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Abstract

We present two applications to AI of recently intro-
duced high level quantum structures. These structures
are the categorical quantum logic of (Abramsky & Co-
ecke 2004) and the quantale quantum logic of (Co-
ecke, Moore, & Stubbe 2001). Firstly, we show how
the diagrammatic toolkit of categorical quantum logic,
when restricted to its pregroup fragment (Lambek 1999;
2001), simplifies analysis of sentence structure of dif-
ferent languages. Moreover, the quantitative values that
arise in these diagrams signify different degrees of com-
plexity of sentences, which turn out to vary for differ-
ent languages. Secondly, we show how expanding the
quantale quantum logic with epistemic modalities pro-
vides a powerful system to reason about information up-
date in multi-agent systems. Finally, we indicate how
the above two applications to non-quantum domains can
themselves be ‘re-quantized’, providing applications to
quantum informatics of distributed systems.

Key words: Computational linguistics, Information update
in multi-agent systems, High level quantum structures.

Introduction
Recently there have been intriguing results and develop-
ments in AI related fields that use methods originating in
the study of quantum mechanics. The use of Hilbert space
concepts such as Hermitian operators, trace and (Birkhoff
& von Neumann 1936)-style quantum logics ininformation
retrievalcan be found in (van Rijsbergen 2004). In this con-
text, the main benefit of the quantum mechanical structure
is that it combines logic with vector space models and at
the same time relaxes the distributive constraints of classical
logic. Combining logical and quantitative methods turns out
to be of importance innatural language processing(Gazdar
1996) where similar quantum mechanical concepts prove to
be useful (Widdows 2004). A recent proposal in (Clark &
Pulman 2006) makes particular use of the Hilbert space ten-
sor product, which is the quantum mechanical description
of compound quantum systems. The existence of a confer-
ence which focusses on applications of quantum mechanical
methods in AI, at which this work will be presented, indi-
cates the emergence of a new scientific community.
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In this paper we present two ‘non-quantum’ applications
of recently developed logics that govern behavior of quan-
tum mechanisms. These applications are in the fields of:

• computational linguistics (Lambek 1999; 2001)

• information-update in multi-agent systems (Baltag, Co-
ecke, & Sadrzadeh 2004; Sadrzadeh 2006a)

Moreover, while these applications live outside the quantum
domain, we strongly feel that they ‘re-applied’ within the
field of quantum informatics.

The next section, in which we discuss the application
to computational linguistics, makes use of the diagram-
matic toolkit developed for the categorical quantum logic
of (Abramsky & Coecke 2004). This logic, in contrast to
other quantum logics, was developed to capture compound
quantum systems. Hence it axiomatises the Hilbert space
tensor product. Initially we only use the ‘purely qualitative’
pregroup fragment of this logic for the analysis of sentences
in natural languages. Then we introduce ‘quantities’ which
are meaningful when comparing different languages.

In the third section, we make use of the quantale quantum
logic of (Coecke, Moore, & Stubbe 2001) to reason about
information update. For this purpose, we need to enrich
the quantale setting with operators whose adjoints stand for
knowledge of agents. The dynamics is encodes in the same
way as in the quantum case, that is as the weakest precondi-
tion of actions. The resulting family of adjunctions provide
us with a strong deductive power: we need neither distribu-
tivity nor negation to reason about the classical scenariosof
multi-agent systems.

In the fourth section, we discuss an interesting parallel be-
tween the development of mathematical models in computa-
tional linguistics and high level quantum structures. Finally,
in the last section we show how our information update set-
ting can be used to model quantum protocols by encoding
and reasoning about a simplified version of Ekert’91 proto-
col (Ekert 1991). We end by discussing how the decision
procedure of pregroups is useful in automating verification
and derivation of quantum protocols.

Pregroup analysis of sentence structure
The first application is syntactical analysis of human lan-
guages using pregroups, a recent development of Lam-
bek (Lambek 1999; 2001). Pregroups are replacements for



Lambek Calculus (Lambek 1958), widely used as type cate-
gorial grammars (Moortgat 1997) in computational linguis-
tics. They have been applied to many languages, for ex-
ample English (Lambek 2004), French (Bargelli & Lambek
2001b), Arabic (Bargelli & Lambek 2001a), Italian (Casa-
dio & Lambek 2001), and recently by the author to Per-
sian (Sadrzadeh 2006b). One advantage of this system, over
type categorial grammars, is that the analysis is done linearly
and in one dimension, rather than in ’page filling trees’.

Similar to type categorial grammars, the analysis starts by
fixing some basic linguistic types and partial orders between
them. We then freely generate a pregroup1 of these types
denoted as

(P,≤, ·, (−)l, (−)r)

This is a partially ordered monoid where each type has a left
and a right adjoint. That is, we have the following inequali-
ties for a typep ∈ P and its adjointspl, pr ∈ P

pl · p ≤ 1 ≤ p · pl, p · pr ≤ 1 ≤ pr · p

The unit of juxtaposition, that is 1, is the empty type, which
is self adjoint. So forp ∈ P we have

1 · p = p · 1 = p, 1l = 1r = 1

Examples of the starting types are the following

• π for pronoun,

• s for declarative statement,

• q for yes-no question,

• i for infinitive of the verb,

• o for direct object.

For when the person of the pronoun and tense of the verb
matters, we also haveπj , sk, qk ∈ P for j’th person pro-
noun andk’th tense sentence and question. We require the
following partial orders

πj ≤ π sk ≤ s qk ≤ q

The adjoints and juxtapositions of these types are used to
form the compound types. One assigns a type to each word
in a sentence and then uses the monoid multiplication for
juxtaposition of these types. The juxtaposition of adjacent
adjoint types causes reduction to 1. This process is repeated
until no more reduction is possible and a type is returned
as the main type of the juxtaposition. If this type is the
desired type (e.g.s for statement andq for question), the
juxtaposition is a grammatical sentence. It has been shown
in (Buszkowski 2001) that this procedure is decidable. Thus
we obtain a decision procedure to determine if a given sen-
tence of a language is grammatical or not.

For simplicity, we use an arrow→ for ≤ and drop the·
between juxtaposed types. For the sample sentence ’He likes
her’, we have the following type assignment

He likes her
π3 (πrsol) o

1Instead of generating a residuated partially ordered monoid for
a type categorial grammar.

Sinceπ3 → π and juxtaposition is order preserving, we ob-
tain the following reduction

π3(π
rsol)o→ π(πrsol)o

Now byππr → 1 andolo→ 1, we obtain

π(πrsol)o→ 1s1 = s

The desired reduction for the whole sentence is as follows

π(πrsol)o→ s

The reduction can be done diagrammatically by drawing a
vertical line for each type and connecting the adjoint type
that cancel each other by a horizontal line. For example, for
the above reduction we have the following diagram

π (πr s ol) o

This diagram only has one vertical line of types, so the
sentence is of the type statement and grammatical. A non-
grammatical example would be ’He likes’ with the following
diagram

π (πr s ol)

Here we have two vertical lines and thus the phrase is of
type sol and not a sentence. As another example consider
the analysis of the yes-no question ’Does he like her?’. We
assign the compound type(iol) to the infinitive of the tran-
sitive verb and(qilπl) to the question word ’does’ and get
the following reduction

Does he like her? → question
(qilπl) π3 (iol) o → q

In these examples there are no ambiguities, but in more com-
plex examples the diagram is of essential help in demon-
strating the order of reductions. For more on pregroups
see (Lambek 1999; 2001).

Comparing different languages. The same procedure is
followed for analyzing the sentence structure of different
languages. The reduction diagrams can be used for compar-
ing their sentence structures. Based on (Sadrzadeh 2006b),
we fix a sample sentence and reduce it in English, French,
Arabic, Hebrew, Hindi, and Persian. The interesting obser-
vation is that languages that have the same roots follow the
same reduction patterns.

Consider our previously fixed types and the sentence ’he
bought a book from the bookshop’. Leaving out the person,
tense, and details of determinate nouns, we get the following
reduction for our sample sentence in English

He bought a book from the bookshop.
π (πrswlol) o (wnl) n

A similar sentence in French has exactly the same reduction

Il a acheté un livre dans la librairie.
π (πrswlol) o wnl n



Persian has a very different pattern

he the book from bookshop bought
u ketab ra az ketabkhaneh kharid
π n (nro) (wnl) n (wrorπrs)

For the same sentence in Arabic the reduction is as follows
bought the book from the shop
Yashtari ketaban men alsogh.
(swl ol) o wnl n

It turns out that the reduction patterns of Persian and Hindi
are similar, where as Arabic is closer to Hebrew2. The
reduction pattern of English and French sentences is

Compare this to the reduction pattern of the Persian and
Hindi sentences

Arabic and Hebrew have yet a different reduction pattern

Degree of nesting. We introduce three numbers for the re-
duction pattern of a sentence. The first one is the number
of times a map of the sortppr → 1 or plp → 1 is ap-
plied. It can easily be determined by counting the horizontal
lines of the reduction diagram. For example this number for
the above English and French sentences is 4, for the Persian
sentence it is 5. The second number is less than or equal to
the first one and stands for the maximum of the number of
nestings of these maps. For instance, this number for our
English, French, Arabic and Hebrew sample sentences is 2,
and for Persian it ismax{2, 4} = 4. These degrees pro-
vide us a with a quantitative way of measuring the complex-
ity of sentences and are connected to thechunks of infor-
mationdiscussed in (Lambek 2004), that is, the number of
unprocessed tokens while parsing a sentence. For a discus-
sion about these chunks in English sentences, see (Lambek
2004). In my analysis of Persian grammar, I analyzed one
of the Rubayyat of Omar Khayyam with a degree of nesting
of 5. The most complicated sentence I could produce was
a compound one with multiple subjects and objects and a
compound verb; this had a degree of nesting of 9.

2No publication on pregroup analysis has been reported for
Hindi and Hebrew. The similarity is deduced from working out
examples.

Information-update in multi-agent systems.
The second application is modeling information flow in in-
teractive multi agent systems where agents communicate
and as a result their information gets updated. We present
the model developed in (Baltag, Coecke, & Sadrzadeh 2004;
Sadrzadeh 2006a), which is the first algebraic semantics
in the area, and is moreover equipped with a complete se-
quent calculus. Our model is more general by being non-
Boolean and non-distributive, and subsumes the usual rela-
tional models (Faginet al. 1995; Baltag, Moss, & Solecki
1999) . The reasoning power is compensated by a logic
of actions and the epistemic and dynamic modalities that
arise via adjunction. This simple setting solves complicated
multi-agent scenarios that involve updates by higher order
reflective announcements, such as the muddy children puz-
zle. The proofs of these scenarios are much simpler than in
the relational Kripke structure models of knowledge.

Our mathematical structure is a pair(M,Q) consisting
of a quantale(Q,

∨

, •, 1) of communication actions and its
right module(M,

∨

) of propositions. The join and multi-
plication of the quantale stand for non-deterministic choice
and sequential composition of actions. The join in the mod-
ule stands for logical disjunction. Both are endowed with a
family of join preserving endomorphismsfA = (fM

A , fQ
A ),

indexed over the set of agentsA ∈ A. Each such map en-
codes appearance of an agent about actionsfQ

A and proposi-
tionsfM

A . For the latter we have

fM
A (m) stands for all the propositions that agentA con-

siders possible wheneverm holds in the ‘real world’.

Two extreme cases are

• fM
A (m) = ⊤ corresponding to absence of any informa-

tion.

• fM
A (m) = m corresponding to correct information.

We can also model incorrect information, e.g. whenm ≤
m′ but fA(m) � m′ or the other way around. If for
m,m′ ∈ M we havefM

A (m) < fM
A (m′) then agentA pos-

sesses strictly more information onm than onm′. A similar
interpretation holds for the actions.

fQ
A (q) stands for all the actions that agentA considers

as happening, when in reality actionq is happening.

The appearance maps allow to accommodate misinforma-
tion actions such as the following

• Information hiding or encryption byq < fQ
A (q),

• Lying, cheating and deceit byq 6≤ fQ
A (q).

The right Galois adjoints to these maps(2M
A ,2Q

A) encode
knowledge or information of agents, the adjunction is de-
noted as

(fM
A , fQ

A ) ⊣ (2M
A ,2Q

A)

for which we have the following

fM
A (m) ≤ m′ ↔ m ≤ 2

M
A m′

fQ
A (q) ≤ q′ ↔ q ≤ 2

Q
Aq

′



From this it follows that the box modality is monotone and
preserves all meets. That is, we have the following for2

M
A

and similar ones for2Q
A.

m ≤ m′ implies 2
M
A m ≤ 2

M
A m′

2
M
A

∧

i mi =
∧

i 2
M
A mi

2
M
A ⊤ = ⊤

These are the properties of a normal modality (Faginet al.
1995) and thus we interpret2A as ourknowledge modality
with the following reading

• 2
M
A m: agentA knows/believes that propositionm is true.

• 2
Q
Aq: agentA knows/believes that actionq is happening.

This covers both knowledge and belief: in contexts where no
wrong belief is allowed, we read it as knowledge orjustified
true belief, and otherwise, asjustified belief.

Information update is modeled by the action of quantale
on the module

− · − : M ×Q→M

for which we have join preservation on both arguments and
the following axioms

m · 1 = m

(m · q1) · q2 = m · (q1 • q2)

The right Galois adjoint to update is[q]m, for which we have

m · q ≤ m′ ↔ m ≤ [q]m′

This stands for thedynamic modality of PDL (Harel,
Kozen, & Tiuryn 2000) and theweakest precondition of
Hoare Logic (Hoare & Jifeng 1987).

The combination of epistemic and dynamic modalities is
used to modellearningof agents after actions, by deriving
propositions of the following form

[q]2Am

We read this as after actionq agentA knows that proposi-
tionm holds. In order to derive such propositions from our
assumptions, we need the followingsuspicioninequalities

1 ≤ fQ
A (1)

fQ
A (q • q′) ≤ fQ

A (q) • fQ
A (q′)

fM
A (m · q) ≤ fM

A (m) · fQ
A (q)

The first inequality enables us to accommodate suspicions:
even when nothing is happening one could still suspect that
something hidden might be happening, for example we can
havefQ

A (1) = 1 ∨ q. Suspicions are important for applica-
tions to protocol security, see ch. 5 of (Sadrzadeh 2006a)for
details. The other two inequalities ask for a rationality con-
dition on appearance of sequential composition and update.
Their laxity is imposed by the first inequality as follows

fQ
A (q • 1) = fQ

A (q) = fQ
A (q) • 1 ≤ fQ

A (q) • fQ
A (1) .

fM
A (m · 1) = fM

A (m) = fM
A (m) · 1 ≤ fM

A (m) · fQ
A (1) ,

The triple (M,Q, {fA}A∈A) together with suspicion ax-
ioms is called anepistemic system, for details see (Baltag,
Coecke, & Sadrzadeh 2004; Sadrzadeh 2006a).

Concrete examples. The actions of our multi-agent sce-
narios are partial actions, that is, they have preconditions
and thus cannot be applied to all the propositions. Whenever
m · q = ⊥ we sayq cannot be applied tom. To represent
these, we define akernelfor each actionq ∈ Q as follows

Ker(q) := {m ∈M | m · q = ⊥},

This is the weakest proposition to which the action cannot
be applied, that isKer(q) = [q]⊥.

Examples are public and private refutations of proposi-
tions. A public refutation of the propositionm ∈ M is an
actionq ∈ Q with fQ

A (q) = q for all A ∈ A and for which
Ker(q) =↓m. A private refutation to a subgroup is another
action that privately refutesm to the subgroupβ of agents.
In this caseKer(q) is the same as above andfQ

A (q) = q for
A ∈ β andfQ

A (q) = 1 otherwise.
In each scenario, we have a non-epistemic part, referred

to asfacts. These are propositions that are stable under any
epistemic action: if they are true before runningq, they will
remain true afterwards. These are defined as thestabilizer
ofQ

Stab(Q) := {φ ∈M | ∀q ∈ Q ,φ · q ≤ φ}.

The muddy children puzzle with honest children is a
paradigmatic example in the standard epistemic logic litera-
ture, e.g. (Faginet al. 1995). We encode and solve it using
the setting of an epistemic system. The puzzle goes like this:
n children are playing in the mud andk ≤ 1 of them have
dirty foreheads. Their father announces: ’at least one of you
has a dirty forehead’, and then starts asking ’do you know
that it is you who has a dirty forehead?’. The children think
and if they are honest andk > 1, they all reply at the same
time ’no!’, the rounds of no answers repeat until the dirty
ones know that they are dirty. We show that for honest chil-
dren, afterk−1 rounds of refutations, childj for 1 ≤ j ≤ k
knows that he is dirty.

However, if the children are not honest and cheat or lie
in their replies, other interesting properties can be proven.
These cases have not been considered, and cannot be for-
mally dealt with, in the standard approaches to epistemic
logic. The more recent dynamic epistemic logic of (Baltag,
Moss, & Solecki 1999) offers formal proofs of these cases in
a Boolean setting. Our algebra proves these in a much sim-
pler axiomatic way in its non-boolean and non-distributive
setting.

We encode the puzzle in an epistemic system as follows.
The set of agentsA includes the childrenC1, · · · , Cn where
the firstk, for 1 ≤ k ≤ n, are dirty. The moduleM in-
cludes all possible initial propositionssβ whereβ ⊆ A and
its elements are those children who have mud on their fore-
heads. SosC1,··· ,Ck

is the “real state” in whichC1, · · · , Ck

are dirty andCk+1, · · · , Cn are clean. Since the children
cannot see their own foreheads (which might either be dirty
or not) we have

fM
Ci

(sβ) = sβ\{Ci} ∨ sβ∪{Ci} .

We also need the following facts

• D∅ for the fact that no child has a dirty forehead



• Di for the fact that thei’th child has a dirty forehead

• D̄i for the fact that thei’th child has a clean forehead

Hence we have:

{D∅} ∪ {Di, D̄i ∈M | Ci ∈ A} ⊆ Stab(Q) .

For the propositions and facts we havesβ ≤ Di for all Ci ∈
β, sβ ≤ D̄i for all Ci /∈ β, ands∅ ≤ D∅, which sets that
each proposition satisfies the corresponding fact. A round of
all children’s “no” answers is a public refutationq with

Ker(q) =↓
i=n
∨

i=1

2Ci
Di

Father’s first announcement is a public refutationq0 with

Ker(q0) =↓D∅

A cheating action, for example between children 2 tok, is a
private refutationπ with

Ker(π) =↓

k
∨

i=1

D̄i

A lying actions, for example of child 1 lying to the rest about
him knowing that he is dirty, is an action̄q with

Ker(q̄) =↓(2C1
D̄1 ∨

n
∨

i=2

2Ci
Di)

The lier child knows that he is lying, that isfQ
C1

(q̄) = q̄. But
all the others2 ≤ i ≤ n think he is telling the truth, that
is fQ

Ci
(q̄) = q. One can similarly, encode actions of mixed

rounds of yes and no answers. We denote byq′ a round of
yes answers of children 2 tok and no answers of the rest.

Using the above encoding, we prove the following in-
equalities for1 ≤ j ≤ k andk + 1 ≤ j′ ≤ n. The first
inequality is for the case when the children are honest, the
second and third ones are for the cases when children 2 tok
cheat and secretly tell each other that they are dirty. and the
last one covers the case when child 1 lies in his reply.

Propositions.

s{C1,··· ,Ck} ≤ [q0 (•q)(k−1)]2Cj
Dj (1)

sC1,...,Ck
≤ [q0(•q)

k−2 • π • q′]21D̄1 (2)

sC1,...,Ck
≤ [q0(•q)

k−2 • π • q′]2j′⊥ (3)

s{C1} ≤ [q0 • q̄]2Cj
Dj (4)

where(•q)(k−1) denotesq • · · · • q with k − 1 occurrences
of q.

Proofs. All the proofs are done by by induction on the num-
berk of dirty children. They all start by moving the dynamic
modalities from the right hand side to the left had side by ad-
junction. For example the first inequality is equivalent to the
following by the dynamic adjunction

s{C1,··· ,Ck} · q0 (· q)(k−1) ≤ 2Cj
Dj

This is equivalent to the following by the epistemic adjunc-
tion

fCj

(

s{C1,··· ,Ck} · q0 (· q)(k−1)
)

≤ Dj

Now distribute thefCj
, replace it with its assumed values,

and apply the suspicion inequality. It then suffices to prove
the following two case

{

s{C1,··· ,Ck} · q0 (· q)(k−1) ≤ Dj

s{C1,··· ,Ck}\{Cj} · q0 (· q)(k−1) ≤ Dj .

To show that the first case holds for allk, we update both
sides of our assumptions{c1,··· ,ck} ≤ Dj by q0 (· q)(k−1)

and get

s{C1,··· ,Ck} · q0 (· q)(k−1) ≤ Dj · q0 (· q)(k−1)

What we want follows since we haveDj ·q0 (· q)(k−1) ≤ Dj

by Dj ∈ Stab(Q). The second case is proven by pro-
ceeding the induction. The cheating and lying inequali-
ties are proven similarly. We refer the reader for details
of these proofs to (Baltag, Coecke, & Sadrzadeh 2004;
Sadrzadeh 2006a).

In the curious case of the third inequality, the clean chil-
dren will believe in the falsum, since what they see and hear
are contradictory. They seek dirty children, but hear their
yes answer in roundk− 1, as opposed to roundk. They can
be saved from their confusion, by either making them sus-
pect the cheating action, that is assumefQ

j′ (π) = π ∨ 1 to
start with. Another option would be to axiomatize arevision
operator in the setting and let the agentsrevisetheir beliefs
after such situations. The latter option has been pursued ina
joint paper of the author with A. Baltag (Baltag & Sadrzadeh
2006).

Pregroups, quantales and quantum logic
Quantales were initially introduced by Mulvey as aquan-
tum(i.e.non-commutative) counterpart to locales, which are
complete Heyting algebras or indeed intuitionistic logics3.
Later quantales were used as a dynamic counterpart to the
‘static’ Birkhoff-von Neumann style quantum logic by Co-
ecke et al. (Coecke, Moore, & Stubbe 2001). Their setting
is based on a pair consisting of a quantale and its right mod-
ule (M,Q). The non-distributiveM is the lattice of closed
subspaces of a Hilbert space and stands for properties of a
quantum system. The quantaleQ contains quantum actions
such as measurements and unitaries. The binary operation
of Q onM is the update of the property of a system by a
quantum action. Given that the propertyb ∈ M is true after
applying projectorPa ∈ Q, the possible initial states which
the system had before applyingPa, can be computed using
the right Galois adjointP ∗

a to action of projector defined as

P ∗
a (b) :=

∨

{c ∈M | Pa(c) ≤ b}

The adjunctionPa ⊣ P
∗
a provides acausal duality andP ∗

a

stands for theweakest causes with respect to the projector

3For locales and localic topology see (Johnstone 1982). The
reason why one would prefer generalized localic topology rather
that point-set topology is because it brings the logical properties of
a topological space to the forefront.



action. That is the join of all the initial states on which ap-
plyingPa will guaranteeb to be true.P ∗

a (b) is also referred
to as theSasaki hook, for which we can set

a⇒S b := P ∗
a (b)

Although this new setting brought dynamics and opera-
tionalism to quantum logic, it suffered from a usual draw
back: dealing with combined systems.

The coincidence is that quantales were also the struc-
tures considered by Lambek, even before the name quan-
tale was coined, for analyzing the structure of natural lan-
guages (Lambek 1958). In his early work, Lambek used a
partially ordered residuated monoid(M,≤, •,→,←) with
two adjoint binary operations, rather than the two unary ones
in a pregroup. This led to the widely studied Lambek Calcu-
lus and type categorial grammars and has also been the pre-
cursor of Linear Logic (Girard 1987), a resource-sensitive
logic much used and favored in Computer Science.

In a surprising turn of events, both of the above men-
tioned parties, that is Coecke and Lambek, independently
abandoned the quantale logic for an even more intriguing
mathematical structure, namelycompact closed categories.
This structure overcomes the weakness of other quantum
logics by introducing atensor logicand picture calculus
to reason about combined systems in a categorical frame-
work (Abramsky & Coecke 2004; Abramsky & Duncan
2006). In linguistics, this logic4 is known and studied as
compact bilinear logic(Buszkowski 2001)5.

In a nutshell, in the tensor logic formulas are types of
quantum systemsA,B, · · · and proofs are operations per-

formed on these systemsf, g, · · · . The notationA
f
- B,

depicted in picture calculus as

f
B

A

reads as ’B is derivable fromA by performing the operation
f ’. The logic has a binary logical connective for the tensor
product of two systemsA ⊗ B that extends to proofs. So if
we obtain systemsD andE by, respectively, doingf andg
onB andC, that is

B
f
- D C

g
- E

then we can combineB andC and dof andg in parallel to
obtain the combination ofD andE, that is

B ⊗ C
f⊗g

- D ⊗ E

depicted as

B

f
D

C

g
E

4That is without the dagger operation of (Abramsky & Coecke
2004) that yields a strongly compact closed category.

5This is a special case of Linear Logic where tensor and par
coincide.

There is also a unary connective(−)∗ that represents the
adjoint or dual of a type. This satisfies the following axioms

η : 1→ A∗ ⊗A ǫ : A∗ ⊗A→ 1

and is depicted as

A

A

A*

A*

The constant 1 is the unit of tensor, that is

1⊗A ∼= A⊗ 1 ∼= A

A pregroup is a compact closed category with a non-
commutative tensor in an obvious way: formulas (objects)
are the linguistic types and proofs (morphisms) are partial
orders, so no explicit proof is provided for the derivations.
Non-commutativity of tensor requires having left and right
ǫ andη maps, one for each adjoint. For example for a pre-
groupP andp ∈ P we have the followingǫ maps

ǫr : p⊗ pr → 1, ǫl : p
l ⊗ p→ 1

The linguistic reduction diagrams are special cases of the
diagrams of (Abramsky & Coecke 2004) that only use theǫ
triangles.

Re-application to quantum informatics
Agents in quantum protocols. Ourepistemic systemscan
be used to reasoning about quantum informatic protocols.
Given an epistemic system(M,Q, {fA}A∈A), we assume
the non-distributive latticeM contains properties of (finitely
many) quantum systems and the quantaleQ contains quan-
tum actions. The dynamic and the epistemic modalities, re-
spectively, stands for the weakest precondition and knowl-
edge of agent involved in a quantum protocol. Our notation
is an extension of measurement calculus (Danos, Kashefi, &
Panangaden 2005) with agent contexts.

We model and reason about a simplified non-probabilistic
version of the Ekert’91 protocol (Ekert 1991)6. It goes like
this: A andB share a Bell pair on qubits 1 and 2. They
randomly choose a basisZ orX by, for example, flipping a
coin. Then, they send their measurement basis to each other
over a safe classical channel. If the received basis is the
same as their chosen basis, they share a secret, namely, the
result of the measurement; otherwise they start over again.

We denote the action of agentsA andB share a Bell pair
on qubits 1 and 2 byBA,B

1,2 . The action of agentAmeasuring

bit i in basisj ∈ {Z,X} is denoted byM j,A
i . The result of

such a measurement is expressed in the factRj
i . So we have

BA,B
1,2 ,M j,A

i ,M j,B
i ∈ Q, Rj

i ∈ Stab(Q)

We impose aBell axiomas follows

⊤ ≤ [BA,B
1,2 .M j,A

1 .M j,B
2 ](Rj

1 ∧R
j
2)

This says that after the sharing and measuring actions on the
same basis, the results will hold. WhenA andB share a Bell
pair, they are aware of it, that is

fA(BA,B
1,2 ) = fB(BA,B

1,2 ) = BA,B
1,2

6An earlier attempt has been presented in (Sadrzadeh 2005)



Similarly, each agent is aware of the measurements he
makes, but he is not aware of the measurements made by
other agents. For example we have the following forA

fA(M j,A
i ) = M j,A

i , fA(M j,B
i ) 6= M j,B

i

The non-deterministic choice of basis is encoded in the fol-
lowing appearance maps for each agent

fA(M j,B
2 ) = MZ,B

2 ∨MX,B
2 , fB(M j,A

1 ) = MZ,A
1 ∨MX,A

1

We use a private announcementsj!A,B ∈ Q to encode the
action of communicating the basis. A run of the protocol is
the following sequential compositionα

BA,B
1,2 •(M

Z,A
1 ∨MX,A

1 )•(MZ,B
2 ∨MX,B

2 )•(Z!A,B∨X !A,B)

It is easy to show thatA andB share a secret after a suc-
cessful run of the protocol: by proving the following two
inequalities forA and two similar ones forB. The first one
says that agentA knows the result of his measurement, and
the second one that he learns the result ofB’s measurement
after communication.

Proposition.

⊤ ≤ [α]2AR
Z
1 ∨2AR

X
1 (5)

⊤ ≤ [α]2AR
Z
2 ∨2AR

X
2 (6)

Proof. We provide proof of the second inequality, which
is more interesting. After applying the dynamic adjunction,
distributing the joins, discarding the unsuccessful and im-
possible runs, we need to show the following two cases for
each basis

⊤.BA,B
1,2 .MZ,A

1 .MZ,B
2 .Z!A,B ≤ 2AR

Z
2

⊤.BA,B
1,2 .MX,A

1 .MX,B
2 .X !A,B ≤ 2AR

X
2

Both cases are proven similarly. Consider the first one, af-
ter applying the epistemic adjunction and by the suspicion
inequality it is enough to show the following

fA(⊤).fA(BA,B
1,2 ).fA(MZ,A

1 ).fA(MZ,B
2 ).fA(Z!A,B) ≤ RZ

2

SincefA(⊤) ≤ ⊤ and by our assumptions, it is enough to
show the following

⊤.BA,B
1,2 .MZ,A

1 .(MZ,B
2 ∨MX,B

2 ).Z!A,B ≤ R
Z
2

We need to show both cases of the disjunction, proven sim-
ilarly. For example consider the first case, we start from the
Bell axiom

⊤.BA,B
1,2 .MZ,A

1 .MZ,B
2 ≤ RZ

2

and update both sides withZ!A,B

⊤.BA,B
1,2 .MZ,A

1 .MZ,B
2 .Z!A,B ≤ R

Z
2 .Z!A,B

since the result of measurement is a fact, these updates have
no effect on it, that is

⊤.BA,B
1,2 .MZ,A

1 .MZ,B
2 .Z!A,B ≤ R

Z
2 .Z!A,B ≤ R

Z
2

and we are done.

Secrecy is derived by proving that the above inequalities
do not hold for an intruder agentI. That is, the following
holds forA’s qubit and we have a similar one forB’s qubit.
Proofs are similar to the above.
Proposition.

⊤ � [α]2IR
Z
1 ∨ 2IR

X
1

We can also reason about the usual attack to this protocol.
This happens when agentsA andB think that they share a
Bell pair, but in reality it is the intruderI that shares the Bell
pair withB. So the real actionBB,I

1,2 appears asBA,B
1,2 to A

andB. That is,

fA(BB,I
1,2 ) = fB(BB,I

1,2 ) = BA,B
1,2

In this case after the protocolα′, agentsA andB think that
they share a secret, but they are wrong! We can show the
following inequality forA and a similar one forB
Proposition.

⊤ ≤ [α′] 2AR
Z
2 ∨ 2AR

X
2

whereα′ is as follows

BB,I
1,2 •(M

Z,A
1 ∨MX,A

1 )•(MZ,B
2 ∨MX,B

2 )•(Z!A,B∨X !A,B)

But this is wrong, since in reality we only have the following
inequality

⊤.BB,I
1,2 .M

j,B
1 .M j,I

2 ≤ Rj
1 ∧R

j
2

where asA’s knowledge is based on the following

⊤.BA,B
1,2 .M j,A

1 .M j,B
2 ≤ Rj

1 ∧R
j
2

Decision procedures. In the pregroup analysis, we assign
to each sentence the juxtaposition of its typesα. Our aim is
to show that the sentence is grammatical by showing thatα
reduces to the desired typex of the sentence. This is done
by verifying that the chain of reductions

↓α := α→ · · · → γ

returns a type equal tox. One can look at each language
phrase as a pair(α, x), and say that the phrase is grammat-
ical if and only if ↓α = x. Pictorially and for example for
deciding if the sentence ‘He likes her’ is grammatical, we
have to check the following equality

=

The existence of a decision procedure ensures that this
procedure always terminates. The analogy to quantum in-
formation is established by looking at a protocol as a pair,
consisting of its full description as a composition of oper-
ations, and its desired functionality. For instance, for the
correctness of the teleportation protocol with input stateψ,
we have to verify the following equality

=
ψ ψ

Alice Bob

= ψ

Alice Bob Alice Bob



According to this picture, the protocol pair is(α, ψ) with

α := (ǫ⊗ 1) ◦ (1⊗ η) ◦ ψ

In the quantum case, the decision procedure becomes worth
investigating since the category is not thin, as it is the case
for a pregroup. The problem also becomes more intrigu-
ing in the recent setting of (Coecke & Pavlovic 2006) where
classical information flow is also axiomatized as a refine-
ment of quantum information flow. An interesting question
arises: can the decision procedure be reversed? If yes, can it
be used to derive new quantum protocols?
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