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Abstract

The EPSRC-fundedGeneric and Indexed Programmingproject will explore the inter-
action betweendatatype-generic programming(DGP) — programs parametrized by
the shape of their data — andindexed programming(IP) — lightweight dependently-
typed programming, with programs indexed by type-level representations of proper-
ties. Integrating these two notions will provide new ways for programmers tocapture
abstractions.

The project builds on insights from our recent work in DGP, which has investi-
gated bothprogramming techniques(including reasoning about generic programs,
and using them to capture design patterns precisely), andlanguage mechanisms
(particularly lightweight approaches: patterns for simulating highly-expressive tech-
niques in familiar but apparently less-expressive languages). Firstly, these lightweight
techniques, which we have been embedding in Haskell’s stillrelatively expressive
type system, are in fact applicable to even less expressive but morepopular main-
stream languagessuch as Java and C#. Secondly, the techniques are more applicable
than we first thought; in particular, they offer a solution tothe so-called ‘expression
problem’: safe combination of independent extensions along multiple dimensions.
Thirdly, there is a synergy between DGP and IP: DGP makes IP more appealing,
because the effort of stating properties can be amortized over more programs; IP
provides a mechanism for DGP, because the indices can be representations of data’s
shape.

1 INTRODUCTION

The essence of computer science isabstraction: identifying patterns in code, and
expressing these patterns in machine-readable forms. But capturing these patterns
is often a challenge; programmers are continually struggling with their tools. There
is often a gulf between what they know and what their languagelets them state
directly; knowledge that should be abstracted and analyzable is instead dispersed
and unreachable. Languages evolve by allowing the programmer to say more about
their programs, in a format that compilers and another language tools can exploit.

The Generic and Indexed Programming(GIP) project at Oxford plans to de-
velop mechanisms allowing programmers to stateproperties of their programs,
and to validate these properties. Specifically, propertiesare expressed as types,
and property validation is type checking. The kinds of property we have in mind
are indexes(such as size, shape or state), and the representation is asgeneralized
algebraic datatypes.
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2 GENERIC PROGRAMMING

Generic programmingis about making programming languages more flexible with-
out compromising safety. Both sides of this equation are important, and becoming
more so as we seek to do more and more with computer systems, while becoming
ever more dependent on their reliability.

Generic programming usually manifests itself as a kind of parametrization. By
abstracting from the differences in what would otherwise beseparate but similar
specific programs, one can make a single unified generic program. Instantiating the
parameter in various ways retrieves the various specific programs, and ideally some
new ones too. The different interpretations of the term ‘generic programming’ arise
from different notions of what constitutes a ‘parameter’.

The term has a long history, and a corresponding variety of interpretations. To
some people, it means parametric polymorphism; to some, it means libraries of al-
gorithms and data structures; to some, it means reflection and meta-programming;
to some, it means polytypism. We favour the latter interpretation, but to avoid con-
fusion, for our recent work in the area we coined the more specific term datatype-
generic programming(DGP).

We are interested particularly in programs parametrized bydatatypes, that is,
by type constructors such as ‘list of’ and ‘tree of’. Typicalexamples are pretty
printers and marshallers, which can be defined once and for all for lists, trees, and
so on, in a typesafe way. This is not just parametric polymorphism, which is ab-
straction from the ‘integer’ rather than the ‘list’ in ‘lists of integers’; it is not just
about libraries of algorithms and data structures as in the C++ Standard Template
Library, which is really just an outworking of parametric polymorphism (together
with some ad-hoc polymorphism in theconceptsthat cannot — yet [10] — be for-
mally stated but that parameters are required to model); andit is ideally not just
reflection and meta-programming, which are typically dynamic and not typesafe.

Preceding work on languages to support datatype-generic programming fo-
cused mostly on special-purpose languages for supporting aparticular view of
polytypism. For example,PolyP [16] programs are parametrized by regular func-
tors, andGeneric Haskell(GH) [13] programs by sums of products. Lämmel and
Peyton Jones’Scrap your Boilerplate(SyB) technique [18] takes a different ap-
proach, relying on a type-safe cast operator and a small number of generic combi-
nators, and providing nominal rather than structural polytypism.

More recently, somelightweightapproaches to generic programming have be-
gun to emerge. Hinze and Cheney [4] were among the first to propose a technique
requiring only Haskell98 plus existential types, a very mild extension supported by
most Haskell compilers. Hinze and Cheney’s work evolved into what they called
first-class phantom types[11]: type parameters that are used to record properties of
data rather than elements of data structures. Similar ideashave arisen in a number
of neighbouring fields, under the namesguarded recursive datatypes[42], indexed
type families[44], inductive families[6], andequality-qualified types[32], among
others. These developments inspired the recentgeneralized algebraic datatype
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(GADT) [30] extension to the Glasgow Haskell Compiler (GHC), which we dis-
cuss further in Section 3.

The lightweight approaches to generic programming have shown that existing
features of current programming languages — in particular,type classes, existen-
tial types and generalized algebraic datatypes — can be usedto build libraries for
generic programming. Special-purpose languages or extensions are not needed;
these general-purpose techniques are sufficient. This is very appealing; fewer spe-
cialized tools means less chance for fragmentation in the various programming
language communities: theorists, implementors, and programmers.

3 INDEXED PROGRAMMING

Programming languages are progressively allowing the programmer to express
more precise properties of their programs, in a way that compilers can exploit for
safety and for efficiency. In particular, recent developments allow the programmer
to specify properties about theshape of data(such as the dimensions of a matrix,
or the balancing of a tree) and thestate of components(such as safety or security
properties of an agent in a protocol), in terms of richer typesystems.

Developments of this kind includeproof-carrying code[26], Programatica’s
certificatesof validation [37],nested datatypes[2], indexed types[43], and par-
ticularly generalized algebraic datatypes[30]. What they all have in common is
to lift properties of programs that would otherwise be available only dynamically,
if at all, and make them statically checkable and analysable. In a sense, they are
lightweight approaches to dependently-typed programming, aiming to reap some
of the benefits without incurring all of the costs (for example, in difficulty of type-
checking, and accessibility of programming). Even straightforward test-driven de-
velopment, as embodied in tools such as QuickCheck and JUnit, encourages the
machine-readable statement of code properties.

GADTs allow the packing of syntactic type equality constraints into individual
data constructors. Pattern matching can exploit these typeconstraints, allowing
more refined type judgements. The following example shows a GADT guarantee-
ing well-typing of well-formed expressions.

data Exp awhere
Zero:: Exp Int
Succ:: Exp Int → Exp Int
Pair :: Exp b→ Exp c→ Exp(b,c)

In contrast to normal algebraic data types, the result type of each constructor of
Exp is refined: for example, constructorZeroyieldsExp Int rather thanExp a. An
evaluator forExpcan be defined as follows.

eval:: Exp a→ a
eval Zero = 0
eval(Succ e) = 1+eval e
eval(Pair x y) = (eval x,eval y)
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Note that in the first clause, patternZerohas typeExp Int; matching this against the
required argument typeExp a induces a constrainta = Int. Under this constraint,
the typeInt of the right-hand side matches the required typea. The other clauses
are type-checked similarly.

This feature opens up a brave new world of programming with properties.
However, we are only just starting to explore this new world,and currently try-
ing to do so using old-world tools. GHC now supports GADTs [30], but they are
not in the Haskell98 standard or any other popular implementation of the language;
they are currently under consideration for inclusion in Haskell′, the next version of
the Haskell standard. There are promising signs that GADTs may follow generics
into mainstream languages such as Java and C# [17]. Now is thetime to explore
the design space, and see what works and what does not. That isthe goal of the
GIP project.

4 APPLICATIONS OF INDEXED PROGRAMMING

Something like the ‘typed expressions’ example in Section 3is used for motivation
in most papers about GADTs, but IP is much more widely applicable than this. To
give some idea of the breadth of applications, we present a representative selection
here. Most of these are already well-known in the literature, but the Mini Nim
example in Section 4.4 is new.

A more comprehensive catalogue of IP applications can be found in Appendix A.
Some of the examples can be implemented in a lightweight manner in existing lan-
guages, such as Haskell with GADTs; others seem to require heavier language
machinery. Expanding and investigating this catalogue will be our first strand of
work on the GIP project; this will provide us with a benchmarksuite on which to
validate the other results of the project.

4.1 Enumerations

The simplest class of index is an enumeration. For example,red-black treesare
binary trees in which (among other constraints) nodes are labelled with a colour,
red or black, and red nodes have black children. That property can be captured
by indexing by colour, and constraining the tree constructors, very like the typed
expression example above.

data R
data B

data RBTree a cwhere
Empty:: RBTree a B
Red :: RBTree a B→ a→ RBTree a B→ RBTree a R
Black :: RBTree a c→ a→ RBTree a c′ → RBTree a B

(This presentation omits the height constraint, which usesnumeric indexes as de-
scribed in Section 4.2 below.)
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As a more interesting example, transitions in a state graph can be indexed by
their end states, enforcing safety properties in a protocol. For example, consider
theketchup problem: a ketchup bottle may be open or closed, but it is safe to shake
the bottle only when it is closed.

opened closed

close

open
shake

data O
data C

data Edge s1 s2 where
Open :: Edge O C
Close :: Edge C O
Shake:: Edge C C

data Path s1 s2 where
Empty:: Path s s
PCons:: Edge s t→ Path t u→ Path s u

scenario:: Path O O
scenario= PCons Open(PCons Shake(PCons Close Empty))

Here, the datatypesO and C represent the states ‘open’ and ‘closed’. The type
Edgeof state transitions is indexed by states, and aPath is well-typed if and only
if its sequence of transitions is safe. This example is frivolous, but the principle
applies to more serious problems, such as resource locking.

4.2 Numbers

Natural numbers are probably the most widely used index. Many important prop-
erties of datatypes, such as the black-height of a red-blacktree or the length of a
vector, can be captured by natural numbers.

data Z
data S n

data Vector a nwhere
VNil :: Vector a Z
VCons:: a→ Vector a n→ Vector a(S n)

Natural numbers are encoded here at the type level; for example, the number 3 is
represented by the typeS(S(S Z)). The datatypeVector a nis parametrized by its
element typea and indexed by its sizen. Now we can express the fact that zipping
two vectors of the same length yields a result also of that length, and make it a type
error to attempt to zip vectors of different lengths.

vzip:: Vector a n→ Vector b n→ Vector(a,b) n
vzip VNil VNil = VNil
vzip (VCons x xs) (VCons y ys) = VCons(x,y) (vzip xs ys)
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4.3 Types

Type representations serving as directives to datatype-generic functions have been
well-studied in the literature [4, 11]. For example, consider a little language of
sum-of-product datatypes, built from integers with the following operations:

data Unit = Unit
data a+b = Inl a | Inr b
data a×b = a×b

Members of this family can be represented by terms of typeRep; but by using
indexing, the value of the representation can be reflected atthe type level — the
type t is represented by a (in fact, the unique) term of typeRep t.

data Rep awhere
RI :: Rep Int
RU:: Rep Unit
RS:: Rep a→ Rep b→ Rep(a+b)
RP:: Rep a→ Rep b→ Rep(a×b)

Now a datatype-generic equality function can traverse the type representation to
direct the comparison, without sacrificing type safety.

rEq :: Rep t→ t → t → Bool
rEq RI t1 t2 = t1 t2
rEq RU t1 t2 = case (t1, t2) of

(Unit,Unit) → True
rEq (RS ra rb) t1 t2 = case (t1, t2) of

(Inl a1, Inl a2) → rEq ra a1 a2

(Inr b1, Inr b2) → rEq rb b1 b2

→ False
rEq (RP ra rb) t1 t2 = case (t1, t2) of

(a1×b1,a2×b2) → rEq ra a1 a2 ∧ rEq rb b1 b2

4.4 Data structures

Indexing by natural numbers or by representations of an infinite family of types
involve recursive data structures at the type level. Another recurring example of
this involves indexing a value with a proof of some property of that value. For
example, a recent proposal [1] showed how to capture precisely the lambda terms
normalizable under call-by-value, via indexing with the corresponding sequence
of reductions. Space restrictions preclude the presentation of that example, but
instead here is a simpler example of indexing by a proof witness.

The game ofMini Nim involves a pile of matchsticks. Players take turns to
remove either one match or two, and the player who removes thelast match wins.
The typePosition n r is indexed by the numbern of matches, and the optimal
resultr for the next player. Clearly, being faced with an empty pile,you lose. Piles
with more matches are winning, if they can be turned into losing piles by taking
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one match or two; and conversely, if taking one match or two both yield winning
positions, you lose.

data Win
data Lose

data Position n rwhere
Empty:: Position Z Lose
Take1:: Position n Lose → Position(S n) Win
Take2:: Position n Lose → Position(S(S n)) Win
Fail :: Position n Win→ Position(S n) Win→ Position(S(S n)) Lose

Note that the proof witness in this case is in fact not a linearsequence, as in the
terminating lambda terms example, but rather tree-shaped,as most proofs are. Of
course, a matchstick game is another rather frivolous example; but such proof-
carrying code has many more serious applications [26].

5 PROJECT STRANDS

This section outlines the six strands of work that make up theGIP project.

5.1 Capturing properties

Our previous work on theDatatype-Generic Programmingproject has led us to
the realization that GADTs are a very useful tool in the generic programmer’s
toolkit. In particular, they allow the expression and static checking of otherwise-
inexpressible properties of programs, such as the shape of data and the state of com-
ponents. But they are a very recent innovation, and as yet arenot well-supported
by programming languages or well-understood by programmers. The GIP project
will investigate these mechanisms for lightweight indexing of types by values. We
will start by carrying out some initial case studies on programming with properties.

Although GADTs are a neat trick, programming with them currently can be
quite hard work. Essentially, one has to resort to proving theorems in the language
of types, assisting the type checker in verifying the statedproperties. For example,
it is a simple matter using GADTs to represent a type of vectors indexed by their
length, and to express the constraint on ‘zip’ that its two arguments and its result
should all have the same length. However, to express the constraint on indexing
that the position should be less than the length requires theproof of this inequality;
and to express precisely the shape of the ‘triangular’ vector of vectors returned by
a ‘prefixes’ function requires a new type of length-indexed vectors with position-
indexed elements.

In this strand of the project, we will carry out a number of case studies in
programming with GADTs, expanding on those presented in Section 4. In doing
so, we aim to compare the ergonomics of programming using GADTs with other
competing approaches, such as nested datatypes [2], Dependent ML [43], Ωmega
[32], and Epigram [22]. We will use this experience to informour development of
notations for indexed programming.
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One of the questions of notation that we wish to explore is therelationship
between GHC’s current ‘untyped’ (or rather,unkinded) approach to type indices,
and theextensible kindsin Sheard’sΩmega. With the former, using Haskell’s
syntax for kind declarations, length-indexed vectors are expressed as follows:

data Z
data S n

data Vector::∗ → ∗→ ∗ where
VNil :: Vector a Z
VCons:: a→ Vector a n→ Vector a(S n)

Here, the invariant that the second type parameter ofVectormust be a type-level
natural is not expressed explicitly, but is implicit in the fact that there is no way
to construct aVectorof any other type. In contrast, extensible kinds allow one to
declare the kind of that second parameter:

kind Nat= Z | S Nat

data Vector::∗ → Nat→∗ where
VNil :: Vector a Z
VCons:: a→ Vector a n→ Vector a(S n)

This introduces a new closed kindNat with two members, a typeZ and a type
constructorS, and mandates their use in the second type parameter ofVector. How
important is this extra expressivity? That is, how likely and how costly are kind
errors without it, and how much trouble is it to introduce it?Only time and case
studies can help us answer this question.

5.2 Generics for GADTs

Most approaches to DGP assume a view of datatypes; for example, Generic Haskell
works for sum-of-products algebraic datatypes. However, generalizing to GADTs
departs from this framework; generic programming on GADTs requires some al-
ternative view of datatypes. This question is important, because programming with
GADTs is substantially trickier than programming with regular ADTs, and generic
programming is consequently even more attractive a proposition.

In recent work [15], Hinze, Löh and Oliveira demonstrated that the Scrap your
Boilerplate approach to generic programming can be implemented using the so-
calledspine viewof datatypes. Under this view, generic functions can be defined by
induction over the structure of the spine, in much the same way that generic func-
tions in GH can be defined by induction over the sum-of-products structure. One
disadvantage of the SyB approach is that generic functions are limited togeneric
consumers, such as pretty printers. However, an advantage of SyB over GH is that
it can also handle GADTs.

Expanding on this work, Hinze and Löh show [14] thatgeneric producerssuch
as parsers can be defined using the so-calledtype-spine view. They also propose
a lifted-spine viewfor capturing datatype-generic functions such usgeneric map,
which cannot be defined using unlifted spines. However, thisapproach requires

XV–8



two more views, and two more type representations. Furthermore, it is limited
to unary type constructors; supporting type constructors of different arities would
involve yet more views and representations, and further duplication.

Recently, we have been looking at McBride and Paterson’s work [21] on ap-
plicative functors, a generalization of monads. We have observed that applicative
functors are closely connected with the spine view. We conjecture that applicative
functors generalize spine views, and so can be used to define generic functions
on GADTs. One of the benefits of the extra generality is that applicative functors
naturally support datatype-generic functions such asmap. Unlike Hinze and Löh’s
proposal, this means that we do not incur any duplication of structure, or even
extensions to current compilers. Furthermore, applicative functors have a solid
theoretical foundation in terms of so-calledstrong lax monoidal functors, in con-
trast to the somewhat ad-hoc nature of SyB, and we expect thatthis will provide a
cleaner algebra for reasoning about generic programs [31].

We are already collecting some results from this line of research: a recent pa-
per [9] uses applicative functors to model and reason about the ITERATOR pattern.
Of course, iterators are just a very specific case of generic programming, but this
is just a small start.

5.3 Extensible generic functions

One view of generic programming is as defining type-indexed functions. The ad-
vantage ofstructural approaches to generic programming, such as the GH sum-
of-products approach, is that it allows generic functions to be defined once for all
types, even those yet to be conceived.

This works nicely in most situations, but not all. For example, a library for
ordered sets might be built on top of a datatype of balanced binary trees. Generic
programming allows the set library to exploit generic definitions of operations such
as pretty printing and equality. But these generic definitions are not appropriate in
this specific case, since both operations should in fact ignore the tree structure. We
need some means of overriding generic behaviour without endangering modularity;
this is not possible in most of the current approaches to generic programming.

In contrast,nominal approaches to generic programming, such as Haskell’s
type classes, stipulate a separate implementation of a type-indexed function for
each type index of interest; structurally similar but nominally different types have
unrelated implementations. This is more flexible — customized pretty-printing and
equality functions can easily be provided for sets — but lessreusable: it throws the
baby of genericity out with the bathwater of inflexibility.

The challenge we plan to address in this strand is support forextensible generic
functions, combining the benefits of the structural and nominal approaches. Generic
functions are given default definitions following the structure of the type param-
eter, but this default can be overridden locally for specificnamed types. Ex-
tensible generic functions can be seen as a variant of Wadler’s expression prob-
lem [41, 38] — the problem of supporting simultaneous independent extension of

XV–9



datatypes and functions. The ability to support open datatypes and open functions
is the key; but in contrast to Hinze and Löh’s approach [19],we aim to preserve
static safety: applying a function to a variant for which it is not defined is a static
type error. Without such extensibility, generic programming is actually very limit-
ing in practical use. This is one of the problems with theGenerics for the Masses
(GM) [12] andSyB Reloaded[15] approaches. We believe we know how to remove
these limitations.

Inspired by two datatype encodings in the lambda calculus, theChurch encod-
ing [3] and theParigot encoding[29], Hinze’s GM approach [12] uses a type class
Generic, with the sum-of-products encoding of datatypes as class methods. An
instance ofGenericdefines a generic function, by giving cases for sums, products
and so on. Another optional class can be used as a dispatcher to infer the right in-
stantiation of the generic function automatically. However, because datatypes’ en-
codings are class methods, this approach shares the limitation of non-extensibility
of generic programming.

TheGenerics as a Librarydesign pattern [28] presents a variation of the GM
technique that allows the dispatching class to take instantiations from classes other
thanGeneric. Thus, extensions defined in additional classes can be used to define
new cases with user-specified behaviour. Viewed from the perspective of a datatype
encoding, this pattern can be seen as a form of open datatypeswith open functions,
thereby solving the problem of extensibility.

Just as functional languages provide datatypes directly, rather than forcing the
programmer to use encodings, we will explore the possibility of adding primitive
language support for this design pattern. This would allow the user to use the
pattern in an intuitive way, rather than a having to understand an intricate encoding.

The first issue that needs to be addressed is the integration of the extra language
construct into a Haskell-like language. We will investigate the possibility of having
evidence translation, similar to that of type classes, enabling type erasure. An
approach similar to type classes’ also gives us static safety and excellent support
for separate compilation. We also expect to lift some of the limitations noticed in
[28]: only top-level pattern matching; no dispatching on multiple type arguments;
awkward encoding of mutually recursive functions. The use of a Parigot encoding
instead of a Church encoding may help; there are also some interesting ideas in
EML [25] andλL [39] worth exploring.

5.4 Design patterns as a library

Recent versions of Java and C# provide support for parametric polymorphism.
When combined with object-oriented subtyping (what Cardelli and Wegner call
inclusion polymorphism), this makes the type systems of these two languages re-
markably powerful. It turns out that this expressive power is sufficient to imple-
ment lightweight encodings of DGP in those languages.

Kennedy and Russo [17] showed that a mild extension to the type constraint
mechanisms of these recent versions of Java and C# allows a form of GADTs to
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be encoded. They presented a variety of compelling examples, such as strongly
typed evaluators, typed LR parsing and typed representations. Even without their
extension, it is possible to encode some of the GADT programsin a type-safe
manner; all the others can be encoded by resorting to casting.

In this strand, we will apply our recent work on lightweight encodings of
generic programming [27, 28, 15] to mainstream object-oriented languages such
as Java and C#, and experimental ones such as O’Caml and Scala, and integrate
this with our work [7, 8, 9] on capturing design patterns as higher-order datatype-
generic programs.

5.5 Type classes and GADTs

Lightweight indexed programming, as provided by GADTs and Sheard’sΩmega
[32], can be seen as ‘datatypes plus constraints’. Haskell’s type classes, originally
introduced to make ad-hoc polymorphism more disciplined [40], are also widely
used as a way of imposing constraints on types. Despite the some notable similar-
ities, GADTs and type classes are mostly studied in isolation.

The design ofΩmega does not support type classes but, inspired by them, it
contains a notion of propositions for implicitly propagating constraints using the
type system [33]. These constraints usually represent proofs of properties, but
they are generally boilerplate code because they only serveas witnesses. Since the
proof objects are elements ofsingleton types, a special case of GADTs, they can be
inferred automatically from the types. For example, we could encode a proposition
for proofs that one natural number is at most another inΩmega as follows:

prop LE :: Nat→ Nat→∗ where
Base :: LE Z n
Step :: LE n m→ LE (S n) (S m)

This proposition can be used to create a pair in which the firstelement is at most
the second.

lePair :: LE a b⇒ a→ b→ (a,b)
lePair x y= (x,y)

In this case, the proof is propagated implicitly. This can bea big help in manag-
ing invariants, since type inference will enforce the constraints. Furthermore, it
becomes easier to erase proofs at runtime.

GADTs and type classes are closely related: they allow formsof closed and
open type-indexed functions, respectively. Moreover, propositions (which are just
special cases of GADTs) share much of the infrastructure of type classes. Inter-
estingly, in current implementations of GHC, type classes and GADTs have quite
orthogonal implementations, and there are even some problems of integration (al-
though Sulzmann and Peyton Jones’s recent work on System FC [35, 36] may help
with this).

We believe that the investigation of GADTs and type classes together has con-
siderable merits. In this strand, we will investigate the combination from three
angles. Firstly, neither GADTs nor type classes subsumes the other in term of ex-
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pressiveness. However, sometimes it is possible to encode one with the other. We
will study the advantages and disadvantages of both approaches, and capture the
results as a pattern language for programming with witnesses.

Secondly, the combined power of GADTs and type classes may produce supe-
rior programs to those available using just one of these techniques in isolation.
When programming with GADTs to capture shape invariants, a witness which
specifies some property may be passed as an additional parameter to a function.
This is very similar to the case of type representations in generic programming.
It is well known that type classes can serve as dispatchers oftype representations
[27]. We will investigate to what extent type classes can serve as dispatchers for
witnesses more generally.

Thirdly, both GADTs and type classes specify relations among types. The
functional dependencytype refinement ability of type classes which refines the
relations into functions has also proven to be useful in stating shape invariants. We
will investigate whether GADTs can be provided with similarextensions.

5.6 Impedence transformers

Generic metaprogramming frameworks like DrIFT [23] sufferfrom an impedence
mismatch, because they handle untyped and unstructured (for example, purely
textual) representations of object programs. It is difficult to statically check the
metaprogram, once and for all, in particular to guarantee properties of the gener-
ated object programs. If it is a staged metaprogram, one can run the first stage and
statically check the object program generated, before executing it in the second
stage; but one must do this again and again for each run of the metaprogram. If
the metaprogram is unstaged (as for example is the TEX macro language), it is not
possible to obtain the intermediate object program at all, and one must resort to
dynamically checking it at run-time.

Some of these problems are alleviated if the metaprogramming stage uses some
abstract syntactic rather than purely textual representation (as in Template Haskell
[34], for example), since it is then impossible to generate asyntactically incorrect
object program; but still, the abstract syntax typically cannot capture precisely the
type constraints of the object program, and so the problems of syntactically correct
but ill-typed object programs persist.

Sheard [32] calls this asemantic gap, between the properties that the program-
mer knows about the object program to be generated, and thosethat the language
lets them state. GADTs allow more of those properties to be expressed and stati-
cally checked, and hence work towards narrowing the semantic gap.

Similar issues of impedence mismatch arise in the kinds of multi-tier program-
ming required for current enterprise application architectures. These typically in-
volve something like HTML and JavaScript for the presentation layer, Java or C#
for the logic layer, and SQL or XQuery for the data layer. Current approaches
mandate different languages for the different layers, and no way of statically guar-
anteeing that (for example) the data entered into a form or retrieved from a database
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is of the type expected by the business logic. This causes significant problems for
enterprise applications [20], and something must be done about it.

Wadler [5] is working onLinks, a single wide-spectrum language supporting
distribution of appropriate tasks to the different layers by translation; the impe-
dence mismatch between different notations is avoided by reference to a single
integrated notation. Meijer [24] and others at Microsoft are working onLINQ, a
set of extensions to the .Net framework with the same goal; but rather than intro-
ducing a new wide-spectrum language, they are extending C#,the language for the
logic layer, with constructs to match the requirements of the presentation and data
layers.

We conjecture that the kind of properties expressible with GADTs are sufficient
to capture the additional information required to remove the impedence mismatch.
In this strand, we intend to carry out a pilot study to test this hypothesis. Of course,
a complete solution to the problem would be beyond the scope of this small project;
but if the pilot exercise is successful, we intend to follow it up separately.

6 CONCLUSION

The project has been funded by the UK Engineering and Physical Sciences Re-
search Council for 42 months, starting in November 2006, supporting a postdoc-
toral researcher (Oliveira), working mainly on generics, and a doctoral student
(Wang), concentrating on linguistic mechanisms for indexing. This paper sets out
our initial vision for the project; we welcome interest and interaction from the
wider community.
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[2] Richard S. Bird and Lambert Meertens. Nested datatypes.In Johan Jeuring, editor,
LNCS 1422: Proceedings of Mathematics of Program Construction, pages 52–67,
Marstrand, Sweden, June 1998. Springer-Verlag.

[3] Corrado Bohm and Alessandro Berarducci. Automatic synthesis of typedλ-programs
on term algebras.Theoretical Computer Science, 39:85–114, 1985.

[4] J. Cheney and R. Hinze. A lightweight implementation of generics and dynamics. In
Haskell Workshop, pages 90–104, 2002.

[5] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web program-
ming without tiers. Submitted for publication, April 2006.

[6] Peter Dybjer. Inductive families.Formal Aspects of Computing, 6(4):440–465, 1994.

[7] Jeremy Gibbons. Patterns in datatype-generic programming. In Declarative Pro-
gramming in the Context of Object-Oriented Languages, 2003.

[8] Jeremy Gibbons. Design patterns as higher-order datatype-generic programs. In
Workshop on Generic Programming, 2006.

[9] Jeremy Gibbons and Bruno C. d. S. Oliveira. The essence ofthe Iterator pattern. In
Mathematically-Structured Functional Programming, 2006.

XV–13



[10] Douglas Gregor, Jaakko Järvi, Jeremy G. Siek, GabrielDos Reis, Bjarne Stroustrup,
and Andrew Lumsdaine. Concepts: Linguistic support for generic programming
in C++. In Object-Oriented Programming, Systems, Languages, and Applications,
October 2006.

[11] Ralf Hinze. Fun with phantom types. In Jeremy Gibbons and Oege de Moor, editors,
The Fun of Programming, Cornerstones in Computing, pages 245–262. Palgrave,
2003. ISBN 1-4039-0772-2.

[12] Ralf Hinze. Generics for the masses. InInternational Conference on Functional
Programming, pages 236–243, 2004.

[13] Ralf Hinze and Johan Jeuring. Generic Haskell: Practice and theory. In Roland
Backhouse and Jeremy Gibbons, editors,LNCS 2793: Summer School on Generic
Programming, pages 1–56. Springer-Verlag, 2003.
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in Functional Programming, 2006.

[29] M. Parigot. Recursive programming with proofs.Theoretical Computer Science,
94(2):335–356, 1992.

[30] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Wash-
burn. Simple unification-based type inference for GADTs. InInternational Confer-
ence on Functional Programming, 2006.

[31] Fermı́n Reig. Generic proofs for combinator-based generic programs. In Hans-
Wolfgang Loidl, editor,Trends in Functional Programming, 2004.

[32] Tim Sheard. Languages of the future. InObject Oriented Programming, Systems,
Languages, and Applications, 2004.

[33] Tim Sheard. Generic programming inΩmega. InSpring School on Datatype-Generic
Programming, 2006.

[34] Tim Sheard and Simon Peyton Jones. Template metaprogramming for Haskell. In
Manuel M. T. Chakravarty, editor,Haskell Workshop, pages 1–16. ACM Press, Oc-
tober 2002.

[35] Martin Sulzmann, Manuel Chakravarty, Simon Peyton Jones, and Kevin Donnelly.
System F with type equality coercions. InTypes in Language Design and Implemen-
tation, 2007.

[36] Martin Sulzmann, Jeremy Wazny, and Peter J. Stuckey. A framework for extended
algebraic data types. InLNCS 3945: International Symposium on Functional and
Logic Programming. Springer-Verlag, 2006.

[37] The Programatica Team. Programatica tools for certifiable, auditable development
of high-assurance systems in Haskell. InHigh Confidence Software and Systems,
Baltimore, MD, 2003.

[38] Mads Torgersen. The expression problem revisited. In Martin Odersky, editor,
LNCS 3086: European Conference on Object-Oriented Programming, pages 123–
143. Springer, 2004.

[39] Dimitrios Vytiniotis, Geoffrey Washburn, and Stephanie Weirich. An open and shut
typecase. InTypes in Language Design and Implementation, 2005.

[40] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-hoc. InPrinciples
of Programming Languages, pages 60–76. ACM, January 1989.

[41] Philip L. Wadler. The expression problem. Java Genericity mailing list, 12th Nov
1998.

[42] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype constructors.
In Proceedings of the 30th ACM SIGPLAN Symposium on Principlesof Programming
Languages, pages 224–235, New Orleans, January 2003.

[43] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In
Principles of Programming Languages, pages 214–227, 1999.

[44] Christoph Zenger. Indexed types.Theoretical Computer Science, 187:147–165,
1997.

XV–15



A CATALOGUE OF INDEXED PROGRAMMING EXAMPLES

The following is a collection of the most representative examples of indexed pro-
gramming that we have found in the literature. The examples are classified on the
first level by the type of indices; on the second level by the datatypes and functions
being indexed; and on the third level by examples of usage.

Enumerations:

Red-black trees

State transitions

Units and dimensions

SQL injection

Object ownership

Natural numbers:

Vectors (by size)

• Constant sizes (reverse, safeHead)
• Arithmetic on sizes (append)
• Bounded sizes (list with a fixed maximum size)

Vectors (by element values)

• Inequality on values (insertion into sorted list)

Trees (by height)

• Constant arithmetic (insert)
• Variable arithmetic (merge)

Matrixes (by dimension)

Type representations:

Generic Functions (as directives)

• Print descriptors: in which the index specifies which instance of
printf this is

• Equality: in which the index specifies structural deconstruction

Untyped Terms (as type information)

• Well-typing proof

Other datatypes:

Beta-Reduction Rules (as input and output terms)

• Termination Proof

Regular Expression Matching (as regular patterns)

• Matching proof
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