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Abstract

The EPSRC-funde@eneric and Indexed Programmipgoject will explore the inter-
action betweenlatatype-generic programmin@GP) — programs parametrized by
the shape of their data — aimtlexed programmin@P) — lightweight dependently-
typed programming, with programs indexed by type-levetespntations of proper-
ties. Integrating these two notions will provide new waysfmgrammers toapture
abstractions

The project builds on insights from our recent work in DGPjchhas investi-
gated bothprogramming technique@ncluding reasoning about generic programs,
and using them to capture design patterns precisely),l@amgluage mechanisms
(particularly lightweight approaches: patterns for siating highly-expressive tech-
niques in familiar but apparently less-expressive langaad-irstly, these lightweight
techniques, which we have been embedding in Haskell'srstiitively expressive
type system, are in fact applicable to even less expressitvenbrepopular main-
stream languagesuch as Java and C#. Secondly, the techniques are moresdplic
than we first thought; in particular, they offer a solutiorthe so-called ‘expression
problem’: safe combination of independent extensionsgalonltiple dimensions.
Thirdly, there is a synergy between DGP and IP: DGP makes IR rappealing,
because the effort of stating properties can be amortized more programs; IP
provides a mechanism for DGP, because the indices can kesespations of data’s
shape.

1 INTRODUCTION

The essence of computer sciencealistraction identifying patterns in code, and
expressing these patterns in machine-readable forms.dpturing these patterns
is often a challenge; programmers are continually stragghith their tools. There
is often a gulf between what they know and what their languagethem state
directly; knowledge that should be abstracted and analgzaabnstead dispersed
and unreachable. Languages evolve by allowing the progeartmsay more about
their programs, in a format that compilers and another lagguools can exploit.

The Generic and Indexed Programmir{GIP) project at Oxford plans to de-
velop mechanisms allowing programmers to staeperties of their programs
and to validate these properties. Specifically, propediesexpressed as types,
and property validation is type checking. The kinds of propge have in mind
areindexes(such as size, shape or state), and the representatiorgenarlized
algebraic datatypes
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2 GENERIC PROGRAMMING

Generic programmings about making programming languages more flexible with-
out compromising safety. Both sides of this equation areomamt, and becoming
more so as we seek to do more and more with computer systeriis,hgboming
ever more dependent on their reliability.

Generic programming usually manifests itself as a kind ohpeetrization. By
abstracting from the differences in what would otherwiseseparate but similar
specific programs, one can make a single unified genericgmognstantiating the
parameter in various ways retrieves the various specifigraros, and ideally some
new ones too. The different interpretations of the term &@programming’ arise
from different notions of what constitutes a ‘parameter’.

The term has a long history, and a corresponding varietytefpnetations. To
some people, it means parametric polymorphism; to somegédins libraries of al-
gorithms and data structures; to some, it means reflectidnraata-programming;
to some, it means polytypism. We favour the latter integdien, but to avoid con-
fusion, for our recent work in the area we coined the moreipg¢erm datatype-
generic programmingDGP).

We are interested particularly in programs parametrizeddigtypes, that is,
by type constructors such as ‘list of’ and ‘tree of’. Typiadamples are pretty
printers and marshallers, which can be defined once andlffar dists, trees, and
S0 on, in a typesafe way. This is not just parametric polymism, which is ab-
straction from the ‘integer’ rather than the ‘list’ in ‘Isof integers’; it is not just
about libraries of algorithms and data structures as in the Etandard Template
Library, which is really just an outworking of parametriclymorphism (together
with some ad-hoc polymorphism in tlsenceptghat cannot — yet [10] — be for-
mally stated but that parameters are required to model);itaaddeally not just
reflection and meta-programming, which are typically dyitaamd not typesafe.

Preceding work on languages to support datatype-geneoigrggmming fo-
cused mostly on special-purpose languages for supportipgrtécular view of
polytypism. For exampleRolyP [16] programs are parametrized by regular func-
tors, andGeneric Haskel(GH) [13] programs by sums of products. Lammel and
Peyton JonesScrap your BoilerplatgSyB) technique [18] takes a different ap-
proach, relying on a type-safe cast operator and a small euoflgeneric combi-
nators, and providing nominal rather than structural pyglgm.

More recently, soméightweightapproaches to generic programming have be-
gun to emerge. Hinze and Cheney [4] were among the first taogep technique
requiring only Haskell98 plus existential types, a verychgiktension supported by
most Haskell compilers. Hinze and Cheney’s work evolved imhat they called
first-class phantom typg&1]: type parameters that are used to record properties of
data rather than elements of data structures. Similar ideas arisen in a number
of neighbouring fields, under the nangsarded recursive datatypé42], indexed
type familieg44], inductive familied6], and equality-qualified typef32], among
others. These developments inspired the regemieralized algebraic datatype
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(GADT) [30] extension to the Glasgow Haskell Compiler (GKH@hich we dis-
cuss further in Section 3.

The lightweight approaches to generic programming havesstibat existing
features of current programming languages — in partictyg@e classes, existen-
tial types and generalized algebraic datatypes — can betadmdld libraries for
generic programming. Special-purpose languages or estenare not needed;
these general-purpose technigues are sufficient. Thigysappealing; fewer spe-
cialized tools means less chance for fragmentation in th®ws programming
language communities: theorists, implementors, and progrers.

3 INDEXED PROGRAMMING

Programming languages are progressively allowing therpromer to express
more precise properties of their programs, in a way that denspcan exploit for
safety and for efficiency. In particular, recent developtaatiow the programmer
to specify properties about tl#hape of datgdsuch as the dimensions of a matrix,
or the balancing of a tree) and te&ate of componen{such as safety or security
properties of an agent in a protocol), in terms of richer typstems.

Developments of this kind includproof-carrying code[26], Programatica’s
certificatesof validation [37], nested datatypeR], indexed type$43], and par-
ticularly generalized algebraic datatypg30]. What they all have in common is
to lift properties of programs that would otherwise be alglg only dynamically,
if at all, and make them statically checkable and analysalleé sense, they are
lightweight approaches to dependently-typed programpmaiging to reap some
of the benefits without incurring all of the costs (for examph difficulty of type-
checking, and accessibility of programming). Even strdiggtvard test-driven de-
velopment, as embodied in tools such as QuickCheck and ,Jemiburages the
machine-readable statement of code properties.

GADTs allow the packing of syntactic type equality consttaiinto individual
data constructors. Pattern matching can exploit these dgpstraints, allowing
more refined type judgements. The following example show&BTguarantee-
ing well-typing of well-formed expressions.

data Exp awhere
Zero:: Exp Int
Succ: Exp Int — Exp Int
Pair :: Exp b— Exp c— Exp(b,c)
In contrast to normal algebraic data types, the result tyfpgaoh constructor of
Expis refined: for example, constructderoyields Exp Intrather tharExp a An
evaluator forExpcan be defined as follows.
eval::Expa— a
eval Zero =0
eval(Succe =1-+evale
eval(Pair xy) = (eval xeval y)
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Note that in the first clause, patteferohas typeExp Int matching this against the
required argument typExp ainduces a constraird = Int. Under this constraint,
the typelnt of the right-hand side matches the required tgp& he other clauses
are type-checked similarly.

This feature opens up a brave new world of programming withperties.
However, we are only just starting to explore this new woddd currently try-
ing to do so using old-world tools. GHC now supports GADTSs|[3Qit they are
not in the Haskell98 standard or any other popular impleatant of the language;
they are currently under consideration for inclusion in kédl§ the next version of
the Haskell standard. There are promising signs that GADd fiollow generics
into mainstream languages such as Java and C# [17]. Now ignibao explore
the design space, and see what works and what does not. Tthatg®al of the
GIP project.

4 APPLICATIONSOF INDEXED PROGRAMMING

Something like the ‘typed expressions’ example in Sectimused for motivation
in most papers about GADTS, but IP is much more widely applethan this. To
give some idea of the breadth of applications, we preserngrasentative selection
here. Most of these are already well-known in the litergtimg the Mini Nim
example in Section 4.4 is new.

A more comprehensive catalogue of IP applications can befguAppendix A.
Some of the examples can be implemented in a lightweight eranrexisting lan-
guages, such as Haskell with GADTSs; others seem to requaeidrelanguage
machinery. Expanding and investigating this catalogué belour first strand of
work on the GIP project; this will provide us with a benchmatlkte on which to
validate the other results of the project.

41 Enumerations

The simplest class of index is an enumeration. For exameteplack treesare
binary trees in which (among other constraints) nodes d@l&d with a colour,
red or black, and red nodes have black children. That prpment be captured
by indexing by colour, and constraining the tree constmscteery like the typed
expression example above.

dataR

dataB

data RBTree a avhere
Empty:: RBTreeaB
Red ::RBTreeaB— a— RBTreeaB— RBTreeaR
Black ::RBTree ac— a— RBTree at— RBTree a B
(This presentation omits the height constraint, which useseric indexes as de-
scribed in Section 4.2 below.)
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As a more interesting example, transitions in a state graphbe indexed by
their end states, enforcing safety properties in a protoEol example, consider
theketchup problema ketchup bottle may be open or closed, but it is safe to shake
the bottle only when it is closed.

dataO
data C close

data Edge § s, where -@

Open ::Edge O C open \_/
Close ::Edge C O shake
Shake::Edge C C

dataPath § s, where
Empty::Paths s
PCons: Edge st— Pathtu— Pathsu
scenaria: Path O O
scenario= PCons OperjPCons ShakéPCons Close Emp}y
Here, the datatype® and C represent the states ‘open’ and ‘closed’. The type
Edgeof state transitions is indexed by states, arRRathis well-typed if and only
if its sequence of transitions is safe. This example is Foius, but the principle
applies to more serious problems, such as resource locking.

4.2 Numbers

Natural numbers are probably the most widely used index. yNaportant prop-
erties of datatypes, such as the black-height of a red-litegkor the length of a
vector, can be captured by natural numbers.

dataZ

dataSn

data Vector a nwhere
VNIl Vector aZ
VCons:a— Vector a n— Vector a(S n)
Natural numbers are encoded here at the type level; for eeatiig number 3 is
represented by the tyf#®(S (S 2)). The datatypé/ector a nis parametrized by its
element typea and indexed by its size. Now we can express the fact that zipping
two vectors of the same length yields a result also of thajtlerand make it a type
error to attempt to zip vectors of different lengths.
vzip:: Vector a n— Vector b n—  Vector(a,b) n
vzip VNIl VNIl = VNIl
vzip (VCons x x§ (VConsy ys= VCons(x,y) (vzip XS y$
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43 Types

Type representations serving as directives to datatypergefunctions have been
well-studied in the literature [4, 11]. For example, comesid little language of
sum-of-product datatypes, built from integers with thédiwing operations:
data Unit = Unit
dataa+b=Inla|Inrb
dataaxb=axb
Members of this family can be represented by terms of fge@ but by using
indexing, the value of the representation can be reflectédeatype level — the
typet is represented by a (in fact, the unique) term of tigep t
data Rep awhere
RI ::RepInt
RU:: Rep Unit
RS::Rep a— Rep b— Rep(a+b)
RP::Rep a— Rep b— Rep(ax b)
Now a datatype-generic equality function can traverse ype tepresentation to
direct the comparison, without sacrificing type safety.

rEq  Rept—t—t— Bool
rEqQRIt to =t1=1
rEqQRU ¢ to = case (tg,tp) of

(Unit, Unit) — True
rEq (RSrarb t; t; = case (g, tp) of
(Inlag,Inlay) —rEqraa a
(Inrbg,Inrby) —rEqrbby by
_ — False
rEq (RP rarb) t; t; = case (g, tp) of
(al x by, a x bz) —rEqraa; ax ATEqrb by by

4.4 Datastructures

Indexing by natural numbers or by representations of anitaffamily of types
involve recursive data structures at the type level. Anotbeurring example of
this involves indexing a value with a proof of some propertythat value. For
example, a recent proposal [1] showed how to capture plgdise lambda terms
normalizable under call-by-value, via indexing with theresponding sequence
of reductions. Space restrictions preclude the presentati that example, but
instead here is a simpler example of indexing by a proof w#ne
The game oMini Nim involves a pile of matchsticks. Players take turns to

remove either one match or two, and the player who removeashenatch wins.
The typePosition n ris indexed by the numben of matches, and the optimal
resultr for the next player. Clearly, being faced with an empty pitay lose. Piles
with more matches are winning, if they can be turned intoniggiles by taking
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one match or two; and conversely, if taking one match or twih lyceld winning
positions, you lose.

data Win

dataLose

data Position n rwhere

Empty:: Position Z Lose

Takel:: Position n Lose — Position(S n Win

Take2:: Position n Lose — Position(S(S n) Win

Fail ::Position n Win— Position(S n Win — Position(S(S n) Lose
Note that the proof witness in this case is in fact not a lirssquence, as in the
terminating lambda terms example, but rather tree-shaggeost proofs are. Of
course, a matchstick game is another rather frivolous elgnijut such proof-
carrying code has many more serious applications [26].

5 PROJECT STRANDS

This section outlines the six strands of work that make upt project.

5.1 Capturing properties

Our previous work on th®atatype-Generic Programmingroject has led us to
the realization that GADTs are a very useful tool in the genprogrammer’s
toolkit. In particular, they allow the expression and stathecking of otherwise-
inexpressible properties of programs, such as the shagaadd the state of com-
ponents. But they are a very recent innovation, and as yetiareell-supported
by programming languages or well-understood by prograramniine GIP project
will investigate these mechanisms for lightweight indgxat types by values. We
will start by carrying out some initial case studies on pemgming with properties.

Although GADTSs are a neat trick, programming with them catise can be
quite hard work. Essentially, one has to resort to provimmpthms in the language
of types, assisting the type checker in verifying the stategerties. For example,
it is a simple matter using GADTSs to represent a type of vacitodexed by their
length, and to express the constraint on ‘zip’ that its twguarents and its result
should all have the same length. However, to express thdraorson indexing
that the position should be less than the length requiregrtied of this inequality;
and to express precisely the shape of the ‘triangular’ veafteectors returned by
a ‘prefixes’ function requires a new type of length-indexedtaers with position-
indexed elements.

In this strand of the project, we will carry out a humber of&asudies in
programming with GADTSs, expanding on those presented ini@ed. In doing
so, we aim to compare the ergonomics of programming using GARIth other
competing approaches, such as nested datatypes [2], Depdvid [43], Qmega
[32], and Epigram [22]. We will use this experience to infoonr development of
notations for indexed programming.
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One of the questions of notation that we wish to explore isrélationship
between GHC's current ‘untyped’ (or rathemkinded approach to type indices,
and theextensible kindsn Sheard'sQmega. With the former, using Haskell's
syntax for kind declarations, length-indexed vectors apFessed as follows:

dataZ
dataSn
data Vector:: x — x — x where
VNIl Vectora Z

VCons:a— Vector a n— Vector a(S n
Here, the invariant that the second type parametafector must be a type-level
natural is not expressed explicitly, but is implicit in thect that there is no way
to construct a/ectorof any other type. In contrast, extensible kinds allow one to
declare the kind of that second parameter:
kind Nat=Z | S Nat

data Vector:: x — Nat— * where

VNIl VectoraZ

VCons:a— Vector a n— Vector a(S n)
This introduces a new closed kirdat with two members, a typ& and a type
constructorS, and mandates their use in the second type parametecudr. How
important is this extra expressivity? That is, how likelydamow costly are kind
errors without it, and how much trouble is it to introduce ®nly time and case
studies can help us answer this question.

5.2 Genericsfor GADTs

Most approaches to DGP assume a view of datatypes; for eraf@pheric Haskell
works for sum-of-products algebraic datatypes. Howevamnegalizing to GADTs
departs from this framework; generic programming on GADdwuires some al-
ternative view of datatypes. This question is importantgose programming with
GADTs is substantially trickier than programming with reguADTSs, and generic
programming is consequently even more attractive a proposi

In recent work [15], Hinze, Loh and Oliveira demonstratiedttthe Scrap your
Boilerplate approach to generic programming can be impigateusing the so-
calledspine viewof datatypes. Under this view, generic functions can be ddfioy
induction over the structure of the spine, in much the samethat generic func-
tions in GH can be defined by induction over the sum-of-prtgistructure. One
disadvantage of the SyB approach is that generic functioméiraited togeneric
consumerssuch as pretty printers. However, an advantage of SyB okkis@hat
it can also handle GADTSs.

Expanding on this work, Hinze and Loh show [14] tigaheric producersuch
as parsers can be defined using the so-caijlpd-spine view They also propose
a lifted-spine viewfor capturing datatype-generic functions suchgeseric map
which cannot be defined using unlifted spines. However, dpgroach requires
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two more views, and two more type representations. Furtbieit is limited
to unary type constructors; supporting type constructbdifferent arities would
involve yet more views and representations, and furthelichiton.

Recently, we have been looking at McBride and Paterson'& \{&ir] on ap-
plicative functors, a generalization of monads. We haventes! that applicative
functors are closely connected with the spine view. We atuje that applicative
functors generalize spine views, and so can be used to dedimerig functions
on GADTSs. One of the benefits of the extra generality is thatieative functors
naturally support datatype-generic functions suclmag Unlike Hinze and Loh’s
proposal, this means that we do not incur any duplicationtroicgire, or even
extensions to current compilers. Furthermore, applieatiinctors have a solid
theoretical foundation in terms of so-callsetfong lax monoidal functorsn con-
trast to the somewhat ad-hoc nature of SyB, and we expecthtisawill provide a
cleaner algebra for reasoning about generic programs [31].

We are already collecting some results from this line ofaes® a recent pa-
per [9] uses applicative functors to model and reason alb@UrERATOR pattern.
Of course, iterators are just a very specific case of geneoigramming, but this
is just a small start.

5.3 Extensible generic functions

One view of generic programming is as defining type-indexexttions. The ad-
vantage ofstructural approaches to generic programming, such as the GH sum-
of-products approach, is that it allows generic functiambé defined once for all
types, even those yet to be conceived.

This works nicely in most situations, but not all. For exaey@ library for
ordered sets might be built on top of a datatype of balancearpitrees. Generic
programming allows the set library to exploit generic déifams of operations such
as pretty printing and equality. But these generic defingtiare not appropriate in
this specific case, since both operations should in factr@tie tree structure. We
need some means of overriding generic behaviour withowregeting modularity;
this is not possible in most of the current approaches torgepegramming.

In contrast,nominal approaches to generic programming, such as Haskell's
type classes, stipulate a separate implementation of aitgesed function for
each type index of interest; structurally similar but noatiy different types have
unrelated implementations. This is more flexible — custadigretty-printing and
equality functions can easily be provided for sets — butteasable: it throws the
baby of genericity out with the bathwater of inflexibility.

The challenge we plan to address in this strand is suppoeifensible generic
functions combining the benefits of the structural and nominal apgres. Generic
functions are given default definitions following the stire of the type param-
eter, but this default can be overridden locally for speaifaaned types. Ex-
tensible generic functions can be seen as a variant of \Wadbgpression prob-
lem[41, 38] — the problem of supporting simultaneous indepahé&tension of
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datatypes and functions. The ability to support open daé&styand open functions
is the key; but in contrast to Hinze and Loh’s approach [¥8],aim to preserve
static safety: applying a function to a variant for whichsitnot defined is a static
type error. Without such extensibility, generic programgnis actually very limit-
ing in practical use. This is one of the problems with Generics for the Masses
(GM) [12] andSyB Reloadefil5] approaches. We believe we know how to remove
these limitations.

Inspired by two datatype encodings in the lambda calcuhesChurch encod-
ing [3] and theParigot encodind29], Hinze's GM approach [12] uses a type class
Generig with the sum-of-products encoding of datatypes as claghads. An
instance ofGenericdefines a generic function, by giving cases for sums, preduct
and so on. Another optional class can be used as a dispatciméeit the right in-
stantiation of the generic function automatically. Howewecause datatypes’ en-
codings are class methods, this approach shares the ionittnon-extensibility
of generic programming.

The Generics as a Librarylesign pattern [28] presents a variation of the GM
technique that allows the dispatching class to take inistoms from classes other
thanGeneric Thus, extensions defined in additional classes can be as#sfine
new cases with user-specified behaviour. Viewed from thepgetive of a datatype
encoding, this pattern can be seen as a form of open datatjitespen functions,
thereby solving the problem of extensibility.

Just as functional languages provide datatypes direetllyer than forcing the
programmer to use encodings, we will explore the possgthilitadding primitive
language support for this design pattern. This would allbes iser to use the
pattern in an intuitive way, rather than a having to undestn intricate encoding.

The firstissue that needs to be addressed is the integrdtibe extra language
construct into a Haskell-like language. We will investigttie possibility of having
evidence translation, similar to that of type classes, maltype erasure. An
approach similar to type classes’ also gives us staticysafed excellent support
for separate compilation. We also expect to lift some of imitdtions noticed in
[28]: only top-level pattern matching; no dispatching onltiple type arguments;
awkward encoding of mutually recursive functions. The usg Barigot encoding
instead of a Church encoding may help; there are also soreedting ideas in
EML [25] and AL [39] worth exploring.

54 Design patternsasalibrary

Recent versions of Java and C# provide support for parammetlymorphism.
When combined with object-oriented subtyping (what Cdrdeld Wegner call
inclusion polymorphisin this makes the type systems of these two languages re-
markably powerful. It turns out that this expressive povgeslifficient to imple-
ment lightweight encodings of DGP in those languages.

Kennedy and Russo [17] showed that a mild extension to the ¢gpstraint
mechanisms of these recent versions of Java and C# allowsnacfoGADTS to
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be encoded. They presented a variety of compelling examgleh as strongly
typed evaluators, typed LR parsing and typed represengativen without their
extension, it is possible to encode some of the GADT progranre type-safe
manner; all the others can be encoded by resorting to casting

In this strand, we will apply our recent work on lightweightcedings of
generic programming [27, 28, 15] to mainstream objectriei@ languages such
as Java and C#, and experimental ones such as O’'Caml and Sodlantegrate
this with our work [7, 8, 9] on capturing design patterns aghbr-order datatype-
generic programs.

55 Typeclassesand GADTs

Lightweight indexed programming, as provided by GADTs ahe&d'sQmega
[32], can be seen as ‘datatypes plus constraints’. HasKkgfle classes, originally
introduced to make ad-hoc polymorphism more disciplindgl,[dre also widely
used as a way of imposing constraints on types. Despite the sotable similar-
ities, GADTs and type classes are mostly studied in isotatio

The design oQmega does not support type classes but, inspired by them, it
contains a notion of propositions for implicitly propageticonstraints using the
type system [33]. These constraints usually representfprafoproperties, but
they are generally boilerplate code because they only servétnesses. Since the
proof objects are elements sihgleton typesa special case of GADTS, they can be
inferred automatically from the types. For example, we daricode a proposition
for proofs that one natural number is at most anoth€2nmega as follows:

prop LE::Nat— Nat— x where
Base :: LEZn
Step “LEnm—LE(Sn(Sm
This proposition can be used to create a pair in which thedleshent is at most
the second.
lePair ::LE ab=a—b— (a,b)
lePair x y= (X,y)
In this case, the proof is propagated implicitly. This caralgig help in manag-
ing invariants, since type inference will enforce the coists. Furthermore, it
becomes easier to erase proofs at runtime.

GADTSs and type classes are closely related: they allow favhdosed and
open type-indexed functions, respectively. Moreoverppsitions (which are just
special cases of GADTSs) share much of the infrastructurgp¥ tlasses. Inter-
estingly, in current implementations of GHC, type classa$ @ADTs have quite
orthogonal implementations, and there are even some pnshié integration (al-
though Sulzmann and Peyton Jones’s recent work on Syster83;36] may help
with this).

We believe that the investigation of GADTs and type classgsther has con-
siderable merits. In this strand, we will investigate thenbmation from three
angles. Firstly, neither GADTSs nor type classes subsunesttier in term of ex-
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pressiveness. However, sometimes it is possible to enauelevith the other. We
will study the advantages and disadvantages of both appesa@and capture the
results as a pattern language for programming with witrgesse

Secondly, the combined power of GADTs and type classes nwdupe supe-
rior programs to those available using just one of thesenigales in isolation.
When programming with GADTs to capture shape invariants,itaess which
specifies some property may be passed as an additional garame function.
This is very similar to the case of type representations mege programming.
It is well known that type classes can serve as dispatchegefrepresentations
[27]. We will investigate to what extent type classes canvesas dispatchers for
witnesses more generally.

Thirdly, both GADTs and type classes specify relations agntypes. The
functional dependenctype refinement ability of type classes which refines the
relations into functions has also proven to be useful inrgjahape invariants. We
will investigate whether GADTSs can be provided with sim#sttensions.

5.6 Impedencetransformers

Generic metaprogramming frameworks like DrIFT [23] suffem an impedence
mismatch, because they handle untyped and unstructureceXfmple, purely
textual) representations of object programs. It is diffi¢al statically check the
metaprogram, once and for all, in particular to guarantepgties of the gener-
ated object programs. If it is a staged metaprogram, oneuwathe first stage and
statically check the object program generated, beforeutixegit in the second
stage; but one must do this again and again for each run of ¢tapnogram. If
the metaprogram is unstaged (as for example is gieracro language), it is not
possible to obtain the intermediate object program at all, @ne must resort to
dynamically checking it at run-time.

Some of these problems are alleviated if the metaprogramatage uses some
abstract syntactic rather than purely textual representéas in Template Haskell
[34], for example), since it is then impossible to generasgrdactically incorrect
object program; but still, the abstract syntax typicallymet capture precisely the
type constraints of the object program, and so the probldmsgntactically correct
but ill-typed object programs persist.

Sheard [32] calls this semantic gapbetween the properties that the program-
mer knows about the object program to be generated, and thasthe language
lets them state. GADTSs allow more of those properties to Ipeessed and stati-
cally checked, and hence work towards narrowing the semgap.

Similar issues of impedence mismatch arise in the kinds dti+tier program-
ming required for current enterprise application architexs. These typically in-
volve something like HTML and JavaScript for the presentatayer, Java or C#
for the logic layer, and SQL or XQuery for the data layer. @uatrapproaches
mandate different languages for the different layers, andiay of statically guar-
anteeing that (for example) the data entered into a formtoeved from a database
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is of the type expected by the business logic. This causesisant problems for
enterprise applications [20], and something must be dooetab

Wadler [5] is working onLinks, a single wide-spectrum language supporting
distribution of appropriate tasks to the different layeysttanslation; the impe-
dence mismatch between different notations is avoided faremce to a single
integrated notation. Meijer [24] and others at Microso# arorking onLINQ, a
set of extensions to the .Net framework with the same godlrdiher than intro-
ducing a new wide-spectrum language, they are extendingh€#anguage for the
logic layer, with constructs to match the requirements efgtesentation and data
layers.

We conjecture that the kind of properties expressible witibEs are sufficient
to capture the additional information required to remoweithpedence mismatch.
In this strand, we intend to carry out a pilot study to test thipothesis. Of course,
a complete solution to the problem would be beyond the schiescsmall project;
but if the pilot exercise is successful, we intend to folldwp separately.

6 CONCLUSION

The project has been funded by the UK Engineering and PHySaances Re-
search Council for 42 months, starting in November 2006pstimg a postdoc-
toral researcher (Oliveira), working mainly on genericsd a doctoral student
(Wang), concentrating on linguistic mechanisms for indgxiThis paper sets out
our initial vision for the project; we welcome interest amderaction from the
wider community.
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A CATALOGUE OF INDEXED PROGRAMMING EXAMPLES

The following is a collection of the most representativeragles of indexed pro-
gramming that we have found in the literature. The exampleslassified on the
first level by the type of indices; on the second level by thatgpes and functions
being indexed; and on the third level by examples of usage.

Enumerations:

Red-black trees
State transitions
Units and dimensions
SQL injection

Object ownership

Natural numbers:

Vectors (by size)

e Constant sizegéverse safeHeadl

e Arithmetic on sizesdppend

e Bounded sizes (list with a fixed maximum size)
Vectors (by element values)

¢ Inequality on values (insertion into sorted list)
Trees (by height)

e Constant arithmetidifsert)

e Variable arithmeticifherge
Matrixes (by dimension)

Typerepresentations:

Generic Functions (as directives)

e Print descriptors: in which the index specifies which instanf
printf this is

e Equality: in which the index specifies structural decorwton
Untyped Terms (as type information)
e Well-typing proof

Other datatypes:

Beta-Reduction Rules (as input and output terms)
e Termination Proof

Regular Expression Matching (as regular patterns)
e Matching proof
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