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ABSTRACT
In recent years, behavioral biometrics have become a popu-
lar approach to support continuous authentication systems.
Most generally, a continuous authentication system can make
two types of errors: false rejects and false accepts. Based
on this, the most commonly reported metrics to evaluate
systems are the False Reject Rate (FRR) and False Accept
Rate (FAR). However, most papers only report the mean of
these measures with little attention paid to their distribution.
This is problematic as systematic errors allow attackers to
perpetually escape detection while random errors are less
severe. Using 16 biometric datasets we show that these sys-
tematic errors are very common in the wild. We show that
some biometrics (such as eye movements) are particularly
prone to systematic errors, while others (such as touchscreen
inputs) show more even error distributions. Our results also
show that the inclusion of some distinctive features lowers
average error rates but significantly increases the prevalence
of systematic errors. As such, blind optimization of the mean
EER (through feature engineering or selection) can some-
times lead to lower security. Following this result we propose
the Gini Coefficient (GC) as an additional metric to accu-
rately capture different error distributions. We demonstrate
the usefulness of this measure both to compare different sys-
tems and to guide researchers during feature selection. In
addition to the selection of features and classifiers, some non-
functional machine learning methodologies also affect error
rates. The most notable examples of this are the selection
of training data and the attacker model used to develop the
negative class. 13 out of the 25 papers we analyzed either
include imposter data in the negative class or randomly sam-
ple training data from the entire dataset, with a further 6
not giving any information on the methodology used. Using
real-world data we show that both of these decisions lead to
significant underestimation of error rates by 63% and 81%,
respectively. This is an alarming result, as it suggests that re-
searchers are either unaware of the magnitude of these effects
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or might even be purposefully attempting to over-optimize
their EER without actually improving the system.

1. INTRODUCTION
Password-based authentication systems only provide login-

time authentication, any future change in user identity will
go undetected. Continuous authentication is an approach
to mitigate this limitation by constantly verifying a user’s
identity and locking a system once a change in user identity
is detected. As such, it is necessary for the system to peri-
odically collect some identifying information about the user.
The more frequently such information is collected the faster
a potential intruder can be detected. Naturally, approaches
that heavily rely on user interaction and cooperation, such
as passwords or fingerprints would severely harm user experi-
ence. As a result, behavioral biometrics, the use of distinctive
user behavior to gain identifying information, has become a
popular method to support continuous authentication. Ex-
amples include typing behavior (keystroke dynamics), mouse
movements, touchscreen inputs and eye movements. These
biometrics can be transparently monitored by the authentica-
tion system without necessarily requiring any specific input
on the user’s part.

The extensive body of work on behavioral biometrics calls
for reliable ways to compare different systems when faced
with the choice of which one to implement. In addition,
developers will want to have realistic ideas of what security
gains can be expected from using biometric recognition sys-
tems. Most papers collect a number of biometric samples
from a certain number of users and extract biometric fea-
tures, with the resulting feature vectors being classified by
a machine learning algorithm. Ultimately, this process can
result in two types of errors, false rejects and false accepts.
Typical metrics reported as a measure of system quality are
therefore the (mean) False Accept Rate (FAR), False Re-
ject Rate (FRR) and Equal Error Rate (EER). The EER
reflects the error rate at a threshold setting where FAR and
FRR are equal. With these metrics being the most com-
mon, authors often strive to optimize them, for example by
improving classifiers, hyperparameters or feature sets. How-
ever, this process of optimizing the mean often overlooks
the security implications of different distributions of these
errors, which may even lead to reduced security. When faced
with a continuous authentication system an attacker has to
fool the system over a prolonged time, rather than just once
(as with a password-based system). Consequently, there is
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a big difference between random errors (that will prolong,
but not prevent the eventual detection of an attacker) and
systematic errors (that can lead to an attacker perpetually
escaping detection). Following this intuition we evaluate
how prevalent different error distributions are in real-world
biometric datasets, with a focus on systematic false negatives
(i.e., perpetually undetected intruders). We then propose a
number of additional metrics that compactly capture the se-
curity implications arising from these types of errors. These
metrics can not only be used to compare different systems,
but can also guide researchers when evaluating the influence
of system design choices (such as feature selection) on error
distributions and, ultimately, system security.

Besides affecting error distributions, blind optimization of
the EER might also lead to unrealistic expectations regarding
the system’s real-world performance. As systems are usually
evaluated on a static dataset, training, operation and the
presence of attackers have to be simulated based on this
data. There are a number of machine learning methodologies
involved with this simulation, including different methods for
training data selection and modelling of the attacker class
within the classifier. Authors frequently choose to sample
training data randomly from the entire set, which would not
be possible in actual operation as the training data has to
precede the entire testing data. In addition, authors often
include some data of the eventual attacker in the (combined)
negative class, a decision which is unrealistic outside of some
insider threat environments. These disconnects highlight the
need to quantify the impact of these different methodologies
on error rates in order to accurately compare papers across
methodologies. Only an accurate idea of how much each of
these decisions impacts error rates will allow researchers to
assess whether a papers’ low error rates are a result of a
better system or merely over-zealous error rate optimization.

The contributions of the paper are as follows: We provide
an analysis of the methodology of 25 papers using 5 different
biometrics for continuous authentication. We use 13 datasets
to quantify the prevalence of systematic errors across 4 bio-
metrics and outline factors influencing these types of errors.
We analyse the suitability of different metrics to capture
different error distributions and suggest metrics that provide
better insights into the system’s security. Lastly we quantify
the effect of training data selection and attacker models on
a system’s error rates.

The rest of the paper is organized as follows: Section 2
provides an analysis of the state of the art with regard to
metrics and methodologies. We discuss the shortcomings of
current state-of-the-practice metrics in Section 3 and propose
a number of alternatives to mitigate these problems. In
Section 4 we discuss the impact of non-functional design
decisions on error rates and conclude the paper in Section 5.

2. ANALYSIS OF COMMON PRACTICES
In this section we present a rigorous analysis of the state of

the art, both with regard to metrics reported and the machine
learning methodology used to obtain the results. In order
to cover a wide cross-section of the field we have analysed
25 systems based on five different biometrics with a focus
on recently published work. While these systems differ in
experimental design and underlying features, they all provide
continuous authentication. As such, we do not consider
systems that provide enhanced biometric-based login time

Figure 1: Metrics reported in literature

authentication (such as password hardening or fingerprint
scanning).

2.1 Metrics
The goal of a continuous authentication system is to quickly

identify imposters without incorrectly rejecting a legitimate
user. In order to determine which metrics are typically used
to quantify these characteristics we have analysed 25 systems
based on five different biometrics. The results of this survey
are shown in Table 1, see Figure 1 for a summary. The
metrics reported in these papers are as follows:
False Accept Rate (FAR) is typically measured as the

fraction of intruder samples (rather than intruders) that are
incorrectly accepted.
False Reject Rate (FRR), also known as the False Match

(FM) or False Positive (FP) rate, is the fraction of benign
samples that are incorrectly rejected.

Equal Error Rate (EER) is the error rate that is achieved
by tuning the detection threshold of the system such that
FAR and FRR are equal.

Accuracy is the fraction of samples that is accurately clas-
sified, without distinction between the two error types.

The Half Target Error Rate (HTER) is the average between
the FAR and FRR at some arbitrary threshold.

The Receiver operating characteristics (ROC) curve is a
plot that shows the dependency between the FAR, FRR and
the system’s detection threshold. The ROC curve allows to
derive a set of pairs (FAR,FRR) at which the system can be
run by changing the threshold settings.

The Area under the ROC Curve (AUROC) ranges from 0.5
(random guessing) to 1 (perfect classification) and aggregates
the system’s performance at all threshold settings.
Detection Rate is a measure of the fraction of attackers

that are detected by the system, unlike the FAR it operates
on individual users, rather than samples.

The Confusion Matrix (CM) plots the fraction of accepted
samples for each user pair. As such, it is a representation of
raw data, rather than a numeric metric. The CM shows the
FRR for each user and the FAR for each user-attacker pair.
However, as the number of user pairs scales quadratically

2



Ref Biometric EER FAR FRR Accuracy HTER ROC AUROC Detection Rate CM

[16]

Touch

31,4,5 (3) (3) (3) (3) 7 7 7 7

[15] 7 3 3 (3) (3) 7 7 7 7

[35] 3 (3) (3) 3 3 3 (3) 7 7

[8] 7 7 7 3 7 7 7 7 7

[18] (3) (3) (3) (3) (3) 3 32 7 7

[36] 3 (3) (3) (3) (3) 3 (3) 7 7

[12] 7 3 3 (3) (3) 32 (3) 3 7

[9] 3 3 3 (3) (3) 3 (3) 7 7

[10] 3 3 3 (3) 33 3 (3) 7 7

[29] 7 3 3 34 (3) 7 7 7 7

[28] 35 35 35 (3) (3) 7 7 7 7

[31] 3 3 3 (3) (3) 3 (3) 7 7

[13]

Gaze

35 (3) (3) (3) (3) 3 (3) 3 7

[22] 3 (3) (3) (3) (3) 7 7 7 7

[14] 35 (3) (3) (3) (3) 3 (3) 3 7

[26]
Pulse
Response

3 3 3 3 (3) 3 (3) 3 7

[11]

Gait

3 (3) (3) (3) (3) 3 (3) 7 7

[33] 3 (3) (3) (3) (3) 7 7 7 7

[2] (3) 3 3 3 3 3 (3) 7 7

[27] 3 3 3 (3) (3) 3 (3) 7 7

[25]

Mouse

7 3 3 (3) (3) 7 7 (3) 3

[1] 3 3 3 (3) (3) 3 (3) (3) 3

[30] 35 (3) (3) (3) (3) 3 (3) 7 7

[37] 7 35 35 (3) (3) 3 (3) 7 7

[24] 7 7 7 7 7 7 7 3 7

3Explicitly reported (3) Derived from other metric 7Not reported
Unless indicated otherwise, only the mean of each metric is reported
1 min, max, median
2 individually for each user
3 including confidence intervals
4 as a function of number of users
5 as a function of number of samples

Table 1: Metrics used to evaluate continuous authentication systems. Basic measures such as FAR/FRR/EER
are reported by most papers while confusion matrices, which are most informative, are virtually never given.

with the number of users, the space requirements are high for
large number of users. In addition the CM is usually given
as a plot, which somewhat reduces the space requirement
but makes it difficult to obtain more than estimates of the
actual numerical results.

Table 1 shows that the EER, as well as derived metrics,
are reported by the vast majority of papers, regardless of
the biometric. In addition, a plot of the ROC curve is given
in 16 out of the 25 reviewed papers, although the AUROC
is rarely given as a number (and could only theoretically be
extracted from the plot). Reporting of the detection rate
is extremely rare, and due to the unknown distribution of
errors between attackers it can not be derived from the FAR
either. A confusion matrix, which allows the derivation of all
other metrics, is only given in two papers, most likely due to
the high space requirements.

2.1.1 Limitations of common metrics
The EER (as well as the related metrics FAR, FRR, HTER

and accuracy) is often used to compare different classifiers,
with the assumption being that a lower EER results in attack-
ers being detected more quickly (and more attackers being
detected overall) and users being rejected less frequently
(i.e., a better system). In the context of one-time (i.e., not
continuous) authentication this is a sensible and widely ac-
cepted metric. However, continuous authentication provides
a unique challenge as errors accumulate over the runtime
of the system. Without knowing the exact distribution, an
FAR of 10% could signify all attackers being detected 90%
of the time (resulting in eventual detection), or 10% of the
attackers never being detected while all others are exposed
immediately. The second scenario exhibits so-called system-
atic false-negatives. These different scenarios are illustrated
in Figure 2. Unlike regular false negatives, which might be
randomly distributed across victim-attacker pairs as well as
across the time of a session, systematic false negatives are
tied to a combination of attacker and victim and are usually
more persistent or even permanent as a result of the behavior
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(a) Random Errors (b) Systematic Errors

Figure 2: Different distributions of the FAR lead
to different security challenges, random errors and
eventual detection (left) and systematic false neg-
atives (right). The grey line denotes the (identi-
cal) 9% FAR of both samples. Note that this figure
shows the success of a single attacker in impersonat-
ing multiple victims.

of two users being very similar. These types of errors are
more problematic from a security perspective, as the unde-
tected attackers can then access the compromised system for
a virtually unlimited time. Part of this property is captured
through the detection rate, which measures the fraction of
attackers with a non-zero FAR. However, the metric does
not account for the difference between undetected attackers
and those with simply a very high FAR. In practice this
might even be determined by a single sample being classified
differently. The confusion matrix paints a complete picture,
but it is neither compact enough to report for large datasets,
nor does it enable readers to easily compare two systems.
Most likely, these limitations are the reason it is rarely re-
ported in the literature. The authors of [6] propose to report
the number of undetected attackers along with the average
number of imposter actions (ANIA), a metric related to the
false accept rate. However, they recommend reporting only
the ANIA (which is, by definition, an average value), with
no regards for its distribution between attackers.

While systematic errors are problematic for the FAR, this
type of distribution might be desirable for false rejects. A
seemingly low, but non-zero false reject rate for all users
might still lead to frequent false alarms due to the base
rate fallacy [5] if the system is run continuously throughout
the day with a moderate sampling rate. If the false rejects
were concentrated on few users they could be authenticated
through other means (such as a different biometric) instead,
without compromising security for the remaining users. In
addition, such a scenario allows the developer of a biomet-
ric recognition system to analyze why the system performs
poorly for precisely these users.

2.2 Common Evaluation Methodologies
A number of factors affect the distinctive capabilities (and

thereby the security and usability) of a biometric system.
Prominent examples include the ability of the system to
collect high-quality data, the selection of distinctive features
and the classifier itself. However, most papers analyze the
system on a static dataset, which requires the simulation of
training and operation, as well as the modelling of an attacker.
In this section we provide a summary of methodologies and
present an analysis on their prevalence in related work.

Hyperparameter Tuning. Following the feature extraction
and normalization, a suitable classifier has to be chosen.

(a) Attacker Models (b) Training Data Selec-
tion

Figure 3: A large fraction of papers use random
training data selection and inclusion of imposter
data in the training set, both of which are likely
to underestimate error rates.

Depending on the classifier, a number of hyperparameters
have to be instantiated. Such parameters include the number
of datapoints (the value of k) in the k-nearest-neighbors
algorithm and the kernel type and soft margin constant C of
a Support Vector Machine.
Attacker Model. Most biometrics are evaluated without

a committed attacker in mind, this is commonly referred
to as the zero-effort threat model. As such, the “attacker”
is another user that attempts to access the victim’s system
without taking action to either circumvent the authentica-
tion system or impersonate the legitimate user. Even in this
simplified threat model, it is still necessary to test the sys-
tem’s performance in detecting intruders. This is commonly
achieved by comparing a user’s template against the samples
of all other users (i.e., the ”attackers”). An important concern
is the building of the user model itself. A common choice
is to train a binary classifier with one user’s samples as the
positive class and samples from all other users (including
the eventual attacker) as a single combined negative class.
The system is then “attacked” individually by each of the
users that jointly form the negative class. This approach
means that reference data of the attacker is included in the
negative class, even though it only forms a fraction of the
overall class. In practice, it is impractical to assume that
reference data for each potential attacker is available (aside
from specific insider threat scenarios, such as [13]) and in-
cluding this data may lead to overestimating the classifier’s
performance. A different approach trains a generic attacker
model from other users (again, combining them into a nega-
tive class), but withholding samples from the actual attacker.
The authentication system could then be shipped with this
(anonymized) reference data. These two scenarios are also
considered in [6] and referred to as external and internal
scenarios, respectively. A more straight-forward approach is
to perform anomaly detection, which trains a model from
a single user’s data without the requirement of providing
samples for a negative class. New samples are then classified
based on how similar they are to the training examples.

Selection of Training Data. An operational authentication
system always requires reference data for each legitimate
user (training data) in order to classify new observations. In
practice, the initial training has to occur before any samples
can be classified (although the model can be updated based
on new observations). Consequently, a common approach to
simulate this setting is to use the first part of the recorded
data as training data, and the remaining samples as test
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data. Another approach is to randomly sample the training
data from the entire dataset, and to use the remaining data
for testing. The sampling is often repeated to provide sta-
tistical robustness (either by performing several iterations
of random sampling or through cross validation). However,
this approach violates the requirement that training always
has to precede testing (as some training samples may have
been recorded after some testing samples).
Sample Aggregation. Single measurements of a feature

vector are often noisy (due to measurement noise or erratic
user behavior). In order to combat this, several samples
can be combined to increase robustness. Samples can either
be combined before classification (e.g., by computing the
component-wise mean of several feature vectors) or after-
wards (e.g., by majority votes). In the latter case, instead of
simply using the classifier output, it is also possible to use
the classifier confidence for each class. Classifier confidence
can be measured as the distance to the decision boundary in
an SVM or the number of nearby examples of each class for
knn.

The complete results of our survey can be found in the
appendix. One of the most important observations is the
(apparent) reluctance of researchers to make their data freely
accessible online. However, it should be noted that our
survey only accounts for data that is both available online
and referenced in the corresponding paper. We have not
contacted individual authors and can not make any statement
on their willingness to share data on request. The number of
papers using and building on this shared data (most notably,
the data published as part of Touchalytics [16]) highlights
that this is a valuable contribution to the community. In a
similar fashion, the code used to generate the results is not
usually published. As a number of machine learning steps
depend on random numbers, this might make it particularly
difficult to reproduce exact results, even if all decisions are
clearly stated and raw data is available.

While the specific values for hyperparameters are often
given, the process with which they were obtained is not usu-
ally explicitly described. This is problematic, as the selection
process is far more interesting (and the values used for an
individual datasets might not transfer well to others). In
addition, some processes (such as validating parameters on
the entire dataset, instead of just the training or develop-
ment set) might artificially improve reported results, without
resulting from a better system.

The vast majority of papers either do not use aggregation of
samples, or don’t report on the specifics of their mechanism.
If samples are aggregated, this is usually done following
classification (i.e., not on a feature vector level).

2.2.1 Limitations of common methodologies
The previous section has shown that a wide variety of

methodologies are used to evaluate the static datasets, which
suggests that it might not be possible to directly compare
papers even if they use similar metrics. This would not nec-
essarily be a problem if the impact of different methodologies
on the reported metrics were to be comparatively small. To
the best of our knowledge, this effect has not been quantified
in the context of continuous authentication. It is, however,
well-studied in malware detection. Specifically, Allix et al.
have shown that sampling training data randomly from all
available data leads to systematic underestimation of error
rates [4, 3]. This is problematic, as reference data for future

malware helps in the classification, but would not necessarily
be available in the real-world (i.e., to classify newly observed
malware). One might assume a similar effect for continuous
authentication, as random training data selection would make
future samples available to help classifying past ones. This
allows the classifier to accurately account for short and long
term changes in user behavior, which would not be possible
when maintaining the temporal integrity of the dataset.

9 out of 25 papers model the attacker by merging all users
but the legitimate one into a single negative class, with a
further 3 not giving information on their methodology (see
Figure 3). This approach is somewhat unrealistic, as it
assumes reference data for every potential attacker. While
this is possible in pure insider threat scenarios (such as
a company that wants to detect employees using their co-
workers’ systems), it is less realistic for other scenarios, such
as a stolen phone or any other kind of outside attacker. As
the attacker is merged with all other users into a single
negative class the effect might be relatively small, especially
for datasets with larger numbers of users. However, the
impact of this potential source of additional information
for the classifier has to be quantified in order to allow a
more informed comparison of papers. 13 papers exclude
the specific attacker from the training set, or only perform
anomaly detection (i.e., train the model without reference
data for any attackers), thereby escaping this problem.

Out of the 25 papers we analyzed (see Table 3 in the
appendix), 13 use at least one of these methodologies and a
further 6 don’t report the methodology used. As such, it is
crucial to quantify the precise impact of these choices and
adapt the state of the practice if necessary.

3. EFFECTS OF ERROR DISTRIBUTIONS
In order to evaluate the impact of the limitations outlined

in the previous section we require a number of diverse biomet-
ric datasets, all of which have to be suitable for continuous
authentication. Some differences in error distributions might
be due to the biometric, while some can be attributed to
specifics of a dataset. As such, we require datasets covering
multiple biometrics and ideally several datasets per biometric.
For this analysis we use 13 datasets collected by related work
and 3 datasets collected for this study. Details of the datasets
can be found in the appendix. In this section we investigate
the previously described sixteen datasets with regard to the
distribution of their errors. Based on the insights gained
from this analysis we will discuss a number of novel metrics
with regard to how well they capture these distributions.

3.1 Systematic Errors in the Wild
The most complete way to visualize the exact distribution

of errors (both FAR and FRR) is a confusion matrix. A
confusion matrix shows the fraction of accepted samples for
each combination of template and samples (see Figure 4
for an example). As such, the TPR (i.e., 1-FRR) is shown
on the diagonal and the remaining fields show the FAR for
each combination of attacker and victim. The confusion
matrix of an ideal system would be 1 on the diagonal and
0 otherwise. As discussed in Section 2, systematic false
negatives (i.e., attackers that consistently remain undetected)
are a more severe problem than a moderate, low-variance
FAR for all attackers. This is due to the nature of continuous
authentication, which requires an attacker to consistently
fool the authentication system, rather than only succeed once.
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(a) Touch Dataset (b) Mouse (own machine) (c) Gait II

Figure 4: Fraction of accepted samples for different user combinations, the values outside the diagonal reflect
the FAR. The touch dataset shows an even distribution of the FAR, resulting in a low standard deviation.
Both the mouse and gait datasets show more systematic errors, as indicated by few dark spots and a high
standard deviation and kurtosis.

(a) Intra-Session (b) Inter-Session (c) Over Two Weeks

Figure 5: Distribution of the FRR between users for three different datasets based on the eye movement
biometric using all features. While the average FRR is similar for all datasets the distributions are not. The
two-weeks dataset shows moderate error rates for many users while the errors are concentrated on few users
for the other two. This property is modelled by the kurtosis and to a lesser degree by the standard deviation.

In our datasets we actually observe both of these scenarios,
leading to a need to accurately distinguish them without
the need of manually examining confusion matrix. Figure 4
suggests that the mouse movement and gait biometrics show
a high number of extreme outliers for the FAR (as indicated
by the dark spots off the diagonal). Conversely, the false
accepts seem to be more evenly distributed between attackers
for the touch input biometric, suggesting it would be better
suited for continuous authentication from a pure security
perspective.

For the FRR we observe similar differences in distribu-
tions, although the consequences are different. Systematic
rejections of individual users might indicate erratic behavior
(such as excessive head movements or poor calibration for
the eye movement biometric), while even distributions of
errors suggest a lower distinctiveness of features in general.
The former could be mitigated by examining the root cause
of error for the affected users and, if these can not be fixed,
authenticating users through a different mechanism. Mul-
timodal authentication systems are particularly well-suited
for this, as they can dynamically choose biometrics that
work well for this specific user. As such, biometrics where

the FRR is focused on few users might be easier to use in
practice. Figure 5 shows the distribution of the FRR for
different over-time datasets for the eye movement biometric.
Errors are focused on few users given a short time-distance
and start to evenly affect more users over two weeks.

3.2 Metrics to Quantify Systematic Errors
In this section we will discuss a number of statistical mea-

sures to better capture systematic errors and analyse how
well they perform on our real-world data.

3.2.1 False Accept Rate
As discussed above, the false accept rate should ideally

spread out evenly across attackers and therefore minimize
systematic errors. In order to reflect systematic false nega-
tives it might be an obvious choice to report the maximal
FAR observed, this would then allow to give estimates of the
maximal time it takes to find an attacker. However, Table 2
shows that this measure is 1 for the vast majority of datasets,
suggesting at least some degree of systematic errors for most
biometrics. In addition, it would unfairly penalize larger
datasets, as the probability of the set including two very
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FAR FRR

Biometric Dataset EER σ β2 GC max 1’s σ β2 GC 0’s

Eye Movements
all features

Intra-Session 6.90% 0.22 13.05 0.92 1.00 0.02 0.25 12.59 0.93 0.93
Inter-Session 7.99% 0.21 11.50 0.90 1.00 0.02 0.25 8.48 0.90 0.89
2-weeks 8.43% 0.20 9.39 0.87 1.00 0.01 0.15 2.81 0.77 0.74

Eye Movements
without pupil
diameter

Intra-Session 19.83% 0.34 3.58 0.77 1.00 0.09 0.39 3.41 0.80 0.74
Inter-Session 17.11% 0.30 4.10 0.74 1.00 0.03 0.27 6.21 0.77 0.50
2-weeks 17.52% 0.29 4.45 0.74 1.00 0.05 0.27 4.78 0.74 0.58

Eye Movements II

Reading 1.17% 0.03 23.57 0.95 0.21 0.00 0.03 4.26 0.79 0.70
Writing 4.80% 0.11 51.07 0.94 0.93 0.00 0.11 2.96 0.74 0.40
Browsing 0.89% 0.04 34.68 0.96 0.29 0.00 0.03 8.11 0.90 0.90
Video I 3.93% 0.09 15.20 0.88 0.57 0.00 0.09 5.21 0.83 0.80
Video II 1.86% 0.07 33.59 0.96 0.49 0.00 0.04 3.85 0.74 0.60

Gait
Dataset I 8.44% 0.22 9.57 0.87 0.96 0.00 0.26 11.53 0.87 0.57
Dataset II 28.4% 0.37 1.94 0.59 1.00 0.12 0.32 2.16 0.87 0.33

Touchscreen Input Inter-Session 2.99% 0.05 15.01 0.75 0.40 0.00 0.04 6.74 0.55 0.05

Mouse Movements
Own machine 9.22% 0.21 11.98 0.89 1.00 0.02 0.24 5.57 0.85 0.82
Lab machine 9.98% 0.23 8.96 0.86 1.00 0.02 0.15 2.01 0.69 0.57

Table 2: Results of applying the new metrics to our datasets. As evidenced by the Gini coefficient, random
errors are particularly prevalent for the touch input biometric, while eye movements are prone to systematic
errors. We can also observe that not using the pupil diameter results in fewer systematic errors, as evidenced
by a lower GC and lower kurtosis.

similar users increases with the sample size. This could be
mitigated by reporting the fraction of undetected attackers
(i.e., the fraction of user-attacker pairs with an FAR of 1,
given as ”1’s” in Table 2). However, given the relatively small
number of samples per user for each dataset, there might not
be a statistical difference between an FAR of 1, and one very
close to 1, suggesting that this feature would also be overly
sensitive. Another candidate metric is the standard deviation
of the sample. Table 2 shows that the standard deviation
varies between 0.05 and 0.37. However, the standard devia-
tion quantifies the variation in a dataset, but does not reveal
whether this variation is due to a few extreme outliers (which
would be problematic) or a high number of moderate outliers
(which would be a less severe problem). This limitation can
be mitigated by also taking into account the kurtosis of the
sample. Kurtosis is the fourth standardized moment and
is a measure of the tailedness of a distribution. As such, a
high kurtosis indicates that the distribution tends to pro-
duce more extreme outliers. Combining standard deviation
and kurtosis (i.e., an ideal distribution being low standard
deviation and low kurtosis) seems to fit our required profile.
Figure 7 shows datasets with similar standard deviation but
different kurtosis. The first gait dataset shows systematic
errors, indicated by a high kurtosis of 11.53 while the second
one exhibits more random errors, leading to a lower value
of 2.16. Despite this combination seeming fit for purpose, it
would be difficult to use to accurately rank biometrics as any
total ordering (i.e., preferring kurtosis over standard devia-
tion or vice-versa) would be somewhat arbitrary. The Gini
Coefficient (GC) has been proposed in 1912 as a measure
of statistical dispersion to reflect the income distribution of
a nation’s residents [19]. A GC of 0 indicates a maximal
equality of values (i.e., every resident having the same in-
come), while a value close to 1 represents maximal inequality
(i.e., one resident earning all the income). As a measure of

inequality the GC is also intuitively applicable to capture
types of error distributions, with a high GC reflecting more
systematic errors. An intuitive geometric representation of
the Gini Coefficient is the area between the Lorenz Curve
(which, in our scenario, measures the total error contributed
by the bottom x % of users) and the Line of Equality (which
is the Lorenz curve of a system where all users contribute
identical error rates). The GC is shown as the shaded area in
Figure 6. The GC has two important properties that makes
it a suitable metric: Its scale idependence means that it does
not depend on the total or average error of a system, only the
distribution of values. As such, it can be used to compare
systems with different error rates. Conveniently, the GC
always lies between 0 and 1, unlike standard deviation and
kurtosis, which can take arbitrarily high values. In addition,
it is population independent and does not depend on the
number of samples in the dataset. This is of crucial impor-
tance, as the number of subjects in biometric datasets varies
greatly and using only subsets of equal size seems infeasible
due to authors rarely publishing their raw data.

(a) First Gait Dataset (b) Second Gait Dataset

Figure 7: Distribution of the FRR between users for
the two gait datasets.
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Figure 6: False rejects are spread evenly for the touch input biometric and are focused on very few users for
the eye movement biometric. This is reflected in the difference in Gini coefficients (0.55 vs 0.93).

Figure 8 shows the Gini Coefficient for the two most ex-
treme cases we observe in our datasets. For the touch input
biometric many attackers contribute to the overall FAR,
while the eye movement biometric’s intra-session dataset
FAR is caused by very few extremely successful attackers.

Reducing security through strong features: It is
interesting to note that the distribution of errors, and thereby
the GC, does not simply depend on the biometric modality,
but also the type of features used. When removing the pupil
diameter, one of the most distinctive features of the eye
movement biometric, the average error rates rise, but at the
same time the GC decreases. This suggests that the pupil
diameter is actually one of the key features that contributes
to systematic errors especially because it is, on average, a
very distinctive one. Due to the pupil diameter’s relative
stability it is suitable to separate most users, but leads to
the consistent confusion of users with a similar baseline
pupil diameter. As such, using the feature helps to further
distinguish users that were relatively well-separated before,
but does little to reduce systematic errors or might even
make them more significant. This data supports the idea
that, in some scenarios, adding distinctive features could
actually reduce the security of a system, despite the lower
average error, by adding systematic false negatives. As a
result, researchers should take great care to not blindly strive
for the lowest average EER but to also take into account
how changes to features or classifiers influence their system’s
error distributions.

3.2.2 False Reject Rate
For the FAR, it is easy to agree on the fact that systematic

errors are more problematic, as it leads to some attackers
perpetually escaping detection. Determining the most favor-
able error distribution is not quite as obvious for the FRR. If
most of the FRR is due to extreme outliers it might suggest
that this is due to erratic user behavior, such as a bad cali-
bration for eye tracking. In that sense, this scenario might be
preferable, as this indicates a problem with a small number
of users, rather than an overall problem of the system which
manifests itself in all users. When the deployed system shows

high error rates for some users, it might be possible to further
explore the root cause of the errors (which could involve ed-
ucating the user, but could also aid in improving the system
itself). Reporting the fraction of users perfectly recognized
by the system (given as ”0’s” in Table 2) would be an obvious
approach to reflect this property, but Figure 7 shows why
it would be quite noisy in practice. Using a combination
of kurtosis and standard deviation would also suffer from
the same problems as for the FAR, namely the difficulty of
establishing a total order between systems.

Following the shortcomings of the other metrics, the Gini
Coefficient can again be used to quantify where exactly a
biometric recognition system lies between the extremes of
purely systematic and purely random errors. Our data shows
that the touch input biometric has the most even distribution
of false rejects, exhibiting a GC of 0.55. The eye movement
biometric generally shows the highest GC, with little change
due to feature sets, time distance or tasks used. This might
be explained by the fact that the biometric strongly relies on
controlled user behavior, specifically requiring a good calibra-
tion and as few head movements as possible. If some users
are better at achieving this optimal behavior it would explain
this rather extreme concentration of errors. In addition, this
type of behavior would likely be regardless of the feature set
used or increased time distance between sessions.

3.3 Lessons Learned
The previous subsections have shown that error distribu-

tions vary wildly across different datasets. This observation
is valid for both the FRR and the FAR, leading to different
consequences. Out of the set of the metrics we analysed
to augment the FAR/FRR the Gini Coefficient is the most
promising due to its compactness and ability to provide an
absolute ordering of systems. For the FAR, systems with a
lower GC are desirable as this indicates false accepts that
are spread relatively evenly across attackers, rather than
enabling few attackers to perpetually escape detection. Our
data shows that adding distinctive features, such as the
pupil diameter for eye movement biometric decreases the
EER, but at the same time increases the GC. This suggests
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Figure 8: The different Gini coefficients draw attention to different error distributions. The touch biomet-
ric has a comparatively low GC of 0.75, which indicates largely random errors, while the eye movement
biometric’s higher GC of 0.94 suggests systematic errors which will lead to attackers consistently fooling
detection.

that features that change little over the system’s operation
might be suitable to tell users apart in general, but confuses
similar users more consistently, thereby leading to the afore-
mentioned systematic errors. This insight is crucial during
feature selection, at which point some distinctive features
should even be dropped completely to avoid this scenario. As
such, it is important to remember that not every change to
a system that lowers the average error is actually beneficial
to its security. For the FRR a high GC indicates erratic
user behavior for a small number of users, an insight that
can help improve either the system design or aid in avoiding
this behavior during system operation. Overall, we recom-
mend to closely monitor changes to GC when experimenting
with different feature sets to evaluate whether any of them
consistently lead to systematic errors. When publishing re-
sults, the GC should always be reported together with the
mean EER/FAR/FRR in order to allow readers to take error
distributions into account during their evaluation.

4. INFLUENCING ERROR RATES
THROUGH TRAINING DATA SELECTION

In Section 2 we have shown that the majority of papers ei-
ther randomly sample training data from the entire available
dataset or merge data from all users (including the attacker)
to form the negative class. It is well-known in related fields
that error rates are systematically under-estimated when the
temporal order of samples is not preserved when selecting
training data. The precise impact is well-researched in the
context of malware analysis, in which case past malware
can be classified more accurately when signatures of future
malware is included in the training data [3, 4]. Nevertheless,
the precise impact has, to the best of our knowledge, not
been quantified for biometric-based continuous authentica-
tion. Knowing the precise influence of these methodologies
is important in order to assess whether a lower EER is due
to a better system or excessive optimization through non-
functional design decisions.

4.1 Quantifying the Impact on the EER
The two non-functional parameters most likely to impact

error rates are the attacker modelling process and the division
of training data. There are a number of valid choices for
both, raising the question whether there is a seemingly “best”
choice that leads to a minimization of (reported) error rates.
In order to answer this question, we compute the EER for a
number of datasets under different assumptions. We consider
all combinations of the below parameters:

Number of aggregated samples: We statically choose a value
of 100 for eye movement datasets, and 15 for the others (to
reflect the lower sampling rate). We then aggregate samples
based on a simple majority voting. Aggregating samples
is common practice and a technique used in the original
evaluation of all datasets we consider.
Dataset Division: We consider ordered and random divi-

sion. For a single session, an ordered split uses the first half
for training and the second half for testing. If two sessions
are available, only the first is used for training. For the
random split, we randomly select half the data for training.
The process maintains the relative proportions of the classes
to ensure roughly equal amounts of training data for each
user. We then repeat the sampling and classification process
20 times to measure the effects of this selection.

Attacker Modelling: Anomaly detection requires a spe-
cialized classifier (such as a oneclass SVM), which makes it
difficult to isolate the effects of this parameter alone. As such,
we consider the ”all users” and ”except attacker” approaches.
For the latter, we perform classifier training separately for
each user and each attacker, while excluding the attacker
from the training set. The negative class is instead created by
the combination of all other users. The ”all users” approach
instead trains a single model per user, which includes positive
data (from the legitimate user) and a single negative class
(all other users). In both cases, we balance the positive and
negative class as to not bias the classifier.

The results of our analysis are shown in Figure 9. Selecting
training data randomly provides the biggest improvement,
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(a) Data Division (b) Attacker Model

Figure 9: EERs decrease up to 80% when randomly selecting training data. Including the actual attacker
in the negative class provides a reduction of up to 63%. The impact of random training data selection is
particularly strong for datasets collected over longer time spans.

relative to the original EER. This effect is particularly pro-
nounced for datasets that are collected over larger timespans
(such as the inter-session and 2-weeks eye movement datasets).
This strong effect is most likely due to the classifier being
unable to observe and account for any changes in user behav-
ior over time, leading to underfitting when considering the
dataset over the entire time period. The mouse movement
datasets, which are collected over a short period, are only
marginally affected, which further supports this explanation.
Another interesting insight is that the EER varies extremely,
depending on the training data selection. This suggests that
the training and testing process has to be repeated a number
of times to ensure statistical robustness of the result. The
distribution of errors was virtually unaffected by the change,
which suggests that it mainly leads to shifting the mean.

The effects of the two different attacker models significant,
albeit less extreme than those of the training set selection.
Across all datasets, including the attacker in the training
data results in a relative improvement between 22% (mouse
movements) and 63% (intra-session eye movements). It is
somewhat counter-intuitive that the effect is bigger for the
larger datasets, even though the attacker data only accounts
for a smaller fraction of the overall negative class.

These results show that simply looking at the EER of a
proposed system is insufficient, as it is skewed greatly by non-
functional parameters that would not affect the performance
of the system in a production environment. For example,
if the exact same dataset (i.e., identical features and classi-
fiers) were evaluated with random and ordered training data
selection, one might favor one over the other (even though
their practical performance would be identical). This is par-
ticularly alarming as our analysis (see Section 2) shows that
out of 25 papers, 13 use at least one of the methodologies
that we have shown to lead to systematic underestimation
of error rates. In addition, a further 6 do not report how
the error rates were obtained, which not only decreases con-
fidence in the results but also impedes reproducing them
and comparing them to related work. In order to inspire
the highest confidence in their results researchers should ex-
clude attackers from the negative class in their training data

and choose the first part of their entire dataset for training,
rather than sampling it randomly. In order to allow an easier
comparison with some earlier work it would also be advisable
to report error rates for different methodologies (such as
random sampling) as well.

5. CONCLUSION
In this paper we have provided a systematic analysis of

the methodology used to evaluate behavioral biometrics for
continuous authentication. Our analysis shows that most
papers present the mean of standard metrics, specifically
the Equal Error Rate (EER) and False Accept Rate (FAR),
but don’t give any insights of their precise distributions. We
argue that some errors, specifically systematic false negatives,
are particularly severe in the context of continuous authen-
tication. The analysis of 16 real-world datasets shows that
some biometrics, such as touchscreen inputs, exhibit mostly
random errors, leading to the eventual detection of attackers
due to the process of continuous authentication. Others, such
as gait patterns, tend to produce more systematic errors,
thus allowing some attackers to consistently avoid detection.
In order to allow the comparison of different systems with
regard to this property without requiring manual inspection,
we discuss a number of candidate metrics. As a result of this
discussion we propose the use of the Gini Coefficient (GC)
to capture different distributions of both the FAR and FRR.
The application of the GC to our datasets reveals that the
addition or removal of certain features can greatly impact the
biometric’s error distribution. Specifically, using the pupil
diameter for classification reduces the system’s average EER,
but also greatly contributes to systematic errors, thereby sug-
gesting it might even reduce overall security. Based on these
insights, the GC can not only be used to compare the security
of different systems, but can also guide researchers during
evaluation of different classifiers, bioemtrics and featuresets.
We therefore recommend that authors report the GC as well
as established metrics in order to provide information about
error distributions as well.

We also quantified the impact of a number of different
machine learning methodologies on a system’s error rates.
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We identify two main factors, the selection of training data
(specifically, random versus ordered split) and the inclusion
of imposter data in the negative class. While these effects
are somewhat well-known in other fields, their precise im-
pact has not been quantified in the context of continuous
authentication. Our analysis shows that random sampling
of training data can reduce the EER by up to 80%, while
inclusion of imposter data provides a reduction of up to 63%.
These results highlight a particular problem, as 13 of the 25
papers we analyzed used a methodology that we have shown
to lead to systematic underestimation of error rates and a
further 6 did not report which methodology was used at all.

Our results highlight that it is inadequate to compare
biometric systems simply by their EERs. Instead, it is crucial
to take into account both the distribution of errors, as well as
the design decisions that were made when simulating system
operation on a static dataset.
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[3] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon.
Are your training datasets yet relevant? In
International Symposium on Engineering Secure
Software and Systems, pages 51–67. Springer, 2015.

[4] K. Allix, T. F. D. A. Bissyande, J. Klein, and
Y. Le Traon. Machine learning-based malware detection
for android applications: History matters! Technical
report, University of Luxembourg, SnT, 2014.

[5] S. Axelsson. The base-rate fallacy and the difficulty of
intrusion detection. ACM Transactions on Information
and System Security (TISSEC), 3(3):186–205, 2000.

[6] P. Bours and S. Mondal. Performance evaluation of
continuous authentication systems. IET Biometrics,
4(4):220–226, 2015.

[7] A. Brajdic and R. Harle. Walk detection and step
counting on unconstrained smartphones. In Proceedings
of the 2013 ACM International Joint Conference on
Pervasive and ubiquitous computing, pages 225–234.
ACM, 2013.
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APPENDIX
A. DATASETS

In this section we describe the datasets used to carry out to
evaluate our new metrics (see Section 3). We use 13 datasets
obtained from the authors of previously published work and
augment them with three datasets gathered specifically for
this study.

A.1 Gait Biometric
There are a number of approaches to capture human bait

patterns, they are typically based on video recordings [32,
20] or accelerometer data [23, 17, 2]. As accelerometer data
can be readily captured with smartphones (and then be
used to protect the device after a theft), we focus on this
approach. We adapt the classification process of [17] to
support continuous authentication.

We recruited 14 volunteers, 9 male, 5 female. The ex-
periment was carried out with the approval of the ethics
committee of the University of Oxford, reference number
SSD/CUREC1/13- 064. During the experiment, each subject
walked an identical 300 meter long route on a footpath in the
university parks and returned to the starting point, resulting
in two datasets of roughly identical length for each partici-
pant. The route was straight and did not involve turns, data
collection was manually stopped before the halfway turn and
resumed afterwards. The accelerometer data was collected
with an off-the-shelf Samsung Galaxy Note 4 smartphone
at a sampling rate of 200Hz. The phone was contained in
a standard running armband strapped to the participant’s
lower leg, just above the calf muscle. On average each dataset
contained 190 seconds of accelerometer data, or 38,000 raw
samples.

Using this data we obtained an average EER of 8.44%.

A.2 Second Gait Dataset
The second gait dataset was obtained from the authors

of [7]. The set contains data from 27 participants that
walked along a footpath at three different paces. While
the data was collected for the purpose of evaluating step-
counting algorithms, the data format makes it suitable for
authentication as well. The data was collected through the
accelerometer of a smartphone held in various positions (in
a front or back trouser pocket, in a backpack/handbag, or in
a hand with or without simultaneous typing). Not all sensor
positions are available for each subject. In order to remove
potential distinguishing information resulting purely from
the sensor position, we only use the subset of traces in which
the device was held by the subject without simultaneous
typing, limiting the number of subjects to 24. The data was
collected at a rate of 100Hz, with an average of 4400 samples
(or 44 seconds) per subject. For each subject we extract the
portion of the trace during which the subject was walking,
using the timestamps provided as part of the dataset. As the
first half of the data is used for training it contains mostly
slow movements, unlike the testing timeframe during most
of which the subjects were moving at a quicker pace.

The system shows an EER of 28.4%. This relatively high
value (especially compared to the dataset collected by us)

12



Hyperparameters Available Online

Ref Biometric Classifier Values Method att-model training data sample agg Data Code

[16]

Touch

SVM,knn 3 CV all users ordered weighted 3 31

[15] knn 3 7 7 ordered 7 72 7

[35] SVM 7 7 subset CV-10 majority 33 7

[8] DT 3 GS+CV 7 CV-3 7 72 7

[18] SVM 7 7 7 7 7 7 7

[36] sim-score N/A N/A AD random N/A 7 7

[12] NN 3 7 AD ordered N/A 7 7

[9] knn (3) 7 no-attacker 4 7 7 7 7

[10] NN,SVM 3 7 all users random 5 7 7 7

[29] SVM,RF 7 7 AD 7 7 7 7

[28] HMM 3 CV-5 all users ordered mean 72 7

[31] SVM 3 3 AD ordered N/A 7 7

[13]

Gaze

SVM,knn 3 GS+CV all users CV-5 majority 7 7

[22] UBM 3 3 all users 7 N/A 7 7

[14] SVM,knn 3 GS+CV AD, all users CV-5 majority 7 7

[26]
Pulse
Response

SVM,knn 3 3 all users CV-5 N/A 7 7

[11]

Gait

sim-score N/A N/A AD ordered N/A 7 7

[33] sim-score N/A N/A AD ordered N/A 7 7

[2] sim-score N/A N/A AD ordered N/A 7 7

[27] sim-score N/A N/A AD random N/A 7 7

[25]

Mouse

DT N/A N/A all users ordered weighted 7 7

[1] NN 3 3 no-attacker random N/A 7 7

[30] sim-score N/A N/A AD 7 N/A 7 7

[37] SVM 7 3 no-attacker ordered mean 7 7

[24] SVM 7 7 all users random N/A 7 7

3Reported (3) Partially reported 7Not reported
Unless indicated otherwise, only the mean of each metric is reported
1 Only feature extraction
2 Uses data from [16]
3 Dead URL 10/07/2016
4 Training data consists of all other users, excluding the attacker
5 Sampling repeated 10 times

Table 3: Simulation Design Choices in Related Work

might also be a consequence of a mismatch between training
and test data (which were gathered at different walking
speeds).

A.3 Mouse Movement Biometric
In addition to the gait data, we conduct an experiment

to collect volunteers’ mouse movements. Our experimental
design is conceptually close to that in [34]. During the ex-
periment, each participant was shown 25 rectangles arranged
in a 5x5 grid, one of which was red. The user is then asked
to click on the red rectangle. This task is repeated 200
times, with the red rectangle appearing in a new, random
location for each iteration. The random seed to generate the
sequence was kept identical for all users in order to limit the
effects of the rectangle’s position on our features. The size
of the window displaying the rectangles was fixed in order to
avoid any distinctiveness created solely by different screen
resolutions. In order to control for artificial bias created by

different input devices [21] we collect two datasets. The first
set was obtained by sending our software to subjects, to be
run on their own home or work machine. For the second
set we invited a (different) set of volunteers to take part
in the experiment on our lab machine. If any features are
more distinctive in the first set this would imply that their
distinctiveness is at least partially due to the properties of
different devices, rather than differences in user behavior.

We achieve an EER of 9.98% for the lab dataset that
decreases to 9.22% when using the data gathered on subjects’
machines.

A.4 Eye Movement Biometric
The eye movement biometric, as proposed in [13], is based

on involuntary fixational eye movements. The distinctiveness
of eye movements is not limited to a certain task and features
can be computed regardless of screen content. As such, the
biometric can be used in a continuous authentication scenario
without limiting the user. The set of 20 features used in the
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paper reflect the properties of microsaccades (high velocity
and acceleration), the steadiness of the gaze and both static
pupil diameter as well as the pupil diameter’s changes over
a short time. The pupil diameter generally outperforms the
remaining features in terms of distinctiveness.

A.5 First Eye Movement Dataset
The first dataset was obtained from the authors of [13].

In order to test the features’ time stability, three identical
sessions are performed, with a time distance of one hour
and two weeks, respectively. In line with the presentation
in the paper we form three datasets from the sessions: The
intra-session set contains data only from the first session
and involved 30 subjects. The inter-session set combines the
second and third session (i.e., with the two parts being one
hour apart) and the first and second session form the 2-weeks
dataset.

In order to reflect different threat models the authors pro-
pose the use of different featuresets, specifically describing
a set that excludes features based on the pupil diameter.
Using this reduced feature set increases the EER from 6.9%
to 19.83% as some identifying information is lost. The com-
bination of three sessions and two featuresets results in six
distinct datasets.

A.6 Second Eye Movement Dataset
The second dataset was provided by the authors of [14]

and extends the previous study with several real-world tasks.
These tasks include reading, writing, web browsing and watch-
ing two different videos. We consider each of these tasks
separately (by sampling training and testing data from the
same task) and jointly (by merging all tasks before sampling
training and testing data).

A.7 Touch Input Biometric
The touch input dataset is based on the data shared in [16].

The biometric’s features describe the properties of swiping
motions on touchscreens, including their position, curvature
and pressure. Data was collected over two weeks, resulting
in an intra-session, inter-session and 1-week dataset. The
error rates range from 0% for intra-session authentication to
4% when authentication is performed a week after enrolment.
As we are interested in determining the distribution and
causes of errors we do not use the intra-session dataset for
our comparison.
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