
Nakula: Coercion Resistant Data Storage against Time-Limited
Adversary

Hayyu Imanda

hayyu.imanda@cs.ox.ac.uk

University of Oxford

Oxford, United Kingdom

Kasper Rasmussen

kasper.rasmussen@cs.ox.ac.uk

University of Oxford

Oxford, United Kingdom

ABSTRACT
Both private citizens and professionals including journalists and

whistleblowers can find themselves in a situation where they need

to physically carry confidential data on a mobile device, through a

situation where they might have their device seized and be subject

to interrogation. In that case the user may be required to hand over

the data by providing the password to unlock the device, violating

confidentiality. Many existing proposals to address this issue in-

volve the user lying to the interrogator to convince them that there

is no data present, or that they forgot the password, or provide them

with a second password that reveal different information. Although

data hiding or alternative passwords can be useful solutions, we

want to avoid this and instead focus on a scheme where the user

can show that they cannot possibly access the data.

In this paper we propose Nakula, a mechanism that enables a

user to lock down data with a single click (or voice command, ges-

ture, etc.), enabling secure data transport. The information remains

confidential against a very strong adversary who has full control

over both the network and the device; and has the ability to force

the user to cooperate through coercion. Nakula is designed so that

the user does not have to lie or provide any misleading informa-

tion at all. To achieve this, the user temporarily loses the ability

to access the data and will need a trusted third party to recover it.

We present a detailed design and security analysis of Nakula, and a

proof-of-concept implementation that demonstrates the feasibility

of using standard mobile phones to carry data. Finally we discuss

several context-specific authentication methods that can be used

with the scheme to enable data recovery in a variety of situations.

CCS CONCEPTS
• Security and privacy→ Security services; Privacy protections;
Security protocols;Mobile and wireless security; Database and storage
security.

KEYWORDS
coercion resistance, secure data storage, strong adversary model,

confidentiality

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ARES 2023, August 29–September 01, 2023, Benevento, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0772-8/23/08. . . $15.00

https://doi.org/10.1145/3600160.3600175

ACM Reference Format:
Hayyu Imanda and Kasper Rasmussen. 2023. Nakula: Coercion Resistant

Data Storage against Time-Limited Adversary. In The 18th International
Conference on Availability, Reliability and Security (ARES 2023), August 29–
September 01, 2023, Benevento, Italy. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3600160.3600175

1 INTRODUCTION
A mobile phone contains an enormous amount of private informa-

tion. This affects all individuals, however some of these information

may be classed as more sensitive than others, for example: a list

of sources for journalists, confidential data of organisations, state-

level secrets, a list of passwords, or medical information. In turn,

exactly for the reason that an insurmountable amount of data is

accessible, it has not been uncommon that device searches—for per-

sonal devices or otherwise—happen by law enforcement officials

or border agencies [17, 30].

Some countries have legislations in place that would allow state

organisations the power to access electronic devices and demand

the owner of the password to provide the password or unlock these

devices [9, 18, 31]. In addition, it has also been reported that US

government officials have copied the contents of digital devices that

have been searched at the border, which is stored in a database for

up to 15 years [15]. In worse situations, some parties with malicious

intent have been known to coerce an authentication information

to obtain monetary gain or access to confidential data [7, 16].

These situations illustrate the sheer importance of secure data

transport, where there exists an entity who wish to break confiden-

tiality. In these cases, the ‘adversary’ may have the (legal) capability

to request, or even demand, the device user of their authentication

information, in order to obtain access to the plaintext of all the data

on the device. Previous attempts at solving this exact problem have

involved, for example, full disk encryption [33]. However when

met with this situation, the user when demanded the decryption

password have to either provide the password or decline–the latter

may be met with an undesired situation.

Other approaches to this problem may include hidden volumes, a
method to hide data on a device so it is not apparent to others who

look at it. For example, the device may be split up into different vol-

umes, which unlocks depending on which password the user enters.

The idea of the system is as follows: when the user is requested to

enter their password, they will input a ‘decoy’ password instead,

to which the file system will direct the user to a file directory with

predetermined inconspicuous-looking data [33, 38].

With these approaches in mind, unless the user wishes to decline

to provide the password, the user has two of options: provide the

password and lose confidentiality, or alternatively hide the data

and/or provide false information. The latter may indeed protect

https://orcid.org/0000-0002-8808-2455
https://orcid.org/0000-0002-9471-9985
https://doi.org/10.1145/3600160.3600175
https://doi.org/10.1145/3600160.3600175
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3600160.3600175&domain=pdf&date_stamp=2023-08-29

ARES 2023, August 29–September 01, 2023, Benevento, Italy Hayyu Imanda and Kasper Rasmussen

the data, however such practices are in direct conflict with the

statement by the Electronic Frontier Foundation, who recommends

against methods that deceive or mislead border agents about what

data is present on a device [8]. In addition, an article published in

the American Bar Association states that “under no circumstances
should you lie to a border agent or seek physically to interfere with the
agent’s performance of official duties” [12]. We believe our suggested

mechanism fits within these legal recommendations.

In this paper, we propose Nakula
1
, an approach to protecting

device data in the presence of a strong adversary that reflects the

scenarios described. Specifically, we consider a situation which

some data is required to be transported via a physical medium,

when there exists a finite period of time in which the adversary

has physical access to the device as well as coercive capability: that

is, the adversary is able to demand the user carrying the device to

reveal and provide any authentication information (e.g., passwords

or biometrics). In addition, the adversary would have access to

the user’s communications channels, which is reflective of the

capabilities of a state-level adversary.

We introduce the most important feature of Nakula: our system

does not require any individual to lie or provide any false informa-

tion even when coerced. We do not rely on hidden volumes or any

data hiding mechanisms that are designed to mislead the adver-

sary that some data doesn’t exist. For this exact reason, previous

solutions mentioned above are not suitable. Our approach comes

from a simple concept: the user is unable to provide the informa-

tion to the adversary because the user legitimately does not have

access to it. The data, during the period of adversary control, is not

available even to the user, because the user does not hold the key

required to decrypt the encrypted data. This key is held remotely

by a trusted third party, who will not return the necessary building

blocks to recover the data, unless they are convinced that the user

is legitimately requesting so, which is done after the adversary is

no longer present on the device.

We summarise our contributions as follows:

• We create an infrastructure for secure physical data transport,

where confidentiality against a coercive adversary with full

access of the device is guaranteed without the user having

to lie or deceive the adversary. Within this infrastructure,

we introduce a trusted third party who maintains recovery

keys as well as verifying the user authentication after the

adversary is no longer present.

• We design protocols between the user and the trusted third

party to achieve these goals and provide a proof-of-concept

implementation of the scheme.

• We discuss different options in which the user can authenti-

cate themselves to the trusted third party in order to recover

the data that was temporarily inaccessible.

2 RELATEDWORK
2.1 Plausible Deniability and Coercion Attacks
Non-repudiation as a security goal directly contrast the notion of

deniability, and many proposals have been made in the past to allow

a user to deny that a particular cryptographic action has been made.

1
The name Nakula comes from the Mahabharata tales, originally written in Sanskrit.

In the mythology, Nakula is a character who is trusted in keeping secrets.

For example, deniable encryption [6] allows the sender to find a

different message𝑚′
and random choice 𝑟 ′ such that enc(𝑚′, 𝑟 ′)

appears the same as the original sent ciphertext 𝑐 . Though this has

been improved in recent years, this scheme is still far from practical

especially for large messages.

On the protocol level, another breakthrough in deniability came

with the proposal of Off-the-Record Messaging (OTR) [5] where

authorship of a particular message can no longer be linked to the

original sender. The trick to this mechanism is short-lived session

keys, as well as using a MAC key that is shared with the receiver;

with the MAC key later published, the original message can be also

signed by the receiver or anyone else. In addition, session keys that

are no longer used are deleted, allowing forward secrecy, but also

deny authorship. Similarly, deniable authenticated encryption [23]

allows the receiver of a particular message to arbitrarily create

fake messages as if they were from the original sender, hence the

sender can always deny their involvement. A recent work [25] has

looked into how humans perceive these ‘proofs’ on a practical level,

through a courtroom situation.

Attacks with adversaries who have coercive capabilities have

been discussed in the literature, and are sometimes called rubber-
hose cryptanalysis. Many attempts at maintaining confidentiality in

this situation comes hand-in-hand with information hiding, which

allows plausible deniability: a situation such that there “be no ir-

refutable evidence concerning a disputed event or action” [26].

For example, Veracrypt [33], a fork of the discontinued Truecrypt

project [32], is an open source encryption software that comes

with the feature that allows the user to create a hidden operat-

ing system whose existence should be impossible to prove, as it

lies within an existing VeraCrypt volume, and any free space on

a VeraCrypt volume is filled with random data when it is created.

In addition, if coerced, the user can input password to the outer

volume which reveals non-sensitive information. Thus, you will

not have to decrypt or reveal the password for the hidden volume.

Hidden volumes are an example of a steganographic file system [1],

a storage mechanism designed to give the user a very high level of

protection against being compelled to disclose its contents. This

work is followed by other systems [2, 20, 29].

Other work on authenticating under duress include a distress

pin [7], which includes a threat model of categorisation of coercion,

and the Funkspiel scheme [16], with the latter assuming the user

can alter the hardware of the device.

An alternative to authentication under duress have included a

neuroscience-based authentication based on implicit learning [3]:

the ‘password’ is planted to the user over a training period, and

will be detected upon authentication; however, a user cannot ex-

plicitly explain what the password is. In [14], the authors proposed

a method that uses measurements of skin conductance so that the

key generated is different when the user is coerced. Note that these

methods require a very specific system model different from ours.

The password manager OnePassword published a feature called

Travel Mode [11], to protect ultra-sensitive data when someone

crosses a border. A user can turn on travel mode in advance of travel,

which removes (not hides) some stored passwords that were marked

as sensitive. If they are asked to open their password manager, they

proceed with authentication as normal but the border agents would

not be able to tell that there are data that are missing. To recover

Nakula: Coercion Resistant Data Storage against Time-Limited Adversary ARES 2023, August 29–September 01, 2023, Benevento, Italy

their removed passwords, the user can then authenticate themselves

and turn off travel mode. Of course, this does not work with our

adversary that can request or demand the user to turn off travel

mode when the adversary is present.

The methods above are different from our solution, as we are not

trying to deny a particular action has been taken through ambigu-

ity; or worse, knowingly making an incorrect statement or entering

an authentication secret that does not reflect the true content of

the data they hold. Instead, we use a trusted third party who con-

trols the user’s access to the plaintext. Indeed, the idea of using a

trusted third party to store an encryption key has been previously

discussed on both an informal and an academic setting [19, 28], as a

response to a capture or a device seizure scenario. In addition, [36]

also uses an entity that issues a remote wipe command should the

user report that a device is stolen or lost. The concept of using en-

cryption without providing someone the key to deny access to the

information is not new [35] and has been used maliciously in the

form of malware (e.g., [27]) but in this paper we use this technique

to our advantage.

2.2 Secure Deletion
In most systems, data deletion is not securely deleted by default. In

this paper, we assume ‘secure deletion’, where data is made irrecov-

erable from a physical medium [24]. There have been many work

dedicated to secure deletion: in [10], it is noted that cryptographic

protocols forgetting information is usually assumed; in turn, they

defined and constructed a secure erasable memory implementation,
which turns any storage device into a storage device that can se-

lectively forget. In [4], the authors used a block cipher to forget

information rather than protect it. Many other schemes, as well as

adversary models of device capture are discussed in [24]. In [38],

the authors proposed a method to securely delete data when under

coercion. This is done through a deletion password, which when

entered, will verifiably delete the data within a special disk in the

device. Again, the use of a decoy password is not desirable.

3 DESIGN
In this section, we describe the goal of Nakula and the design

choices we made to reach such goals.

3.1 Design Goal
The main goal of this paper is to keep information confidential

in the presence of a strong, coercive adversary. Clearly, to ensure

confidentiality some sort of encryption is needed. Given that our

adversary is able to demand authentication secrets from the user,

existing methods such as a password-based symmetric key encryp-

tion (e.g. full-disk encryption), for example, is not suitable as the

user will simply reveal the correct password and the plaintext will

be available to the adversary. A second reason why full-disk en-

cryption is unsuitable is the duration in which encryption process

takes place: encrypting a large amount of data within one click

requires a large amount of time. This is unideal, given that our

user requires the data to be encrypted quickly before the adversary

obtains access to the device.

Alternatives that would be consistent with the recommendations

have that have been suggested include backing up these data over

the cloud, and then deleting them on the device [34]. However, this

takes significant planning: if you are in a place where there exists

no or limited connectivity, this might not be an option. Equally, if

the data is of large size and the adversary is expected to have access

to the device within a short period of time, the upload process might

not be completed in time. Though this would be suitable for some

data transport, we would like to explore alternatives where data

size or connectivity are not limitations.

To solve this, we utilise what is normally called on-the-fly en-

cryption, where the data is automatically stored encrypted with a

symmetric key 𝑘 without user action [20]. When the file is loaded,

it is automatically decrypted. Our method is simple: when the user

wishes to make the data unavailable to the adversary, the symmetric

key 𝑘 is made unavailable by encrypting it with a public key 𝑝𝑘 ,

before 𝑘 is deleted, so that the user will not have access to 𝑘 and

hence the plaintext.

Obviously, if the user has the corresponding secret key 𝑠𝑘 either

on the device or derived from the user’s knowledge, then this is

the same case as earlier: the adversary will just coerce the user

to reveal 𝑠𝑘 . Our approach is to involve a trusted third party (the

backend), who holds 𝑠𝑘 and will only perform computations to

recover the data when they are convinced that any request to do

so is legitimately done by the user after the adversary is present.

Given our reliance to the backend, we want our system to be secure

even if the backend is later compromised, which we will discuss in

Section 3.2.

To summarise, the goals of Nakula are as follows:

• Secure physical data transport where confidentiality during

the presence of a coercive adversary is guaranteed.

• Quick, simple data lock: the user should be able to encrypt

the data within a push of a button (or any equivalent com-

mand, including voice and gesture).

• The user does not have to state any incorrect or misleading

information to the adversary.

• Long-term secrecy: should the backend be compromised at

a later stage, the backend will not have access to the data

stored on the user’s device.

We note that though our approach is aimed at being consistent

with the recommendation of not hiding or providing false infor-

mation, we understand that we have not discussed further legal

issues, the risk of device confiscation, or risk of harm. These are

extremely complex matters that are dependent, at the very least,

on jurisdictions and we note that these issues are out of scope for

our paper; some guidance for those travelling with a device have

been discussed in [12, 34].

3.2 System Model and Design
In this paper, we consider the following honest players:

(1) the user: the party who wishes to maintain confidentiality

of some data.

(2) the backend: the trusted third party backend. We assume

that the backend is an honest-but-curious party.

We assume that secure deletion on the user’s device is possible.

That is, when we say some data is deleted, we mean that it is ir-

recoverable from the device. We refer the reader to some methods

in Section 2.2.

ARES 2023, August 29–September 01, 2023, Benevento, Italy Hayyu Imanda and Kasper Rasmussen

We assume that the user can predict when the adversary is

present, or is given warning to when such occurrence will happen,

which may be within a short amount of time. The user’s goal is

to maintain confidentiality when the adversary is present, and

we assume that the user remains truthful when coerced by the

adversary.

In this section onwards, we consider the data to be a collection

of information in plaintext form, that the user wishes to remain

confidential against the adversary.We consider five separate actions

that the user performs in order for the system to correctly function:

(1) Setup. As the name suggests, this includes the user setting

up the system on the device. This step is necessary for the

user and backend to obtain the necessary keys. In practice,

this may include the installation of an application on the

user’s device, and after the setup, any data that the user

wishes to remain confidential is to be collected and stored

encrypted through the application.

(2) Data Acquisition. Here, the user has access to the data and
can continue acquiring information that will be later locked.

(3) Data Lock. The purpose of data lock is simple: the encryp-

tion key is deleted, so the data within the device is now

inaccessible to anyone—this includes both the adversary and

the user.

(4) Key Recovery. The user connects to the backend to ob-

tain a (masked) key back, while performing authentication

function 𝑓
auth

.

(5) Data Recovery. The user obtains back data.

The data flow on the user device happens as follows, and is

shown in Figure 1. Firstly, the user performs user setup to obtain

the backend’s public key 𝑝𝑘 , and we assume that the user is able to

communicate to the backend during user setup (e.g., before leaving

for a business trip). We then describe the period of time between

user setup and data lock to be the data acquisition period. During

data acquisition, the user has access to the data in plaintext form,

and is able to make changes to them. However, the data is always

stored in encrypted form on the device and decrypted when it is

loaded for the user to perform operations—the encryption and de-

cryption of the data happens without user intervention. We denote

the symmetric keys that store the data as session keys.
Before the adversary is present, the user can instigate data lock:

at this point, the user loses access to the data. The user can perform

data lock at any point after data acquisition, and multiple times

before adversary access. That is, the user can perform data lock

using a session key 𝑘𝑖 and start a new data acquisition session with

a new session key 𝑘𝑖+1. This allows the user to manage the risks

of adversary presence better: though our system assumes that the

user is given warning when the adversary will be present, in reality

the there might be cases where this is not possible, for example

when the phone is lost or taken with force. Equally, the user might

simply wish to lock the data at the end of a working day. In that

case, the user can minimise the amount of data that is accessible at

any point by performing multiple data locks; we describe this in

detail in Section 4.

As an extra layer of security, during data lock, before the user

encrypts with 𝑝𝑘 to make the data unavailable, the symmetric

key 𝑘 is first ‘masked’ by encrypting 𝑘 with a symmetric masking

User Setup

Key RecoveryData Recovery

Data Lock

Adversary Control

Data Acquisition

Figure 1: Nakula Design: After user setup, the user can collect
data during data acquisition period; the user may lock the
acquired data at any point, while still being able to collect
additional data. Before adversary control, the user completed
Data Lock and at this point the user do not have access to
the data anymore. When the adversary is no longer present,
the user can complete key recovery followed by data recov-
ery to obtain the data back. The cycle starts again with data
acquisition. During user setup and key recovery, the user
communicates with the backend.

key 𝑘𝑅 . The masking key is kept within the user’s device, and this

makes sure that the backend after decrypting will only have access

to enc𝑘𝑅 (𝑘), and never has direct access to 𝑘 as an extra layer of

protection. Specifically, during data lock, each session key 𝑘 is

masked with 𝑘𝑅 , before being encrypted with 𝑝𝑘 . Then, the user

deletes 𝑘 and enc𝑘𝑅 (𝑘). Note that we use public key encryption,

instead of symmetric key encryption to ensure that the user at no

point in the data life cycle has access to the secret key 𝑠𝑘 . Note that

we can consider 𝑝𝑘 as a deletion key, and 𝑠𝑘 as a recovery key.

After data lock is instigated, the user enters the adversary control
period, where the user no longer has access to the data as the en-

cryption key is no longer accessible. The adversary control period is

indeed the period of time in which we can guarantee confidentiality

of the data when the adversary is present.

Note that because the user does not have access to, and has never

had any previous knowledge of 𝑠𝑘 , the user is legitimately unable

to decrypt the the encrypted data as there is no decryption key on

the device to decrypt the data. In this way, if the user is demanded

by the adversary the authentication information for the encrypted

data, the user simply states that they are not able to decrypt (or

unlock) the data as they do not have access to the decryption key.

This can be supported by a well-designed UI on the device that

states this information and how it works, but a large adoption of

the system improves the probability that the adversary is aware of

Nakula: Coercion Resistant Data Storage against Time-Limited Adversary ARES 2023, August 29–September 01, 2023, Benevento, Italy

this mechanism, hence convinced that the user is telling the truth

and reduces the risk of harmful coercion.

It is also important to note that when the adversary is present,

the user does not have access to not only the session keys, but also

the data. That is, the user will not be able to see or modify what is

inside it, so it is important that the user is aware of this risk before

using the mechanism.

When the adversary is no longer present on the device, the user

can instigate key recovery, and we assume that communication with

the backend is possible during this (e.g., when the user has left a

region with limited connectivity). During this process, the user

sends the ciphertext of the masked, encrypted session keys to the

backend, to which the backend can use the recovery key to decrypt

the ciphertext and obtain the masked key. This is then sent back to

the user so that they are able to obtain the session keys and obtain

access to the data through data recovery.
Of course, key recovery needs to be done in a way that preserves

authentication of the user, even with the adversary having coercive

capability and full, physical access to the device. The backend will

not release the encrypted key (by decryption using 𝑠𝑘) until they

are convinced that any request to do so is not by the adversary, and

is legitimately done by the user after the adversary is no longer

present. Hence, the user should not have the ability to authenti-

cate themselves relying solely on their own knowledge. For now,

we assume a function 𝑓
auth

that outputs a binary value such that

𝑓
auth

= 1 if and only if the user is legitimately requesting key

recovery without the influence of the adversary. We discuss this

function in Section 7.

During key recovery, a new public key 𝑝𝑘′ is sent from the

backend, with 𝑝𝑘 deleted on the user’s device. This is because the

adversary may store the device data, including the encrypted data

and masking key for a long period of time. Should the backend

be compromised at a later stage after key recovery, the adversary

henceforth will not have access to the data.

Lastly, we stress that the backend is a trusted party. In practice,

this can be the user’s employer or trusted organisation and the im-

plementation of Nakula, especially when it comes to designing 𝑓
auth

(as we will discuss in Section 7) and a wide-enough adoption allows

for the adversary to be aware of Nakula.

3.3 Adversary Model
We assume the adversary has full control over the network that

the user operates on. During a finite time period (during adversary
control), the adversary is able to coerce the user into revealing any

authentication information and encryption keys, having full, phys-

ical access to the device and and its underlying logic. However, we

do not assume the adversary is able to coerce the user to reveal the

contents of the device that has been encrypted and made unavail-

able. We also assume that the adversary is able to clone the device,

and store the cloned data for an indefinite amount of time (but not

long enough to break the encryption algorithm used).

We acknowledge that the adversary can confiscate and destroy

the device (or delete data on the device), but that is not something

any protocol can prevent. Our functional guarantees only consider

the case when the device remains in the user’s possession.

User Backend

TLS Handshake

Choose a

дa , fauth

Generate (pk, sk)
Choose b
Store kAB = (дa)b

pk,дb

Store pk and
kAB = (дb)a

TLS Session

Figure 2: User setup protocol. In this protocol the user obtains
the backend’s public key 𝑝𝑘 and agree on a symmetric key𝑘𝐴𝐵
with the backend. In addition, the user generates themasking
key 𝑘𝑅 associated to 𝑝𝑘 .

We assume the adversary is rational and is aware of the existence

of Nakula and that it may be used in the system. In addition, we

assume that the adversary does not have access to the backend’s

secrets during adversary control. The adversary’s goal is to break
confidentiality.

Note that our adversary model is consistent with what is usually

considered for secure deletion: the adversary’s goal is to recover

deleted data objects after being given access to a physical medium

that contained some representation of the data objects.

Lastly, we note that our use of the word adversary is simply from

a systems point of view and not necessarily to imply that they have

malicious intent.

4 NAKULA
In this section, we describe the inner workings of Nakula. First,

we discuss the user setup protocol shown in Figure 2, where the

user communicates with the backend to agree on the necessary

keys. We then describe the life cycle of a session (Figure 3) and the

various algorithms involved in Nakula (Algorithms 1, 2), ending

with key recovery (Figure 4), where the user communicates with the

backend again to obtain a masked session key and finally recover

the original data (Algorithm 3).

4.1 User Setup
The goal of the user setup protocol is for the user to obtain the

backend’s public key 𝑝𝑘 and agree on a symmetric key 𝑘𝐴𝐵 used

ARES 2023, August 29–September 01, 2023, Benevento, Italy Hayyu Imanda and Kasper Rasmussen

Generate new
symmetric key

Gather data
Store encrypted

Lock session

New session

Recover keys

Authentication
procedure

Figure 3: The user starts a new session by generating a new
symmetric key according to Algorithm 1. The key is used to
encrypt data as it is generated and the session is locked when
the key is deleted. A new session can be started by creating
a new key, or the user can recover locked sessions to regain
access to locked data.

Algorithm 1: Session key generation

Function Generate(𝑝𝑘):
generate session key 𝑘 ;

generate masking key 𝑘𝑅 ;

store enc𝑝𝑘 (enc𝑘𝑅 (𝑘)), 𝑘𝑅 , and ℎ(𝑘) on disk ;

return 𝑘

for subsequent communication with the backend. This protocol is

an enrollment process that only has to happen once.

To initiate, the user connects to the backend through TLS, and

verifies the TLS certificate. The user then chooses a Diffie-Hellman

exponent 𝑎 and sends over 𝑔𝑎 to the backend within the authenti-

cated TLS session, along with a preferred method of 𝑓
auth

. Upon re-

ceipt, the backend generates a public-private key pair and chooses a

Diffie-Hellman exponent 𝑏, and stores the shared key 𝑘𝐴𝐵 = (𝑔𝑎)𝑏 .
The backend sends the public key 𝑝𝑘 and 𝑔𝑏 to the user and the

user computes 𝑘𝐴𝐵 = (𝑔𝑏)𝑎 . These are stored as 𝑝𝑘 will act as the

user’s deletion key for the current epoch, and 𝑘𝐴𝐵 will be used for

subsequent communication with the backend.

Note that (𝑝𝑘, 𝑠𝑘) is not global, and is generated uniquely for

each enrolled user, and hence also acts as an identifier.

4.2 Session Start and Key Generation
After completing user setup, the user has obtained all the building

blocks required to ensure that confidentiality during adversary

control can be guaranteed assuming the user observes the proper

life cycle of the data acquisition session. This life cycle is described

in Figure 3.

The first step is to generate a session key 𝑘 . This involves a

couple of steps and is done with the Generate function shown in

Algorithm 1. First the user generates the actual session key 𝑘 and a

masking key 𝑘𝑅 . The masking key and the public key 𝑝𝑘 from the

backend are then used to create an encrypted backup of 𝑘 that the

user cannot access without the assistance of the backend, since it is

encrypted with 𝑝𝑘 . This allows the user to delete 𝑘 at any time in

order to protect the access to the data. The user also stores a hash

of the key to be used for verification in case the session key ever

needs to be recovered from the backend.

Algorithm 2: Session lock for active session (with key 𝑘)

Function Lock(𝑝𝑘):
secure delete session key 𝑘

4.3 Data Acquisition and Encryption
Now the user can start acquiring data (text, photos, etc.). It needs

to be ensured that all data is encrypted with 𝑘 . This is conceptually

straightforward although there are some pitfalls if this is done on a

mobile device.

Some mobile operating systems will cache images when they

are taken, in order to improve the user experience when switching

between applications. This is true to some extent for both Android

and iOS and will need to be considered if every photo is sensitive.

We discuss this in more detail in Section 6.

There is no practical limit on the length of a single session. The

user can keep using the same session key 𝑘 for as long as needed,

but if there is ever a situation where the phone might be seized, e.g.,

going though a roadside checkpoint, or crossing an international

border, the user can lock the session to make the data inaccessible.

4.4 Session Lock
Given that the data itself is already encrypted, and the user has

already stored an encrypted version of 𝑘 for data recovery, to lock

a session all the user has to do is delete 𝑘 as shown in Algorithm 2.

Once the session key 𝑘 has been securely deleted, the data is not

accessible to anyone, including the user. It is a key feature that the

user cannot recover the data by themselves, because if they could,

then they would be vulnerable to coercion by the adversary.

This works regardless of whether the adversary is aware of the

technical details of Nakula, but a technically literate adversary

plays to the user’s advantage in practice, since they will understand

that there is nothing the user can do, and therefore there is no point

in continuing any interrogation.

We should note that if the user knows the data, e.g., they might

remember a picture they took, Nakula does not protect against an

adversary trying to extract such information from the user them-

selves. But at least the actual data in physical form, along with the

possible intricate details, is beyond reach.

Note that the user may initiate session lock multiple times with

the same public key 𝑝𝑘 (although with different session keys 𝑘𝑖), as

shown in Figure 3. This allows the user to lock the session if there

is any chance at all it might be needed, for example before going

to bed in an unsecured hotel room. We denote by ®𝐶𝑝𝑘 the list of

ciphertexts under the public key 𝑝𝑘 , that is, ®𝐶𝑝𝑘 = {𝑐𝑏1 , 𝑐𝑏2 , ...}.
To summarise, after session lock is completed 𝑖 times, the user

has stored on the device the following fragments, whichwe consider

public information:

(1) enc𝑘1 (data1), . . . , enc𝑘𝑖 (data𝑖)
(2) ®𝐶𝑝𝑘 = {enc𝑝𝑘 (enc𝑘𝑅 (𝑘1)), . . . , enc𝑝𝑘 (enc𝑘𝑅 (𝑘𝑖))}
(3) 𝑘𝑅

(4) ®𝐾 = {ℎ(𝑘1), ℎ(𝑘2), . . . , ℎ(𝑘𝑖)}
(5) 𝑝𝑘

(6) 𝑘𝐴𝐵 .

Nakula: Coercion Resistant Data Storage against Time-Limited Adversary ARES 2023, August 29–September 01, 2023, Benevento, Italy

User Backend

Choose nA

pk,nA, C⃗pk , enckAB (auth),MACkAB

Verify pk
Lookup kAB , sk
Verify MAC

Verify f (auth)

K⃗R = decsk (C⃗pk)

Generate (pk ′, sk ′)

K⃗R ,pk
′,MACkAB (K⃗R ,pk

′,nA)

Verify MAC,nA
Compute K⃗
Generate k ′R
Store pk ′,k ′R

enckAB (nA),MACkAB

Delete (pk, sk)

Figure 4: Session Key Recovery Protocol. The user supplies
the encrypted (and masked) session key along with suitable
authentication material (discussed in detail in Section 7), and
gets back ®𝐾𝑅 from which the recovery key can be calculated,
as well as a new public encryption key to use in the next
epoch.

4.5 Key and Data Recovery
When the adversary is no longer present, the user can initiate key

recovery, to recover access to the session key with the help of

the backend. This is done with the Session Key Recovery Protocol

shown in Figure 4.

The user chooses a nonce 𝑛𝐴 and sends it along with the deletion

key 𝑝𝑘 and a list of encrypted backup session keys ®𝐶𝑝𝑘 to the

backend. It is critical that the user cannot be forced by the adversary

to complete this step. We discuss in Section 7 how this might be

achieved in practice, but for the purpose of the protocol we model

it as some authenticating information ‘auth’.

The backend, upon receipt of the message from the user, ver-

ifies that 𝑝𝑘 is in the system, then looks up 𝑘𝐴𝐵 and 𝑠𝑘 which

corresponds to 𝑝𝑘 . The backend then uses 𝑘𝐴𝐵 to verify the MAC,

before verifying that 𝑓
auth

(auth) = 1 (again, see Section 7), ensur-

ing that the request from the user is genuine. The backend then

decrypts ®𝐶𝑝𝑘 with 𝑠𝑘 and sends this back to the user along with a

new deletion key to be used for the next epoch.

The user verifies the MAC𝑘𝐴𝐵
and 𝑛𝐴 to ensure integrity and

freshness and then computes the set of session keys ®𝐾 = {𝑘𝑖 } by

Algorithm 3: Data Recovery for key 𝑘

Function Recover(𝑘𝑅, 𝑝𝑘, enc𝑘𝑅 (𝑘)):
𝑘 = dec𝑘𝑅 (enc𝑘𝑅 (𝑘)) ;
data = dec𝑘 (enc𝑘 (data)) ;
delete 𝑝𝑘, 𝑘, 𝑘𝑅 ;

return data

decrypting each member of the list with 𝑘𝑅 . A new masking key 𝑘′
𝑅

is computed and saved along with the new deletion key 𝑝𝑘′.
Finally the user sends a confirmation to the backend that then

deletes the now defunct (𝑝𝑘, 𝑠𝑘), and as a final step to recover the

data, the user runs Algorithm 3.

5 SECURITY ANALYSIS
We make the following assumptions:

(CA) The certificate authority issuing certificates of each protocol

party is honest.

(SD) Once an object is deleted, it is irrecoverable from the medium

(secure deletion).
(SS) Every encryption algorithm used is semantically secure.

(H) The hash function used by each protocol party is preimage-

resistant; that is, given ℎ(𝑚), it is infeasible to find𝑚.

(M) The MAC used by each protocol party is secure.

(N) The probability that an honest party picks the same nonce

twice is negligible.

(A) 𝑓
auth

(auth) = 1 if and only if auth is provided at will by the

legitimate user.

Guarantee 1. At the end of user enrolment, and before adversary
control, the user and backend shares a key only known to them.

Proof. Firstly, the backend is authenticated using TLS (Assump-

tion CA). Given that the key exchange happen within the same TLS

session, confidentiality and integrity follows. □

Note that the above guarantee only ensures secrecy of 𝑘𝐴𝐵
strictly before adversary control, as the adversary has the capa-

bility of full access to the device, in which they can obtain 𝑘𝐴𝐵 and

is then considered public information.

Guarantee 2. If key recovery is completed successfully, then the
backend is certain that the message coming from the user indeed
comes from the user and is fresh.

Proof. For an adversary to claim that they are the user, they

need to pass the backend’s MAC verification. That is, they need to

either forge or replay MAC𝑘𝐴𝐵
(. . . , 𝑛𝐴). The latter is not possible

due to Assumption (N).

Now assume the adversary does not have access to 𝑘𝐴𝐵 . Then

due to Assumption (M) the adversary also isn’t able to forge MAC.

Now assume the adversary has access to 𝑘𝐴𝐵 . Then the adver-

sary will pass the backend’s MAC verification. However, due to

Assumption (A), we have 𝑓
auth

(auth) ≠ 1 as this is not requested

freely by the user, and the protocol terminates. □

Guarantee 3. If key recovery is completed successfully, and that
the adversary does not compromise the backend during adversary

ARES 2023, August 29–September 01, 2023, Benevento, Italy Hayyu Imanda and Kasper Rasmussen

control, then the user is certain that the reply coming from the back-
end: (1) is a response to the recent request from the user, and (2) indeed
comes from the backend.

Proof. (1) is immediate from Assumption (N). To break (2), an

adversary who wishes to imitate the backend will have to pass the

MAC verification; they can do this by forgery or replay. The latter is

impossible due to Assumption (N). For the former, if the adversary

does not have access to 𝑘𝐴𝐵 then the adversary cannot forge MAC

due to assumption (M). So now assume the adversary has access

to 𝑘𝐴𝐵 (as this becomes public information after adversary control).

In this case, the adversary does not have access to 𝑠𝑘 , the private

key corresponding to 𝑝𝑘 . Hence, except for negligible probability,

ℎ(dec𝑘𝑅 (dec𝑠𝑘 (®𝐶𝑝𝑘)) ≠ ℎ(®𝐾), so the protocol aborts. □

Guarantee 4. Assuming the backend doesn’t have access to 𝑘𝑅 ,
the backend does not have access to the session keys 𝑘 used in the
user’s device.

Proof. The backend only receives enc𝑝𝑘 (enc𝑘𝑅 (𝑘)), and due to
having access to 𝑠𝑘 they can compute enc𝑘𝑅 (𝑘). As the backend
doesn’t have access to 𝑘𝑅 , the proof directly follows from (SS). □

Guarantee 5. During adversary control, no-one, including the
user, has access to data unless the backend is compromised strictly
during adversary control.

Proof. During adversary control, the data is only stored of the

form enc𝑘 (data) (Assumption SD), so to obtain data they require the

symmetric encryption key 𝑘 (Assumption SS). However, 𝑘 is only

stored in the form of enc𝑝𝑘 (enc𝑘𝑅 (𝑘)) (Assumption SD), and ℎ(𝑘).
Given Assumption (H), they cannot obtain 𝑘 from ℎ(𝑘), so to ob-

tain 𝑘 they require both the masking key 𝑘𝑅 and the secret key 𝑠𝑘 .

The masking key is present in the user’s device, so the user and

the adversary have access to them. However, 𝑠𝑘 is only held by the

backend. The backend decrypts enc𝑝𝑘 (enc𝑘𝑅 (𝑘)) if and only if the

user freely requests key recovery, but this is outside of adversary

control. □

Guarantee 6. After key recovery is completed successfully, the
adversary will not have access to data even if they are able to com-
promise the backend.

Proof. Note that during adversary control, the adversary has

access to the fragments that we consider public information. If

key recovery is successfully completed, the backend has deleted

(𝑝𝑘, 𝑠𝑘) (Assumption SD) and computes a new (𝑝𝑘′, 𝑠𝑘′), so even
if the adversary is able to compromise the backend, they will only

have access to 𝑠𝑘′ and
dec𝑠𝑘 ′ (enc𝑝𝑘 (enc𝑘𝑅 (𝑘))) ≠ enc𝑘𝑅 (𝑘) except with negligible prob-

ability. □

We proceed with the main functionality guarantee.

Guarantee 7. If data recovery is completed successfully, then the
no-one, other than the user, is able to gain access to data.

Proof. As described in Algorithm 4, if data recovery is com-

pleted successfully, then key recovery has been completed. The

user obtains ®𝐾𝑅 = dec𝑠𝑘 (enc𝑝𝑘 (enc(𝑘𝑅) (𝑘𝑖)) = enc(𝑘𝑅) (𝑘𝑖). Now,

Figure 5: A screenshot of our Nakula app, which shows the
UI for an unlocked session. In this app, the user can collect
text information. When pressing “Store Text”, the message
is saved encrypted with a session key under the entered file
name (e.g., Item 1). The user can still load the text until “Lock
Session” is pressed, after which the user then is unable to
have access to them.When the adversary is no longer present,
the user can press “Recover Data" to obtain data back, pro-
vided that communication is possible and authentication has
been completed.

the user has access to 𝑘𝑅 , so the user simply decrypts each element

of the list to obtain the keys 𝑘𝑖 .

Now, Guarantee 6 states that an adversary will not have access

to data, so now we only need to consider the backend. However,

the (honest) backend will only be able to decrypt using 𝑠𝑘 if 𝑠𝑘 was

not deleted, contradicting Assumption (SD). □

6 IMPLEMENTATION
We implemented Nakula in the form of an Android application

on the client-side, as shown in Figure 5, which was written using

Android Studio [13]. We implemented the backend as a local web

application using Flask [22]. The interaction between the app and

the backend was tested locally using an Google Pixel XL emulator

with Android API 33 on Android Studio.

In our implementation, the user conducts data acquisition from

within the app. Should the user wish to store a certain message,

they can enter it in a text box, along with an optional filename

(which will be generated randomly if left blank) and stored within

a specific folder on the device. Note that the file name will not be

encrypted so the user should carefully choose the filename that

will not reveal the content of the file.

For simplicity, we store these files within the app’s internal

storage; this makes sure that other applications on the device do

not have access to these, however due to the fact that the data

will be stored encrypted, in practice, confidentiality will still be

maintained. Note that saving the file in internal storage adds the

risk of data deletion, as data stored within the app’s internal storage

is automatically deleted when if the app is uninstalled.

Nakula: Coercion Resistant Data Storage against Time-Limited Adversary ARES 2023, August 29–September 01, 2023, Benevento, Italy

We note that it is likely that cache of files are stored temporarily

on the device memory, and hence during data lock it is necessary

that these are cleared. We do not implement these as these are

OS-specific.

Key management in Android has developed continuously. The

most recent key management, the Android Keystore (for Android

API Level ≥ 18) is designed so that keys cannot be extracted from

the application process. This is rather challenging for us should we

use the Android Keystore to generate and store our session keys, as

we need to perform computations on it, and securely delete the key.

In our solution, we generate the session keys outside of the keystore,

and wrap each of them using an additional encryption key that is

managed by Android KeyStore. As we generate the keys externally,

we are able to access the key and compute the encryption with

the masking key, followed by RSA encryption using the backend’s

public key. We don’t specify the details of this in our protocol as it

is implementation-specific.

Note that in our implementation, we are storing short text data

just as a proof of concept. However, note that in a full-scale im-

plementation this may include the storage of any other kind of

data: images, videos, short and long text including passwords. In

addition, the instigation of data lock can be changed to any input

method: voice control, gestures, or a specific sequence of actions

on the device.

Our proof-of-concept code is available at https://github.com/

hayyuimanda/nakula.

7 AUTHENTICATION FUNCTION
So far, we’ve suggested that the security of the protocol reduces to

the assumption that there exists an authentication function 𝑓
auth

such that 𝑓
auth

(auth) = 1 if and only if the user with authentication

input auth is freely requesting key recovery, when the adversary is

not present.

We have previously that a simple username and password au-

thentication method does not suffice, as there is no mechanism to

check whether or not the user is being coerced by the adversary

during adversary control into entering those details.

Secondly, one may be tempted to design 𝑓
auth

based on IP address

or location; that is, the backend will only grant access if the user is

in a country that is whitelisted (alternatively, not blacklisted) on the

system through their IP address. However, authentication which

relies purely on the device’s claim of its location is also not desirable,

as it is easy to spoof device location [37], even for a low-capability

adversary.

We note that there are properties that 𝑓
auth

are required to have:

(1) It cannot rely only on the user’s knowledge, or the existence

of an object on the user’s device, as we are considering a

coercive adversary who has access to the device.

(2) It is resistant to replay attacks. That is, the input requires

some sort of timestamp.

(3) The process or the input to 𝑓
auth

cannot be forged.

Though we plan to leave this open to the system designer, in this

section we discuss several options that may be suitable depending

on the context and the use-case. We summarise the advantages and

disadvantages of the authentication methods we discuss in Table 1.

7.1 Physical Token
In this method, we consider the use of a separate physical device;

the user’s access to this device guarantees that the user is no longer

within adversary control. In preparation of data gather and lock,

the user is required to leave a physical token (e.g. a USB drive) at a

certain location. Note that this token is required to have been set

up by the backend, so that they share some authentication secrets;

this is similar to a card reader as a security layer when the user

wishes to authenticate themselves to their banks [21].

Because the security of 𝑓
auth

directly reduces to access of the

device, the location in which the user leaves the token needs to

minimise the possibility of the adversary having access to it. For

example, the user can leave the token in their home (assuming the

adversary does not have access to it), their workplace, or handed to

a trusted person, e.g. a lawyer (indeed, this is recommended in [28]).

This choice is extremely important to ensure that only the user has

this access.

Depending on the design of the physical token, the user, after

leaving the space in which the adversary is present, simply requests

key recovery with this authentication token plugged into the device,

or provide a dynamic passcode generated by the device as part of

auth. This can be combined with an extra layer of security, through

a predetermined password.

The drawback of this method is that the user have to physically

be in a predetermined location and is inflexible to users that are

mobile; this means that the user cannot unlock and see the data

until after the user is physically in such a position. This is also

insufficient against adversaries that also have the extra capability

of having access to these spaces (e.g. via collusion or through legal

means).

7.2 Connection to a Local Network
This is a similar method to the use of a physical token, as this

method requires the user to be physically present to a predeter-

mined location, though with more flexibility: should Nakula be

implemented as part of an organisation, there may be options that

the organisation’s network may be placed across different places.

For example, a journalist may connect to the internal company

network, which includes authenticating themselves. As the user is

connected to this network, they can request key recovery to the

backend with the authentication input being that the request comes

from the user using this network to communicate.

Note that this has to be a local connection to the network, and

not a remote connection, as otherwise the adversary will be able to

exploit this. This is a more flexible method than a physical token,

as there may be multiple locations in which the user can connect

to, e.g. if the network is that of a multinational organisation which

the user is an employee of.

However, this is again insufficient for the case which the adver-

sary has access to this spaces, by legal means or otherwise.

7.3 Remote Authentication With Trusted Entity
This method requires a predetermined secret held by a trusted

individual. For example, this can be an employee in the company

who will be able to verify the user’s face easily (e.g. a predetermined

member of the same team/group).

https://github.com/hayyuimanda/nakula
https://github.com/hayyuimanda/nakula

ARES 2023, August 29–September 01, 2023, Benevento, Italy Hayyu Imanda and Kasper Rasmussen

To authenticate themselves, the user instigates a video call through

a secure channel (e.g. an end-to-end encrypted video call software)

to the trusted individual. The user then requests to the trusted

individual that they would like to start key recovery. The trusted

individual has to be convinced that the user is not within adversary

control – it is up to this individual how that is judged, but they can

request the user to show their surroundings, including the time of

day outside and room structure. Note that if the adversary is able to

convince the individual that the user is legitimately requesting this,

then this method is far from secure, but depending on the situation,

there are legal rights such that user should not be able to be forced

make false statements to anyone.

To add another layer of security, and in a higher risk scenario,

there may be be a predetermined secret which needs to happen

between the two individuals, e.g. the user needing to make the call

in front of a particular background or make certain gestures. Note

that if this method is known to the adversary, then there is risk of

the adversary being able to recreate the shared secret.

If the trusted individual is convinced that the user is freely re-

questing key recovery, then the trusted individual then provides

auth to the user to forward to the backend as part of the key recov-

ery request. The backend then proceeds with key recovery.

This method allows mobility as long as the user is able to connect

remotely to the trusted individual, however this opens up the possi-

bility of collusion between the adversary and the trusted individual,

as well as possibility of human error by the trusted individual.

7.4 Time Delay
This is a possible authentication that does not require any external

input as the previous three possibilities do. In this method, during

user enrolment, the user specifies a time period between data lock

and key recovery. If key recovery is completed before that time

period ends, then the request will be denied. Should this method

be used, there might be some additional information that would

need to be included in the protocol: for example, the user needs to

store ℎ(𝑘𝑖 , time) for each session key. The time can be in the form

of the closest hour to which data lock is instigated, and this is then

passed on to the backend during key recovery. The backend will

then loop through acceptable time period to decide whether or not

to accept this.

This is useful for the case that there is a limit to adversary control

(which there are many legal rights to), and is beneficial for users

who are mobile and want access to their data from any physical

space, as long as they can manage to not have access to that data

during a specific time period.

8 CONCLUSION
We propose Nakula, a mechanism to allow secure data transport

against a time-limited coercive adversary, which reflects a device

seizure scenario during a border cross. We discussed why previous

attempts to solve this are insufficient or undesirable, and Nakula

is designed as an alternative that overcomes these limitations. We

highlight that the main goal of Nakula is to allow data confiden-

tiality when a coercive adversary is present on a device, with the

goal being reached without the user having to lie or deceive the

adversary, consistent with many legal recommendations of device

Table 1: Comparison of the authentication schemes men-
tioned in this section. We compare them on four factors:
Security (how difficult is it to forge the authentication), Us-
ability (how easy is it for the user), Flexibility (does it support
changing plans), Economy (how cheap it is).

Mechanism Security Usability Flexibility Economy

Physical Token High Low Low High

Local Network Med Med Low Med

Trusted Entity Med High High Low

Time delay Low High Med High

seizure situations. Nakula is appropriate to use in situations where

the user has to transport the data physically, and is useful in cases

where the user is not able to, or does not wish to, transport the data

over the internet (even in encrypted form)—for example, there may

be poor internet connectivity for a large data transport, or when

there is, they do not wish to increase suspicion by sending a large

amount of data over the internet.

To achieve the goal, we introduce the backend: a trusted third

party who holds a secret key not accessible by the user; when the

user instigates the system lock, the symmetric key that is used to

encrypt the data is deleted, and only the backend is able to provide

the building blocks necessary for the user to obtain the symmetric

key back, which they will do if some authentication mechanism is

completed by the user when the adversary is not present.

We discuss the design decisions for our scheme, proposed the

protocols and algorithms within the architecture, and performed a

security analysis on our protocols. We presented a proof-of-concept

implementation and discussed the potential options for the authenti-

cation mechanism, which we do not specify due the context-specific

scenario of the deployment of Nakula.

ACKNOWLEDGMENTS
The authors would like to thank Sebastian Köhler and Richard

Baker in their support on the implementation of Nakula.

REFERENCES
[1] Ross Anderson, Roger Needham, and Adi Shamir. 1998. The Steganographic File

System. In Information Hiding, David Aucsmith (Ed.). Vol. 1525. Springer Berlin

Heidelberg, Berlin, Heidelberg, 73–82. https://doi.org/10.1007/3-540-49380-8_6

Series Title: Lecture Notes in Computer Science.

[2] Austen Barker, Staunton Sample, Yash Gupta, Anastasia McTaggart, Ethan L.

Miller, and Darrell D. E. Long. 2019. Artifice: A Deniable Steganographic File

System. In 9th USENIX Workshop on Free and Open Communications on the
Internet (FOCI 19). USENIX Association, Santa Clara, CA. https://www.usenix.

org/conference/foci19/presentation/barker

[3] Hristo Bojinov, Daniel Sanchez, Paul Reber, Dan Boneh, and Patrick Lincoln.

2012. Neuroscience Meets Cryptography: Designing Crypto Primitives Secure

Against Rubber Hose Attacks. In 21st USENIX Security Symposium (USENIX
Security 12). USENIX Association, Bellevue, WA, 129–141. https://www.usenix.

org/conference/usenixsecurity12/technical-sessions/presentation/bojinov

[4] Dan Boneh and Richard J. Lipton. 1996. A Revocable Backup System. In Proceed-
ings of the 6th Conference on USENIX Security Symposium, Focusing on Applications
of Cryptography - Volume 6 (San Jose, California) (SSYM’96). USENIX Association,

USA, 9.

[5] Nikita Borisov, Ian Goldberg, and Eric Brewer. 2004. Off-the-Record Com-

munication, or, Why Not to Use PGP. In Proceedings of the 2004 ACM Work-
shop on Privacy in the Electronic Society (Washington DC, USA) (WPES ’04).
Association for Computing Machinery, New York, NY, USA, 77–84. https:

//doi.org/10.1145/1029179.1029200

https://doi.org/10.1007/3-540-49380-8_6
https://www.usenix.org/conference/foci19/presentation/barker
https://www.usenix.org/conference/foci19/presentation/barker
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/bojinov
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/bojinov
https://doi.org/10.1145/1029179.1029200
https://doi.org/10.1145/1029179.1029200

Nakula: Coercion Resistant Data Storage against Time-Limited Adversary ARES 2023, August 29–September 01, 2023, Benevento, Italy

[6] Rein Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. 1997. Deniable

Encryption. In Advances in Cryptology: CRYPTO ’97, Burton S. Kaliski (Ed.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 90–104.

[7] Jeremy Clark and Urs Hengartner. 2008. Panic Passwords: Authenticating under

Duress. In Proceedings of the 3rd Conference on Hot Topics in Security (San Jose,

CA) (HOTSEC’08). USENIX Association, USA, Article 8, 6 pages.

[8] Sophia Cope, Amul Kalia, Seth Schoen, and Adam Schwartz. 2017. Digital Privacy
at the U.S. Border. Technical Report. Electronic Frontier Foundation.

[9] US Customs and Border Protection. 2018. CBP Directive No 3340-049A. Subject:

Border Search of Electronic Devices. https://www.cbp.gov/document/directives/

cbp-directive-no-3340-049a-border-search-electronic-devices

[10] Giovanni Di Crescenzo, Niels Ferguson, Russell Impagliazzo, and Markus Jakob-

sson. 1999. How To Forget a Secret. In STACS 99 (Lecture Notes in Computer
Science), Christoph Meinel and Sophie Tison (Eds.). Springer, Berlin, Heidelberg,

500–509. https://doi.org/10.1007/3-540-49116-3_47

[11] Rick Fillion. 2017. Introducing Travel Mode: Protect your data when crossing borders.
1Password. https://blog.1password.com/introducing-travel-mode-protect-your-

data-when-crossing-borders/

[12] Keith Fisher. 2020. Update on Border Searches of Electronic Devices. American Bar

Association. https://www.americanbar.org/groups/business_law/publications/

blt/2020/04/border-searches/

[13] Google for Developers. 2014. Android Studio. Google Developers. Retrieved

March 16, 2023 from https://developer.android.com/studio

[14] Payas Gupta and Debin Gao. 2010. Fighting Coercion Attacks in Key Generation

Using Skin Conductance. In Proceedings of the 19th USENIX Conference on Security
(Washington, DC) (USENIX Security’10). USENIX Association, USA, 30.

[15] Drew Harwell. 2022. Customs officials have copied Americans’ phone data at mas-
sive scale. The Washington Post. https://www.washingtonpost.com/technology/

2022/09/15/government-surveillance-database-dhs/

[16] Johan Høastad, Jakob Jonsson, Ari Juels, and Moti Yung. 2000. Funkspiel Schemes:

An Alternative to Conventional Tamper Resistance. In Proceedings of the 7th ACM
Conference on Computer and Communications Security - CCS ’00. ACM Press,

Athens, Greece, 125–133. https://doi.org/10.1145/352600.352619

[17] Rhett Jones. 2017. Border Agent Demands NASA Scientist Unlock Phone Before
Entering the Country. Gizmodo. https://gizmodo.com/border-agent-demands-

nasa-scientist-unlock-phone-before-1792275942

[18] Paul Karp. 2018. Coalition’s surveillance laws give police power to access
electronic devices. The Guardian. https://www.theguardian.com/australia-

news/2018/aug/14/coalitions-surveillance-laws-give-police-power-to-access-

electronic-devices

[19] Philip MacKenzie and Michael K. Reiter. 2003. Networked cryptographic devices

resilient to capture. International Journal of Information Security 2, 1 (Nov. 2003),

1–20. https://doi.org/10.1007/s10207-003-0022-8

[20] Andrew D. McDonald and Markus G. Kuhn. 2000. StegFS: A Steganographic

File System for Linux. In Information Hiding, Andreas Pfitzmann (Ed.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 463–477.

[21] NatWest. 2023. What is a card reader and how do I use one? NatWest. Retrieved 16

March 2023 from https://www.natwest.com/banking-with-natwest/how-to/card-

reader.html

[22] Pallets. 2010. Flask: web development, one drop at a time. Pallets. Retrieved March

16, 2023 from https://flask.palletsprojects.com/en/2.2.x/

[23] Kasper Rasmussen and Paolo Gasti. 2018. Weak and Strong Deniable Authenti-

cated Encryption: On Their Relationship and Applications. In 2018 16th Annual

Conference on Privacy, Security and Trust (PST). IEEE Computer Society, Belfast,

1–10. https://doi.org/10.1109/PST.2018.8514181

[24] Joel Reardon, David Basin, and Srdjan Capkun. 2013. SoK: Secure Data Deletion.

In 2013 IEEE Symposium on Security and Privacy. IEEE Computer Society, San

Francisco, California, USA, 301–315. https://doi.org/10.1109/SP.2013.28

[25] Nathan Reitinger, Nathan Malkin, Omer Akgul, Michelle L. Mazurek, and Ian

Miers. 2023. Is Cryptographic Deniability Sufficient? Non-Expert Perceptions

of Deniability in Secure Messaging. In 2023 2023 IEEE Symposium on Security
and Privacy (SP) (SP). IEEE Computer Society, Los Alamitos, CA, USA, 274–292.

https://doi.org/10.1109/SP46215.2023.00095

[26] Michael Roe. 2010. Cryptography and evidence. Technical Report. University of

Cambridge.

[27] M. Satheesh Kumar, Jalel Ben-Othman, and K.G. Srinivasagan. 2018. An Investi-

gation on Wannacry Ransomware and its Detection. In 2018 IEEE Symposium on
Computers and Communications (ISCC) (25-28 June 2018). IEEE Computer Society,

Natal, Brazil, 1–6. https://doi.org/10.1109/ISCC.2018.8538354

[28] Bruce Schneier. 2009. Protect Your Laptop Data From Everyone, Even Your-
self. Wired. https://www.wired.com/2009/07/protect-your-laptop-data-from-

everyone-even-yourself/

[29] Kian-Lee Tan, Hwee Hwa Pang, and Xuan Zhou. 2004. Hiding Data Accesses

in Steganographic File System. In Proceedings. 20th International Conference on
Data Engineering. IEEE Computer Society, Los Alamitos, CA, USA, 572. https:

//doi.org/10.1109/ICDE.2004.1320028

[30] Elise Thomas. 2018. Sydney airport seizure of phone and laptop ‘alarming’, say
privacy groups. The Guardian. https://www.theguardian.com/world/2018/aug/25/

sydney-airport-seizure-of-phone-and-laptop-alarming-say-privacy-groups

[31] Amar Toor. 2013. UK border police can seize and download your phone’s data for
no reason at all. The Verge. https://www.theverge.com/2013/7/15/4524208/uk-

border-police-seize-download-mobile-phone-data-under-anti-terror-law

[32] Truecrypt. 2023. Truecrypt. TrueCrypt Foundation. https://truecrypt.sourceforge.
net

[33] VeraCrypt. 2022. Veracrypt. IDRIX. https://www.veracrypt.fr/en/Hidden%

20Volume.html

[34] Ben Wolford. 2018. How to protect your phone or computer when crossing borders.
Proton. https://proton.me/blog/border-crossing-protect-electronics

[35] Adam Young and Moti Yung. 1996. Cryptovirology: Extortion-Based Security

Threats and Countermeasures. In Proceedings of the 1996 IEEE Conference on
Security and Privacy (Oakland, California) (SP’96). IEEE Computer Society, USA,

129–140.

[36] Xingjie Yu, Zhan Wang, Kun Sun, Wen Tao Zhu, Neng Gao, and Jiwu Jing. 2014.

Remotely wiping sensitive data on stolen smartphones. In Proceedings of the 9th
ACM symposium on Information, computer and communications security (ASIA
CCS ’14). Association for Computing Machinery, New York, NY, USA, 537–542.

https://doi.org/10.1145/2590296.2590318

[37] Kexiong Curtis Zeng, Yuanchao Shu, Shinan Liu, Yanzhi Dou, and Yaling Yang.

2017. A Practical GPS Location Spoofing Attack in Road Navigation Scenario.

In Proceedings of the 18th International Workshop on Mobile Computing Systems
and Applications (Sonoma, CA, USA) (HotMobile ’17). Association for Computing

Machinery, New York, NY, USA, 85–90. https://doi.org/10.1145/3032970.3032983

[38] Lianying Zhao and Mohammad Mannan. 2015. Gracewipe: Secure and Verifiable

Deletion under Coercion. In Proceedings of the 2015 Network and Distributed
System Security. Internet Society, San Diego, California, USA, 16 pages.

https://www.cbp.gov/document/directives/cbp-directive-no-3340-049a-border-search-electronic-devices
https://www.cbp.gov/document/directives/cbp-directive-no-3340-049a-border-search-electronic-devices
https://doi.org/10.1007/3-540-49116-3_47
https://blog.1password.com/introducing-travel-mode-protect-your-data-when-crossing-borders/
https://blog.1password.com/introducing-travel-mode-protect-your-data-when-crossing-borders/
https://www.americanbar.org/groups/business_law/publications/blt/2020/04/border-searches/
https://www.americanbar.org/groups/business_law/publications/blt/2020/04/border-searches/
https://developer.android.com/studio
https://www.washingtonpost.com/technology/2022/09/15/government-surveillance-database-dhs/
https://www.washingtonpost.com/technology/2022/09/15/government-surveillance-database-dhs/
https://doi.org/10.1145/352600.352619
https://gizmodo.com/border-agent-demands-nasa-scientist-unlock-phone-before-1792275942
https://gizmodo.com/border-agent-demands-nasa-scientist-unlock-phone-before-1792275942
https://www.theguardian.com/australia-news/2018/aug/14/coalitions-surveillance-laws-give-police-power-to-access-electronic-devices
https://www.theguardian.com/australia-news/2018/aug/14/coalitions-surveillance-laws-give-police-power-to-access-electronic-devices
https://www.theguardian.com/australia-news/2018/aug/14/coalitions-surveillance-laws-give-police-power-to-access-electronic-devices
https://doi.org/10.1007/s10207-003-0022-8
https://www.natwest.com/banking-with-natwest/how-to/card-reader.html
https://www.natwest.com/banking-with-natwest/how-to/card-reader.html
https://flask.palletsprojects.com/en/2.2.x/
https://doi.org/10.1109/PST.2018.8514181
https://doi.org/10.1109/SP.2013.28
https://doi.org/10.1109/SP46215.2023.00095
https://doi.org/10.1109/ISCC.2018.8538354
https://www.wired.com/2009/07/protect-your-laptop-data-from-everyone-even-yourself/
https://www.wired.com/2009/07/protect-your-laptop-data-from-everyone-even-yourself/
https://doi.org/10.1109/ICDE.2004.1320028
https://doi.org/10.1109/ICDE.2004.1320028
https://www.theguardian.com/world/2018/aug/25/sydney-airport-seizure-of-phone-and-laptop-alarming-say-privacy-groups
https://www.theguardian.com/world/2018/aug/25/sydney-airport-seizure-of-phone-and-laptop-alarming-say-privacy-groups
https://www.theverge.com/2013/7/15/4524208/uk-border-police-seize-download-mobile-phone-data-under-anti-terror-law
https://www.theverge.com/2013/7/15/4524208/uk-border-police-seize-download-mobile-phone-data-under-anti-terror-law
https://truecrypt.sourceforge.net
https://truecrypt.sourceforge.net
https://www.veracrypt.fr/en/Hidden%20Volume.html
https://www.veracrypt.fr/en/Hidden%20Volume.html
https://proton.me/blog/border-crossing-protect-electronics
https://doi.org/10.1145/2590296.2590318
https://doi.org/10.1145/3032970.3032983

	Abstract
	1 Introduction
	2 Related Work
	2.1 Plausible Deniability and Coercion Attacks
	2.2 Secure Deletion

	3 Design
	3.1 Design Goal
	3.2 System Model and Design
	3.3 Adversary Model

	4 Nakula
	4.1 User Setup
	4.2 Session Start and Key Generation
	4.3 Data Acquisition and Encryption
	4.4 Session Lock
	4.5 Key and Data Recovery

	5 Security Analysis
	6 Implementation
	7 Authentication Function
	7.1 Physical Token
	7.2 Connection to a Local Network
	7.3 Remote Authentication With Trusted Entity
	7.4 Time Delay

	8 Conclusion
	Acknowledgments
	References

