
Model checking recursive programs with

numeric data types

Matthew Hague and Anthony Widjaja To

Oxford University Computing Laboratory

We give a direct encoding of the reachability problem of PCo into existential
Presburger arithmetic used in our implementation. This note accompanies a
conference submission by the authors [1]

For this presentation we use variables for the nonterminals of the generated
CFGS, in our implementation we replace these variables with the sums given by
the formula Count (P1, . . . ,Ph,N 1, . . . ,N h,T ) given below.

Recall, we can solve the reachability problem in NP by building a pushdown
system without counters, but with a “mode” vector. This vector contains a value
for each counter of the system indicating whether the value is unchanged (i.e.
zero), is in the increase phase, is in the decrease phase, or has (been guessed
to have) re-reached zero. That is, a vector of values from 0 to 3 respectively.
For this proof, we allow up to r reversals, and so our values range from 0 to
rmax = 2 + r + ⌈r/2⌉. That is, the counter cycles through a zero phase (0), an
increment phase (+), a decrement phase (−), an (optional) zero phase (0), an
increment phase (+), &c. For example, for zero reversals each counter may go
through phases 0 and +, for one reversal 0,+,−, 0, two reversals 0,+,−, 0,+,
three 0,+,−, 0,+,−, 0, &c.

The key observation in the proof is that, although there are an exponential
number of vectors, only a linear number of them may be used during a particular
run. This is because, starting from (0, 0, . . . , 0), the value of the components only
increases. Hence, we can guess the sequence m1, . . . ,mh of vectors used during
a successful run, where h is the maximum number of vector changes. We will
refer to each mi as a mode. We do not assume that all runs cycle through h
modes (they may go through fewer).

Once the mode sequence has been guessed, we can construct a polynomially
sized pushdown system that outputs its counter operations. We then construct
the existential Presburger formula representing the Parikh image of this system,
and check whether a run exists where the number of increments equals the
number of decrements for each counter.

This shows that the problem is in NP; however, we do not know how to
perform the guessing phase efficiently. To solve this problem we show how to
encode the guessing of the mode sequence into the existential Presburger formula.
Efficient Presburger solvers can then be used.

1 Context-Free Grammars

We first build a family of context-free grammars representing the pushdown sys-
tem. These grammars contain information that enables the Presburger formula



2 Matthew Hague and Anthony Widjaja To

to assert facts about its correctness. We assume that the transition relation is
of the form (Q × Γ × ConstX) × ACT × (Q × Γ≤2 × {−1, 0, 1}n). That is, we
only increase the stack height by at most one at each step. This is a standard
assumption and is not a real restriction.

We build a grammar Gi for each of the h modes. We illustrate the form of the
grammars with an example. Let ((p, a1, c), α, (p′, a2a3,v)) be a pushdown rule.
Let vi be the terminals in v augmented with an i subscript. This allows us to
know which mode counter actions occur in. The equivalent rules in Gi will be of
the form

N i,j
p,a1,q → αviN

i,k
p′,a2,q′N

k,j
q′,a3,q

for each q′ ∈ Q and i ≤ k ≤ j ≤ h. Informally, a non-terminal N i,j
p,a1,q means

that, from a configuration with control state p and top-of-stack character a1, we
can eventually pop the a1 character and reach control state q. Furthermore, the
run will start in mode i and end in mode j. Hence, the right-hand side of the
rule, first makes the action and counter operations visible, then requires that the
pushed a2 character is popped to some control state q′, using modes i to k, and
the a3 character is popped to q, using the remaining modes k to j.

We define the set T = { α,v | α ∈ ACT,v ∈ {−1, 0, 1}n } of terminals and
the following families of non-terminals

Ni =
{

N i,j
p,a,q | i ≤ j ≤ h, p ∈ Q, q ∈ Q, a ∈ Γ

}

and production rules

Pi =







N i,j
p,a1,q → αvi′N

i′,k
p′,a2,q′N

k,j
q′,a3,q

∣

∣

∣

∣

∣

∣

((p, a1, c), α, (p′, a2a3,v)) ∈ δ,
i ≤ i′ ≤ k ≤ j ≤ h, q′ ∈ Q,

i′ = i or i′ = i + 1







∪

{

N i,j
p,a1,q → αvi′N

i′,j
p′,a2,q

∣

∣

∣

∣

((p, a1, c), α, (p′, a2,v)) ∈ δ,
i, i′ ≤ j ≤ h, i′ = i or i′ = i + 1

}

∪
{

N i,i′

p,a1,q → αvi′ | ((p, a1, c), α, (q, ǫ,v)) ∈ δ, i′ = i or i′ = i + 1
}

.

The use of i′ in the rules reflects the fact that a rule may change the mode.
Finally, the grammar Gi represents the run of the system for a particular mode
i and is defined as follows.

Gi =



Ni,



T ∪
⋃

i<j≤h

Nj



 ,Pi



 .

In particular, a grammar Gi has non-terminals Ni since all moves must belong
to the current mode. The non-terminals include all Nj for i < j ≤ h since a run
may induce commitments to complete the run in a later mode. The commitments
are thus outputted by grammar Gi, but treated as non-terminals in grammar Gj ,
for some j.



Model checking recursive programs with numeric data types 3

2 The Existential Presburger Formula

We show how to construct an existential Presburger formula that has a solution
iff the PCo has an accepting run. Let T = { t1, . . . , tn }, T = t̂1, . . . , t̂n and let
φ (T ) be the user supplied constraint on the terminals.

Let Ni =
{

ni
1, . . . , n

i
xi

}

, Pi =
{

ri
1, . . . , r

i
yi

}

for some xi and yi and let

N i = (n̂i
1, . . . , n̂

i
xi

) and Pi = (r̂i
1, . . . , r̂

i
yi

). From Verma et al. [2], we can build a
linear-sized formula Runi (N i,P i) which holds when there is a fully expanded
derivation forest in the grammar Gi rooted by n̂i

j copies of non-terminal ni
j for

each non-terminal. Moreover, the derivation forest uses each production rule ri
j

a total of r̂i
j times.

We can also construct straightforwardly a formula

Count (P1, . . . ,Ph,N 1, . . . ,N h,T )

that holds when the number of non-terminals and terminals counted by N 1, . . . ,N h

and T matches the number outputted by firing the production rules P1, . . . ,Ph

times. Note that a production rule in Pi does not output non-terminals in Ni,
only non-terminals in Nj for j > i.

In particular, the formula we require is

∧

i>1,j

(

n̂i
j =

∑

k<i,j′ r̂k
j′ · Occurences

(

ni
j , r

k
j′

)

)

∧

∧

j

(

t̂j =
∑

i,j′ r̂j
i · Occurences

(

tj , r
i
j

)

)

where Occurences
(

x, ri
j

)

denotes the number of occurrences of x in the right-

hand side of the rule ri
j . Note that we do not put any conditions on the values

of N 1. This is because these are supplied in the main formula.
Let us assume that p0 is the initial control state, a0 the initial stack character

and f the final control state. Then let Start (N 1) be the formula asserting of
N 1 that one and only one of N1,j

(p0,a0,f) for 1 ≤ j ≤ h is one, while all others are

zero. The formula we require is of the form

HasRun = ∃m1, . . . ,mh,
∃P1, . . . ,Ph,
∃N 1, . . . ,N h,T .

Start (N 1) ∧ Sequence (m1, . . . ,mh)∧
Count (P1, . . . ,Ph,N 1, . . . ,N h,T )∧

∧

i

(Runi (N i,P i) ∧ V alidi (mi,P i))∧
∧

1≤i<h

Connectsi (mi,P i,mi+1)∧
∧

1≤i≤h

GoodCountsi (mi,T ) ∧

φ (T )

where Sequence (m1, . . . ,mh) asserts that the guessed sequence of modes is a
valid sequence, V alidi (mi,P i) ensures the run given by Runi (N i,P i) respects



4 Matthew Hague and Anthony Widjaja To

the mode mi, and Connectsi (mi,P i,mi+1) asserts that the fired rules ad-
equately connect sequential modes. Finally, GoodCountsi (mi,T ) asserts that
the counter values are correct with respect to the mode. We define these formulas
below.

The formula Sequence (m1, . . . ,mh) requires an increasing sequence of vec-
tors starting from (0, 0, . . . , 0). Let k be the number of counters, and mk

i denote
the kth component of mi. Recall r is the number of reversals. Also define a
family of formulas for detecting whether a rule is congruent with a mode. Let

Zero (m) =
∨

0≤j≤r

(m = 3j)

Up (m) =
∨

0≤j<r

(m = 3j + 1)

Down (m) =
∨

0≤j<r

(m = 3j + 2) .

We have the following

Sequence (m1, . . . ,mh) =
∧

1≤j≤k

mj
1 = 0 ∧

∧

1≤i≤h

∧

1≤j≤k

mj
i ≤ rmax ∧

∧

1≤i<h

∧

1≤j≤k

(

mj
i+1 ≥ mj

i

)

.

The formula V alidi (mi,P i) is more involved. Let change (r) be a constant

which holds whenever the rule r is of the form N i,j
p,a,q → αvi+1N

i+1,k
p′,b,q′N

k,j
q′,c,q,

N i,j
p,a,q → αvi+1N

i+1,j
p′,b,q or N i,i+1

p,a,q → αvi+1. Furthermore, let inc (r, z) be a con-
stant holding when r increments counter z and similarly for dec (r, z). We also
say incdec (r) holds if the rule increments or decrements at least one counter.
Finally, let Cri

j
(m) be the counter constraint associated with the rule ri

j with

all atoms replaced by the appropriate literal Zero (mz) or ¬Zero (mz).

Applicableri
j
(m1, . . . ,mk) =

Cri
j
(m1, . . . ,mk)

∧







































































∧

inc(ri
j
,z)

(Zero (mz) ∨ Down (mz))

∧
∧

dec(ri
j
,z)

(Up (mz) ∨ Down (mz))









if incdec
(

ri
j

)

and change
(

ri
j

)









∧

inc(ri
j
,z)

Up (mz)

∧
∧

dec(ri
j
,z)

Down (mz)









if incdec
(

ri
j

)

and ¬change
(

ri
j

)

False if ¬incdec
(

ri
j

)

and change
(

ri
j

)

True if ¬incdec
(

ri
j

)

and ¬change
(

ri
j

)

.

That is, in addition to the counter constraint being satisfied, the rule must be
in a mode it can change (where the rule is applicable) if required, and leave it
unchanged otherwise.



Model checking recursive programs with numeric data types 5

We are now ready to define V alidi (mi,P i). Recall xi is the number of
production rules in Pi.

V alidi (mi,P i) =
∧

1≤j≤xi

r̂i
j > 0 ⇒ Applicableri

j
(mi)

Note that it is a consequence of the construction of Gi that only one mode
changing rule can be applied in any derivation.

Next, we define a family of formulas which hold when a rule can connect two
modes, causing the change.

Connectsri
j
(m1, . . . ,mk,m′

1, . . . ,m
′
k) =

















































∧

inc(ri
j
,z)

(

(Zero (mz) ∧ Up (m′
z)) ∨

(Down (mz) ∧ Up (m′
z))

)

∧

∧

dec(ri
j)





(Up (mz) ∧ Down (m′
z))∨

(Down (mz) ∧ Zero (m′
z))∨

(Up (mz) ∧ Zero (m′
z))



















if incdec
(

ri
j

)

and change
(

ri
j

)

False otherwise

Note that the second disjunct of the second rule represents a non-deterministic
guess that the counter has re-reached zero. Finally, we have

Connectsi (mi,P i,mi+1) =













∧

1 ≤ j ≤ xi

change
(

ri
j

)

r̂i
j > 0 ⇒ Connectsri

j
(mi,mi+1)













∧













∧

1 ≤ j ≤ xi

change
(

ri
j

)

r̂i
j = 0 ⇒ mi = mi+1













.

Finally, GoodCountsi (mi,T ) is defined as follows. Let IncDecz
=,i (T ) assert,

for the zth counter, the number of increments equals the number of decrements
in all modes less than or equal to i. Similarly define IncDecz

>,i (T ). Then we
have

GoodCountsi (mi,T ) =
∨

z

((

Zero (mz) ⇒ IncDecz
>,i (T )

)

∧
(

Zero (mz) ⇒ IncDecz
=,i (T )

)

)

References

1. M. Hague and A. W. To. Model checking recursive programs with numeric data

types. Submitted.

2. Kumar Neeraj Verma, Helmut Seidl, and Thomas Schwentick. On the complexity

of equational horn clauses. In Robert Nieuwenhuis, editor, CADE, volume 3632 of

Lecture Notes in Computer Science, pages 337–352. Springer, 2005.


