secure, privacy-
respecting single sign-on system for the web. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. 1358–1369.

[15] Lijun Gao, Lu Zhang, Lin Feng, and Maode Ma. 2020. An efficient secure authen-
tication and key establishment scheme for M2M communication in 6LoWPAN
in unattended scenarios. Wireless Personal Communications 115, 2 (2020), 1603–
1621.

[16] GitHub Docs. [n.d.]. Creating a personal access token. Available:
https://docs.github.com/en/authentication/keeping-your-account-and-data-
secure/creating-a-personal-access-token.

[17] Google Cloud. 2022. Authenticate using API keys. Available: https://cloud.
google.com/docs/authentication/api-keys.

[18] Chengqian Guo, Jingqiang Lin, Quanwei Cai, Fengjun Li, Qiongxiao Wang, Jiwu
Jing, Bin Zhao, and Wei Wang. 2021. UPPRESSO: Untraceable and Unlinkable
Privacy-PREserving Single Sign-On Services. arXiv preprint arXiv:2110.10396
(2021).

[19] Jinguang Han, Liqun Chen, Steve Schneider, Helen Treharne, and Stephan Wese-
meyer. 2018. Anonymous single-sign-on for n designated services with traceabil-
ity. In European Symposium on Research in Computer Security. Springer, 470–490.

[20] Jinguang Han, Liqun Chen, Steve Schneider, Helen Treharne, StephanWesemeyer,
and Nick Wilson. 2019. Anonymous single sign-on with proxy re-verification.
IEEE Transactions on Information Forensics and Security 15 (2019), 223–236.

[21] Mike Hanley. 2022. Security alert: Attack campaign involving stolen OAuth user
tokens issued to two third-party integrators. Available: https://github.blog/2022-

04-15-security-alert-stolen-oauth-user-tokens/.
[22] Dick Hardt. 2012. The OAuth 2.0 authorization framework. Technical Report.
[23] Dan Harkins and Dave Carrel. 1998. The internet key exchange (IKE). Technical

Report.
[24] Hassen Redwan Hussen, Gebere Akele Tizazu, Miao Ting, Taekkyeun Lee,

Youngjun Choi, and Ki-Hyung Kim. 2013. SAKES: Secure authentication and key
establishment scheme for M2M communication in the IP-based wireless sensor
network (6L0WPAN). In 2013 Fifth international conference on ubiquitous and
future networks (ICUFN). IEEE, 246–251.

[25] IBM. 2022. Creating an IBM Cloud API key. Available: https://www.ibm.com/
docs/en/app-connect/container?topic=servers-creating-cloud-api-key.

[26] Issa Khalil, Zuochao Dou, and Abdallah Khreishah. 2015. TPM-based authen-
tication mechanism for apache hadoop. In International Conference on Security
and Privacy in Communication Networks: 10th International ICST Conference, Se-
cureComm 2014, Beijing, China, September 24-26, 2014, Revised Selected Papers,
Part I 10. Springer, 105–122.

[27] Evangelina Lara, Leocundo Aguilar, Mauricio A Sanchez, and Jesús A García.
2020. Lightweight authentication protocol for M2M communications of resource-
constrained devices in industrial Internet of Things. Sensors 20, 2 (2020), 501.

[28] Hal Lockhart and B Campbell. 2008. Security assertion markup language (saml)
v2. 0 technical overview. OASIS Committee Draft 2 (2008), 94–106.

[29] Moritz Loske, Lukas Rothe, and Dominik G Gertler. 2019. Context-aware authen-
tication: State-of-the-art evaluation and adaption to the IIoT. In 2019 IEEE 5th
World Forum on Internet of Things (WF-IoT). IEEE, 64–69.

[30] Microsoft. 2022. Use API keys for Azure Cognitive Search authentication.
Available: https://learn.microsoft.com/en-us/azure/search/search-security-api-
keys#what-is-an-api-key.

[31] Greg Ose. 2022. npm security update: Attack campaign using stolen OAuth tokens.
Available: https://github.blog/2022-05-26-npm-security-update-oauth-tokens/.

[32] Kasper Bonne Rasmussen and Srdjan Capkun. 2010. Realization of RF Distance
Bounding.. In USENIX security symposium. 389–402.

[33] Rachit Rawat and Mahabir Prasad Jhanwar. 2020. PAS-TA-U: PASsword-Based
Threshold Authentication with Password Update. In International Conference on
Security, Privacy, and Applied Cryptography Engineering. Springer, 25–45.

[34] KM Renuka, Saru Kumari, Dongning Zhao, and Li Li. 2019. Design of a secure
password-based authentication scheme for M2M networks in IoT enabled cyber-
physical systems. IEEE Access 7 (2019), 51014–51027.

[35] Ulrich Rührmair. 2022. Secret-free security: A survey and tutorial. Journal of
Cryptographic Engineering 12, 4 (2022), 387–412.

[36] Natsuhiko Sakimura, John Bradley, Mike Jones, Breno De Medeiros, and Chuck
Mortimore. 2014. Openid connect core 1.0. The OpenID Foundation (2014), S3.

[37] Statista Research Department. 2022. M2M (machine-to-machine) – Statistics &
Facts. https://www.statista.com/topics/1843/m2m-machine-to-machine/.

[38] Jennifer G. Steiner, Clifford Neuman, and Jeffrey I. Schiller. 1988. Kerberos: An
Authentication Service for Open Network Systems. In IN USENIX CONFERENCE
PROCEEDINGS. 191–202.

[39] Chalee Thammarat and Chian Techapanupreeda. 2021. A secure authentication
and key exchange protocol for M2M communication. In 2021 9th International
Electrical Engineering Congress (iEECON). IEEE, 456–459.

[40] DBIR Verizon. 2020. Data Breach Investigations Report 2020. Computer Fraud &
Security 4 (2020), 30059–2.

[41] Tatu Ylonen and Chris Lonvick. 2006. The secure shell (SSH) transport layer
protocol. Technical Report.

[42] Feng Zhang, Aron Kondoro, and SeadMuftic. 2012. Location-based authentication
and authorization using smart phones. In 2012 IEEE 11th International Conference
on Trust, Security and Privacy in Computing and Communications. IEEE, 1285–
1292.

[43] Yuan Zhang, Chunxiang Xu, Hongwei Li, Kan Yang, Nan Cheng, and Xuemin
Shen. 2020. PROTECT: efficient password-based threshold single-sign-on au-
thentication for mobile users against perpetual leakage. IEEE Transactions on
Mobile Computing 20, 6 (2020), 2297–2312.

[44] Zhiyi Zhang, Michal Król, Alberto Sonnino, Lixia Zhang, and Etienne Rivière.
2021. EL PASSO: efficient and lightweight privacy-preserving single sign on.
Proceedings on Privacy Enhancing Technologies 2021, 2 (2021), 70–87.

[45] Zhenfeng Zhang, Yuchen Wang, and Kang Yang. 2020. Strong Authentication
without Temper-Resistant Hardware and Application to Federated Identities.. In
NDSS.

[46] Lingli Zhou and Zhenfeng Zhang. 2010. Trusted channels with password-based
authentication and TPM-based attestation. In 2010 International Conference on
Communications and Mobile Computing, Vol. 1. IEEE, 223–227.

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-api-usage-plans.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-api-usage-plans.html
https://mashable.com/article/uber-teen-hacker-slack-joke
https://mashable.com/article/uber-teen-hacker-slack-joke
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://cloud.google.com/docs/authentication/api-keys
https://cloud.google.com/docs/authentication/api-keys
https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/
https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/
https://www.ibm.com/docs/en/app-connect/container?topic=servers-creating-cloud-api-key
https://www.ibm.com/docs/en/app-connect/container?topic=servers-creating-cloud-api-key
https://learn.microsoft.com/en-us/azure/search/search-security-api-keys#what-is-an-api-key
https://learn.microsoft.com/en-us/azure/search/search-security-api-keys#what-is-an-api-key
https://github.blog/2022-05-26-npm-security-update-oauth-tokens/
https://www.statista.com/topics/1843/m2m-machine-to-machine/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Machine Authentication Methods
	2.2 M2M Communication Schemes
	2.3 SSO Systems

	3 Motivation and Design
	3.1 Motivation
	3.2 Design Goals
	3.3 Comparison with Existing Systems

	4 Overview and Models
	4.1 ActionID Overview
	4.2 System Model
	4.3 Adversary Model

	5 Protocols Description
	5.1 Action Registration Protocol
	5.2 Action Execution Protocol

	6 Security Analysis
	7 Implementation
	7.1 Overview
	7.2 Identity Manager
	7.3 Server
	7.4 Requestor's Script
	7.5 Performance Overhead

	8 Conclusion
	9 Acknowldgements
	References

