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Chapter 1

Introduction

One of the advantages of functional programming languages is their ability to express com-
plex computations concisely. Programs written in functional programming languages are often
shorter and easier to read than the same program written in an imperative or object-oriented
language. One of the ways that this is achieved is through the composition of small functions
to build up larger ones, forming a “pipeline” of functions. For example, this Haskell program

return · words ·map toUpper · filter isAlpha =<< readFile f

filters out all non-alphabetic characters, converts them to upper case, and then tokenises them;
this is a rather powerful program for one line of code using only standard functions. Although
this method of programming is both logical and aesthetically pleasing, it is often at the cost of
both speed and memory; string processing in Haskell is extremely inefficient in terms of both
time and space, despite being a shining example of its beauty. This is due to Haskell’s inefficient
string representation, the String type.

The goal of this project is to address this problem by implementing a new string library
in Haskell. This library will have a more compact representation and implement an API that
mirrors Haskell’s List library[10, ch. 17], but with better performance. Like Haskell’s String ,
it will use a fusion framework (see Section 3.2.1) to improve speed and memory efficiency by
removing intermediate structures. The representation and the library are both called Text .
The need for a more efficient string representation has been the target of recent research in
the form of the ByteString library. (see Section 2.1.2). However, support for the Unicode
standard for representing text has not yet been addressed. Text fills this rather large gap in
the current Haskell Hierarchical Libraries by providing a fast, packed string library that also
supports Unicode. For example, Figure 1.1 shows the runtime of the above program in both
String and Text , showing a speedup factor of 2.

In addition to the practical creation of a high-performance library, this project also has
a theoretical aspect. It uses stream fusion not only as a way to eliminate intermediate data
structures, but also as a way to convert between a diverse set of sequence types. In doing so,
it allows functions over these sequences without regard for the underlying representation. This
design method enables the creation of programs that can compute input from one representation
and output it into another without needing to know about the specifics of either structure and
without an explicit conversion step. Stream fusion’s typical implementation is also adapted in
Text to increase performance by propagating information about the length of the stream to aid
in memory allocation.

The rest of this chapter more formally defines the objectives of this project, and then
provides some necessary background information about Haskell, the Unicode standard, and
fusion, which will be used throughout this dissertation. Chapter 2 discusses the previous work

1
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Figure 1.1: Comparison of runtimes between String and Text for a sample program

that is the basis for Text . It covers the string representations and fusion systems that relate
to those used in Text . Chapter 3 presents the Text library itself, covering Texts memory
layout in detail and the rationale behind its implementation. It also gives an overview of
the Text API, with some specific examples. Chapter 4 presents the performance results of
Text versus some other Haskell string representations and also details the methods used for
benchmarking. That chapter also presents the testing library used to help establish confidence
in the Text implementation and ensuring its behaviour is consistent with Haskell’s current
string representation. Finally, Chapter 5 presents the conclusions drawn from the work in this
dissertation.

1.1 Objectives

The objectives of this project are as follows:

• Create a compact representation for Unicode strings that can take advantage
of stream fusion. This representation should be transparent to the user, but provide
faster performance and use less memory than Haskell strings. It also must use stream
fusion to remove any intermediate structures in function pipelines.

• Provide a library of fusible combinators over this structure, similar to those
found in Haskell’s List library. The use of list combinators is already a common way
to manipulate strings in Haskell. By implementing the same API as List , programmers
will have access to a set of functions with which they are already familiar. This also makes
migrating any code from using Haskell’s String easy.

• Create a benchmark system to evaluate the performance of Text versus other
string representations in Haskell. The purpose of Text is to provide Haskell program-
mers with faster, smaller strings. Benchmarking is important in tracking improvements
in code over time and testing how much and when performance is better than other string
types.

• Create a test framework for Text . A well-designed test framework will be able to
check over each sort of case encountered by Text . Although there is an infinite space of
strings, a reasonably defined subset can aid in testing Text .
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1.2 Background

This section contains information relevant to the discussions in the rest of the dissertation. It
briefly reviews the platform for Text , the Unicode Standard, and fusion.

1.2.1 Haskell

Introduction to Haskell

Haskell is a non-strict, purely functional programming language. It has a strong, static type
system that supports polymorphism. It has first class and higher order functions. It uses these
features, along with a built-in list type, to create a library of list combinators that operate
over lists of any element type. These combinators are powerful enough to allow a programmer
to do nearly anything with lists without resorting to recursing over the list. Many are found
in Haskell’s Prelude, but they can all be found together in Haskell’s List module. Haskell’s
String type is implemented as a list type, thus allowing programmers to use list functions to
write string manipulation functions. While this is very convenient, it makes string processing
in Haskell extremely inefficient (see Section 2.1.1).

There are many different implementations of the Haskell programming language. Although
they all implement the latest definition of Haskell, known as “Haskell 98”[10], many features
have been developed and added to some of the implementations over time that do not appear
in the language definition. Such features were influential in choosing the appropriate one to use
for this project. The implementation chosen is the Glasgow Haskell Compiler.

The Glasgow Haskell Compiler

The Glasgow Haskell Compiler (GHC) is an implementation of Haskell that compiles programs
to native machine code[12]. It also supports compiling Haskell to bytecode for use in interactive
sessions via GHCi. GHC allows for extensive optimisation and gives the programmer control of
it through various pragmas[13]. The INLINE and NOINLINE pragmas allow the programmer
control whether or not a given function is inlined and at what stage(s) of compilation this can
or cannot occur. The RULES pragma allows the programmer to specify rewrite rules to aid in
code optimisation[9]. This project makes extensive use of these pragmas in the stream fusion
framework to control the optimisation of fusible functions.

GHC also has “bang patterns”. These function similarly to strict datatype fields. By
preceding a variable name by an exclamation point (!) in a function declaration, that variable
will automatically be marked as strict by the strictness analyser. Explicitly marking fields as
such can help the compiler determine which values should be unboxed and reduce the allocation
of unnecessary thunks.

Finally, GHC offers access to primitive types through GHC .Prim and GHC .Ext . Such
primitives are the underlying machine-level types that are boxed by more familiar types such as
Int or Char . The naming convention is that primitives types, values, constants, and functions
all end with a hash sign (#), for example Int# is a type, x#::Int# is a variable, 42# is a value,
and (+#) is a function. In this project, these primitives are used to provide faster encoding
and decoding of Unicode text.

1.2.2 Unicode

Introduction to Unicode

Unicode is a standard for representing most of the world’s writing systems, including many
historic scripts. Its name derives from its three principle goals: being “universal”, “uniform”,
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and “unique” (the last referring to the uniqueness of bit sequences and their interpretation
into character codes). Unicode began as a project among engineers from Apple and Xerox to
incorporate the world alphabets into a single system using two-byte text. The Unicode Con-
sortium, who now define the standard and publish The Unicode Standard books, was founded
in 1991[14]. Currently, the newest The Unicode Standard is version 5.1.0, which is a delta
document[16] consisting of changes to the text of the The Unicode Standard, Version 5.0 [15].
The two documents together fully specify the current version of the Unicode standard.

A document encoded in Unicode consists of code points, each consisting of a 21-bit number
that abstractly represents a character, such as Latin Capital Letter A (A), or a combining
character that can modify another character, such as Combining Grave Accent,(` ). When
found together in the proper order, a parsing text renderer could then render this as (À)1.
While Unicode code points abstractly refer to certain characters, it does not specify the glyphs
that should be used to represent them. This is the responsibility of the system or application
that is using Unicode.2 In this case, the renderings of the above characters are a PDF reader’s
rendering of Unicode code points U+0041, U+0060, and the sequence of those two code points in
that order, respectively. Code points are denoted by “U+” and the hexadecimal representation
of that point. The leading zeroes are obligatory to show to which plane the code point belongs
(see Section 1.2.2).

Unicode Encoding Forms

A sequence of Unicode code points may be encoded in one of three encoding formats: UTF-8,
UTF-16, or UTF-32. The first two are variable-width encodings, and the last is fixed-width. A
UTF-8 stream represents each code point as a sequence of one to four bytes, depending on the
value of the code point. This a very compact coding because small characters can be represented
in one or two bytes. It is also backwards compatible with ASCII, because byte-sized code points
are represented by a byte with that value and have the same mappings as ASCII. The downside
is that validating, parsing, and encoding in UTF-8 are more more computationally intensive
than with UTF-16 or UTF-32.

A UTF-16 stream consists of 16-bit words, and a code point may be represented by one or
two of them. A two-word sequence representing a single code point is referred to as a surrogate
pair. UTF-16 is often less compact than UTF-8 due to the fact that even the lowest value
characters are represented by a 16-bit (2 byte) value. Some characters, however, only take one
UTF-16 word but three UTF-8 bytes. Validation and parsing of UTF-16 is far easier than
UTF-8, however, because of the simpler encoding scheme. This can yield greater performance
at the cost of memory.

Unlike the other two encodings, UTF-32 is a fixed width encoding. A UTF-32 stream
consists of 32-bit words. The code points themselves are at most 21 bits, and so each one fits
into a single UTF-32 value. UTF-32 is thus quite simple to validate, parse, or encode, but is
very costly in terms of space; many characters take up one byte, and the majority of Unicode
code points can be represented with two bytes, so the rest of the space is wasted. It can be useful
when dealing with languages with many characters that need more than two-bytes because the
memory versus performance trade-off is less.

Note that because UTF-16 and UTF-32 are specified in terms of words and not bytes, the
order of the bytes may change depending on the endianness of the machine. The Unicode
standard specifies that either endianness is acceptable, and that only the order of the bytes

1Note that there is also a single Unicode code point for the character À. This is known as a precomposed
character. Many of these exist for compatibility with different languages and their legacy encoding systems

2This creates issues in Chinese characters that are used for multiple languages; some code points have multiple
renderings depending on the language (Chinese, Japanese, or Korean). This issue is known as Han unification,
but addressing this problem is outside the scope of this project
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Plane Range Name Content
0 U+0000 – U+FFFF Basic Multilingual Plane Modern scripts
1 U+10000 – U+1FFFF Supplementary Multilingual

Plane
Historic, musical, math

2 U+20000 – U+2FFFF Supplementary Ideographic
Plane

Extra CJK characters

3 U+30000 – U+3FFFF

Unused

4 U+40000 – U+4FFFF
5 U+50000 – U+5FFFF
6 U+60000 – U+6FFFF
7 U+70000 – U+7FFFF
8 U+80000 – U+8FFFF
9 U+90000 – U+9FFFF
10 U+A0000 – U+AFFFF
11 U+B0000 – U+BFFFF
12 U+C0000 – U+CFFFF
13 U+D0000 – U+DFFFF
14 U+E0000 – U+EFFFF Supplementary

Special-purpose Plane
Control characters

15 U+F0000 – U+FFFFF Private Use Area16 U+100000 – U+10FFFF

Figure 1.2: Allocation of the Unicode planes

within each word is changed. To specify the endianness of a stream, “LE” or “BE” may be
appended to the encoding name to specify endianness as little endian or big endian, respectively.
Unicode also specifies a sequence of bytes that maybe appear at the beginning of a Unicode
stream known as the byte order mark (BOM). The BOM can signify which encoding is used in
the stream and, if UTF-16 or UTF-32, the endianness.

Code Point Planes

The Unicode code points are divided into 17 “planes”, most of which are unused. Figure
1.2 shows the code point ranges for each plane. The discussion of planes is important when
considering appropriate encoding forms. As will be demonstrated, the plane upon which the
majority of a Unicode stream rests can have a significant impact on memory efficiency and
performance, which can change depending on the choice of encoding form used.

The vast majority of current world writing systems, including Indian and East Asian scripts,
are found in Plane 0, the Basic Multilingual Plane (BMP). Although this range of characters
may need anywhere from one to three bytes in UTF-8, they only need one UTF-16 word (UTF-
16 only uses surrogate pairs for any code point ≥U+10000). This means that parsing most
code points in most documents is very straightforward in UTF-16 (and, of course, UTF-32),
but still complex in UTF-8.

Plane 1, the Supplementary Multilingual Plane (SMP), consists mostly of historic scripts. It
also contains musical notation and mathematical systems. For most documents, this plane will
rarely be used, if ever. Plane 2, the Supplementary Ideographic Plane (SMP), consists of many
CJK (Chinese/Japanese/Korean) characters that are less commonly used and would not fit in
the BMP. Many of them are for historic or rare use, though a small number of common use CJK
characters are found there, as well. Plane 14, the Supplementary Special-purpose Plane (SSP),
contains format control characters that do not fit into the BMP. When considering encodings,
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it is important to note that all of these planes require 4 bytes in any of the encoding forms, but
that the parsing of the byte sequences representing these code points is more complicated (and
thus less efficient) for a more compact encoding form.

The remainder of the planes are currently unused. The majority of them are likely to remain
that way for some time, given the number and size of scripts left to be allocated. Two planes
(15 and 16) are reserved for private use. The use of these unused planes was not considered in
this project.

When developing a library for Unicode, considering plane allocation is very important when
selecting the appropriate encoding form to maximise speed and memory efficiency. It also means
that one encoding form is not necessarily the most appropriate for all document types. The
importance of encoding form choice is further evaluated in the benchmarks in Chapter 4.

1.2.3 Fusion

Fusion, also known as deforestation, refers to program transformation techniques to remove
intermediate structures from programs. Such intermediate structures arise commonly in func-
tional programming, such as in this program:

(take 50 ·map toUpper · filter (not · isDigit)) str

This program forms a pipeline of functions that process the string str by filtering out numeric
characters, converting the entire string to upper case, and then returning the first 50 charac-
ters. Intermediate structures are created between each portion of the program that traverses
the string to communicate its results to the next enclosing function. In this program, an inter-
mediate string is produced by filter , but is then immediately consumed by map. The same is
true between map and take. This program could be rewritten so that it creates no intermediate
structures:

g str 0
where

g [ ] = [ ]
g (x : xs) n

| n > 5 = [ ]
| not (isDigit x ) = toUpper x : g xs (n + 1)
| otherwise = g xs n

This program, while being more efficient, is far less desirable than the former one. It is
harder to read, more complicated to write, and longer. Fusion techniques, however, automate
the conversion from programs that creates intermediate structures to ones that do not. These
techniques are used by the compiler and should be transparent to the programmer. Because
of GHC’s rewrite rules, these techniques can be implemented without any modifications to the
actual compiler. The Haskell string representations discussed in Chapter 2 utilise various forms
of fusion to help optimise programs and the Text library uses an implementation of stream
fusion. Section 2.2 explains and compare various fusion frameworks including those used in
String, ByteString , and Text .



Chapter 2

Previous Work

This chapter discusses some previous work related to strings in Haskell and stream fusion. First,
it presents an overview of some current string representations in Haskell, their features, and
their advantages and disadvantages. Then, it presents a summary of fusion with a focus on
those fusion systems are currently used in Haskell. Finally, it gives an introduction to stream
fusion and a Haskell implementation of it.

2.1 String Representation

String representation in Haskell has already been the target of recent research in the form of
the ByteString library, which utilises stream fusion in its most recent versions. The contrast
between Haskell’s String and the structure and performance of ByteString is the main source of
the inspiration for the Text library. Studying the structure of String is necessary to understand
what makes it inefficient and how its shortcomings may be corrected. It is also important to
identify its advantages in order to preserve those in a new representation. ByteString is largely
successful and doing so, but introduces its own complications. It also does not support Unicode.
ByteString does, however, serve as the main source of inspiration for the design of Text .

2.1.1 The Haskell String Type

The Haskell string representation is quite simple:

type String = [Char ]

This representation, in addition to being short, is rather elegant and convenient. It allows
the programmer to use the entire polymorphic list library for string manipulation. Pattern
matching can be used to create inductively defined functions over strings. Also, new cells and
characters may be dynamically allocated at run time to easily accommodate strings of arbitrary
length. As with all lists, GHC uses foldr/build [8] fusion to remove some intermediate Strings.
An overview of foldr/build fusion is presented in Section 2.2.1.

This design amounts to an extremely convenient but painfully inefficient way to store and
manipulated strings. Figure 2.1 shows the structure of the string "Str" represented as a String
when allocated by GHC[12]. A String, being a specific type of Haskell’s built-in list, is basically
a linked-list of heap allocated Chars. The head of the list is a pointer to the first element. That
element is composed of three word-sized cells. The first is a “header word”, identifying what
the object is. The second is a pointer to the first character of the string. The third is a pointer
to the next cell. Each character also has a cell containing a header word, and then a word-sized

7
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Figure 2.1: Structure of String
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Figure 2.2: Structure of ByteString

cell containing the actual character. GHC uses either 32- or 64-bit words, depending on the
platform. This means that each character is fully capable of holding a Unicode code point, and
this is how Haskell natively supports Unicode. It also means, however, that each character plus
its corresponding list cell comprise five words, which is either 20 or 40 bytes per character.1

This translates to poor performance. Access to a given character involves a huge amount
of pointer chasing. Furthermore, this makes for poor cache locality with only three to five
characters fitting into a 64 byte cache line on a 32-bit machine. In comparison, ASCII only
requires one byte per character. At the worst case, any of the Unicode encoding forms only
require four bytes per character. In the case of UTF-8 and UTF-16, the strings are usually far
more compact. The limitations of foldr/build fusion also keep Haskell lists, and thus Strings,
from performing well in functions that are crucial from list processing; notably, folds with
accumulating parameters (e.g. foldl) and zips cannot be fused.

Much of this inefficiency stems from the structure of Haskell lists. They use a traditional
linked list model that requires allocating “cons” cells to form the spine of list. Of the five words
needed for Char in a list, three of them are necessary because of the list structure. Such a
sequence type is inappropriate for dealing with strings. Furthermore, foldr/build fusion cannot
adequately deal with certain vital functions for list processing.

2.1.2 The ByteString Library

An alternative to String that attempts to overcome its inefficiencies is the ByteString library[7].
Figure 2.2 depicts the structure of a ByteString . Instead of a linked list, a ByteString consists
of a ForeignPtr, an Addr#, an offset, and a length. The ForeignPtr provides a pointer for
foreign code to access the string. The ForeignPtrContents are a MutableByteArray#, which
is a raw memory space that is accessible at the byte level. This is where the string is stored
is an array-based representation. The offset and length fields allow constant time creation of
substrings without copying. Because the ForeignPtr creates an additional pointer indirection,

1Although this is true, characters whose values are below 255 are shared in the GHC runtime system, so if
multiple instances of such a character exist, subsequent instances only need any additional 12 or 24 bytes.
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the Addr# field is used to allow Haskell code to directly access the string without traversing
the extra pointers.

Each character itself is represented by one byte. In terms of compactness, this is a major
advantage. A ByteString efficiently represents ASCII characters with no extra memory. Fur-
thermore, it offers constant time access to any element of the string. Because of the offset and
length fields, forming substrings takes constant time and requires no copying (all substrings
share the same copy of the array). The ByteString API implements most of the functions
found in List , along with functions to convert to/from ByteStrings and to perform I/O. Most
of the functions in the ByteString library can be optimised using stream fusion in order to
eliminate any intermediate structures that appear between two composed calls. Because this
representation is fixed-width, functions can read and write the string top to bottom or bottom
to top, depending upon which is most efficient (e.g. top to bottom for a foldl or bottom to top
for a foldr). This is the case even when stream fusion is invoked. The result is an extremely
fast string library. It beats out Strings and, in some cases, näıve C code. It also only uses one
byte per character, as opposed to the 20 or 40 bytes of String.

While ByteString accomplishes the desired speed and memory efficiency over String, in doing
so it creates several disadvantages. First, a one-byte character can only represent the the ASCII
character set, or Unicode code points U+0000 to U+00FF. Obviously, in dealing with Unicode
it is necessary to have a representation capable of dealing with values U+0000 to U+10FFFF.
Also, due to the use of a ForeignPtr in storing the string, it is inappropriate for small strings.
This is because smaller objects are usually unpinned (i.e. movable by the garbage collector) in
Haskell. In the case of ForeignPtrs, however, even the smallest objects must be pinned so that
foreign code can always access them.

With very few very small strings, this issue may not be a problem. Issues could arise,
however, in the case of using a large number of very small strings. In this case, pinned objects
can lead to poorer performance, because memory allocation takes longer. In large blocks of
text, this inefficiency is negligible in comparison with the performance achieved in manipulating
strings. In smaller strings, however, this can be a more noticeable problem. The fact that small
objects are pinned can also lead to memory fragmentation, which makes allocation of further
objects harder and wastes space by forcing them to use other, contiguous blocks of memory.

2.2 Fusion Systems

The creation of intermediate structures is a key factor in determining the performance of Text
and libraries like it. Functional programming lends itself to writing programs that need interme-
diate structures to communicate results between adjacent functions. Common list combinators,
such as map, filter , and foldr , encourage this style in programs over lists. Because of the fact
that strings themselves are lists in Haskell, these functions are also a useful way to manipulate
strings. While intermediate structures are necessary in communicating results in such a style of
programming, transforming these programs into forms with no intermediate structures yields a
non-trivial increase in performance and memory efficiency.

Fusion was first introduced in Philip Wadler’s deforestation algorithm[17]. It was called
such because it was designed to remove intermediate trees in functional programs. This type
of fusion is capable of fusing recursive functions to eliminate arbitrary intermediate data struc-
tures and was designed to be implemented in an optimising compiler. This algorithm, however,
has a rather severe complication. Because it transforms arbitrary recursive functions, it cannot
guarantee the termination of its optimisation. Overcoming this requires adding additional com-
plexity to the algorithm, or placing additional restrictions of the forms of function definitions[8].
In this case, it is not realistic to place restrictions on the programming language, nor on the
types of programs written in it.
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A more realistic alternative is the set of fusion frameworks known as shortcut fusion. Short-
cut fusion does not place any restriction on the input program. Instead, it doesn’t guarantee
that all intermediate structures will be removed in a program. It requires that all fusible func-
tions be written in terms of recursive combinators that control how these structures (in this
case, lists or strings) are produced, consumed, or transformed. It is then possible to establish
rewrite rules that remove intermediate structures. This sort of fusion is well-suited to situa-
tions where access to a structure is implemented through an API. The API functions can be
implemented in terms of fusion combinators, and then any program written with them will not
create any intermediate structures.

The term “shortcut fusion” was first coined in “A Short Cut to Deforestation”[8], which
describes the foldr/build system used by GHC. Since then, other short cut fusion systems have
been created that address some of the limitations that appear in the foldr/build system. The
following sections describe the major shortcut fusion systems that have been used in Haskell.
The latter of them, stream fusion, is used in the Text library. Its use is described in more detail
in Chapter 3.

2.2.1 foldr/build Fusion

The foldr/build approach to fusion[8] uses two combinators, build and foldr , and a single rewrite
rule. This system was designed for and implemented in GHC to fuse functions over lists. The
foldr function is the same function that is found in the List module:

foldr :: (a → b → b)→ b → [a ]→ b
foldr f z [ ] = z
foldr f z (x : xs) = f x (foldr f z xs)

The calculation of foldr over a list can be envisioned as replacing each Cons of a list with a
binary operator and Nil with a specified value (usually an identity value). For example:

foldr (+) 0 [1, 2, 3, 4, 5] ≡ (1 + (2 + (3 + (4 + (5 + 0)))))

This abstracts list consumption over the Cons/Nil structure of the list. It is also possible to
abstract a list construction function over this structure, without explicitly using Cons and Nil :

build :: (∀b. (a → b → b)→ b → b)→ [a ]
build g = g (:) [ ]

In build , the importance rests with the function g . It must specify the the building of a list in
terms of two arguments: a function playing the role of Cons, and a value playing the role of
Nil . When g is applied to (:) and [ ], it will build a list using its arguments as the Cons and
Nil , respectively.

Now, because the consumption of a list substitutes a different function for Cons and a
different value for Nil , and the build function forces its input function to abstract away form
Cons and Nil , the following equivalence applies:

〈foldr/build fusion〉 ∀g k z. foldr k z (build g) 7→ g k z

The removal of the foldr and build eliminates the the intermediate structure that would have
occurred between them. Instead of building a list and then folding it, each element is folded
as is it is produced. Some examples[8] of list combinators defined in terms of foldr and build
are show in Figure 2.3 The examples show the general structure of list combinators in the
foldr/build system. With the exception of foldl , all of these functions are both list consumers
and list producers. The consumption portion is defined in terms of foldr , and the production
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map f xs = build (λc n → foldr (λa b → c (f a) b) n xs)
filter f xs = build (λc n → foldr (λa b → if f a then c a b else b) n xs)
zip xs ys = build (λc n → let zip′ (x : xs) (y : ys) = c (x , y) (zip′ xs ys)

zip′ = n
in zip′ xs ys

foldl f z xs = foldr (λb g a → g (f a b)) id xs z

Figure 2.3: Examples of foldr/build list combinators

of the list is defined by build. As a fold does not produce a list, foldl is only defined in terms
of foldr .

The limitation that list consumption can only be in terms of foldr places limits on which
types of functions can be fused. As can be seen in the definition of zip, the output from zip
is fusible, but it is not fusible on its inputs. This is because foldr cannot traverse two lists in
parallel. While it would be possible to write the zip in terms of folding one list, it would still
have to explore the other conventionally. It is also impossible to write functions that use an
accumulating parameter; although foldl can be written in terms of foldr (as in Figure 2.3), such
a definition builds up a series of nested function calls that are only evaluated at the end of the
list.

This approach to fusion has been one of the most successful so far. It has been included
in GHC to optimise programs on lists (and thus strings). This implementation is a concrete
example of the ability to get real performance gains using this approach, and its simplicity of
two combinators and only one rewrite make it an attractive possibility to accomplish fusion
for Texts. Restricting function definitions to right folds, however, means that there are still
un-optimised functions that would benefit from a less restrictive fusion system.

2.2.2 destroy/unfoldr Fusion

The destroy/unfoldr fusion system[11] is a more recent approach that addresses some of the
issues in foldr/build, namely its inability to fuse zips and true left folds. Like foldr/build, it
defines list operations in terms of two functions, unfoldr and destroy . The unfoldr function is
the dual to foldr , creating a list from a seed value:

unfoldr :: (b → Maybe (a, b))→ b → [a ]
unfoldr f b = case f b of

Just (a, b′)→ a : unfoldr f b′

Nothing → [ ]

This is used to define functions that produces lists. Functions that consume lists are defined in
terms of destroy :

destroy :: (∀a.(a → Maybe (b, a))→ a → c)→ [b ]→ c
destroy g xs = g listpsi xs

where listpsi :: [a ]→ Maybe (a, [a ])
listpsi [ ] = Nothing
listpsi (x : xs) = Just (x , xs)

When composed together as (destroy · unfoldr), the two from the identity function on lists.
This is because unfoldr gets substituted for g , and unfoldr listpsi applied to a list unfolds the
list back to itself. The principle of this fusion, however, is that as each element is unfolded, it
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map f xs = destroy (λpsi a → unfoldr (mapDU psi) a) xs
where

mapDU psi xs = case psi xs of
Nothing → Nothing
Just (x , ys)→ Just (f x , ys)

filter p xs = destroy (λpsi a → unfoldr (filterDU psi) a) xs
where

filterDU psi xs = case psi xs of
Nothing → Nothing
Just (b, ys) → if p b

then Just (b, ys)
else filterDU psi ys

foldl f b xs = destroy (foldlDU b) xs
where

foldlDU acc psi xs = foldlDU ′ acc xs
where

foldlDU ′ acc xs = case psi xs of
Nothing → acc
Just (a, ys)→ let acc′ = f acc a in (foldlDU ′ acc′ ys)

zip xs ys = destroy (λpsi1 e1 →
destroy (λpsi2 e2 →

unfoldr (zipDU psi1 psi2 ) (e1 , e2 )
) ys

) xs
where

zipDU psi1 psi2 (e1 , e2 ) = case psi1 e1 of
Nothing → Nothing
Just (x , xs)→ case psi2 e2 of

Nothing → Nothing
Just (y , ys)→ Just ((x , y), (xs, ys))

Figure 2.4: Examples of destroy/unfoldr list combinators

is possible to apply a series of transformations to that element before moving on to the next
element. This yields the following rewrite rule:

〈destroy/unfoldr fusion〉 {∀g f e. destroy g (unfoldr f e) 7→ g f e

This lets the transformation defined in g be performed on the list as it is created, instead of
unfolding a list completely and then applying a transformation to the newly created intermediate
structure. Figure 2.4 shows some typical list functions defined in terms destroy/unfoldr. Both
foldl and zip can be defined in terms of unfoldr and destroy , and are thus fusible. In the case
of zip, this reveals that the use of unfoldr allows each input list to be unfolded one at a time,
and then combined, and then start the process all over again until one or both lists is empty.

The filter definition shows one of the limitations of this system; filter must be defined in
terms of a recursive loop. While still fusible, adding these extra recursive loops introduces inef-
ficiency into filter and similarly defined functions. Also, an additional rewrite rule is necessary
in certain cases. If two map calls, for example, occur next to each other, both of them have an
inner unfoldr and an outer destroy , meaning that the outer destroy cannot fuse with the inner
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unfoldr to eliminate the intermediate structure. This requires the introduction of an additional
rewrite rule:

〈destroy/destroy fusion〉 ∀g g ls. destroy g (destroy g ′ ls) 7→
destroy (λpsi a → destroy g (g ′ psi a)) ls

This rule can move the outer destroy inside the inner one so that it can encounter an unfoldr .
As can be seen, defining some functions, especially those that both consume and produce a

list, can be quite complex. These functions are much longer than and more difficult to read than
their foldr/build counterparts. The destroy/unfoldr version of filter even introduces efficiencies
that didn’t exist in the foldr/build version. While this fusion system addresses the problems
in the foldr/build system, the additional complexity it incurs for doing so makes it difficult to
work with.

2.2.3 Stream Fusion

Each of the previously described fusion systems have certain limitations that prevent them from
being a complete fusion system for list combinators. A more recent fusion system known as
stream fusion[6, 7] overcomes the limitations of both of these systems. The description here
applies to lists for comparison with the preceding fusion systems. The implementation of stream
fusion for Texts is described in 3.2.1.

Like destroy/unfoldr, stream fusion uses functions that work in terms of the unfold of a list.
Unlike destroy/unfoldr, however, stream fusion converts the list to an explicit unfold type called
a Stream:

data Stream a = ∃s. Stream (s → Step s a) s

A Stream a consists of stepper function and a seed. An existential wrapper binding the type
variable s of the seed means that the seeds can be different than the values they yield. This is
important for streams that need to carry a state. The stepper function produces a stream by
being applied to a seed and yielding the next step:

data Step s a = Done
| Skip s
| Yield a s

A Step can either be Done, signifying the end of a list, a Skip, saying an element should be
passed over and giving the next seed, or a Yield , which produces both a value and the next
seed. Converting to a list to a Stream is accomplished using the stream function:

stream :: [a ]→ Stream a
stream xs0 = Stream next xs0

where
next [ ] = Done
next (x : xs) = Yield x xs

This creates a Stream by using the list itself as the seed, and then specifying a function that
unfolds the list one value at a time using Yield . The empty list corresponds to a stream being
Done. Converting back to a list is accomplished using unstream:

unstream :: Stream a → [a ]
unstream (Stream next0 s0) = unfold s0

where
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unfold s = case next0 s of
Done → [ ]
Skip s ′ → unfold s ′

Yield x s ′ → x : unfold s ′

Here, unfold applies the function specified in stream to each new seed, consing any values it
encounters, until it reaches Done.

Manipulating a list is accomplished by defining a function over a stream, so that when the
stream is unfolded it is different from the initial list. Consider the function maps over streams:

maps :: (a → b)→ Stream a → Stream b
maps f (Stream next0 s0) = Stream next s0

where
next s = case next0 s of

Done → Done
Skip s ′ → Skip s ′

Yield x s ′ → Yield (f x ) s ′

This function creates a new stepper by applying the old one, return the same values for Done
and Skip, but modifies any values from a Yield by applying f to them, thus modifying all the
values yielded by the original stream. When the stream is unfolded by unstream, it will apply
the new stepper function next value, one a time, which in turn applies next0, unfolding and
then transforming each value of the stream and consing it to the list.

In comparison, a filter over a stream has a similar structure, but its stepper function is
differentiates it from maps:

filters :: (a → Bool)→ Stream a → Stream a
filters p (Stream next0 s0) = Stream nexts0

where
next s = case next0 s of

Done → Done
Skip s ′ → Skip s ′

Yield x s ′ | p x → Yield x s ′

| otherwise → Skip s ′

In this function, the need for Skip is revealed. Like maps, filters creates a new stepper function
that applies the original, but then instead of transforming any values, it either yields the same
value again or replaces it with a Skip, which keeps the seed but discards a value. This allows
this function to pass over elements of the stream without resorting to recursion to keep track
of the last value that satisfied the predicate.

Using stream, unstream, and functions over streams, it is possible to define the same func-
tions over lists:

map :: (a → b)→ [a ]→ [b ]
map f xs = unstream ·maps f · stream
filter :: (a → Bool)→ [a ]→ [a ]
filter p xs = unstream · filters p · stream

Now the opportunity for fusion occurs when these functions are composed over a list. Consider
the program:

(map f · filter p)
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foldls :: (b → a → b)→ b → Stream a → b
foldls f z0 (Stream next s0) = loop z0 s0

where
loop z s = case next s of

Done → z
Skip s ′ → loop z s ′

Yield x s ′ → loop (f z x ) s ′

zips :: Stream a → Stream b → Stream (a, b)
zips (Stream nexta0 sa0 ) (Stream nextb0 sb0 ) = Stream next (sa0 , sb0 ,Nothing)

where
next (sa , sb ,Nothing) = case next sa of

Done → Done
Skip s ′

a → Skip (s ′
a, s

′
b ,Nothing)

Yield as ′
a → Skip (s ′

a, s
′
b , Just a)

next (s ′
a, sb , Just a) = case next sb of

Done → Done
Skip s ′

b → Skip (s ′
a, s

′
b , Just a)

Yield b s ′
b → Yield (a, b) (s ′

a, s
′
b ,Nothing)

Figure 2.5: Examples of stream fusion list combinators

When these functions are inlined, the program becomes:

(unstream ·maps f · stream · unstream · filters p · stream)

Notice in the middle of this program that filter needs unstream to convert the input back to
a list, but map needs to stream it again. This would create an unnecessary conversion and an
unnecessary intermediate list. Removing these functions yields a more reasonable program:

(unstream ·maps f · filters p · stream)

In this program, no intermediate structure is created between maps and filters, each of them
merely modifies the stepper function that unstream uses to unfold the new list. Each original
list element is tested by the predicate p, and is then transformed by map if it passes, and only
then is added to the resulting list. Because every function is defined in terms of stream and
unstream, the only rewrite rule that is necessary is

〈stream/unstream fusion〉 ∀s. stream (unstream s) 7→ s

As previously mentioned, it is possible to define filter without any recursive loops using the
Skip step, which is much more desirable than the destroy/unfoldr approach.

Figure 2.5 shows stream versions of fold and zip, two troublesome functions for fusion
foldr/build. The foldl implementation can use an accumulating parameter. This is because
functions that consume lists, but not produce them, can have recursive loops. The loop for
foldl can unfold the stream and fold the values in the same way that it could were it using a
list. This makes it much easier to define list consumers than in the foldr/build framework.

It is also possible to define a zip that can fuse both input lists. The stepper function for
doing so is slightly more complicated than the previously discussed functions. It encapsulates
a notion of state by modifying the next seed to reflect a result of the prior computation. The
seed for the result stream always carries the current seed from each stream, plus a value of type
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Maybe, which is uses for pattern matching. When that value is Nothing , the stepper function
tries to unfold an element from the first stream. If that stream yields a Skip, it tries to get
another value from that stream. When it counters a Yield , it stores the yielded value in the
Maybe value. When the pattern matches to a non-empty Maybe value (i.e. of the form Just x
for some x ), it goes through the same process for the second stream. When it has a value from
both streams (the first being stored in the Maybe value), it can form a pair, discard the old
Maybe value and restart the process by replacing it with Nothing . If either stream ever ends,
the result stream also ends, thus fully replicating the behaviour of zip.

In addition to overcoming the limitations of previous fusion systems, stream fusion’s ap-
proach makes it easily portable. The explicit representation of streams allows for functions
that deal with all sequences in terms of the same stream type. All of the functions in Figure 2.5
work for any data structure with the same Stream type. For example, the example functions
are nearly identical to those used for the Text library, the only difference being that the Stream
type has additional fields for performance reasons (see Chapter 3). The only differences between
different data structures are the implements of their respective stream and unstream functions.
This ability to fuse arbitrary sequences is an important feature for the Text library.



Chapter 3

The Text Library

Chapter 2 established the need for a faster, more memory efficient string representation in
Haskell. Although ByteString is both of these things, it sacrifices the ability to represent Uni-
code characters (or any characters whose values are greater than 255) to achieve its goals. The
Text library is so called because, unlike ByteString, its API abstracts away from the underlying
representation, allowing characters to have any Unicode value. Whereas storing multi-byte en-
codings in ByteString would force the programmer to deal with the ensuing complications, in
Text it is completely transparent To achieve this, Text has the additional complexity of encod-
ing and decoding Unicode byte streams quickly. Furthermore, it must impose a character-level
API on a more complex underlying representation.

This chapter discusses the Text library in detail. First, it covers the internal structure of
Text and the reasons for its design. Then, it discusses the design of the Text API and the
implementation of some functions. These functions are meant to be representative examples of
the entire API, whose source code is in the appendices.

3.1 String Representation

Storage

Part of the limitation of Haskell’s string representation is its choice of a linked list as a data
structure. Arrays are a much more more efficient choice. They allow constant time access to
any element, which allows faster access to an arbitrary character. Because an array is just an
contiguous span of memory, no extra space is used for pointers and nodes. The downside, of
course, is that an array’s size must be decided at creation. It cannot grow or shrink like a list
can. Deleting an arbitrary element requires copying part of the array to “close the gap”.

To obtain the performance desired, Text uses an array-based representation. An array of
unboxed types allows for the most compact representation, because unboxed types have no
pointer indirection. While the array itself is heap-allocated, it’s underlying memory space
contains the values themselves instead of pointers to them. A boxed representation would
allocate these values on the heap and then store their pointers in an array.

Encoding

The choice of storage format for Text does not answer the question of how the stored information
is encoded. The Unicode Standard specifies three different encoding forms: UTF-8, UTF-16,
and UTF-32. The most compact is UTF-8, using a byte for the small values and up to four
bytes when necessary. The fastest is UTF-32, which represents all Unicode values by their code

17



CHAPTER 3. THE TEXT LIBRARY 18

������

���

���
������ ������

���

����
����

�����������������

����

���

�� �� ���

Figure 3.1: Structure of Text

points in 32-bit words. The encoding/decoding is trivial, but it uses 32-bits (4 bytes) for each
character, making it extremely memory inefficient. Nearly all current world scripts are in the
BMP, where each character only needs one to three bytes in UTF-8.

Although neither the simplest nor the smallest, UTF-16 represents a reasonable middle
ground. UTF-16 streams consist of sequence of 16-bit words. Each character consists of one or
two words. Although variable-width, this encoding is far simpler to work with, and thus much
faster. It is important to note that all of the characters in the BMP fit into one UTF-16 word, so
the majority of characters in common use are easy to encode. In the case of characters U+0800
to U+FFFF, UTF-16 is actually more compact than UTF-8, which requires three bytes. The
fact that UTF-16 is so much simpler than UTF-8 but still takes up half the space of UTF-32 is
why it was chosen for Text (see Section 4.1.4).

3.1.1 The Text Type

Having established a storage method and an encoding choice, the Text type takes the following
form:

data Text = Text !(UArray Int Word16 ) !Int !Int

The UArray , or unboxed array, uses Ints for its indices and Word16 s for its elements. The
choice of Word16 allows an easy implementation of the UTF-16 encoding standard, which is
defined in terms of 16-bit numbers. Furthermore, their behaviour is the same regardless of a
machine’s endianness; although the byte order of a Word16 is different between big endian and
little endian machines, reading a Word16 from this array will always yield the same value. The
two Int fields are the offset and the length in 16-bit words of the string. The uses of these fields
are explained in Section 3.2.3. These fields are denoted as strict by the exclamation points
preceding them. The reason for this is to prevent any unwanted laziness. Because the strings
are in stored in unboxed arrays, Text is an inherently strict representation anyway. Not shown
are also the UNPACK pragmas in front of each field. This ensures that these fields are unboxed
so that in addition to being strict they have no pointer indirection.

The structure of Text is shown in Figure 3.1. The UArray of the Text stores the string
in a ByteArray#. The ByteArray# is a raw area of memory, and is read in 16-bit chunks
when indexed. The instance of Word16 for unboxed arrays stores them compactly, so that two
Word16 s only occupy one 32-bit word. This is in contrast to a boxed Word16 , which merely
reads the lower 16-bits of a hardware word (either 32 or 64 bits). A ByteArray# is immutable,
and thus Texts are an immutable data structure. This allows sharing of a ByteArray# among
substrings derived from a common string. Each of them has a different offset and length, but
can point to the same UArray .

The overhead of storing a text takes 11 words, plus the actual buffer. While this may seem
like a large amount of wasted space, it is close in size to a String consisting of three pre-allocated
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Chars. Thus, even in relatively small strings Text is more compact than a String of the same
length. Achieving a compact representation fulfils one of the objectives of the Text library. An
array-based structure, which inherently has fast read and write capability, also lends itself to
designing a high performance API.

3.2 The Text Interface

Text is meant to serve as a replacement for String. This means that programming using Texts
should be similar to programming using Strings. It isn’t possible to replicate all mechanisms for
accessing Strings, though, because the internals of String and Text are fundamentally different.
Specifically, it is possible to write an inductively defined function over a list using pattern
matching, but not over Text. The internals are of Text are also far more complicated than
String , and a programmer should not have to be intimately familiar with these differences in
order to use Text . This rules out allowing the user to write inductively defined functions over
lists, which would require the programmer to worry about array indices, offsets, and lengths.
Furthermore, in order to benefit from stream fusion, Text must be accessible through a set of
combinators that are already defined in terms of stream and unstream.

There is a suitable abstraction away from the String and Text internals that allows them
both to be used in the same manner. Haskell’s List module[10, ch. 17] implements an API
over Strings that models nearly the all the recursive patterns possible over String . The use of
these is already the most common and desired way to manipulate Strings. Implementing the
same API over Texts allows programmers to manipulate strings in the same manner regardless
of the underlying type and yet take advantage of the benefits that Text offers. Because these
API functions are implemented using stream fusion, it is first necessary to implement a stream
fusion framework that operates over Texts. Because of the explicit form of streams, the stream
functions abstract away from the internal structure of Text are thus very straightforward to
implement.

3.2.1 Stream Fusion over Text

Stream fusion over Text requires dealing with the additional complexities an array based rep-
resentation and a variable-width encoding. With lists, conversion from a stream to a list was
easy. It only required unfolding the stream and consing each yielded value. When converting
to a Text , the array must allocated before the stream is unfolded, and there is no way to know
the size of the stream beforehand. If an array is too small, there won’t be enough space to
accommodate the entire stream. It is possible to allocate a new, larger array and then copy
the current array into the new, larger array, but such copying takes up additional time. Also,
any guess about the size of the stream would be arbitrary; it could be far too small or far too
big. To aid in making a reasonable guess about the necessary size of a stream, the Stream type
gains a field:

data Stream a = ∃s. Stream (s → Step s a) ! s ! Int

This field carries the size of the Text from which the stream was created. When modifying the
stream, functions can alter it if they know precisely how many additional fields with will be
necessary (in cons, for example, exactly one character is added). While this guess may not be
perfect, as some functions cannot predict what changes there will be in the stream (filter , for
example, cannot know beforehand how many elements will satisfy its predicate), the guess has
a very real impact on performance (see Section 4.1.3).

With the Stream type established, it is now possible to define the functions stream and
unstream for Text . Here again, important differences arise between list streaming and Text
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streaming. First, the type of the desired stream is always known; a Text is a sequence of
characters, and therefore stream should always yield a stream of Chars. Second, although Text
is a sequence of characters, they are encoded. This byte-level internal representation should
not be known to the programmer. Their programming should be with respect to characters,
not how they are represented. Therefore, to get a stream of characters, stream must decode
the contents of Text . These requires lead to the following definition of stream:

stream :: Text → Stream Char
stream (Text arr off len) = Stream next off len

where
end = off + len
next !i
| i > end = Done
| n > 0xD800 ∧ n 6 0xDBFF = Yield (U16 .chr2 n n2 ) (i + 2)
| otherwise = Yield (unsafeChr n) (i + 1)
where

n = arr ‘unsafeAt ‘ i
n2 = arr ‘unsafeAt ‘ (i + 1)
chr2 (W16 #a#) (W16 #b#) = C #(chr#

(upper# +# lower# +# 0x10000#))
where

x# = word2Int#a#
y# = word2Int#b#
upper# = uncheckedIShiftL#(x#−# 0xD800#) 10#
lower# = y#−# 0xDC00#

This function uses array indices as seeds that say where the next character can be accessed.
It uses the offset as the place for the first characters. The stepper traverses the array for the
entire length of the string, and then returns Done when it has exceeded the length. There are
two different cases where stream yields a character, and these correspond to the two possible
widths a character can have, one or two Word16 s. In the case where it only takes up one, it
converts that Word16 to a character and then sets the seed to the next index. If a Word16 has
is between the two test values, it is the first half of surrogate pair. It and the Word16 following
it are combined according to the UTF-16 standard and converted to a character. Then the
index after the next is passed on as the seed, as the adjacent Word16 was used for the current
character.

This function makes use of a few other named functions: unsafeAt , unsafeChr , and chr2 .
The first is a function found in GHC’s Data.Array .Base module, which provides access to
immutable arrays. The reason it is “unsafe” is that, unlike the safe version (which uses the (!)
operator), it does not provide bounds checking and does not allow arbitrary indices (they must
be 0-based). The use of this, and other “unsafe” operations, provides a significant increase in
performance (see Section 4.1.3 for benchmarks).

The reason unsafeAt can be used here is that Text already promises that there is data
contained from the off to off + len indices, so bounds checking for every read is unnecessary.
The unsafeChr and chr2 functions are user-defined functions that carry out the conversions
from a raw word to a character. Unlike the built-in function chr , neither of these functions
checks to make sure value being converted is a valid Unicode code point. This is because strings
are validated before being converted to a Text , so no invalid Unicode values will appear in them
(see Sections 3.2.2 and 3.2.4 for operations pertaining to creating Texts). This is also why, in
the case of a first surrogate, the next value is read without bounds checking on the array and
that value is assumed to be a valid second surrogate value. Any isolated surrogates that would
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cause these assumptions to fail are removed during validation, and doing unnecessary bounds
checking is a performance bottleneck.

Once a stream needs to be written out, unstream must deal with the opposite task of
encoding a stream of Chars into a UTF-16 stream that can be written to an array:

unstream :: Stream Char → Text
unstream (Stream next s0 len) = x ‘seq ‘ Text (fst x ) 0 (snd x )

where
x :: (UArray Int Word16 , Int)
x = runST ((unsafeNewArray (0, len + 1) :: ST s (STUArray s Int Word16 ))
>>= (λarr → loop arr 0 (len + 1) s0 ))

loop arr !i !max !s
| i + 1>max = do arr ′ ← unsafeNewArray (0,max ∗ 2)

copy arr arr ′

loop arr ′ i (max ∗ 2) s
| otherwise = case next s of

Done → liftM2 (, ) (unsafeFreezeSTUArray arr) (return i)
Skip s ′ → loop arr i max s ′

Yield x s ′

| n < 0x10000→ do unsafeWrite arr i (fromIntegral n :: Word16 )
loop arr (i + 1) max s ′

| otherwise → do unsafeWrite arr i l
unsafeWrite arr (i + 1) r
loop arr (i + 2) max s ′

where
m,n :: Int
n = ord x
m = n − 0 x10000
l , r :: Word16
l = fromIntegral ((shiftR m 10) + (0xD800 :: Int))
r = fromIntegral ((m .&. (0x3FF :: Int)) + (0xDC00 :: Int))

Obviously, array allocation adds additional complexity when unstreaming to a Text versus
a list. This version of unstream uses the len field from the Stream to make a guess about how
big the array should be. The guess is actually two Word16 s bigger than the len specified. This
is because, before another value is yielded, loop checks to see that the array is big enough to
accommodate the worst case, which is a character that must be encoded as a surrogate pair.
Although this is a rather out of order way of performing such a check, performing the check
after the next value has been calculated is much slower. It is suspected that is due to branch
prediction, as the Core language output for GHC revealed no major differences in the code
other than checking the guard before unfolding the next value. The benchmarks demonstrating
this significant performance difference can be found in Section 4.1.3. If the array is big enough
to accommodate the stream without copying, each value yielded is turned into one or two
Word16 s, as necessary. If it is necessary to copy, the loop will allocate a new array twice as
large as the original and copy any already-written values to the new array, and then use the
new array in the next iteration.

The array itself is allocated as an STUArray , or a mutable unboxed array using the ST
monad. When the loop has finished writing the array, it calls unsafeFreezeSTUArray on the
array, which converts it to a UArray . This function is “unsafe” because it returns a reference to
the UArray without first copying it, which would be a waste of memory and time. This means
that any older references to the array would still allow a function to write to it, violating its
immutability. Because this array is allocated, written, and then frozen in the same function
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before returning any references, it is not possible for any code to write to the array after it is
frozen and thus it is a safe and yet faster way to freeze the array. The loop also returns a length
value for the actual number of bytes occupied by string that was just written out. This value
is used for the length field in the new Text to give an accurate boundary of where in the array
the string is stored.

In addition to unsafeFreezeSTUArray , unstream also contains calls to unsafeWrite and
unsafeNewArray . Like unsafeAt , unsafeWrite allow access to an array without performing
bounds checking on each access. This is already performed by checking that the array is
large enough to accommodate the next characters, and this operations is less costly than its
“safe” counterpart. The function unsafeNewArray allocates any array with the specified range
of indices, but does not initialise array like its safer version. This makes allocating arrays,
especially large ones, a much faster operation. This function is also used safely because no
values are read from in the new array, and the offset and length fields in Text ensure that no
other functions will attempt to read from any unwritten areas of the array, either.

3.2.2 Converting between Text and String

With stream and unstream defined over Text , a fully fusible API can written. The most crucial
set of functions in such an API are those that allow the creation of Texts, otherwise the other
combinators are rather useless. One way to create Texts is to convert them from Strings. This
is accomplished using the pack and unpack functions:

pack :: String → Text
pack str = (unstream (stream list str))

where
stream list s0 = Stream next s0 (length s0)

where
next [ ] = Done
next (x : xs) = Yield x xs

unpack :: Text → String
unpack t = (unstream list (stream t))

where
unstream list (Stream next s0 len) = unfold s0

where
unfold s = case next s of

Done → [ ]
Skip s ′ → unfold s ′

Yield x s ′ → x : unfold s ′

Despite the fact that these strings involve both String and Text , they are implemented using
a stream fusion. In the case of pack , a specialised stream function converts the list into a
Stream Char , and then unstream will write it to a Text . Similarly, stream will convert a Text
to a Stream Char , and a specialised unstream function writes it out to a list.

It would be possible to directly read/write these strings from one format to another, but
there are two reasons why this implementation is better. First, stream and unstream are already
highly optimised in order to provide fast encoding and decoding of UTF-16 streams. Second,
by implementing these functions using streams, they are fusible. If a String is packed only to
be immediately transformed, only one Text needs to be created: the one containing the final
result. Likewise, if unpack is being used at the end of a series of transformations on a Text , it
is wasteful to write that result out to a Text only to then copy to a String .

This use of streams reveals their dual purpose. They represent a way to eliminate inter-
mediate structures using the stream/unstream fusion rule, but they also serve as a way of
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append :: Stream Char → Stream Char → Stream Char
append (Stream next0 s01 len1 ) (Stream next1 s02 len2 ) =

Stream next (Left s01 ) (len1 + len2 )
where

next (Left s1 ) = case next0 s1 of
Done → Skip (Right s02 )
Skip s1 ′ → Skip (Left s1 ′)
Yield x s1 ′ → Yield x (Left s1 ′)

next (Right s2 ) = case next1 s2 of
Done → Done
Skip s2 ′ → Skip (Right s2 ′)
Yield x s2 ′ → Yield x (Right s2 ′)

tail :: Stream Char → Stream Char
tail (Stream next0 s0 len) = Stream next (False :! : s0 ) (len − 1)

where
next (False :! : s) = case next0 s of

Done → errorEmptyList "tail"
Skip s ′ → Skip (False :! : s ′)
Yield s ′ → Skip (True :! : s ′)

next (True :! : s) = case next0 s of
Done → Done
Skip s ′ → Skip (True :! : s ′)
Yield x s ′ → Yield x (True :! : s ′)

Figure 3.2: Examples of stream combinators in Text

abstracting away from underlying representations. This enables conversion between different
string representations using functions that are already highly specialised to be fast and efficient.

3.2.3 Text Combinators

As discussed previously, the List API represents the best choice for Text to give programmers
access to a wide range of functions that they are already accustomed to using with String .
These functions also represent most of the inductively defined operations possible over a string,
so there are very few limitations on what can be accomplished with respect to string processing.

Stream Combinators

One of the benefits of stream fusion is the use of an explicit Stream type. A function defined
in terms of streams does not depend on the mechanics of the source of the stream. The only
functions that interact with the underlying data structure are stream and unstream. Because
of this, the functions in Figure 2.5 work just as well on streams of Text as they do on lists,
although with minor modifications to account for the length field and the less polymorphic
types of Text combinators. Figure 3.2 shows some examples of the stream combinators used
in Text (the entire library can be found in Appendix A). Note the modification of the length
guesses based upon the nature of the function in question.

The stream combinators for Text are largely taken from two existing sources, the ByteString
library[7] and the Data.Stream library[6], which is a stream fusion implementation of List .
While the authors of these libraries wrote stream functions that appear in the Text library,
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append :: Text → Text → Text
append t1 t2 = unstream (S .append (stream t1 ) (stream t2 ))
tail :: Text → Text
tail t = unstream (S .tail (stream t))

Figure 3.3: Examples of stream-defined Text combinators

tail :: Text → Text
tail (Text arr off len)
| len 6 0 = errorEmptyList "tail"
| n > 0 xD800 ∧ n 6 0 xDBFF = (Text arr (off + 2) (len − 2))
| otherwise = (Text arr (off + 1) (len − 1))
where

n = unsafeAt arr off
init :: Text → Text
init (Text arr off len) | len 6 0 = errorEmptyList "init"
| n > 0 xDC00 ∧ n 6 0 xDFFF = (Text arr off (len − 2))
| otherwise = (Text arr off (len − 1))
where

n = unsafeAt arr (off + len − 1)

Figure 3.4: Examples of non-stream Text combinators

their focus was different and there are many modifications to the original function definitions.
ByteString , being a fixed width encoding, can read from either end of string. This allowed
functions such as tail and init , which return all but the first element and all but the last
element of a list/string, respectively, to be defined using the same stream combinator but using
different streaming functions. In Data.Stream, functions were designed to read from the start
of the list only, but were also designed to handle the polymorphism (including nested lists) and
laziness of the list type, neither of which are features of Text .

The Text combinators implemented in terms of stream and unstream have a simple structure;
stream in the input Text(s) and unstream the output stream, if it exists. The Text combinators
for the stream combinators in Figure 3.2 are shown in Figure 3.3.

Non-stream Combinators

Stream-based combinators must use stream and unstream to achieve the necessary conversions.
This involves reading, decoding, and then copying and re-encoding the entire string. Some
operations do not require this, and can save time and space by being implemented without
using streams. Examples of such functions are show in Figure 3.4.

The tail function only needs to remove the first character from the string. To do this, it
can decode the first character and return a new Text with the same UArray but a different
offset and length. This lets the two Texts share the same array, but represent two different
strings. It also changes the time and space complexities of tail from O(n) to O(1). Similarly,
init only needs to decode the last character of the string and modify the length field accordingly
(depending of whether or not the last character is a single Word16 or a surrogate pair).

While the non-stream functions are more efficient when called in isolation, they lose their



CHAPTER 3. THE TEXT LIBRARY 25

fusibility. It may be more efficient to implement tail , etc. on the structure Text , but those gains
are less valuable if they force the creation of an intermediate Text . Also, if a Text has already
been streamed for another function, there is no additional copying or complexity to apply the
stream version of these non-stream versions.

The perfect solution is to have the compiler choose the stream version of the function when
that is more efficient, and otherwise choose the non-stream version. This can be achieved
through careful use the GHC’s RULES pragma. The following example is the set of a rewrite
rules for tail :

"TEXT tail -> fused" [∼1] forall t .
tail t = unstream (S .tail (stream t))

"TEXT tail -> unfused" [1] forall t .
unstream (S .tail (stream t)) = tail t

The first rule substitutes tail for the streamed version of it, streaming the input and unstreaming
the output. The [∼1] restricts this rule so that it only applies before Phase 1 of compilation.
The second rule, which is applied only during Phase 1 and after, checks to see if the function
has been fused. If it has been call to stream will have been removed by the steam/unstream
rewrite rule, that function call should be left alone. If it remains unfused, then it substitutes
the non-stream version back in for the stream version, because it will be more efficient.

3.2.4 File I/O

The issue of file input/output was complicated by the fact that the way that various text
encodings were handled was due to change in the upcoming release of GHC 6.10. These have
now been clarified[1], and GHC will provide handle based I/O of Unicode text for all encoding
form. To avoid conflict with these features, which will undoubtedly be utilised in Text , the I/O
implemented for Text deviates from Haskell’s String model.

The functions encode and decode provide ways to convert a Text into a ByteString and vice
versa. This gives then gives the programmer access to ByteStrings extremely fast I/O. The
Unicode values are not lost, however, because ByteString are not used in their typical one-
character-byte matter. Instead, the characters are written out encoded, so that a given byte of
a ByteString may or may not represent a whole character on its own. The Encoding allows the
programmer to choose encoding form and endianness. From there it can be written to out a
file using ByteString ’s file I/O. library. The source for these functions is available in Appendix
A.

These functions also utilise stream fusion as the mechanism for their conversion. The func-
tion stream bs acts a stream function from ByteString to Stream Char , decoding and perform-
ing full Unicode validation. When converting back, restream converts a Stream Char to a
Stream Word8 using a specified encoding. Then, unstream bs acts as the unstream function.
This allows the conversions to take place without any needless intermediate Texts. In fact, a
program that uses ByteString for reading from a file, performing a series of fusible functions,
and uses ByteString to write back out to a file, never needs to write any Texts at all. This
may lead to the conclusion that Text is an unnecessary representation, and that a layer over
ByteString is sufficient for all these operations. Indeed, Text is very similar to ByteString , but
diverges on the rather significant choice of storage. The memory allocation issues associated
with ByteString can make it a less desirable choice in some circumstances (see Sections 2.1.2).



Chapter 4

Benchmarking and Testing

The goal of Text is to be an alternative to String that achieves better performance in time and
space. Therefore, evaluating the success of Text depends on knowing precisely how much faster
it is. This chapter presents the benchmarking system used to the compare the performance
of Text , String , and ByteString (where applicable). The design of such a system in Haskell
has the additional complication of dealing with laziness, particularly in benchmarks of String ,
which is a lazy data structure.

This chapter also presents the results of these benchmarks. It explores the reason for the
performance of some of the representative combinators. It then discusses the performance
impact of certain implementation decisions that were made in the process of developing Text .
It also compares Text , which uses UTF-16 as its underlying representation, to alternative
implementations that use UTF-8 and UTF-32.

The second half of the chapter covers the testing methods used for Text . It gives an overview
of the testing library used, known as QuickCheck. It then discusses the validity of QuickCheck’s
methods for testing, and how these methods are implemented specifically for Text . It also shows
examples of some the tests used to help verify Text .

4.1 Benchmarking

The goal of the benchmarking system for Text is to be able to compare its performance with
String and ByteString . That performance is quantified by measuring the amount of time
required to perform the same task on the same piece of text using each representation and their
respective functions. A representation that takes less time than the others is said to have better
performance.

The “time” specified here is not real time. The amount of time that elapses as a task is
performed is highly non-deterministic; it depends on the resources allocated to that program for
a given period of time. This depends on the configuration of the operating system’s scheduler
and what other tasks are competing for resources. Even in the instance where these two factors
are the same, the choice of the scheduler may still be non-deterministic.

The amount of processor time a task takes, however, is far more regular. A deterministic
function will always require the same resources to perform the same task. This means that it
will require the same number and type of machine instructions in exactly the same order every
time. The amount of time each of these instructions takes can be measured, and the sum of
these times is processor time, or “CPU time”. This time more readily reflect the notion of how
long a function is taking to perform its task, and this is the quantifier that is used to compare
the performance of each library in these benchmarks.

26
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Haskell’s laziness adds an additional complication in measuring performance. First, Haskell
uses call by need parameter passing for functions, meaning that the arguments to a function
may not have been evaluated yet. In measuring performance of a given function, the overhead
of evaluating its arguments should be included. The arguments could be arbitrarily complex
expressions, and their performance is not at all dependent upon the function itself. Thus,
all arguments must be fully evaluated before being passed the calling function. Furthermore,
Haskell’s String type itself is lazy. Applying a function to a String does not always yield full
evaluation of the resulting expression, and forcing evaluation fairly is not straightforward on
lists.

Forcing evaluation “fairly” refers to forcing evaluation without incurring extra overhead.
As an example, map and cons are both functions that return new Strings, but lazily. The
map function is supposed to traverse the entire list and compute a new value for each existing
value. Forcing this list means traversing the entire list and inspecting each value. The cons
function, however, does not traverse the list at all. It merely creates another node and adds it
onto the front of the list without traversing it. To traverse and inspect every value of the new
list incurs and overhead that the cons function does not cause. For this function, it suffices to
put the list into Weak Head Normal Form (WHNF). WHNF does not guarantee that the entire
list is evaluated, but that evaluation occurs until the outermost expression is not a reducible
expression. This differs from Head Normal Form, which would also ensure that the inner
expressions of functions are also not reducible. In this case, cons x xs becomes the list x : xs,
but it is possible that neither x nor xs is evaluated. In benchmarking, this ensures that the cons
operation is performed, but keeps the complexity or the size of x or xs from interfering with
time, which would be inconsistent with the constant time complexity of String ’s cons. Forcing
evaluation on Texts and ByteStrings is much easier. These data structures are internally strict,
so forcing them into WHNF also forces any other necessary evaluation.

4.1.1 Benchmark Implementation

Because of the similarities between Text and ByteString , the benchmark system for Text is
based upon a similar system developed for testing ByteString [7]. This system included tests
over ASCII text and strategies for forcing the evaluation of arguments. It was only used for
ByteString , though, and did not need to address the issue of evaluating lazy results such as
Strings.

The code for this benchmarking system is available in Appendix A. It reads in a text file in
each of the necessary formats. It then forces the evaluation of resulting string in each format.
This forces all three files fully into memory, so that no I/O occurs during the actual timing
process. Then, each version of a given function is applied to its respective representation.
The result is forced based upon its representation or result. To force a value into WHNF, the
function seq is used. For lists whose elements each need to be evaluated (e.g. map, filter),
the function foldl ′ (flip seq) (return ()) is used. The latter forces each element of the list into
normal form. In the case of String , this forces each element to be evaluated until the resulting
Char is computed.

Corpus selection

The selection of test files are an important consideration. Documents using different Unicode
code points can have different impacts on performance. For UTF-16, there are 2 possible cases
for each character; it may take up one word, or it may form a surrogate pair. To evaluate the
differences that each of these cases can have on performance, the tests are performed both on
documents that have characters solely in the BMP and on a document that consists characters
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Figure 4.1: Benchmarks of Text , String , and ByteString on a 57.7 MB ASCII file

outside of it. Because ASCII characters are pre-allocated in String , a document consisting of
only ASCII characters is also tested. This also allows for comparisons with ByteString .

Each of the documents tested is close to 50 megabytes. The ASCII text is the English
version of the The Universal Declaration of Human Rights[2] concatenated to itself many times
to reach the desired size. The BMP version is the same document, except in Russian[3], also
concatenated to itself many times. The reason for this is that the Cyrillic alphabet used by the
Russian language is completely outside the ASCII range, but still inside the BMP. It tests the
performance of Text versus a non-pre-allocated version of String . The outer planes document
is an automatically generated document of all possible values in the first and second planes,
also concatenated to itself to make a suitably sized document. This was used because the
availability of actual corpora containing many of these characters is limited. The occurrence of
CJK characters in these planes is extremely rare, so that in a realistic document they would
have a negligible impact on performance. The only other realistic type of corpus would be one
in an ancient script such as Linear-B, Gothic, or Old Italic. Finding a suitable document in
this form was not a realistic solution.1

4.1.2 Results

Single function results

The results presented in this section are a selection of functions taken from benchmarking. A
run of all benchmarked functions is available in Appendix B. Benchmarks were taken for three
different cases: ASCII text, BMP text, and SMP/SIP text. No distinction was made between
the SMP and SIP planes because the conversion process in UTF-16 is the same. Figures 4.1,
4.2, and 4.3 show the performance over a sample of each of these texts, respectively.

Generally, Text beats String regardless of encoding. Some of these, such as last and init , take
advantage of the ability to create substrings that share the original array. That, combined with
constant time access to any member of the array, reduces the complexity of these operations
from O(n) to O(1). Others, such as map, filter , and other O(n) operations over lists, are

1There are very few free corpora. Of the few that are free, most are only accessible through a “concordancer”,
which allows the user to search for words and see the context in which they appear.
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Figure 4.2: Benchmarks of Text and String on a 61.2 MB Unicode BMP file

implemented in terms of streams regardless of whether or not they fuse with other functions.
The notable exception to Text ’s performance is cons. The reason for this is that Text ’s array
based representation requires creating a new array, inserting the new element at the index, and
then copying all of the old array. In String , its linked-list structure allows this operation to be
completed in constant time.

In the ASCII test, Text and String are also compared to ByteString . ByteString ’s perfor-
mance represents an “ideal” for Text , but is difficult to reach because of the added Unicode
overhead. ByteString ’s complexity is the same as Text ’s for most operations, hence the poor
cons performance. While ByteString is still much faster than Text , it is worth noting that
Text ’s performance tends to be closer to ByteString ’s than to String ’s. ByteString has a huge
advantage in drop and take, however, because these operations are constant time; Text has to
check for surrogate pairs when forming substrings, whereas ByteString does not.

The results for tests on BMP text are roughly the same. This is expected, as no addi-
tional decoding overhead is incurred for any BMP text using UTF-16. In this test there is no
ByteString comparison because ByteString is incapable of storing these Unicode values.

Performance is drastically different in SMP/SIP text, however. While Text still beats String ,
the margin is far smaller. The constant time functions maintain their same performance, but
those functions that must traverse the string are much slower. The reason for this is that there
is increased decoding overhead for this text; each character comprises two Word16 s that must
be assembled using a series of shifts and adds. Although Text suffers quite a bit in this example,
it represents a worst case scenario rather than a likely case. In documents using any modern
script, even those with CJK characters, there would be very, very few characters from the outer
planes. Rather, they would be interspersed in the document, and their impact on performance
would be much smaller, if not negligible. The only realistic case that this represents is a large
document composed entirely of an ancient script.

Fusion results

The single function results demonstrate that Text has good performance; it beats String nearly
all the time. A big part of developing Text , though, was is making sure that its combinators are
fusible. Furthermore, programs using compositional functions are so common that their impact
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Figure 4.3: Benchmarks of Text and String on an 82.5 MB Unicode SMP/SIP file

on performance is an important measure of a library’s speed. Figures 4.4 shows the timings for
benchmarks of some common fusion patterns.

The fusion benchmarks reveal that fusion does not yield as dramatic a performance increase
as single function calls. One reason for this is that String also implements fusion, so the gain
on String is not as significant as it might otherwise be. Nevertheless, Text is consistently
better that String , but there may be room for improvement to get closer to ByteString ’s fusion
performance. Note the sharper difference in performance when using foldl . This is due to
String ’s inability to use left folds using foldr/build fusion.

4.1.3 Impact of optimisations

Throughout the development of Text , many changes were made from the original design for
performance purposes. The impacts of these changes on performance are quantified in this
section to prove the efficacy of changes to the system. They can broadly be classified into three
sets of changes: length guessing, “unsafe” function use, and branching changes.

Length guessing

One problem with an array-based representation is that the size of the array must be chosen
before it is filled. If a Text is the result of a function, its array will be allocated and its sized
fixed before the resulting string is computed. Obviously, if the array is well sized, this is not
a problem. If the array is too big, the string will fit, but memory is wasted. Although this
representation is more compact than String , wasted memory is still something to avoid. If the
array is too small, the string will not fit. To deal with situations where this happens, functions
that write new arrays (e.g. unstream) detect when it reaches the end of any array, allocates
one twice as big, copies the already written contents, and continue. Doubling the size keeps the
amortised cost of writing the whole array down to O(n), but the point of arrays is that reads
and writes are supposed to be O(1).

The solution to this problem was to implement length fields in the necessary data types. In
Text , this field is also used to make substrings. The more important addition was in the addition
of a length field to the Stream type. Without this field, it is impossible to know anything about
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Figure 4.4: Benchmarks of fused functions for Text, String and ByteString on a 57.7 MB ASCII
file

the length of a stream before it is unfolded. This additional field communicates the size of the
original Text through the streaming process. It also lets stream-based combinators modify the
length field if is known how the length will change (e.g. cons always adds exactly one character).
The exact quantification of a how much length guessing affects performance depends on the size
of the arrays without length guessing. Using a suitably large number, it could yield the same
performance if the array is always bigger than any string that tries to fit into it. The amortised
cost of the size-doubling method is still O(n) even if the guess is very small, so the comparison
here is against an implementation that always starts with an array of size 1.

Figure 4.1.3 shows a set of timings with length guessing versus a set without. The effect of
so much copying is massive, causing slowdown by as much as a factor of 20. This impact would
be lessened with a larger base guess, but it is clear that length guessing is pivotal is taking an
array-based approach from unusably slow to a high-performance representation.

Using “unsafe” functions

One of the hallmark characteristics of Haskell is its emphasis on correctness. Haskell’s ability
to abstract away from machine level coding is one of the ways that it achieves this. Memory
management, mutability, and pointers are all handled by the compiler and run-time system so
that the programmer does not have to worry about them. These areas are extremely prone to
error by programmers and distract away from focussing on the actual computation. In addition,
this abstraction provides consistency across platforms.

This abstraction, however, does incur a performance cost. Array reads and writes are always
bounds checked, which makes sure that no other data are overwritten. Furthermore, arrays in
Haskell can use arbitrary indices, a convenient way to avoid, for example, off by one errors
from 0-based arrays. Conversion between characters and numbers, far from the simple casting
procedure they are in C, require using boxed (i.e. heap-allocated) numbers and characters, and
numbers are always checked against Unicode bounds during conversion.

For a high-performance library, being able to control what a program does at a lower level
can yield much better performance. Such control is available in the form of “unsafe” functions.
These functions are considered “unsafe” not because using them inherently breaks a program,
but it removes the ability for Haskell to protect the programmer from making errors it could
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Figure 4.5: Benchmarks of Text without any length guessing

otherwise detect. Because most “unsafe” functions have a safe counterpart, it is a simple matter
to make a safe prototype to test the correctness of a program and migrate to “unsafe” functions
one at a time when the prototypes correctness is assured. This is the process that was used in
refining Text .

The “unsafe” functions used in Text were for array allocation, reading, and writing and
for conversion from numbers to text. The latter is via a user-defined function rather than
built-in one. Figure 4.6 compares the performance of a “safe” version of Text . The impact on
performance is not as large as that of length guessing, but it is nevertheless significant. Using
safe array and character functions slows downs performance by factors of 2 to 3.

Reducing comparisons and branches

The number of comparisons and branches in the Text code was reduced drastically from the
prototype. This was due to the fact that all characters are validated at the the time that they
are first read into a Text , so any functions on Text only deal with valid characters. Thus,
comparisons are only necessary to check for surrogate pairs, but not to check boundaries of
characters as they are are encoded/decoded.

In addition to reducing the number of comparisons, reducing the number of branches yields
a performance increase. This was accomplished by removing nested branches for checking array
boundaries when reading to a new Text . Instead, this check was floated out to take place before
the next character was read from the stream. While this leads to sometimes allocating 1-2 extra
16 bit words, the performance gain combined with the otherwise compact representation of Text
means this trade-off has no negative consequences.

Figure 4.7 shows the comparison between a version of Text using full value checking and
checking for array bounds after the next value has been yielded. The difference is far less
dramatic than for the prior optimisations. The slowdown is between 1 and 2 times for most
functions. In most cases, Text still beats out String , but by a smaller margin.
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Figure 4.6: Benchmarks of Text using the safe form of its “unsafe” functions
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Figure 4.7: Benchmarks of comparing Text with and without branching improvements
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Figure 4.8: Comparison of different encoding implementations of Text on ASCII text

4.1.4 Encoding shootout

The advantages of UTF-16 as a relatively compact (compared to UTF-32) but also relatively
simple (compared to UTF-8) encoding were the reasons it was chosen for Text . This is true
from a theoretical point of view, but evaluating the actual impact this has on performance is
important. Figures 4.8, 4.9, 4.10 show the timings of some common list combinators for Text
implemented with various encodings.

The timings reveal that in the case of ASCII Text, UTF-8 is a very poor performer. This
is probably to due to issues with branching in the UTF-8 implementation. Similar problems
were encountered in Text using UTF-16 (see Section 4.1.3), and UTF-8 has more complicated
branching. It is unlikely, though, that it has anything to do with decoding overhead because no
ASCII text needs to be reassembled in any Unicode encoding. It may be possible to increase
UTF-8 performance in this case, but it would be significantly more effort than with UTF-16.
UTF-32, representing the simplest possible way to handle text, was on par or slightly faster
than UTF-16. Again, these differences have more to do with branching and comparisons than
any character reassembly.

In BMP text, UTF-16 is significantly faster than UTF-8. UTF-32 is predictably faster,
though. These results are not too different from the difference among the encodings in the
ASCII tests, and this is to be expected; UTF-16 and UTF-32 handle ASCII and BMP text the
same. UTF-8 still performs poorly, but it is difficult to say whether this is due to branching
issues or the overhead of reassembling characters.

In SMP/SIP text, the gap between UTF-16 and UTF-32 is far larger. This is due to
the overhead in UTF-16 of reassembling characters, whereas UTF-32 does no reassembling
whatsoever. UTF-8 still has very poor performance.

This comparison shows that UTF-8, while more compact in many cases, pays for its com-
plexity. In this case, the implementation used the same optimising strategies that were used
in writing the UTF-16 code, but this was clearly insufficient. Even though UTF-32 is faster
than UTF-16, sometimes much faster, it’s large footprint significantly reduces its usability. In
many cases, the distance between UTF-32 and UTF-16 is still far smaller than the gap between
UTF-16 and UTF-8, making it harder to justify doubling the space needed for a string.
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Figure 4.9: Comparison of different encoding implementations of Text on ASCII text
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Figure 4.10: Comparison of different encodings representing strings in Text
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4.2 Testing

In addition to measuring the performance of Text , it is important to ensure that it behaves
as expected. It cannot be used for a string library if its representation is not trustworthy.
Although no testing system can completely validate a program, it is negligent to forgo testing
for this reason. Testing can find many errors that would be otherwise missed by the compiler
and by examining the source code.

The testing system used for Text is designed to test that certain desired properties hold.
Because Text ’s library is designed to mirror Strings library, there is already a “correct” version
of each function that can be considered trustworthy. In testing the behaviour of library func-
tions, comparing the Text output to the String output is a convenient way to see if that tests
are successful. A testing system known as QuickCheck [5] has been developed that allows pro-
grammers to specify properties and design a testing framework that can provide good coverage
of the test space and generate many more test cases than a programmer could do manually in
the same amount of time.

4.2.1 Testing using QuickCheck

The QuickCheck library allows the specification of properties, which it can then check by
generating a series of test inputs to try disprove the property. If QuickCheck does not find a
disproving case, it considers the property true. A test case takes the form of a Haskell expression
that evaluates to some boolean. Consider this property for String-to-Text-to-String identity:

prop pack unpack s = (unpack · pack) s ≡ s

This property can then be checked by QuickCheck :

> quickCheck prop pack unpack
OK , passed 100 tests ·

Although this code passed, QuickCheck also reveals information when failure occurs. In addition
to signalling the failure, it provides the test case the cause the failure to aid in debugging.

These tests are performed by generating random strings of varying length (always including
the empty list) and testing the equality. The control of how these strings are generated is
what ensures good test coverage. QuickCheck already knows how to randomly generate lists of
anything, it needs to know how to generate random Chars for the list. This can be specified
using the Arbitrary type class:

instance Arbitrary Char where
arbitrary = oneof [choose (’\0’, ’\55295’), choose (’\57334’, ’\1114111’)]

This code defines the function arbitrary, which QuickCheck uses to generate random values.
This definition tells QuickCheck to pick any valid Unicode code point. It has an equal chance
of picking one from above or below the value of surrogate pairs, and then an equal probability
of picking any character in that range. While many of these code points have not been assigned
by the Unicode standard, this does not discount them as valid test cases, because all code
points should be treated the same. Providing test coverage across the entire Unicode spectrum
is important to explore both cases of UTF-16 (both single characters surrogate pairs).

Now that pack and unpack are considered safe conversion tools, it’s possible to use them in
creating arbitrary instances of Text2:

2The instances of Arbitrary for Text are based off of those found in the ByteString testing library
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instance Arbitrary Text where
arbitrary = pack ‘fmap‘ arbitrary

This creates an arbitrary Text by creating an arbitrary string and packing it. Now it is possible
to check the correctness of other functions in the Text library. For example, the proper to test
map is:

prop map f s = (P .map f s) ≡ (unpack · T .map f · pack) s

This creates a string, and a random function of type (Char → Char) over it, and computes it
using String and Text .

All of the other Text API functions are also tested. In the case where there are both stream
and non-stream version, both are tested against String functions. These tests are all available
in Appendix A and the test output is available in Appendix C.



Chapter 5

Conclusions

The goal of this project was to create a fast, compact string representation in Haskell that
supports Unicode while also utilising stream fusion. It used some prior work both in string
representation and in fusion to create an additional library, Text , that fills a large gap in the
current Haskell libraries. A benchmarking system was devised that to measure Text ’s perfor-
mance versus the competition. It reached the desired level of performance, being significantly
faster than String in performing string manipulation using List-like combinators. Although
ByteString remains faster, its uses are divergent from Text and the complement each other
nicely, with ByteString providing fast byte-level access and Text providing an abstraction away
from it while still maintaining good performance.

In addition to creating a practically useful product in Text , this project also revealed some
of the useful aspects of stream fusion that go beyond its original intention. Stream fusion’s ex-
plicit representation created an opportunity to use multiple sequence types while transparently
converting among them. ByteString , String , and Text types are all fusible when working with
this library, and the underlying mechanics are completely transparent to the programmer. The
combinators used, all defined in terms of streams, are also indifferent to the underlying source
of the text they are computing.

This was a great benefit to the design of Text , and also made optimisation easier. The
majority of functions depend only on a stream for their computation and not the design of
Text . This meant that function definitions over streams were straightforward, and most of the
overhead was concentrated into the stream and unstream functions. Targeting these functions
for optimisation was extremely effective and much more efficient than spreading more low-level
code around to each function. Thus, the use of streams for converting between sequences proved
not only to be useful from a fusion point of view, but also turned out to be an elegant design
decision by concentrating the bottlenecks into fewer, more easily identifiable spots.

5.1 Further Work

The Text library described in this dissertation represents a first design iteration that joins
ideas from previous with new ones. While the result can be deemed successful insofar as it has
accomplished it’s goal of being a fast, compact string representation, this does not mean it has
reached its full potential. The subset of List functions that were implemented for this project
were chosen for their ubiquity in string processing and their ability to represent a set of similar
functions. Nevertheless, a more developed library would have all of the necessary functions.
Furthermore, many of the more complex functions, such as mapAccumR and mapAccumL,
pose significant challenges in stream fusion. Overcoming the difficulties in implementing these

38
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functions with good performance would be beneficial to other uses of stream fusion as well as
to the development of the Text library.

There are also variations on Text ’s design that were not explored in this project, but be
useful. For example, a next obvious refinement is the replacement of the UArray in Text with
a MutableByteArray#. This would remove a level of pointer indirection and decrease the size
of a Text .

5.1.1 Lazy Text

The design of Text is such that it is inherently strict. This strictness is useful in terms of com-
pactness and performance. Haskell’s laziness adds to its usefulness as a very power functional
programming language, and Text cannot completely replace some of the features of lazy strings.
In particular, lazy I/O can be useful for deal with text that is larger than available memory,
and Text is not capable of doing this, yet. A lazy version of ByteString uses a lazy list of strict
ByteString chunks to accomplish laziness; it may be possible to adapt this to Text as well.

5.1.2 Text Ropes

Currently, Text uses an array-based representation for strings. While this representation was
used because it had the potential to achieve the best possible performance, much of the design
effort in this project was dedicated to overcoming the disadvantages of arrays, such as copying
and fixed size. A Rope[4] is a heavy weight representation of strings that uses trees of arrays to
represent strings. It proves a dynamically resizable structure and some easy string operations,
such as constant time appending. The work in array-based representations using Text could be
applied to such a data structure and yield a more flexible representation.



Appendix A

Source code

This appendix contains all of the source code for the implementation and testing of Text . This
includes all of the modules of Text and the UTF-32 and UTF-8 internal implementations for
the encoding shootout. It also includes the source code for all of the benchmarks run on Test ,
including the fusion tests for the encoding shootout. It also includes the QuickCheck properties
and Arbitrary instances used in testing Text .

A.1 Text source code

A.1.1 Text.hs
{-# OPTIONS_GHC -fglasgow-exts -fbang-patterns #-}

module Text where

import Prelude (Char,Bool,Int,Maybe,String,
Eq,(==),
Show,showsPrec,show,not,
Read,readsPrec,read,
(&&),(||),(+),(-),($),(<),(>),(<=),(>=),(.),(>>=),
return,otherwise,seq,fromIntegral)

import Char
import Data.Word
import Data.Bits
import qualified Data.List as L
import Data.Monoid

import Data.Array.Base
import Data.Array.ST
import Control.Monad.ST
import Data.Word

import qualified Data.ByteString as B
import Data.ByteString(ByteString)
import System.IO hiding (readFile)

import qualified Text.Fusion as S
import Text.Fusion (errorEmptyList)
import Text.Fusion (Stream(..),Step(..),Encoding(..),

stream,unstream,stream_bs,unstream_bs,restream)
import Text.Internal
import qualified Prelude as P
import Text.UnsafeChar
import Text.Utf16 as U16

instance Eq Text where
t1 == t2 = (stream t1) ‘S.eq‘ (stream t2)

instance Show Text where

40



APPENDIX A. SOURCE CODE 41

showsPrec p ps r = showsPrec p (unpack ps) r

instance Read Text where
readsPrec p str = [(pack x,y) | (x,y) <- readsPrec p str]

instance Monoid Text where
mempty = empty
mappend = append
mconcat = concat

-- -----------------------------------------------------------------------------
-- * Conversion to/from ’Text’

-- | /O(n)/ Convert a String into a Text.
--
-- This function is subject to array fusion, so calling other fusible
-- function(s) on a packed string will only cause one ’Text’ to be written
-- out at the end of the pipeline, instead of one before and one after.
pack :: String -> Text
pack str = (unstream (stream_list str))

where
stream_list s0 = S.Stream next s0 (P.length s0) -- total guess

where
next [] = S.Done
next (x:xs) = S.Yield x xs

{-# INLINE [1] pack #-}
-- TODO: Has to do validation! -- No, it doesn’t, the

-- | /O(n)/ Convert a Text into a String.
-- Subject to array fusion.
unpack :: Text -> String
unpack txt = (unstream_list (stream txt))

where
unstream_list (S.Stream next s0 len) = unfold s0

where
unfold !s = case next s of

S.Done -> []
S.Skip s’ -> seq s’ $ unfold s’
S.Yield x s’ -> seq s’ $ x : unfold s’

{-# INLINE [1] unpack #-}

-- | Convert a character into a Text.
-- Subject to array fusion.
singleton :: Char -> Text
singleton c = unstream (Stream next (c:[]) 1)

where
{-# INLINE next #-}
next (c:cs) = Yield c cs
next [] = Done

{-# INLINE [1] singleton #-}

decode :: Encoding -> ByteString -> Text
decode enc bs = unstream (stream_bs enc bs)
{-# INLINE decode #-}

encode :: Encoding -> Text -> ByteString
encode enc txt = unstream_bs (restream enc (stream txt))
{-# INLINE encode #-}

-- -----------------------------------------------------------------------------
-- * Basic functions

-- | /O(n)/ Adds a character to the front of a ’Text’. This function is more
-- costly than its ’List’ counterpart because it requires copying a new array.
-- Subject to array fusion.
cons :: Char -> Text -> Text
cons c t = unstream (S.cons c (stream t))
{-# INLINE cons #-}

-- | /O(n)/ Adds a character to the end of a ’Text’. This copies the entire
-- array in the process.
-- Subject to array fusion.
snoc :: Text -> Char -> Text
snoc t c = unstream (S.snoc (stream t) c)
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{-# INLINE snoc #-}

-- | /O(n)/ Appends one Text to the other by copying both of them into a new
-- Text.
-- Subject to array fusion
append :: Text -> Text -> Text
append (Text arr1 off1 len1) (Text arr2 off2 len2) = Text (runSTUArray x) 0 len

where
len = len1+len2
x = do

arr <- unsafeNewArray_ (0,len-1) :: ST s (STUArray s Int Word16)
copy arr1 off1 (len1+off1) arr 0
copy arr2 off2 (len2+off2) arr len1
return arr

where
copy arr i max arr’ j

| i >= max = return ()
| otherwise = do unsafeWrite arr’ j (arr ‘unsafeAt‘ i)

copy arr (i+1) max arr’ (j+1)
{-# INLINE append #-}

{-# RULES
"TEXT append -> fused" [~1] forall t1 t2.

append t1 t2 = unstream (S.append (stream t1) (stream t2))
"TEXT append -> unfused" [1] forall t1 t2.

unstream (S.append (stream t1) (stream t2)) = append t1 t2
#-}

-- | /O(1)/ Returns the first character of a Text, which must be non-empty.
-- Subject to array fusion.
head :: Text -> Char
head t = S.head (stream t)
{-# INLINE head #-}

-- | /O(n)/ Returns the last character of a Text, which must be non-empty.
-- Subject to array fusion.
last :: Text -> Char
last (Text arr off len)

| len <= 0 = errorEmptyList "last"
| n < 0xDC00 || n > 0xDFFF = unsafeChr n
| otherwise = U16.chr2 n0 n
where

n = unsafeAt arr (off+len-1)
n0 = unsafeAt arr (off+len-2)

{-# INLINE [1] last #-}

{-# RULES
"TEXT last -> fused" [~1] forall t.

last t = S.last (stream t)
"TEXT last -> unfused" [1] forall t.

S.last (stream t) = last t
#-}

-- | /O(1)/ Returns all characters after the head of a Text, which must
-- be non-empty.
-- Subject to array fusion.
tail :: Text -> Text
tail (Text arr off len)

| len <= 0 = errorEmptyList "tail"
| n >= 0xD800 && n <= 0xDBFF = Text arr (off+2) (len-2)
| otherwise = Text arr (off+1) (len-1)
where

n = unsafeAt arr off
{-# INLINE [1] tail #-}

-- | /O(1)/ Returns all but the last character of a Text, which
-- must be non-empty.
-- Subject to array fusion.
init :: Text -> Text
init (Text arr off len) | len <= 0 = errorEmptyList "init"

| n >= 0xDC00 && n <= 0xDFFF = Text arr off (len-2)
| otherwise = Text arr off (len-1)

where
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n = unsafeAt arr (off+len-1)
{-# INLINE [1] init #-}

{-# RULES
"TEXT init -> fused" [~1] forall t.

init t = unstream (S.init (stream t))
"TEXT init -> unfused" [1] forall t.

unstream (S.init (stream t)) = init t
#-}

-- | /O(1)/ Tests whether a Text is empty or not.
-- Subject to array fusion.
null :: Text -> Bool
null t = S.null (stream t)
{-# INLINE null #-}

-- | /O(n)/ Returns the number of characters in a text.
-- Subject to array fusion.
length :: Text -> Int
length t = S.length (stream t)
{-# INLINE length #-}

-- -----------------------------------------------------------------------------
-- * Transformations
-- | /O(n)/ ’map’ @f @xs is the Text obtained by applying @f@ to each
-- element of @xs@.
-- Subject to array fusion.
map :: (Char -> Char) -> Text -> Text
map f t = unstream (S.map f (stream t))
{-# INLINE [1] map #-}

-- | /O(n)/ The ’intersperse’ function takes a character and places it between
-- the characters of a Text.
-- Subject to array fusion.
intersperse :: Char -> Text -> Text
intersperse c t = unstream (S.intersperse c (stream t))
{-# INLINE intersperse #-}

-- | /O(n)/ The ’transpose’ function transposes the rows and columns of its
-- Text argument. Note that this function uses pack, unpack, and the ’List’
-- version of transpose and is thus not very efficient.
transpose :: [Text] -> [Text]
transpose ts = P.map pack (L.transpose (P.map unpack ts))

-- -----------------------------------------------------------------------------
-- * Reducing ’Text’s (folds)

-- | ’foldl’, applied to a binary operator, a starting value (typically the
-- left-identity of the operator), and a Text, reduces the Text using the
-- binary operator, from left to right.
-- Subject to array fusion.
foldl :: (b -> Char -> b) -> b -> Text -> b
foldl f z t = S.foldl f z (stream t)
{-# INLINE foldl #-}

-- | A strict version of ’foldl’.
-- Subject to array fusion.
foldl’ :: (b -> Char -> b) -> b -> Text -> b
foldl’ f z t = S.foldl’ f z (stream t)
{-# INLINE foldl’ #-}

-- | ’foldl1’ is a variant of ’foldl’ that has no starting value argument,
-- and thus must be applied to non-empty ’Text’s.
-- Subject to array fusion.
foldl1 :: (Char -> Char -> Char) -> Text -> Char
foldl1 f t = S.foldl1 f (stream t)
{-# INLINE foldl1 #-}

-- | A strict version of ’foldl1’.
-- Subject to array fusion.
foldl1’ :: (Char -> Char -> Char) -> Text -> Char
foldl1’ f t = S.foldl1’ f (stream t)
{-# INLINE foldl1’ #-}

-- | ’foldr’, applied to a binary operator, a starting value (typically the
-- right-identity of the operator), and a Text, reduces the Text using the
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-- binary operator, from right to left.
-- Subject to array fusion.
foldr :: (Char -> b -> b) -> b -> Text -> b
foldr f z t = S.foldr f z (stream t)
{-# INLINE foldr #-}

-- | ’foldr1’ is a variant of ’foldr’ that has no starting value argument,
-- and thust must be applied to non-empty ’Text’s.
-- Subject to array fusion.
foldr1 :: (Char -> Char -> Char) -> Text -> Char
foldr1 f t = S.foldr1 f (stream t)
{-# INLINE foldr1 #-}

-- -----------------------------------------------------------------------------
-- ** Special folds

-- | /O(n)/ Concatenate a list of ’Text’s. Subject to array fusion.
concat :: [Text] -> Text
concat ts = unstream (S.concat (L.map stream ts))
{-# INLINE concat #-}

-- | Map a function over a Text that results in a Text and concatenate the
-- results. This function is subject to array fusion, and note that if in
-- ’concatMap’ @f @xs, @f@ is defined in terms of fusible functions it will
-- also be fusible.
concatMap :: (Char -> Text) -> Text -> Text
concatMap f t = unstream (S.concatMap (stream . f) (stream t))
{-# INLINE concatMap #-}

-- | ’any’ @p @xs determines if any character in the ’Text’ @xs@ satisifes the
-- predicate @p@. Subject to array fusion.
any :: (Char -> Bool) -> Text -> Bool
any p t = S.any p (stream t)
{-# INLINE any #-}

-- | ’all’ @p @xs determines if all characters in the ’Text’ @xs@ satisify the
-- predicate @p@. Subject to array fusion.
all :: (Char -> Bool) -> Text -> Bool
all p t = S.all p (stream t)
{-# INLINE all #-}

-- | /O(n)/ ’maximum’ returns the maximum value from a ’Text’, which must be
-- non-empty. Subject to array fusion.
maximum :: Text -> Char
maximum t = S.maximum (stream t)
{-# INLINE maximum #-}

-- | /O(n)/ ’minimum’ returns the minimum value from a ’Text’, which must be
-- non-empty. Subject to array fusion.
minimum :: Text -> Char
minimum t = S.minimum (stream t)
{-# INLINE minimum #-}

-- -----------------------------------------------------------------------------
-- * Building ’Text’s

-- -----------------------------------------------------------------------------
-- ** Generating and unfolding ’Text’s

-- /O(n)/, where @n@ is the length of the result. The unfoldr function
-- is analogous to the List ’unfoldr’. unfoldr builds a Text
-- from a seed value. The function takes the element and returns
-- Nothing if it is done producing the Text or returns Just
-- (a,b), in which case, a is the next Char in the string, and b is
-- the seed value for further production.
unfoldr :: (a -> Maybe (Char,a)) -> a -> Text
unfoldr f s = unstream (S.unfoldr f s)
{-# INLINE unfoldr #-}

-- O(n) Like unfoldr, unfoldrN builds a Text from a seed
-- value. However, the length of the result should be limited by the
-- first argument to unfoldrN. This function is more efficient than
-- unfoldr when the maximum length of the result and correct,
-- otherwise its complexity performance is similar to ’unfoldr’
unfoldrN :: Int -> (a -> Maybe (Char,a)) -> a -> Text
unfoldrN n f s = unstream (S.unfoldrN n f s)
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{-# INLINE unfoldrN #-}

-- -----------------------------------------------------------------------------
-- * Substrings

-- O(n) ’take’ @n, applied to a Text, returns the prefix of the
-- Text of length n, or the Text itself if n is greater than the
-- length of the Text.
take :: Int -> Text -> Text
take n (Text arr off len) = Text arr off (loop off 0)

where
end = off+len
loop !i !count

| i >= end || count >= n = i - off
| c < 0xD800 || c > 0xDBFF = loop (i+1) (count+1)
| otherwise = loop (i+2) (count+1)
where

c = arr ‘unsafeAt‘ i
{-# INLINE [1] take #-}

{-# RULES
"TEXT take -> fused" [~1] forall n t.

take n t = unstream (S.take n (stream t))
"TEXT take -> unfused" [1] forall n t.

unstream (S.take n (stream t)) = take n t
#-}

-- /O(n)/ ’drop’ @n, applied to a Text, returns the suffix of the
-- Text of length @n, or the empty Text if @n is greater than the
-- length of the Text.
drop :: Int -> Text -> Text
drop n (Text arr off len) = (Text arr newOff newLen)

where
(newOff, newLen) = loop off 0 len
end = off + len
loop !i !count !l

| i >= end || count >= n = (i,l)
| c < 0xD800 || c > 0xDBFF = loop (i+1) (count+1) (l-1)
| otherwise = loop (i+2) (count+1) (l-2)
where

c = arr ‘unsafeAt‘ i
{-# INLINE [1] drop #-}

{-# RULES
"TEXT drop -> fused" [~1] forall n t.

drop n t = unstream (S.drop n (stream t))
"TEXT drop -> unfused" [1] forall n t.

unstream (S.drop n (stream t)) = drop n t
#-}

-- | ’takeWhile’, applied to a predicate @p@ and a stream, returns the
-- longest prefix (possibly empty) of elements that satisfy p.
takeWhile :: (Char -> Bool) -> Text -> Text
takeWhile p t = unstream (S.takeWhile p (stream t))

-- | ’dropWhile’ @p @xs returns the suffix remaining after ’takeWhile’ @p @xs.
dropWhile :: (Char -> Bool) -> Text -> Text
dropWhile p t = unstream (S.dropWhile p (stream t))

-- ----------------------------------------------------------------------------
-- * Searching

-------------------------------------------------------------------------------
-- ** Searching by equality

-- | /O(n)/ ’elem’ is the ’Text’ membership predicate.
elem :: Char -> Text -> Bool
elem c t = S.elem c (stream t)
{-# INLINE elem #-}

-------------------------------------------------------------------------------
-- ** Searching with a predicate

-- | /O(n)/ The ’find’ function takes a predicate and a ’Text’,
-- and returns the first element in matching the predicate, or ’Nothing’
-- if there is no such element.
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find :: (Char -> Bool) -> Text -> Maybe Char
find p t = S.find p (stream t)
{-# INLINE find #-}

-- | /O(n)/ ’filter’, applied to a predicate and a ’Text’,
-- returns a ’Text’ containing those characters that satisfy the
-- predicate.
filter :: (Char -> Bool) -> Text -> Text
filter p t = unstream (S.filter p (stream t))
{-# INLINE filter #-}

-------------------------------------------------------------------------------
-- ** Indexing ’Text’s

-- | /O(1)/ ’Text’ index (subscript) operator, starting from 0.
index :: Text -> Int -> Char
index t n = S.index (stream t) n
{-# INLINE index #-}

-- | The ’findIndex’ function takes a predicate and a ’Text’ and
-- returns the index of the first element in the ’Text’
-- satisfying the predicate.
findIndex :: (Char -> Bool) -> Text -> Maybe Int
findIndex p t = S.findIndex p (stream t)
{-# INLINE findIndex #-}

-- | /O(n)/ The ’elemIndex’ function returns the index of the first
-- element in the given ’Text’ which is equal to the query element, or
-- ’Nothing’ if there is no such element.
elemIndex :: Char -> Text -> Maybe Int
elemIndex c t = S.elemIndex c (stream t)

-------------------------------------------------------------------------------
-- * Zipping

-- | /O(n)/ ’zipWith’ generalises ’zip’ by zipping with the function
-- given as the first argument, instead of a tupling function.
zipWith :: (Char -> Char -> Char) -> Text -> Text -> Text
zipWith f t1 t2 = unstream (S.zipWith f (stream t1) (stream t2))

-- File I/O

readFile :: Encoding -> FilePath -> IO Text
readFile enc f = B.readFile f >>= return . unstream . stream_bs enc
{-# INLINE [1] readFile #-}

words :: Text -> [Text]
words (Text arr off len) = loop0 off off

where
loop0 start n

| isSpace (unsafeChr c) = if start == n
then loop0 (start+1) (start+1)
else (Text arr start (n-start)) :

loop0 (n+1) (n+1)
| n < (off+len) = loop0 start (n+1)
| otherwise = if start == n

then []
else [(Text arr start (n-start))]

where
c = arr ‘unsafeAt‘ n

{-# INLINE words #-}

A.1.2 Text/Fusion.hs
{-# OPTIONS_GHC -fglasgow-exts -fbang-patterns #-}

module Text.Fusion where

import Prelude hiding (map, tail, head, foldr, filter,concat)
import qualified Prelude as P
import Char
import Data.Bits
import Data.Word
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import Control.Monad.ST
import Control.Monad(liftM2)
import Data.Array.Base
import System.IO.Unsafe(unsafePerformIO)

import GHC.Prim
import GHC.Exts

import qualified Text.Utf8 as U8
import qualified Text.Utf16 as U16
import qualified Text.Utf32 as U32
import Text.Internal(Text(..),empty)

import qualified Data.ByteString as B
import Data.ByteString.Internal(ByteString(..))
import Text.UnsafeChar

import Data.ByteString.Internal(mallocByteString,memcpy)
import Foreign.Storable(pokeByteOff)
import Foreign.ForeignPtr(withForeignPtr,ForeignPtr(..))
import Control.Exception(assert)

default(Int)

infixl 2 :!:
data PairS a b = !a :!: !b

data Switch = S1 | S2

data EitherS a b = LeftS !a | RightS !b

data Stream a = forall s. Stream (s -> Step s a) !s {-# UNPACK #-}!Int

data Step s a = Done
| Skip !s
| Yield !a !s

data Encoding = ASCII | Utf8 | Utf16BE | Utf16LE | Utf32BE | Utf32LE

-- | /O(n)/ Convert a Text into a Stream Char.
stream :: Text -> Stream Char
stream (Text arr off len) = Stream next off len

where
end = off+len
{-# INLINE next #-}
next !i

| i >= end = Done
| n >= 0xD800 && n <= 0xDBFF = Yield (U16.chr2 n n2) (i + 2)
| otherwise = Yield (unsafeChr n) (i + 1)
where

n = unsafeAt arr i
n2 = unsafeAt arr (i + 1)

{-# INLINE [0] stream #-}

-- | /O(n)/ Convert a Stream Char into a Text.
unstream :: Stream Char -> Text
unstream (Stream next0 s0 len) = x ‘seq‘ Text (fst x) 0 (snd x)

where
x :: ((UArray Int Word16),Int)
x = runST ((unsafeNewArray_ (0,len+1) :: ST s (STUArray s Int Word16))

>>= (\arr -> loop arr 0 (len+1) s0))
loop arr !i !max !s

| i + 1 > max = do arr’ <- unsafeNewArray_ (0,max*2)
case next0 s of

Done -> liftM2 (,) (unsafeFreezeSTUArray arr) (return i)
_ -> copy arr arr’ >> loop arr’ i (max*2) s

| otherwise = case next0 s of
Done -> liftM2 (,) (unsafeFreezeSTUArray arr) (return i)
Skip s’ -> loop arr i max s’
Yield x s’

| n < 0x10000 -> do
unsafeWrite arr i (fromIntegral n :: Word16)
loop arr (i+1) max s’

| otherwise -> do
unsafeWrite arr i l
unsafeWrite arr (i + 1) r



APPENDIX A. SOURCE CODE 48

loop arr (i+2) max s’
where

n :: Int
n = ord x
m :: Int
m = n - 0x10000
l :: Word16
l = fromIntegral $ (shiftR m 10) + (0xD800 :: Int)
r :: Word16
r = fromIntegral $ (m .&. (0x3FF :: Int)) + (0xDC00 :: Int)

{-# INLINE [0] unstream #-}

copy src dest = ({-# SCC "TEXT copy" #-} do
(_,max) <- getBounds src
copy_loop 0 max)

where
copy_loop !i !max

| i > max = return ()
| otherwise = do v <- unsafeRead src i

unsafeWrite dest i v
copy_loop (i+1) max

-- | /O(n)/ Determines if two streams are equal.
eq :: Ord a => Stream a -> Stream a -> Bool
eq (Stream next1 s1 _) (Stream next2 s2 _) = compare (next1 s1) (next2 s2)

where
compare Done Done = True
compare Done _ = False
compare _ Done = False
compare (Skip s1’) (Skip s2’) = compare (next1 s1’) (next2 s2’)
compare (Skip s1’) x2 = compare (next1 s1’) x2
compare x1 (Skip s2’) = compare x1 (next2 s2’)
compare (Yield x1 s1’) (Yield x2 s2’) = x1 == x2 &&

compare (next1 s1’) (next2 s2’)
{-# SPECIALISE eq :: Stream Char -> Stream Char -> Bool #-}

-- | /O(n) Convert a ByteString into a Stream Char, using the specified encoding standard.
stream_bs :: Encoding -> ByteString -> Stream Char
stream_bs ASCII bs = Stream next 0 (B.length bs)

where
{-# INLINE next #-}
next i

| i >= l = Done
| otherwise = Yield (unsafeChr8 x1) (i+1)
where

l = B.length bs
x1 = B.index bs i

stream_bs Utf8 bs = Stream next 0 (B.length bs)
where

{-# INLINE next #-}
next i

| i >= l = Done
| U8.validate1 x1 = Yield (unsafeChr8 x1) (i+1)
| i+1 < l && U8.validate2 x1 x2 = Yield (U8.chr2 x1 x2) (i+2)
| i+2 < l && U8.validate3 x1 x2 x3 = Yield (U8.chr3 x1 x2 x3) (i+3)
| i+3 < l && U8.validate4 x1 x2 x3 x4 = Yield (U8.chr4 x1 x2 x3 x4) (i+4)
| otherwise = error "bsStream: bad UTF-8 stream"
where

l = B.length bs
x1 = index i
x2 = index (i + 1)
x3 = index (i + 2)
x4 = index (i + 3)
index = B.index bs

stream_bs Utf16LE bs = Stream next 0 (B.length bs)
where

{-# INLINE next #-}
next i

| i >= l = Done
| i+1 < l && U16.validate1 x1 = Yield (unsafeChr x1) (i+2)
| i+3 < l && U16.validate2 x1 x2 = Yield (U16.chr2 x1 x2) (i+4)
| otherwise = error $ "bsStream: bad UTF-16LE stream"
where

x1 :: Word16
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x1 = (shiftL (index (i + 1)) 8) + (index i)
x2 :: Word16
x2 = (shiftL (index (i + 3)) 8) + (index (i + 2))
l = B.length bs
index = fromIntegral . B.index bs :: Int -> Word16

stream_bs Utf16BE bs = Stream next 0 (B.length bs)
where

{-# INLINE next #-}
next i

| i >= l = Done
| i+1 < l && U16.validate1 x1 = Yield (unsafeChr x1) (i+2)
| i+3 < l && U16.validate2 x1 x2 = Yield (U16.chr2 x1 x2) (i+4)
| otherwise = error $ "bsStream: bad UTF16-BE stream "
where

x1 :: Word16
x1 = (shiftL (index i) 8) + (index (i + 1))
x2 :: Word16
x2 = (shiftL (index (i + 2)) 8) + (index (i + 3))
l = B.length bs
index = fromIntegral . B.index bs

stream_bs Utf32BE bs = Stream next 0 (B.length bs)
where

{-# INLINE next #-}
next i

| i >= l = Done
| i+3 < l && U32.validate x = Yield (unsafeChr32 x) (i+4)
| otherwise = error "bsStream: bad UTF-32BE stream"
where

l = B.length bs
x = shiftL x1 24 + shiftL x2 16 + shiftL x3 8 + x4
x1 = index i
x2 = index (i+1)
x3 = index (i+2)
x4 = index (i+3)
index = fromIntegral . B.index bs :: Int -> Word32

stream_bs Utf32LE bs = Stream next 0 (B.length bs)
where

{-# INLINE next #-}
next i

| i >= l = Done
| i+3 < l && U32.validate x = Yield (unsafeChr32 x) (i+4)
| otherwise = error "bsStream: bad UTF-32LE stream"
where

l = B.length bs
x = shiftL x4 24 + shiftL x3 16 + shiftL x2 8 + x1
x1 = index i
x2 = index $ i+1
x3 = index $ i+2
x4 = index $ i+3
index = fromIntegral . B.index bs :: Int -> Word32

{-# INLINE [0] stream_bs #-}

-- | /O(n)/ Convert a Stream Char into a Stream Word8 using the specified encoding standard.
restream :: Encoding -> Stream Char -> Stream Word8
restream ASCII (Stream next0 s0 len) = Stream next s0 (len*2)

where
next !s = case next0 s of

Done -> Done
Skip s’ -> Skip s’
Yield x xs -> Yield x’ xs

where x’ = fromIntegral (ord x) :: Word8
restream Utf8 (Stream next0 s0 len) =

Stream next ((Just s0) :!: Nothing :!: Nothing :!: Nothing) (len*2)
where

{-# INLINE next #-}
next ((Just s) :!: Nothing :!: Nothing :!: Nothing) = case next0 s of

Done -> Done
Skip s’ ->

Skip ((Just s’) :!: Nothing :!: Nothing :!: Nothing)
Yield x xs

| n <= 0x7F ->
Yield c ((Just xs) :!: Nothing :!: Nothing :!: Nothing)

| n <= 0x07FF ->
Yield (fst c2) ((Just xs) :!: (Just $ snd c2) :!: Nothing :!: Nothing)

| n <= 0xFFFF ->
Yield (fst3 c3) ((Just xs) :!: (Just $ snd3 c3) :!: (Just $ trd3 c3) :!: Nothing)
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| otherwise ->
Yield (fst4 c4) ((Just xs) :!: (Just $ snd4 c4) :!: (Just $ trd4 c4) :!: (Just $ fth4 c4))

where
n = ord x
c = fromIntegral n
c2 = U8.ord2 x
c3 = U8.ord3 x
c4 = U8.ord4 x

next ((Just s) :!: (Just x2) :!: Nothing :!: Nothing) = Yield x2 ((Just s) :!: Nothing :!: Nothing :!: Nothing)
next ((Just s) :!: (Just x2) :!: x3 :!: Nothing) = Yield x2 ((Just s) :!: x3 :!: Nothing :!: Nothing)
next ((Just s) :!: (Just x2) :!: x3 :!: x4) = Yield x2 ((Just s) :!: x3 :!: x4 :!: Nothing)

restream Utf16BE (Stream next0 s0 len) =
Stream next (Just s0 :!: Nothing :!: Nothing :!: Nothing) (len*2)
where

{-# INLINE next #-}
next (Just s :!: Nothing :!: Nothing :!: Nothing) = case next0 s of

Done -> Done
Skip s’ -> Skip (Just s’ :!: Nothing :!: Nothing :!: Nothing)
Yield x xs

| n < 0x10000 -> Yield (fromIntegral $ shiftR n 8) (Just xs :!: Just (fromIntegral n) :!: Nothing :!: Noth!
!ing)

| otherwise -> Yield c1 (Just xs :!: Just c2 :!: Just c3 :!: Just c4)
where

n = ord x
n1 = n - 0x10000
c1 = fromIntegral (shiftR n1 18 + 0xD8)
c2 = fromIntegral (shiftR n1 10)
n2 = n1 .&. 0x3FF
c3 = fromIntegral (shiftR n2 8 + 0xDC)
c4 = fromIntegral n2

next ((Just s) :!: (Just x2) :!: Nothing :!: Nothing) = Yield x2 ((Just s) :!: Nothing :!: Nothing :!: Nothing)
next ((Just s) :!: (Just x2) :!: x3 :!: Nothing) = Yield x2 ((Just s) :!: x3 :!: Nothing :!: Nothing)
next ((Just s) :!: (Just x2) :!: x3 :!: x4) = Yield x2 ((Just s) :!: x3 :!: x4 :!: Nothing)

restream Utf16LE (Stream next0 s0 len) =
Stream next (Just s0 :!: Nothing :!: Nothing :!: Nothing) (len*2)
where

{-# INLINE next #-}
next (Just s :!: Nothing :!: Nothing :!: Nothing) = case next0 s of

Done -> Done
Skip s’ -> Skip (Just s’ :!: Nothing :!: Nothing :!: Nothing)
Yield x xs

| n < 0x10000 -> Yield (fromIntegral n) (Just xs :!: Just (fromIntegral $ shiftR n 8) :!: Nothing :!: Noth!
!ing)

| otherwise -> Yield c1 (Just xs :!: Just c2 :!: Just c3 :!: Just c4)
where

n = ord x
n1 = n - 0x10000
c2 = fromIntegral (shiftR n1 18 + 0xD8)
c1 = fromIntegral (shiftR n1 10)
n2 = n1 .&. 0x3FF
c4 = fromIntegral (shiftR n2 8 + 0xDC)
c3 = fromIntegral n2

next ((Just s) :!: (Just x2) :!: Nothing :!: Nothing) = Yield x2 ((Just s) :!: Nothing :!: Nothing :!: Nothing)
next ((Just s) :!: (Just x2) :!: x3 :!: Nothing) = Yield x2 ((Just s) :!: x3 :!: Nothing :!: Nothing)
next ((Just s) :!: (Just x2) :!: x3 :!: x4) = Yield x2 ((Just s) :!: x3 :!: x4 :!: Nothing)

restream Utf32BE (Stream next0 s0 len) =
Stream next (Just s0 :!: Nothing :!: Nothing :!: Nothing) (len*2)
where
{-# INLINE next #-}
next (Just s :!: Nothing :!: Nothing :!: Nothing) = case next0 s of

Done -> Done
Skip s’ -> Skip (Just s’ :!: Nothing :!: Nothing :!: Nothing)
Yield x xs -> Yield c1 (Just xs :!: Just c2 :!: Just c3 :!: Just c4)

where
n = ord x
c1 = fromIntegral $ shiftR n 24
c2 = fromIntegral $ shiftR n 16
c3 = fromIntegral $ shiftR n 8
c4 = fromIntegral n

next ((Just s) :!: (Just x2) :!: Nothing :!: Nothing) = Yield x2 ((Just s) :!: Nothing :!: Nothing :!: Nothing)
next ((Just s) :!: (Just x2) :!: x3 :!: Nothing) = Yield x2 ((Just s) :!: x3 :!: Nothing :!: Nothing)
next ((Just s) :!: (Just x2) :!: x3 :!: x4) = Yield x2 ((Just s) :!: x3 :!: x4 :!: Nothing)

restream Utf32LE (Stream next0 s0 len) =
Stream next (Just s0 :!: Nothing :!: Nothing :!: Nothing) (len*2)
where
{-# INLINE next #-}
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next (Just s :!: Nothing :!: Nothing :!: Nothing) = case next0 s of
Done -> Done
Skip s’ -> Skip (Just s’ :!: Nothing :!: Nothing :!: Nothing)
Yield x xs -> Yield c1 (Just xs :!: Just c2 :!: Just c3 :!: Just c4)

where
n = ord x
c4 = fromIntegral $ shiftR n 24
c3 = fromIntegral $ shiftR n 16
c2 = fromIntegral $ shiftR n 8
c1 = fromIntegral n

next ((Just s) :!: (Just x2) :!: Nothing :!: Nothing) = Yield x2 ((Just s) :!: Nothing :!: Nothing :!: Nothing)
next ((Just s) :!: (Just x2) :!: x3 :!: Nothing) = Yield x2 ((Just s) :!: x3 :!: Nothing :!: Nothing)
next ((Just s) :!: (Just x2) :!: x3 :!: x4) = Yield x2 ((Just s) :!: x3 :!: x4 :!: Nothing)

{-# INLINE restream #-}

fst3 (x1,_,_) = x1
snd3 (_,x2,_) = x2
trd3 (_,_,x3) = x3
fst4 (x1,_,_,_) = x1
snd4 (_,x2,_,_) = x2
trd4 (_,_,x3,_) = x3
fth4 (_,_,_,x4) = x4

-- | /O(n)/ Convert a Stream Word8 to a ByteString
unstream_bs :: Stream Word8 -> ByteString
unstream_bs (Stream next s0 len) = unsafePerformIO $ do

fp0 <- mallocByteString len
loop fp0 len 0 s0
where

loop !fp !n !off !s = case next s of
Done -> trimUp fp n off
Skip s’ -> loop fp n off s’
Yield x s’

| n == off -> realloc fp n off s’ x
| otherwise -> do

withForeignPtr fp $ \p -> pokeByteOff p off x
loop fp n (off+1) s’

{-# NOINLINE realloc #-}
realloc fp n off s x = do

let n’ = n+n
fp’ <- copy0 fp n n’
withForeignPtr fp’ $ \p -> pokeByteOff p off x
loop fp’ n’ (off+1) s

{-# NOINLINE trimUp #-}
trimUp fp _ off = return $! PS fp 0 off
copy0 :: ForeignPtr Word8 -> Int -> Int -> IO (ForeignPtr Word8)
copy0 !src !srcLen !destLen = assert (srcLen <= destLen) $ do

dest <- mallocByteString destLen
withForeignPtr src $ \src’ ->

withForeignPtr dest $ \dest’ ->
memcpy dest’ src’ (fromIntegral destLen)

return dest
{-# RULES "STREAM stream/unstream fusion" forall s. stream (unstream s) = s #-}

-- ----------------------------------------------------------------------------
-- * Basic stream functions

-- | /O(n)/ Adds a character to the front of a Stream Char.
cons :: Char -> Stream Char -> Stream Char
cons w (Stream next0 s0 len) = Stream next (S2 :!: s0) (len+2)

where
{-# INLINE next #-}
next (S2 :!: s) = Yield w (S1 :!: s)
next (S1 :!: s) = case next0 s of

Done -> Done
Skip s’ -> Skip (S1 :!: s’)
Yield x s’ -> Yield x (S1 :!: s’)

{-# INLINE [0] cons #-}

-- | /O(n)/ Adds a character to the end of a stream.
snoc :: Stream Char -> Char -> Stream Char
snoc (Stream next0 xs0 len) w = Stream next (Just xs0) (len+2)

where
{-# INLINE next #-}
next (Just xs) = case next0 xs of
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Done -> Yield w Nothing
Skip xs’ -> Skip (Just xs’)
Yield x xs’ -> Yield x (Just xs’)

next Nothing = Done
{-# INLINE [0] snoc #-}

-- | /O(n)/ Appends one Stream to the other.
append :: Stream Char -> Stream Char -> Stream Char
append (Stream next0 s01 len1) (Stream next1 s02 len2) =

Stream next (Left s01) (len1 + len2)
where

{-# INLINE next #-}
next (Left s1) = case next0 s1 of

Done -> Skip (Right s02)
Skip s1’ -> Skip (Left s1’)
Yield x s1’ -> Yield x (Left s1’)

next (Right s2) = case next1 s2 of
Done -> Done
Skip s2’ -> Skip (Right s2’)
Yield x s2’ -> Yield x (Right s2’)

{-# INLINE [0] append #-}

-- | /O(1)/ Returns the first character of a Text, which must be non-empty.
-- Subject to array fusion.
head :: Stream Char -> Char
head (Stream next s0 len) = loop_head s0

where
loop_head !s = case next s of

Yield x _ -> x
Skip s’ -> loop_head s’
Done -> error "head: Empty list"

{-# INLINE [0] head #-}

-- | /O(n)/ Returns the last character of a Stream Char, which must be non-empty.
last :: Stream Char -> Char
last (Stream next s0 len) = loop0_last s0

where
loop0_last !s = case next s of

Done -> error "last: Empty list"
Skip s’ -> seq s’ $ loop0_last s’
Yield x s’ -> seq s’ $ loop_last x s’

loop_last !x !s = case next s of
Done -> x
Skip s’ -> seq s’ $ loop_last x s’
Yield x’ s’ -> seq s’ $ loop_last x’ s’

{-# INLINE[0] last #-}

-- | /O(1)/ Returns all characters after the head of a Stream Char, which must
-- be non-empty.
tail :: Stream Char -> Stream Char
tail (Stream next0 s0 len) = Stream next (False :!: s0) (len-1)

where
{-# INLINE next #-}
next (False :!: s) = case next0 s of

Done -> error "tail"
Skip s’ -> Skip (False :!: s’)
Yield _ s’ -> Skip (True :!: s’)

next (True :!: s) = case next0 s of
Done -> Done
Skip s’ -> Skip (True :!: s’)
Yield x s’ -> Yield x (True :!: s’)

{-# INLINE [0] tail #-}

-- | /O(1)/ Returns all but the last character of a Stream Char, which
-- must be non-empty.
init :: Stream Char -> Stream Char
init (Stream next0 s0 len) = Stream next (Nothing :!: s0) (len-1)

where
{-# INLINE next #-}
next (Nothing :!: s) = case next0 s of

Done -> errorEmptyList "init"
Skip s’ -> seq s’ $ Skip (Nothing :!: s’)
Yield x s’ -> seq s’ $ Skip (Just x :!: s’)

next (Just x :!: s) = case next0 s of
Done -> Done
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Skip s’ -> seq s’ $ Skip (Just x :!: s’)
Yield x’ s’ -> seq s’ $ Yield x (Just x’ :!: s’)

{-# INLINE [0] init #-}

-- | /O(1)/ Tests whether a Stream Char is empty or not.
null :: Stream Char -> Bool
null (Stream next s0 len) = loop_null s0

where
loop_null !s = case next s of

Done -> True
Yield _ _ -> False
Skip s’ -> loop_null s’

{-# INLINE[0] null #-}

-- | /O(n)/ Returns the number of characters in a text.
length :: Stream Char -> Int
length (Stream next s0 len) = loop_length 0# s0

where

loop_length z# !s = case next s of
Done -> (I# z#)
Skip s’ -> loop_length z# s’
Yield _ s’ -> loop_length (z# +# 1#) s’

{-# INLINE[0] length #-}

-- ----------------------------------------------------------------------------
-- * Stream transformations

-- | /O(n)/ ’map’ @f @xs is the Stream Char obtained by applying @f@ to each element of
-- @xs@.
map :: (Char -> Char) -> Stream Char -> Stream Char
map f (Stream next0 s0 len) = Stream next s0 len

where
{-# INLINE next #-}
next !s = case next0 s of

Done -> Done
Skip s’ -> Skip s’
Yield x s’ -> Yield (f x) s’

{-# INLINE [0] map #-}

{-#
RULES "STREAM map/map fusion" forall f g s.

map f (map g s) = map (\x -> f (g x)) s
#-}

-- | /O(n)/ The ’intersperse’ function takes a character and places it between each of
-- the characters of a Stream.
intersperse :: Char -> Stream Char -> Stream Char
intersperse c (Stream next0 s0 len) = Stream next (s0 :!: Nothing :!: S1) len

where
{-# INLINE next #-}
next (s :!: Nothing :!: S1) = case next0 s of

Done -> Done
Skip s’ -> Skip (s’ :!: Nothing :!: S1)
Yield x s’ -> Skip (s’ :!: Just x :!: S1)

next (s :!: Just x :!: S1) = Yield x (s :!: Nothing :!: S2)
next (s :!: Nothing :!: S2) = case next0 s of

Done -> Done
Skip s’ -> Skip (s’ :!: Nothing :!: S2)
Yield x s’ -> Yield c (s’ :!: Just x :!: S1)

-- ----------------------------------------------------------------------------
-- * Reducing Streams (folds)

-- | foldl, applied to a binary operator, a starting value (typically the
-- left-identity of the operator), and a Stream, reduces the Stream using the
-- binary operator, from left to right.
foldl :: (b -> Char -> b) -> b -> Stream Char -> b
foldl f z0 (Stream next s0 len) = loop_foldl z0 s0

where
loop_foldl z !s = case next s of

Done -> z
Skip s’ -> loop_foldl z s’
Yield x s’ -> loop_foldl (f z x) s’

{-# INLINE [0] foldl #-}
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-- | A strict version of foldl.
foldl’ :: (b -> Char -> b) -> b -> Stream Char -> b
foldl’ f z0 (Stream next s0 len) = loop_foldl’ z0 s0

where
loop_foldl’ !z !s = case next s of

Done -> z
Skip s’ -> loop_foldl’ z s’
Yield x s’ -> loop_foldl’ (f z x) s’

{-# INLINE [0] foldl’ #-}

-- | foldl1 is a variant of foldl that has no starting value argument,
-- and thus must be applied to non-empty Streams.
foldl1 :: (Char -> Char -> Char) -> Stream Char -> Char
foldl1 f (Stream next s0 len) = loop0_foldl1 s0

where
loop0_foldl1 !s = case next s of

Skip s’ -> loop0_foldl1 s’
Yield x s’ -> loop_foldl1 x s’
Done -> errorEmptyList "foldl1"

loop_foldl1 z !s = case next s of
Done -> z
Skip s’ -> loop_foldl1 z s’
Yield x s’ -> loop_foldl1 (f z x) s’

{-# INLINE [0] foldl1 #-}

-- | A strict version of foldl1.
foldl1’ :: (Char -> Char -> Char) -> Stream Char -> Char
foldl1’ f (Stream next s0 len) = loop0_foldl1’ s0

where
loop0_foldl1’ !s = case next s of

Skip s’ -> loop0_foldl1’ s’
Yield x s’ -> loop_foldl1’ x s’
Done -> errorEmptyList "foldl1"

loop_foldl1’ !z !s = case next s of
Done -> z
Skip s’ -> loop_foldl1’ z s’
Yield x s’ -> loop_foldl1’ (f z x) s’

{-# INLINE [0] foldl1’ #-}

-- | ’foldr’, applied to a binary operator, a starting value (typically the
-- right-identity of the operator), and a stream, reduces the stream using the
-- binary operator, from right to left.
foldr :: (Char -> b -> b) -> b -> Stream Char -> b
foldr f z (Stream next s0 len) = loop_foldr s0

where
loop_foldr !s = case next s of

Done -> z
Skip s’ -> loop_foldr s’
Yield x s’ -> f x (loop_foldr s’)

{-# INLINE [0] foldr #-}

-- | foldr1 is a variant of ’foldr’ that has no starting value argument,
-- and thust must be applied to non-empty streams.
-- Subject to array fusion.
foldr1 :: (Char -> Char -> Char) -> Stream Char -> Char
foldr1 f (Stream next s0 len) = loop0_foldr1 s0

where
loop0_foldr1 !s = case next s of

Done -> error "foldr1"
Skip s’ -> loop0_foldr1 s’
Yield x s’ -> loop_foldr1 x s’

loop_foldr1 x !s = case next s of
Done -> x
Skip s’ -> loop_foldr1 x s’
Yield x’ s’ -> f x (loop_foldr1 x’ s’)

{-# INLINE [0] foldr1 #-}

-- ----------------------------------------------------------------------------
-- ** Special folds

-- | /O(n)/ Concatenate a list of streams. Subject to array fusion.
concat :: [Stream Char] -> Stream Char
concat = P.foldr append (Stream next Done 0)

where
next Done = Done
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-- | Map a function over a stream that results in a steram and concatenate the
-- results.
concatMap :: (Char -> Stream Char) -> Stream Char -> Stream Char
concatMap f = foldr (append . f) (stream empty)

-- | /O(n)/ any @p @xs determines if any character in the stream
-- @xs@ satisifes the predicate @p@.
any :: (Char -> Bool) -> Stream Char -> Bool
any p (Stream next0 s0 len) = loop_any s0

where
loop_any !s = case next0 s of

Done -> False
Skip s’ -> seq s’ $ loop_any s’
Yield x s’ | p x -> True

| otherwise -> seq s’ $ loop_any s’

-- | /O(n)/ all @p @xs determines if all characters in the ’Text’
-- @xs@ satisify the predicate @p@.
all :: (Char -> Bool) -> Stream Char -> Bool
all p (Stream next0 s0 len) = loop_all s0

where
loop_all !s = case next0 s of

Done -> True
Skip s’ -> seq s’ $ loop_all s’
Yield x s’ | p x -> seq s’ $ loop_all s’

| otherwise -> False

-- | /O(n)/ maximum returns the maximum value from a stream, which must be
-- non-empty.
maximum :: Stream Char -> Char
maximum (Stream next0 s0 len) = loop0_maximum s0

where
loop0_maximum !s = case next0 s of

Done -> errorEmptyList "maximum"
Skip s’ -> seq s’ $ loop0_maximum s’
Yield x s’ -> seq s’ $ loop_maximum x s’

loop_maximum !z !s = case next0 s of
Done -> z
Skip s’ -> seq s’ $ loop_maximum z s’
Yield x s’

| x > z -> seq s’ $ loop_maximum x s’
| otherwise -> seq s’ $ loop_maximum z s’

-- | /O(n)/ minimum returns the minimum value from a ’Text’, which must be
-- non-empty.
minimum :: Stream Char -> Char
minimum (Stream next0 s0 len) = loop0_minimum s0

where
loop0_minimum !s = case next0 s of

Done -> errorEmptyList "minimum"
Skip s’ -> seq s’ $ loop0_minimum s’
Yield x s’ -> seq s’ $ loop_minimum x s’

loop_minimum !z !s = case next0 s of
Done -> z
Skip s’ -> seq s’ $ loop_minimum z s’
Yield x s’

| x < z -> seq s’ $ loop_minimum x s’
| otherwise -> seq s’ $ loop_minimum z s’

-- -----------------------------------------------------------------------------
-- * Building streams

-- -----------------------------------------------------------------------------
-- ** Generating and unfolding streams

-- | /O(n)/, where @n@ is the length of the result. The unfoldr function
-- is analogous to the List ’unfoldr’. unfoldr builds a stream
-- from a seed value. The function takes the element and returns
-- Nothing if it is done producing the stream or returns Just
-- (a,b), in which case, a is the next Char in the string, and b is
-- the seed value for further production.
unfoldr :: (a -> Maybe (Char,a)) -> a -> Stream Char
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unfoldr f s0 = Stream next s0 1
where

{-# INLINE next #-}
next !s = case f s of

Nothing -> Done
Just (w, s’) -> Yield w s’

{-# INLINE [0] unfoldr #-}

-- | O(n) Like unfoldr, unfoldrN builds a stream from a seed
-- value. However, the length of the result should be limited by the
-- first argument to unfoldrN. This function is more efficient than
-- unfoldr when the maximum length of the result and correct,
-- otherwise its complexity performance is similar to ’unfoldr’
unfoldrN :: Int -> (a -> Maybe (Char,a)) -> a -> Stream Char
unfoldrN n f s0 = Stream next (0 :!: s0) (n*2)

where
{-# INLINE next #-}
next (z :!: s) = case f s of

Nothing -> Done
Just (w, s’) | z >= n -> Done

| otherwise -> Yield w ((z + 1) :!: s’)
-------------------------------------------------------------------------------
-- * Substreams

-- | /O(n)/ take n, applied to a stream, returns the prefix of the
-- stream of length @n@, or the stream itself if @n@ is greater than the
-- length of the stream.
take :: Int -> Stream Char -> Stream Char
take n0 (Stream next0 s0 len) = Stream next (n0 :!: s0) len

where
{-# INLINE next #-}
next (n :!: s) | n <= 0 = Done

| otherwise = case next0 s of
Done -> Done
Skip s’ -> Skip (n :!: s’)
Yield x s’ -> Yield x ((n-1) :!: s’)

{-# INLINE [0] take #-}

-- | /O(n)/ drop n, applied to a stream, returns the suffix of the
-- stream of length @n@, or the empty stream if @n@ is greater than the
-- length of the stream.
drop :: Int -> Stream Char -> Stream Char
drop n0 (Stream next0 s0 len) = Stream next (Just ((max 0 n0)) :!: s0) (len - n0)

where
{-# INLINE next #-}
next (Just !n :!: s)

| n == 0 = Skip (Nothing :!: s)
| otherwise = case next0 s of

Done -> Done
Skip s’ -> Skip (Just n :!: s’)
Yield _ s’ -> Skip (Just (n-1) :!: s’)

next (Nothing :!: s) = case next0 s of
Done -> Done
Skip s’ -> Skip (Nothing :!: s’)
Yield x s’ -> Yield x (Nothing :!: s’)

{-# INLINE [0] drop #-}

-- | takeWhile, applied to a predicate @p@ and a stream, returns the
-- longest prefix (possibly empty) of elements that satisfy p.
takeWhile :: (Char -> Bool) -> Stream Char -> Stream Char
takeWhile p (Stream next0 s0 len) = Stream next s0 len

where
{-# INLINE next #-}
next !s = case next0 s of

Done -> Done
Skip s’ -> Skip s’
Yield x s’ | p x -> Yield x s’

| otherwise -> Done
{-# INLINE [0] takeWhile #-}

-- | dropWhile @p @xs returns the suffix remaining after takeWhile @p @xs.
dropWhile :: (Char -> Bool) -> Stream Char -> Stream Char
dropWhile p (Stream next0 s0 len) = Stream next (S1 :!: s0) len

where
{-# INLINE next #-}
next (S1 :!: s) = case next0 s of
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Done -> Done
Skip s’ -> Skip (S1 :!: s’)
Yield x s’ | p x -> Skip (S1 :!: s’)

| otherwise -> Yield x (S2 :!: s’)
next (S2 :!: s) = case next0 s of

Done -> Done
Skip s’ -> Skip (S2 :!: s’)
Yield x s’ -> Yield x (S2 :!: s’)

{-# INLINE [0] dropWhile #-}

-- ----------------------------------------------------------------------------
-- * Searching

-------------------------------------------------------------------------------
-- ** Searching by equality

-- | /O(n)/ elem is the stream membership predicate.
elem :: Char -> Stream Char -> Bool
elem w (Stream next s0 len) = loop_elem s0

where
loop_elem !s = case next s of

Done -> False
Skip s’ -> loop_elem s’
Yield x s’ | x == w -> True

| otherwise -> loop_elem s’
{-# INLINE [0] elem #-}

-------------------------------------------------------------------------------
-- ** Searching with a predicate

-- | /O(n)/ The ’find’ function takes a predicate and a stream,
-- and returns the first element in matching the predicate, or ’Nothing’
-- if there is no such element.

find :: (Char -> Bool) -> Stream Char -> Maybe Char
find p (Stream next s0 len) = loop_find s0

where
loop_find !s = case next s of

Done -> Nothing
Skip s’ -> loop_find s’
Yield x s’ | p x -> Just x

| otherwise -> loop_find s’
{-# INLINE [0] find #-}

-- | /O(n)/ ’filter’, applied to a predicate and a stream,
-- returns a stream containing those characters that satisfy the
-- predicate.
filter :: (Char -> Bool) -> Stream Char -> Stream Char
filter p (Stream next0 s0 len) = Stream next s0 len

where
{-# INLINE next #-}
next !s = case next0 s of

Done -> Done
Skip s’ -> Skip s’
Yield x s’ | p x -> Yield x s’

| otherwise -> Skip s’
{-# INLINE [0] filter #-}

{-# RULES
"Stream filter/filter fusion" forall p q s.
filter p (filter q s) = filter (\x -> q x && p x) s
#-}

-------------------------------------------------------------------------------
-- ** Indexing streams

-- | /O(1)/ stream index (subscript) operator, starting from 0.
index :: Stream Char -> Int -> Char
index (Stream next s0 len) n0

| n0 < 0 = error "Stream.(!!): negative index"
| otherwise = loop_index n0 s0
where

loop_index !n !s = case next s of
Done -> error "Stream.(!!): index too large"
Skip s’ -> loop_index n s’
Yield x s’ | n == 0 -> x
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| otherwise -> loop_index (n-1) s’
{-# INLINE [0] index #-}

-- | The ’findIndex’ function takes a predicate and a stream and
-- returns the index of the first element in the stream
-- satisfying the predicate.
findIndex :: (Char -> Bool) -> Stream Char -> Maybe Int
findIndex p (Stream next s0 len) = loop_findIndex 0 s0

where
loop_findIndex !i !s = case next s of

Done -> Nothing
Skip s’ -> loop_findIndex i s’ -- hmm. not caught by QC
Yield x s’ | p x -> Just i

| otherwise -> loop_findIndex (i+1) s’
{-# INLINE [0] findIndex #-}

-- | /O(n)/ The ’elemIndex’ function returns the index of the first
-- element in the given stream which is equal to the query
-- element, or ’Nothing’ if there is no such element.
elemIndex :: Char -> Stream Char -> Maybe Int
elemIndex a (Stream next s0 len) = loop_elemIndex 0 s0

where
loop_elemIndex !i !s = case next s of

Done -> Nothing
Skip s’ -> loop_elemIndex i s’
Yield x s’ | a == x -> Just i

| otherwise -> loop_elemIndex (i+1) s’
{-# INLINE [0] elemIndex #-}

-------------------------------------------------------------------------------
-- * Zipping

-- | zipWith generalises ’zip’ by zipping with the function given as
-- the first argument, instead of a tupling function.
zipWith :: (Char -> Char -> Char) -> Stream Char -> Stream Char -> Stream Char
zipWith f (Stream next0 sa0 len1) (Stream next1 sb0 len2) = Stream next (sa0 :!: sb0 :!: Nothing) (min len1 len2)

where
{-# INLINE next #-}
next (sa :!: sb :!: Nothing) = case next0 sa of

Done -> Done
Skip sa’ -> Skip (sa’ :!: sb :!: Nothing)
Yield a sa’ -> Skip (sa’ :!: sb :!: Just a)

next (sa’ :!: sb :!: Just a) = case next1 sb of
Done -> Done
Skip sb’ -> Skip (sa’ :!: sb’ :!: Just a)
Yield b sb’ -> Yield (f a b) (sa’ :!: sb’ :!: Nothing)

{-# INLINE [0] zipWith #-}

errorEmptyList :: String -> a
errorEmptyList fun =

error ("Prelude." ++ fun ++ ": empty list")

A.1.3 Text/Internal.hs
module Text.Internal where

import Data.Array.ST
import Data.Array.Unboxed
import Data.Word

data Text = Text !(UArray Int Word16) {-# UNPACK #-}!Int {-# UNPACK #-}!Int

empty :: Text
empty = Text (runSTUArray (newArray_ (0,0))) 0 0
{-# INLINE [1] empty #-}
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A.1.4 Text/UnsafeChar.hs
{-# OPTIONS_GHC -fglasgow-exts #-}

module Text.UnsafeChar where

import GHC.Exts
import GHC.Prim
import GHC.Word

unsafeChr8 :: Word8 -> Char
unsafeChr8 (W8# w#) = C# (chr# (word2Int# w#))
{-# INLINE unsafeChr8 #-}

unsafeChr :: Word16 -> Char
unsafeChr (W16# w#) = C# (chr# (word2Int# w#))
{-# INLINE unsafeChr #-}

unsafeChr32 :: Word32 -> Char
unsafeChr32 (W32# w#) = C# (chr# (word2Int# w#))
{-# INLINE unsafeChr32 #-}

A.1.5 Text/Utf8.hs
{-# OPTIONS_GHC -fglasgow-exts #-}
module Text.Utf8 where

import Char
import Data.Bits
import Data.Word

import GHC.Exts
import GHC.Prim
import GHC.Word

between :: Word8 -> Word8 -> Word8 -> Bool
between x y z = x >= y && x <= z
{-# INLINE between #-}

ord2 :: Char -> (Word8,Word8)
ord2 c = (x1,x2)

where
n = ord c
x1 = fromIntegral $ (shiftR n 6) + (0xC0 :: Int) :: Word8
x2 = fromIntegral $ (n .&. 0x3F) + (0x80 :: Int) :: Word8

ord3 :: Char -> (Word8,Word8,Word8)
ord3 c = (x1,x2,x3)

where
n = ord c
x1 = fromIntegral $ (shiftR n 12) + (0xE0::Int) :: Word8
x2 = fromIntegral $ ((shiftR n 6) .&. (0x3F::Int)) + (0x80::Int) :: Word8
x3 = fromIntegral $ (n .&. (0x3F::Int)) + (0x80::Int) :: Word8

ord4 :: Char -> (Word8,Word8,Word8,Word8)
ord4 c = (x1,x2,x3,x4)

where
n = ord c
x1 = fromIntegral $ (shiftR n 18) + (0xF0::Int) :: Word8
x2 = fromIntegral $ ((shiftR n 12) .&. (0x3F::Int)) + (0x80::Int) :: Word8
x3 = fromIntegral $ ((shiftR n 6) .&. (0x3F::Int)) + (0x80::Int) :: Word8
x4 = fromIntegral $ (n .&. (0x3F::Int)) + (0x80::Int) :: Word8

chr2 :: Word8 -> Word8 -> Char
chr2 (W8# x1#) (W8# x2#) = C# (chr# (z1# +# z2#))

where
y1# = word2Int# x1#
y2# = word2Int# x2#
z1# = uncheckedIShiftL# (y1# -# 0xC0#) 6#
z2# = y2# -# 0x8F#

{-# INLINE chr2 #-}

chr3 :: Word8 -> Word8 -> Word8 -> Char
chr3 (W8# x1#) (W8# x2#) (W8# x3#) = C# (chr# (z1# +# z2# +# z3#))

where
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y1# = word2Int# x1#
y2# = word2Int# x2#
y3# = word2Int# x3#
z1# = uncheckedIShiftL# (y1# -# 0xE0#) 12#
z2# = uncheckedIShiftL# (y2# -# 0x80#) 6#
z3# = y3# -# 0x80#

{-# INLINE chr3 #-}

chr4 :: Word8 -> Word8 -> Word8 -> Word8 -> Char
chr4 (W8# x1#) (W8# x2#) (W8# x3#) (W8# x4#) =

C# (chr# (z1# +# z2# +# z3# +# z4#))
where

y1# = word2Int# x1#
y2# = word2Int# x2#
y3# = word2Int# x3#
y4# = word2Int# x4#
z1# = uncheckedIShiftL# (y1# -# 0xF0#) 18#
z2# = uncheckedIShiftL# (y2# -# 0x80#) 12#
z3# = uncheckedIShiftL# (y3# -# 0x80#) 6#
z4# = y4# -# 0x80#

{-# INLINE chr4 #-}

validate1 :: Word8 -> Bool
validate1 x1 = between x1 0x00 0x7F
{-# INLINE validate1 #-}

validate2 :: Word8 -> Word8 -> Bool
validate2 x1 x2 = between x1 0xC2 0xDF && between x2 0x80 0xBF
{-# INLINE validate2 #-}

validate3 :: Word8 -> Word8 -> Word8 -> Bool
validate3 x1 x2 x3 = validate3_1 x1 x2 x3 ||

validate3_2 x1 x2 x3 ||
validate3_3 x1 x2 x3 ||
validate3_4 x1 x2 x3

{-# INLINE validate3 #-}

validate4 :: Word8 -> Word8 -> Word8 -> Word8 -> Bool
validate4 x1 x2 x3 x4 = validate4_1 x1 x2 x3 x4 ||

validate4_2 x1 x2 x3 x4 ||
validate4_3 x1 x2 x3 x4

{-# INLINE validate4 #-}

validate3_1 x1 x2 x3 = (x1 == 0xE0) &&
between x2 0xA0 0xBF &&
between x3 0x80 0xBF

{-# INLINE validate3_1 #-}

validate3_2 x1 x2 x3 = between x1 0xE1 0xEC &&
between x2 0x80 0xBF &&
between x3 0x80 0xBF

{-# INLINE validate3_2 #-}

validate3_3 x1 x2 x3 = x1 == 0xED &&
between x2 0x80 0x9F &&
between x3 0x80 0xBF

{-# INLINE validate3_3 #-}

validate3_4 x1 x2 x3 = between x1 0xEE 0xEF &&
between x2 0x80 0xBF &&
between x2 0x80 0xBF

{-# INLINE validate3_4 #-}

validate4_1 x1 x2 x3 x4 = x1 == 0xF0 &&
between x2 0x90 0xBF &&
between x3 0x80 0xBF &&
between x4 0x80 0xBF

{-# INLINE validate4_1 #-}

validate4_2 x1 x2 x3 x4 = between x1 0xF1 0xF3 &&
between x2 0x80 0xBF &&
between x3 0x80 0xBF &&
between x4 0x80 0xBF
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{-# INLINE validate4_2 #-}

validate4_3 x1 x2 x3 x4 = x1 == 0xF4 &&
between x2 0x80 0x8F &&
between x3 0x80 0xBF &&
between x4 0x80 0xBF

{-# INLINE validate4_3 #-}

A.1.6 Text/Utf16.hs
{-# OPTIONS_GHC -fglasgow-exts #-}

module Text.Utf16 where

import GHC.Exts
import GHC.Word

import Data.Word

chr2 :: Word16 -> Word16 -> Char
chr2 (W16# a#) (W16# b#) = C# (chr# (upper# +# lower# +# 0x10000#))

where
x# = word2Int# a#
y# = word2Int# b#
upper# = uncheckedIShiftL# (x# -# 0xD800#) 10#
lower# = y# -# 0xDC00#

{-# INLINE chr2 #-}

validate1 :: Word16 -> Bool
validate1 x1 = (x1 >= 0 && x1 < 0xD800) || (x1 > 0xDFFF && x1 < 0x10000)

validate2 :: Word16 -> Word16 -> Bool
validate2 x1 x2 = (x1 >= 0xD800 && x1 <= 0xDBFF) &&

(x2 >= 0xDC00 && x2 <= 0xDFFF)

A.2 UTF-8 Implementation Files

A.2.1 Utf8/Internal.hs
module Text.Utf8.Internal where

import Data.Array.Unboxed
import Data.Word

data Text = Text !(UArray Int Word8) !Int !Int

A.2.2 Utf8/Fusion.hs
{-# OPTIONS_GHC -fbang-patterns -fglasgow-exts #-}

module Text.Utf8.Fusion where

import Data.Array.Base
import Data.Word
import Control.Monad.ST
import Data.Text.UnsafeChar
import Control.Monad
import Char

import Text.Utf8
import Text.Utf8.Internal
import Text.Fusion hiding (stream,unstream)

stream :: Text -> Stream Char
stream (Text arr off len) = Stream next off len

where
end = off+len
{-# INLINE next #-}
next !i

| i >= end = Done
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| n <= 0x7F = Yield (unsafeChr8 n) (i + 1)
| n <= 0xDF = Yield (chr2 n n2) (i + 2)
| n <= 0xEF = Yield (chr3 n n2 n3) (i + 3)
| otherwise = Yield (chr4 n n2 n3 n4) (i + 4)
where

n = arr ‘unsafeAt‘ i
n2 = arr ‘unsafeAt‘ (i + 1)
n3 = arr ‘unsafeAt‘ (i + 2)
n4 = arr ‘unsafeAt‘ (i + 3)

{-# INLINE [0] stream #-}

unstream :: Stream Char -> Text
unstream (Stream next0 s0 len) = x ‘seq‘ (Text (fst x) 0 (snd x))

where
x :: ((UArray Int Word8), Int)
x = runST ((unsafeNewArray_ (0,len+4) :: ST s (STUArray s Int Word8))

>>= (\arr -> loop arr 0 (len+4) s0))
loop !arr !i !max !s

| i + 4 > max = do arr’ <- unsafeNewArray_ (0,max*2)
copy arr arr’
loop arr’ i (max*2) s

| otherwise = case next0 s of
Done -> liftM2 (,) (unsafeFreezeSTUArray arr) (return i)
Skip s’ -> loop arr i max s’
Yield x s’

| n <= 0x7F -> do
unsafeWrite arr i n
loop arr (i+1) max s’

| n <= 0x07FF -> do
unsafeWrite arr i (fst n2)
unsafeWrite arr (i+1) (snd n2)
loop arr (i+2) max s’

| n <= 0xFFFF -> do
unsafeWrite arr i (fst3 n3)
unsafeWrite arr (i+1) (snd3 n3)
unsafeWrite arr (i+2) (trd3 n3)
loop arr (i+3) max s’

| otherwise -> do
unsafeWrite arr i (fst4 n4)
unsafeWrite arr (i+1) (snd4 n4)
unsafeWrite arr (i+2) (trd4 n4)
unsafeWrite arr (i+3) (fth4 n4)
loop arr (i+4) max s’

where
n = (fromIntegral . ord) x :: Word8
n2 = ord2 x
n3 = ord3 x
n4 = ord4 x
fst3 !x = let (x1,_,_) = x in x1
snd3 !x = let (_,x2,_) = x in x2
trd3 !x = let (_,_,x3) = x in x3
fst4 !x = let (x1,_,_,_) = x in x1
snd4 !x = let (_,x2,_,_) = x in x2
trd4 !x = let (_,_,x3,_) = x in x3
fth4 !x = let (_,_,_,x4) = x in x4

{-# INLINE [0] unstream #-}

{-# RULES
"STREAM stream/unstream fusion" forall s.

stream (unstream s) = s
#-}

A.3 UTF-32 Implementation Files

A.3.1 Utf32/Internal.hs
{-# OPTIONS_GHC -fbang-patterns #-}

module Text.Utf32.Fusion where

import Text.Fusion hiding (stream, unstream)
import Text.Utf32.Internal
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import Text.UnsafeChar
import Data.Array.Base
import Data.Word
import Data.Array.ST
import Control.Monad.ST
import Char
import Control.Monad

stream :: Text -> Stream Char
stream (Text arr off len) = Stream next off len

where
end = off+len
{-# INLINE next #-}
next !i

| i >= end = Done
| otherwise = Yield (unsafeChr32 (arr ‘unsafeAt‘ i)) (i+1)

{-# INLINE [0] stream #-}

unstream :: Stream Char -> Text
unstream (Stream next0 s0 len) = x ‘seq‘ Text (fst x) 0 (snd x)

where
x :: ((UArray Int Word32),Int)
x = runST ((unsafeNewArray_ (0,len) :: ST s (STUArray s Int Word32))

>>= (\arr -> loop arr 0 (len) s0))
loop arr !i !max !s

| i > max = do arr’ <-unsafeNewArray_ (0,max*2)
copy arr arr’
loop arr’ i (max*2) s

| otherwise = case next0 s of
Done -> liftM2 (,) (unsafeFreezeSTUArray arr) (return i)
Skip s’ -> loop arr i max s’
Yield x s’ -> do

unsafeWrite arr i n
loop arr (i+1) max s’

where
n :: Word32
n = fromIntegral $ ord x

{-# INLINE [0] unstream #-}

{-# RULES
"STREAM stream/unstream fusion" forall s.

stream (unstream s) = s
#-}

A.3.2 Utf32/Fusion.hs
{-# OPTIONS_GHC -fglasgow-exts #-}

module Text.Utf32.Internal where

import Data.Array.Unboxed
import Data.Word

data Text = Text !(UArray Int Word32) !Int !Int

A.4 Benchmarking code

A.4.1 BenchUtils.hs
{-# OPTIONS_GHC -fglasgow-exts -fbang-patterns #-}

module BenchUtils where

import qualified Data.List as L
import Data.ByteString (ByteString(..))
import Data.Word
import Text.Printf
import System.IO
import Text.Internal (Text(..))
import System.Mem
import System.CPUTime
import Control.Exception
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import Control.Concurrent

data Result = T | B

data F a = forall b. F (a -> b) | forall b. Flist (a -> [b])

class Forceable a where
force :: a -> IO Result
force v = v ‘seq‘ return T

instance Forceable Text

seqList = L.foldl’ (flip seq) (return ())
instance Forceable [a] where

force = L.foldl’ (flip seq) (return T)

instance Forceable ByteString
instance Forceable Char
instance Forceable Bool
instance Forceable Int
instance Forceable Word8

instance (Forceable a, Forceable b) => Forceable (a,b) where
force (a,b) = force a >> force b

instance (Forceable a, Forceable b, Forceable c) => Forceable (a,b,c) where
force (a,b,c) = force a >> force b >> force c

run c x tests = sequence_ $ zipWith (runTest c x) [1..] tests

runTest :: Int -> a -> Int -> (String,[F a]) -> IO ()
runTest count x n (name,tests) = do

printf "%2d " n
fn tests
printf "\t# %-16s\n" (show name)
hFlush stdout

where fn xs = case xs of
[f,g,h] -> runN count f x >> putStr "\t"

>> runN count g x >> putStr "\t"
>> runN count h x >> putStr "\t"

[f,g] -> runN count f x >> putStr "\t"
>> runN count g x >> putStr "\t\t"

[f] -> runN count f x >> putStr "\t\t\t"
_ -> return ()

run f x = performGC >> threadDelay 100 >> time f x
runN 0 f x = return ()
runN c f x = run f x >> runN (c-1) f x

time (Flist f) a = do
start <- getCPUTime
v <- seqList (f a)
end <- getCPUTime
let diff = (fromIntegral (end - start)) / 10^12
printf "%0.3f" (diff :: Double)
hFlush stdout

time (F f) a = do
start <- getCPUTime
v <- evaluate (f a)
end <- getCPUTime
let diff = (fromIntegral (end - start)) / 10^12
printf "%0.3f" (diff :: Double)
hFlush stdout

app1 f (x,y,z) = f x
app2 f (x,y,z) = f y
app3 f (x,y,z) = f z

A.4.2 Single function benchmarking (Bench.hs)
{-# OPTIONS_GHC -fglasgow-exts -fbang-patterns #-}

--module Bench where
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import BenchUtils
import System.Mem
import Control.Concurrent
import Char
import Data.Array.IArray
import System.CPUTime
import System.IO
import System.IO.Unsafe
import Text.Printf
import Control.Exception

import qualified Text as T
import Text.Internal
import qualified Text.Fusion as S
import Text.Fusion (Encoding(..))

import qualified Data.List as L
import qualified Data.ByteString as B
import Data.ByteString (ByteString)
import Data.Word
import qualified System.IO.UTF8 as UTF8

main = do ascii_bs <- B.readFile "ascii.txt"
let ascii_txt = T.decode ASCII ascii_bs
let ascii_str = T.unpack ascii_txt
force (ascii_txt,ascii_str,ascii_bs)
printf " # Text\t\tString\tByteString\n"
run 1 (ascii_txt,ascii_str,ascii_bs) ascii_tests
performGC
bmp_txt <- T.readFile Utf8 "bmp.txt"
let bmp_str = T.unpack bmp_txt
force (bmp_txt,bmp_str)
printf " # Text\t\tString\t\n"
run 1 (bmp_txt, bmp_str, B.empty) bmp_tests
performGC
smp_sip_txt <- T.readFile Utf8 "smp_sip.txt"
let smp_sip_str = T.unpack smp_sip_txt
force (smp_sip_txt, smp_sip_str)
printf " # Text\t\tString\t\n"
run 1 (smp_sip_txt, smp_sip_str,B.empty) smp_sip_tests

ascii_tests = [
("cons",
[F (app1 (T.cons ’\88’)),
F (app2 ((:) ’\88’) ),
F (app3 (B.cons 88) )]),

("head",
[F (app1 T.head),
F (app2 L.head),
F (app3 B.head)]),

("last",
[F (app1 T.last),
F (app2 L.last),
F (app3 B.last)]),

("tail",
[F (app1 T.tail),
F (app2 L.tail),
F (app3 B.tail)]),

("init",
[F (app1 T.init),
Flist (app2 L.init),
F (app3 B.init) ]),

("null",
[F (app1 T.null),
F (app2 L.null),
F (app3 B.null) ]),

("length",
[F (app1 T.length),
F (app2 L.length),
F (app3 B.length)]),

("map",
[F (app1 $ T.map succ),
Flist (app2 (L.map succ)),
F (app3 $ B.map succ)]),

("filter",
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[F $ app1 $ T.filter (/= ’\101’),
Flist $ app2 $ L.filter (/= ’\101’),
F $ app3 $ B.filter (/= 101)]),

("foldl’",
[F (app1 $ T.foldl’ (\a w -> a+1::Int) 0),
F (app2 $ L.foldl’ (\a w -> a+1::Int) 0),
F (app3 $ B.foldl’ (\a w -> a+1::Int) 0)

]),
("drop",
[F (app1 $ T.drop 30000000),
Flist (app2 $ L.drop 30000000),
F (app3 $ B.drop 30000000)

]),
("take",
[F (app1 $ T.take 30000000),
Flist (app2 $ L.take 30000000),
F (app3 $ B.take 30000000)]),

("words",
[F (app1 $ T.words),
Flist (app2 $ L.words)])

]

bmp_tests = [
("cons",
[F (app1 (T.cons ’\88’)),
F (app2 ((:) ’\88’) )]),

("head",
[F (app1 T.head),
F (app2 L.head)]),

("last",
[F (app1 T.last),
F (app2 L.last)]),

("tail",
[F (app1 T.tail),
F (app2 L.tail)]),

("init",
[F (app1 T.init),
Flist (app2 L.init)]),

("null",
[F (app1 T.null),
F (app2 L.null),
F (app3 B.null)]),
("length",
[F (app1 T.length),
F (app2 L.length),
F (app3 B.length)]),

("map",
[F (app1 $ T.map succ),
Flist (app2 (L.map succ))]),

("filter",
[F $ app1 $ T.filter (/= ’\101’),
Flist $ app2 $ L.filter (/= ’\101’)]),

("foldl’",
[F (app1 $ T.foldl’ (\a w -> a+1::Int) 0),
F (app2 $ L.foldl’ (\a w -> a+1::Int) 0)]),

("drop",
[F (app1 $ T.drop 30000000),
Flist (app2 $ L.drop 30000000)]),

("take",
[F (app1 $ T.take 30000000),
Flist (app2 $ L.take 30000000)]),

("words",
[F (app1 $ T.words),
Flist (app2 $ L.words)])

]

smp_sip_tests = [
("cons",
[F (app1 (T.cons ’\65624’)),
F (app2 ((:) ’\65624’))]),

("head",
[F (app1 T.head),
F (app2 L.head)]),

("last",
[F (app1 T.last),
F (app2 L.last)]),
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("tail",
[F (app1 T.tail),
F (app2 L.tail)]),

("init",
[F (app1 T.init),
Flist (app2 L.init)]),

("null",
[F (app1 T.null),
F (app2 L.null),
F (app3 B.null) ]),

("length",
[F (app1 T.length ),
F (app2 L.length),
F (app3 B.length)]),

("map",
[F (app1 $ T.map succ),
Flist (app2 (L.map succ))]),

("filter",
[F $ app1 $ T.filter (/= ’\65624’),
Flist $ app2 $ L.filter (/= ’\65624’)]),

("foldl’",
[F (app1 $ T.foldl’ (\a w -> a+1::Int) 0),
F (app2 $ L.foldl’ (\a w -> a+1::Int) 0)]),

("drop",
[F (app1 $ T.drop 30000000),
Flist (app2 $ L.drop 30000000)]),

("take",
[F (app1 $ T.take 30000000),
Flist (app2 $ L.take 30000000)])

]

A.4.3 Fusion benchmarking (FusionBench.hs)
import Prelude hiding (zip,zip3,fst,snd)

import BenchUtils
import Char
import qualified Data.List as L
import qualified Data.ByteString as B
import qualified Text as T
import Text.Fusion (Encoding(..))
import qualified Text.Fusion as S
import Text.Printf
import System.IO
import System.Mem
import qualified System.IO.UTF8 as UTF8

main = do ascii_str <- readFile "ascii.txt"
ascii_bs <- B.readFile "ascii.txt"
let ascii_txt = T.decode ASCII ascii_bs
force (ascii_txt,ascii_str,ascii_bs)
printf " # Text\t\tString\tByteString\n"
run 1 (ascii_txt,ascii_str,ascii_bs) ascii_tests

ascii_tests = [
("map/map",
[F $ T.map pred . T.map succ . fst,
Flist $ L.map pred . L.map succ . snd,
F $ B.map pred . B.map succ . trd]),

("filter/filter",
[F $ T.filter (/= ’\101’) . T.filter (/= ’\102’) . fst,
Flist $ L.filter (/= ’\101’) . L.filter (/= ’\102’) . snd,
F $ B.filter (/= 101) . B.filter (/= 102) . trd]),

("filter/map",
[F $ T.filter (/= ’\103’) . T.map succ . fst,
Flist $ L.filter (/= ’\103’) . L.map succ . snd,
F $ B.filter (/= 103) . B.map succ . trd]),

("map/filter",
[F $ T.map succ . T.filter (/= ’\104’) . fst,
Flist $ L.map succ . L.filter (/= ’\104’) . snd,
F $ B.map succ . B.filter (/= 104) . trd]),

("foldl’/map",
[F $ T.foldl’ (const . (+1)) (0 :: Int) . T.map succ . fst,
F $ L.foldl’ (const . (+1)) (0 :: Int) . L.map succ . snd,
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F $ B.foldl’ (const . (+1)) (0 :: Int) . B.map succ . trd]),
("foldl’/filter",
[F $ T.foldl’ (const . (+2)) (0::Int) . T.filter (/= ’\105’) . fst,
F $ L.foldl’ (const . (+2)) (0::Int) . L.filter (/= ’\105’) . snd,
F $ B.foldl’ (const . (+2)) (0::Int) . B.filter (/= 105) . trd]),

("foldl’/map/filter",
[F $ T.foldl’ (const.(+3)) (0::Int) . T.map succ . T.filter (/=’\110’) . fst,
F $ L.foldl’ (const.(+3)) (0::Int) . L.map succ . L.filter (/=’\110’) . snd,
F $ B.foldl’ (const . (+3)) (0::Int) . B.map succ . B.filter (/= 110) . trd])

]

A.4.4 Encoding shootout (EncodingBench.hs)
{-# OPTIONS_GHC -fglasgow-exts #-}

import BenchUtils
import qualified Data.Text.Utf8.Fusion as U8
import qualified Data.Text.Utf8.Internal as U8I
import qualified Data.Text.Utf32.Fusion as U32
import qualified Data.Text.Utf32.Internal as U32I
import qualified Data.Text.Fusion as S
import Data.Text.Fusion (bsStream,Encoding(..))
import qualified Data.Text as T
import qualified Data.ByteString as B
import Text.Printf
import System.Mem

instance Forceable U32I.Text
instance Forceable U8I.Text

data E a = forall b. E (a -> b) | EText (a -> S.Stream Char)

main = do force (ascii_tests, smp_sip_tests)
ascii <- B.readFile "ascii.txt"
let ascii8 = U8.unstream (bsStream ascii ASCII)
let ascii16 = S.unstream (bsStream ascii ASCII)
let ascii32 = U32.unstream (bsStream ascii ASCII)
force (ascii8, ascii16, ascii32)
printf " # Utf8\t\tUtf16\tUtf32\n"
run 1 (ascii8, ascii16, ascii32) ascii_tests
performGC
bmp <- B.readFile "bmp.txt"
let bmp8 = U8.unstream (bsStream bmp Utf8)
let bmp16 = S.unstream (bsStream bmp Utf8)
let bmp32 = U32.unstream (bsStream bmp Utf8)
force (bmp8, bmp16, bmp32)
printf " # Utf8\t\tUtf16\tUtf32\n"
run 1 (bmp8, bmp16, bmp32) ascii_tests
performGC
smp_sip <- B.readFile "smp_sip.txt"
let smp_sip8 = U8.unstream (bsStream smp_sip Utf8)
let smp_sip16 = S.unstream (bsStream smp_sip Utf8)
let smp_sip32 = U32.unstream (bsStream smp_sip Utf8)
force (smp_sip8, smp_sip16, smp_sip32)
printf " # Utf8\t\tUtf16\tUtf32\n"
run 1 (smp_sip8, smp_sip16, smp_sip32) smp_sip_tests

ascii_tests = [
("cons" ,
[F $ app1 $ U8.unstream . S.cons ’\88’ . U8.stream,
F $ app2 $ S.unstream . S.cons ’\88’ . S.stream,
F $ app3 $ U32.unstream . S.cons ’\88’ . U32.stream]),

("length",
[F $ app1 $ S.length . U8.stream,
F $ app2 $ S.length . S.stream,
F $ app3 $ S.length . U32.stream]),

("map" ,
[F $ app1 $ U8.unstream . S.map succ . U8.stream,
F $ app2 $ S.unstream . S.map succ . S.stream,
F $ app3 $ U32.unstream . S.map succ . U32.stream]),

("filter",
[F $ app1 $ U8.unstream . S.filter (/= ’\101’) . U8.stream,
F $ app2 $ S.unstream . S.filter (/= ’\101’) . S.stream,
F $ app3 $ U32.unstream . S.filter (/= ’\101’) . U32.stream]),
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("take",
[F $ app1 $ U8.unstream . S.take 1000000 . U8.stream,
F $ app2 $ S.unstream . S.take 1000000 . S.stream,
F $ app3 $ U32.unstream . S.take 1000000 . U32.stream]),

("drop" ,
[F $ app1 $ U8.unstream . S.drop 1000000 . U8.stream,
F $ app2 $ S.unstream . S.drop 1000000 . S.stream,
F $ app3 $ U32.unstream . S.drop 1000000 . U32.stream]),

("foldl’",
[F $ app1 $ S.foldl’ (\a w -> a+1::Int) 0 . U8.stream,
F $ app2 $ S.foldl’ (\a w -> a+1::Int) 0 . S.stream,
F $ app3 $ S.foldl’ (\a w -> a+1::Int) 0 . U32.stream

])
]

smp_sip_tests = [
("cons" ,
[F $ app1 $ U8.unstream . S.cons ’\88’ . U8.stream,
F $ app2 $ S.unstream . S.cons ’\88’ . S.stream,
F $ app3 $ U32.unstream . S.cons ’\88’ . U32.stream]),

("length",
[F $ app1 $ S.length . U8.stream,
F $ app2 $ S.length . S.stream,
F $ app3 $ S.length . U32.stream]),

("map" ,
[F $ app1 $ U8.unstream . S.map succ . U8.stream,
F $ app2 $ S.unstream . S.map succ . S.stream,
F $ app3 $ U32.unstream . S.map succ . U32.stream]),

("filter",
[F $ app1 $ U8.unstream . S.filter (/= ’\101’) . U8.stream,
F $ app2 $ S.unstream . S.filter (/= ’\101’) . S.stream,
F $ app3 $ U32.unstream . S.filter (/= ’\101’) . U32.stream]),

("take",
[F $ app1 $ U8.unstream . S.take 1000000 . U8.stream,
F $ app2 $ S.unstream . S.take 1000000 . S.stream,
F $ app3 $ U32.unstream . S.take 1000000 . U32.stream]),

("drop" ,
[F $ app1 $ U8.unstream . S.drop 1000000 . U8.stream,
F $ app2 $ S.unstream . S.drop 1000000 . S.stream,
F $ app3 $ U32.unstream . S.drop 1000000 . U32.stream]),

("foldl’",
[F $ app1 $ S.foldl’ (\a w -> a+1::Int) 0 . U8.stream,
F $ app2 $ S.foldl’ (\a w -> a+1::Int) 0 . S.stream,
F $ app3 $ S.foldl’ (\a w -> a+1::Int) 0 . U32.stream])

]

A.5 Testing code

A.5.1 Properties.hs
{-# OPTIONS_GHC -fno-rewrite-rules #-}

import Test.QuickCheck
import Text.Show.Functions

import Prelude
import qualified Text as T
import Text (pack,unpack)
import qualified Text.Fusion as S
import Text.Fusion (unstream,stream)
import qualified Data.List as L

import QuickCheckUtils

prop_pack_unpack s = (unpack . pack) s == s
prop_stream_unstream t = (unstream . stream) t == t
prop_singleton c = [c] == (unpack . T.singleton) c

prop_cons x xs = (x:xs) == (unpack . T.cons x . pack) xs
prop_snoc x xs = (xs ++ [x]) == (unpack . (flip T.snoc) x . pack) xs
prop_append s1 s2 = (s1 ++ s2) == (unpack $ T.append (pack s1) (pack s2))
prop_appendS s1 s2 = (s1 ++ s2) == ((unpack . unstream) $ S.append ((stream . pack) s1) ((stream . pack) s2))
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prop_head s = not (null s) ==> head s == (T.head . pack) s
prop_last s = not (null s) ==> last s == (T.last . pack) s
prop_lastS s = not (null s) ==> last s == (S.last . stream . pack) s
prop_tail s = not (null s) ==> tail s == (unpack . T.tail . pack) s
prop_tailS s = not (null s) ==> tail s == (unpack . unstream . S.tail . stream . pack) s
prop_init s = not (null s) ==> init s == (unpack . T.init . pack) s
prop_initS s = not (null s) ==> init s == (unpack . unstream . S.init . stream . pack) s
prop_null s = null s == (T.null . pack) s
prop_length s = length s == (T.length . pack) s
prop_map f s = (map f s) == (unpack . T.map f . pack) s
prop_intersperse c s = (L.intersperse c s) == (unpack . T.intersperse c . pack) s
prop_transpose ss = (L.transpose ss) == (map unpack . T.transpose . map pack) ss

prop_foldl f z s = L.foldl f z s == T.foldl f z (pack s)
prop_foldl’ f z s = L.foldl’ f z s == T.foldl’ f z (pack s)
prop_foldl1 f s = not (null s) ==> L.foldl1 f s == T.foldl1 f (pack s)
prop_foldl1’ f s = not (null s) ==> L.foldl1’ f s == T.foldl1’ f (pack s)
prop_foldr f z s = L.foldr f z s == T.foldr f z (pack s)
prop_foldr1 f s = not (null s) ==> L.foldr1 f s == T.foldr1 f (pack s)

prop_concat ss = (L.concat ss) == (unpack . T.concat . map pack) ss
prop_concatMap f s = (L.concatMap f s) == (unpack (T.concatMap (pack . f) (pack s)))
prop_any p s = L.any p s == T.any p (pack s)
prop_all p s = L.all p s == T.all p (pack s)
prop_minimum s = not (null s) ==> L.minimum s == T.minimum (pack s)
prop_maximum s = not (null s) ==> L.maximum s == T.maximum (pack s)

prop_take n s = L.take n s == (unpack . T.take n . pack) s
prop_drop n s = L.drop n s == (unpack . T.drop n . pack) s
prop_takeWhile p s = L.takeWhile p s == (unpack . T.takeWhile p . pack) s
prop_dropWhile p s = L.dropWhile p s == (unpack . T.dropWhile p . pack) s
prop_elem c s = L.elem c s == (T.elem c . pack) s
prop_find p s = L.find p s == (T.find p . pack) s
prop_filter p s = L.filter p s == (unpack . T.filter p . pack) s
prop_index x s = x < L.length s && x >= 0 ==> (L.!!) s x == T.index (pack s) x
prop_findIndex p s = L.findIndex p s == T.findIndex p (pack s)
prop_elemIndex c s = L.elemIndex c s == T.elemIndex c (pack s)
prop_zipWith c s1 s2 = L.zipWith c s1 s2 == unpack (T.zipWith c (pack s1) (pack s2))
prop_words s = L.words s == L.map unpack (T.words (pack s))

A.5.2 QuickCheckUtils.hs
module QuickCheckUtils where

import Test.QuickCheck
import Test.QuickCheck.Batch

import Char

import Text
import Text.Internal

instance Arbitrary Char where
arbitrary = oneof [choose (’\0’,’\55295’), choose (’\57334’,’\1114111’)]
coarbitrary c = variant (ord c ‘rem‘ 4)

instance Arbitrary Text where
arbitrary = pack ‘fmap‘ arbitrary
coarbitrary s = coarbitrary (unpack s)



Appendix B

Benchmark results

These are final results from the benchmarking system used to measure the performance of Text
versus other libraries. It is a subset of the functions implemented, but provides good coverage
of the performance of Text functions. Nearly all the functions in Text have a similar complexity
and structure to one of these functions.

[rtharper@eternity] ~/code.git/tests> ./Bench
# Text String ByteString
1 0.675 0.000 0.033 # "cons"
2 0.000 0.000 0.000 # "head"
3 0.000 0.263 0.000 # "last"
4 0.000 0.000 0.000 # "tail"
5 0.000 0.815 0.000 # "init"
6 0.000 0.000 0.000 # "null"
7 2.746 0.272 0.000 # "length"
8 0.778 1.481 1.306 # "map"
9 0.631 1.248 0.327 # "filter"

10 0.277 0.262 0.220 # "foldl’"
11 0.156 0.365 0.000 # "drop"
12 0.090 0.430 0.000 # "take"
13 0.000 5.450 # "words"
# Text String
1 0.426 0.000 # "cons"
2 0.000 0.000 # "head"
3 0.000 0.159 # "last"
4 0.000 0.000 # "tail"
5 0.000 0.467 # "init"
6 0.000 0.000 # "null"
7 1.596 0.153 # "length"
8 0.447 0.860 # "map"
9 0.343 0.779 # "filter"

10 0.162 0.167 # "foldl’"
11 0.156 0.211 # "drop"
12 0.090 0.434 # "take"
13 0.000 2.860 # "words"
# Text String
1 0.508 0.000 # "cons"
2 0.000 0.000 # "head"
3 0.000 0.098 # "last"
4 0.000 0.000 # "tail"
5 0.000 0.292 # "init"
6 0.000 0.000 # "null"
7 1.503 0.103 # "length"
8 0.516 0.541 # "map"
9 0.459 0.453 # "filter"

10 0.121 0.098 # "foldl’"
11 0.123 0.124 # "drop"
12 0.113 0.312 # "take"
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Test output

[rtharper@eternity] ~/code.git> ghci tests/Properties.hs tests/QuickCheckUtils.hs
GHCi, version 6.8.2: http://www.haskell.org/ghc/ :? for help
Loading package base ... linking ... done.
Ok, modules loaded: QuickCheckUtils, Main, Text, Text.Fusion,
Text.UnsafeChar, Text.Internal, Text.Utf32, Text.Utf16, Text.Utf8.
*Main> quickCheck prop_words
Loading package array-0.1.0.0 ... linking ... done.
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package random-1.0.0.0 ... linking ... done.
Loading package filepath-1.1.0.0 ... linking ... done.
Loading package directory-1.0.0.0 ... linking ... done.
Loading package unix-2.3.0.0 ... linking ... done.
Loading package process-1.0.0.0 ... linking ... done.
Loading package haskell98 ... linking ... done.
Loading package QuickCheck-1.1.0.0 ... linking ... done.
Loading package bytestring-0.9.1.0 ... linking ... done.
OK, passed 100 tests.
*Main> quickCheck prop_pack_unpack
OK, passed 100 tests.
*Main> quickCheck prop_stream_unstream
OK, passed 100 tests.
*Main> quickCheck prop_singleton
OK, passed 100 tests.
*Main> quickCheck prop_cons
OK, passed 100 tests.
*Main> quickCheck prop_snoc
OK, passed 100 tests.
*Main> quickCheck prop_append
OK, passed 100 tests.
*Main> quickCheck prop_appendS
OK, passed 100 tests.
*Main> quickCheck prop_head
OK, passed 100 tests.
*Main> quickCheck prop_lastS
OK, passed 100 tests.
*Main> quickCheck prop_last
OK, passed 100 tests.
*Main> quickCheck prop_tail
OK, passed 100 tests.
*Main> quickCheck prop_tailS
OK, passed 100 tests.
*Main> quickCheck prop_init
OK, passed 100 tests.
*Main> quickCheck prop_initS
OK, passed 100 tests.
*Main> quickCheck prop_null
OK, passed 100 tests.
*Main> quickCheck prop_length
OK, passed 100 tests.
*Main> quickCheck prop_map
OK, passed 100 tests.
*Main> quickCheck prop_intersperse
OK, passed 100 tests.
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*Main> quickCheck prop_transpose
OK, passed 100 tests.
*Main> quickCheck prop_foldl
OK, passed 100 tests.
*Main> quickCheck prop_foldl’
OK, passed 100 tests.
*Main> quickCheck prop_foldl1
OK, passed 100 tests.
*Main> quickCheck prop_foldl1’
OK, passed 100 tests.
*Main> quickCheck prop_foldr
OK, passed 100 tests.
*Main> quickCheck prop_foldr1
OK, passed 100 tests.
*Main> quickCheck prop_concat
OK, passed 100 tests.
*Main> quickCheck prop_concatMap
OK, passed 100 tests.
*Main> quickCheck prop_any
OK, passed 100 tests.
*Main> quickCheck prop_all
OK, passed 100 tests.
*Main> quickCheck prop_minimum
OK, passed 100 tests.
*Main> quickCheck prop_maximum
OK, passed 100 tests.
*Main> quickCheck prop_take
OK, passed 100 tests.
*Main> quickCheck prop_drop
OK, passed 100 tests.
*Main> quickCheck prop_takeWhile
OK, passed 100 tests.
*Main> quickCheck prop_dropWhile
OK, passed 100 tests.
*Main> quickCheck prop_elem
OK, passed 100 tests.
*Main> quickCheck prop_find
OK, passed 100 tests.
*Main> quickCheck prop_filter
OK, passed 100 tests.
*Main> quickCheck prop_index
OK, passed 100 tests.
*Main> quickCheck prop_findIndex
OK, passed 100 tests.
*Main> quickCheck prop_elemIndex
OK, passed 100 tests.
*Main> quickCheck prop_zipWith
OK, passed 100 tests.
*Main> quickCheck prop_words
OK, passed 100 tests.
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