
Reverse authentication in financial transactions and
identity management

Chen Bangdao1, Long Hoang Nguyen1 and A.W. Roscoe1,2

1 Oxford University Department of Computer Science
2 James Martin Institute for the Future of Computing, Oxford University

Email: {Bangdao.Chen, Long.Nguyen, Bill.Roscoe}@cs.ox.ac.uk

Abstract. New families of protocol, based on communication over human-based side chan-
nels, permit secure pairing or group formation in ways such that no party has to prove its
name. Rather, individuals are able to hook up devices in their possession to others that
they can identify by context. We examine a model in which, to prove his or her identity to
a party, the user first uses one of these “human-interactive security protocols” or HISPs to
connect to it. Thus, when authenticating A to B, A first authenticates a channel she has
to B: the reverse direction. This can be characterised as bootstrapping a secure connec-
tion using human trust. This provides new challenges to the formal modelling of trust and
authentication.

1 Introduction

This is a paper about trust, security and identity management in the world of pervasive
computing.

Over the past few years a number of what are sometimes termed “Human Interactive
Security Protocols”, or HISPs, have been developed that permit one or more humans
to bootstrap strong security between two or more devices based on the non-fakeable
transmission of a minimal quantity of data between them to supplement a normal insecure
communications medium. Because the humans know between which systems they have
communicated this data (typically a few characters long and which we will refer to as
a check-string) they know which systems are connected securely. There is an important
difference between these protocols and those that bootstrap security from passwords,
namely that the check-string does not have to be secret.

This class of protocols allows two or more parties who trust one another, or a single
party who trusts one or more others, to bootstrap a secure network using no more than an
ability to communicate a small number of bits over the human-based, non-fakeable channel
denoted by −→E . Another way of looking at them is that if the human(s) involved create
an insecure channel between their devices, and already have an unfakable way of passing
a small amount of information amongst them, then they can either turn the insecure
channel into a secure one or discover the presence of an intruder who is trying to subvert
it.

The best of these protocols, for example those of [13, 14, 12, 19–22, 25, 29], enable these
humans to be assured that there is no attack that allows an intruder to get the system
into an insecure state (where the connections established are other than what the humans
believe) with probability meaningfully greater than 2−b where b is the number of bits in
the check-string. In addition, to have such a chance, the attacker will have 1−2−b chance
of his presence being revealed by the difference between the strings. In particular, these
protocols prevent any brute-force or combinatorial searching by the intruder improving
its chance of success.

In many protocols of this type, parties or portable devices want to agree on the same
data, such as their public keys, addresses and identities, because from the public keys
they can easily create a strong private key that is used to encrypt or decrypt subsequent



communication. In the absence of password and PKI, they will first exchange the public
data over an insecure but high-bandwidth channel (e.g. WiFi or the Internet which are
denoted by −→N ) and then display a short b-bit and non-secret digest of the protocol’s run
that the devices’ human owners will manually compare to ensure that they have agreed on
the same data, i.e. the latter uses human trust and interaction among humans to prevent
fraud, including identity theft. This family of authentication protocols thus provide an
easy way to bootstrap security that does not rely on the use of passwords, PIN numbers,
shared private keys or any pre-existing security infrastructure such as PKI, which are
known to be vulnerable to human misuse and misunderstanding in many circumstances
in real life. For example, passwords are frequently chosen from a limited range which
makes them vulnerable to guessing. PKIs are not straightforward for many human users,
and thus it might be more convenient for humans to create a secure communication in
online payments, telephony or e-healthcare from existing human trust and interactions
as required in this new type of authentication technology. In addition to many types of
applications, HISPs can be used in a wide variety of ways, in contexts both where all the
devices are co-located and where they are not, and where the authentication is provided
to all devices or asymmetrically to one, because only that device’s user has observed the
equality required of the check-strings. Similarly they can be used in convenient consumer
devices or as part of the security process in a more elaborate type of system.

This is a new approach to security and requires novel approaches at multiple levels.
In this paper, we will first describe a HISP which is based on the SHCBK protocol of
the authors [19, 20] in Section 2 and then elaborate on the advantages of our approach in
payment and ID management in Sections 3–5. In the second half of this paper, we will
provide an overview of some of issues on automated verification techniques in Section 6,
a new cryptographic primitive called a digest function in Section 7, and implementation
in Section 8 that this new class of authentication technology creates. We summarise our
contributions in Section 9.
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2 Example protocol

The following protocol was designed and implemented by the authors as the first phase of
a larger one designed to perform a financial transaction securely. It is closely based on the
SHCBK protocol of [19, 20]. Because of its intended application we call the two parties
C (customer) and M (merchant). Before the protocol is run these two parties have no
shared knowledge that helps them achieve security, except, naturally, the ability to run
the protocol itself.

In order to run the protocol each party must create two values of sufficient strength
to achieve the cryptographic goals they have:



– Each party creates a hash, or digest key: we call these hkC and hkM . These are needed
to randomise the final check-string and we assume these are in the range 160-511 bits3.

– C creates a session key k whose role is as set out above. This would normally be in
the range 120–160 bits, but it could be increased to 512 bits (input width of the basic
hash function) without penalty.

– M either creates freshly, or re-uses, an asymmetric key pair (pk, sk). There is no
need for the “public” key pk to be certified. The length of these keys will depend
on the desired level of security4, the amount of available computing power, and the
cryptosystem in use.

The protocol also involves a standard cryptographic hash function which possesses 3
main properties [17]: collision resistance, 2nd preimage resistance and inversion resistance.
It depends heavily on the following property of such a function:

If a party A has knowledge of hash(V ) for some value V , then while A cannot
constructively compute V other than with infinitesimal probability, it can always
check in future whether a value alleged to be V actually is V .

In this state A is committed to V but without knowledge of V . In the first pair of steps
of the protocol, C and M both commit each other without knowledge to values. The only
one of the four parameters hkC , hkM , pk and k communicated openly is M ’s public key
pk:

1. C −→N M : hash(0 : hkC), hash(k)
2. M −→N C : hash(1 : hkM ), pk

When these messages have been received, both parties are committed to values of all four
parameters, but each lacks some knowledge. Thanks to the communication channel being
insecure, they have no reason to believe that they are committed to the same values of
the parameters – but of course they hope they are! Importantly, no intruder can know all
four of the original (as opposed to hashed) values as created by the appropriate one of C
and M .

The tags 0 : and 1 : are added to the hash keys hkC and hkM to ensure that the
contents of these hashes can be distinguished as coming from a customer or merchant.
This avoids the intruder reflecting hkC back to C as a supposed hkM in a way that C
would accept, i.e. a reflexive attack. In Section 6, we will use automated verification via
CSP and FDR to demonstrate that this protocol is vulnerable to such a reflexive attack
when the hash keys are not hashed with the tags.

Even if the intruder has participated in the protocol and impersonated one or both of
the parties, it does not know the complete set of parameter values to which either C or
M is committed. This is because no-one except C knows its value of hkC , and similarly
for M and hkM .

The protocol now proceeds:

3. C −→N M : hkC , {k}pk
4. M −→N C : hkM

The second part of Message 3 is to tell C the actual value of the session key,5 which is
now checked against the hash. In fact this transmission can be delayed until after the

3 The upper bound takes account of the common hash block size of 512 and the extra initial bit inserted
by the protocol.

4 The key certainly needs to be strong enough so that there is no realistic chance of it being broken
during the life of the session being established. Further strength is required to ensure that the contents
of that session remain secret after it ends.

5 Formal analysis later, in Section 6, will show us that there are advantages in replacing this encryption
by {k, hash(hkM )}pk.



check-string comparison if the computation of the public-key encryption {k}pk is time
consuming on a low-powered customer device.6

It is the transmission of the unencrypted keys hkC and hkM at this stage that repre-
sents the core of the protocol. Firstly, of course, the participants must check that these are
the same values that were represented in Messages 1 and 2. If not, the run is abandoned.
Secondly, they (and anyone else who has been listening in) can compute a value for

digest(hkC ⊕ hkM , (pk, hash(k)))

where ⊕ is bit-wise exclusive or and (X,Y ) is an ordered pair. The protocol completes
successfully if C (or C and M) are convinced that their two versions of the value – the
check-string of this protocol – are equal: in becoming convinced they must not use a
channel which can be “spoofed” by an intruder. Typically one will read their value to the
other, or C will read M ’s value directly and compare it with her own. Whichever of them
knows that the two values are equal can conclude that the link is authenticated. Typically
this is either C or both of them.

Naturally, if the protocol has proceeded uninterfered with, C’s and M ’s values will be
equal. If, however, an intruder has imposed his own values on the receivers of Messages
1–4, C and M will not agree on all four parameters. For security, what is important is
that they agree on pk and hash(k), so we will concentrate on what happens if the intruder
interferes with these.

What we are concerned about is the chance that the digests agree when these two
values do not.

The digest function [18–20] is designed so that, as hk varies, the probability that
digest(hk,X) = digest(hk, Y ) for X 6= Y is less than ε, where typically ε is very close
to 2−b for b the number of bits in the output of digest. It must also have the property
that for any fixed value d, the chance that digest(hk,X) = d as hk varies is less than ε
also. We will describe some results on the construction and theory of these functions in
Section 7.

The following is an argument for why this protocol is secure. The reader can find
similar arguments in [19, 20]. In Section 6 we will discuss the problem of using model
checkers to verify this style of protocol formally and the results that have been obtained.

The intruder can easily convince either or both of C and M that the other’s hk
is not the one it should be. The only result of this activity, if done, is that as far as
can be determined effectively by an intruder, C’s and M ’s views of hk∗ = hkC ⊕ hkM
are independent uniformly distributed random variables: this is because of the following
property of the bit-wise XOR used to construct it.

If X and Y are independent random variables and X is uniformly distributed, then
X ⊕ Y is uniformly distributed whatever the distribution of Y .

Honest parties C and M will have chosen hkC and hkM uniformly at random, and inde-
pendently of the other values in the protocol7.

This means that the chance of C’s and M ’s digests being equal is ≤ ε whether their
views of pk and hash(k) are the same or not. We can conclude that it is not a good idea
for the intruder to get C and M to disagree about hkC and hkM . So henceforth we will
assume they agree on these values: necessarily the ones they picked for themselves.

At the point just before Message 3 is sent, C knows that only she knows the randomly
chosen hkC . Therefore (whatever value was picked by M for hkM ), she has effectively
randomised the final digest in a way that no-one else has knowledge of. M knows the

6 This did not prove to be an issue in our implementations: see Section 8.
7 The fact that hkC is independent of the value of hkM it accepts depends on the tagging of these values

by 0 and 1.



same about his injection of hkM . Each can therefore reason separately that the chance of
agreement between the two instances of digest(hkC ⊕ hkM , (pk, hash(k)) if their values
of pk and hash(k) are different is less than ε.

The crucial point is that each of pk and hash(k) were known to both parties before the
function that would be applied to the pair (pk, hash(k)) was known to anyone: indeed so
far as any party is concerned, the value hkC⊕hkM which determines that function remains
uniformly distributed over all possible values until C and M have revealed hkC and hkM .
It is this that means that there is no point in the intruder doing any combinatorial search
against this function: by the time it is known, it is impossible to change the minds of C
and M about what to apply it to.

Given that C and M do agree on (pk, hash(k)) it is also true that they agree on k,
thanks to the assumed properties of hash(). When C sent {k}pk she did not know who
could understand it, but when she knows that pk is the value that M sent her she then
knows that no-one other than herself and M know k. Similarly C, on receiving {k}pk, C
does not know who it came from, but once he checks that the hash of the key received
this way corresponds to the value hash(k) he and M agree to, he knows that he and C
agree to M and that no-one else knows this value.

The above describes the principles behind this protocol. There are a number of others
that operate in ways that, from the perspective of the human users, are either very similar
or identical [10, 13, 14, 29], and see [21] for an extensive survey. A number of them can
be adapted for group use. SHCBK, from which ours is adapted, was in fact originally
designed as a group protocol.

The whole purpose of this protocol is to establish k as a secret key shared between
C and M and known to no other party, on the assumption that both are trustworthy, if
the digests agree. In our intended application k will be used to secure and authenticate
communications between the two: only C or M could have created any data encrypted
(under a symmetric algorithm such as AES) using k and only they can understand it. So,
in particular, C knows that the payment details sent to and received under k are with
the intended party.

We will gain further insight into the role and properties of k in Section 6, as well as
showing how to modify the protocol to make it clearer.

3 The relationship between trust and authentication

In many cases such as a financial transaction over the Internet or with a vending machine,
or someone seeking to prove his identity and gain access to some service via a machine,
there will only be one human present to perform the check of the equality of the digests
or similar value used by other HISPs.

For high integrity applications involving a potentially complacent human in this way,
there is a strong argument for having the human transfer a value manually rather than
simply check that two displayed values are equal. So in fact the device actually performs
the comparison – between the one its user has copied from M and the one it has computed
itself. There are still some interesting variants possible on this. In the following, we will
split the entity C, representing the combination of a human customer Alice and her
security device SD, into these two parts.

CA Most obviously and probably easiest in many applications: Alice reads a value from
M and types it into her own device SD.

CS As a variant on this: when SD says that the two values agree, Alice presses a button
on M to signal this agreement.

MA Alice reads the value from her SD and types it into M . In this case it is virtually
certain that M will signal to the human whether the two values agree. This information



may or may not be passed explicitly by Alice on to SD. (iii) will be the case where it
is not.

MS This is the case like (iii) but where this information is transmitted by Alice to SD.

The pairs CA and MA, and CS and MS are clearly mirror images of each other:
the first letter tells us who does the comparison in a method, and the second tells us
whether the resulting authentication is asymmetric or symmetric. In CA and MA only a
one-directional empirical channel is used between SD and M , in opposite directions. In
CS and MS, both sides are assured of equality provided our human is trustworthy and
reliable.

Note that in cases CA and MA one or other device proceeds without knowing that
the check-strings actually agreed. Nevertheless these two cases are potentially useful: for
example CA can be used when everything confidential and of value that passes through
the transaction moves in the direction from SD to M .

The most obvious case of this is Alice using SD to pay M for some goods and services:
M wants to get paid but does not care that much who pays him, whereas Alice only wants
to pay the merchant to which she has an obligation to pay.

Notice that this reasoning does not apply when the merchant is passing value to a
customer. Imagine that the merchant wants to pass value to the customer who is standing
at a particular till, is on a particular phone call etc. If the protocol is run in mode MA
it gains the assurance that it is this person’s device that is connecting to it, since only
she was in a position to make the empirical communication. In practice, however, this
situation might well require the customer to pass (e.g. ID) information to the merchant
that she would not want to give to anyone, and it would be better for Alice not to need
to learn a very different protocol for a relatively unusual case. Therefore a protocol giving
a symmetric outcome would probably be used here, in particular CS with a warning to
Alice about the consequences of pushing the final button incorrectly.

One way of more-or-less ensuring that she does behave correctly and not push the
button without knowing that the digests agree is to have both sides compute a bit from
the protocol parameters, and use it to have M only tell Alice which of two buttons to
press once it knows the digests/check-strings agree. The essential thing here is making
the customer look at the device that has been able to check equality before confirming
anything to the other one.

We might note that it will almost always be Alice who identifies that M is what she
wants to connect SD to, and that the connection process itself gives neither party any
proof of the identity of the other. Therefore, at the end of the HISP run:

– Unless MA is used, Alice knows that C is connected to M , as identified by being at
the other end of the empirical channel.

– Unless CA has been used, M “knows” that the party it is connected to is the one at
the other end of its empirical channel.

– Both know they have a shared secret symmetric key with the other, that can be used
to secure and authenticate communication between them in a subsequent session.

4 Case study: supporting a financial transaction

The connection above has very little in common with the way that most personal financial
transactions are performed, at least those involving banks8. For the current methods for
doing these, whether manual (e.g. typing details from a credit card into an https site) or
electronic (e.g., logging in to Internet banking; using Chip-and-PIN terminals at point
of sale) are designed simply to authenticate the payer (Alice and/or her credit card) to

8 As we will see, good old fashioned cash transactions resemble our connection.



the payee and/or bank. Typically also, traditional methods of payment give the payee a
great deal of sensitive information about the payer: note that anyone who has been paid
on-line with a particular card has the information he (or anyone to whom it is unwittingly
compromised) to pay for goods with that same credit card; and that nothing proves to
Alice that the Chip-and-PIN terminal in her hands will not clone her card and remember
her PIN.

What the above protocol does is allow Alice to connect her SD to the particular
merchant she has been shopping at, whether in person, on-line, or on the telephone.
Clearly this authentication is in the reverse direction to the usual sort as described in the
preceding paragraph. That explains the title of this paper: it can be viewed as reverse
authentication.

What we have allowed Alice to do is to create a secure electronic connection with the
merchant that she wants to pay, and furthermore where she is assured that the connection
has been made within the context of the particular transaction for which she is willing to
pay.

This electronic connection will allow a great deal more information to pass between
her device (card/SD) that is otherwise possible unless she puts her card into the hands
of the payee, or at all on-line.

What the reverse authentication achieves, in summary, is not to replace the usual ID
check on Alice and her device, but to make it potentially more thorough, particularly
on-line, easier for Alice (because in most cases she will have to do less), and to remove
the danger of Alice’s secrets getting compromised. We will demonstrate this below.

We believe that beginning a financial transaction with the HISP authenticating mer-
chant to customer makes sense in all of the following cases.

(A) Electronic cash: the customer has some device with her that contains value, and she
wishes to transfer some of that value to the merchant. It might well be the case that
she wishes to do so anonymously.

(B) Credit card or cheque: the customer wishes to give the merchant the right to take some
sum of money from her account. Note that, although the mechanisms are rather dif-
ferent, both conventional credit card transactions and paper cheques have this logical
effect.

(C) Electronic banking: the customer wishes to give her bank a direct instruction to pay
the money into the merchant’s account. The logical difference with (B) is that the
bank must be involved directly, and the merchant never holds a token that is good for
money.

This first dimension influences the way the payment proceeds after a secure link has
been established, and how identity issues arise. (A) is different from the others because
our customer will not have to prove her identity (Alice) to anyone, while in the other two
it is desirable9 that she (separately from her device) proves that she is entitled to use the
account by the entry of a secret PIN or biometrics.

In each of these we imagine a variety of payment situations, which influence how the
authenticated connection is made.

(i) The customer is sitting at a desk and shopping on-line. Here we assume that the
customer and the banking system do not trust the PC except possibly through an
https windows displayed on browsers. [This is not to say that this last mechanism is
100% secure, but since e-commerce and digital banking rely on it currently, it seems

9 We note that in some present credit card transactions, especially on-line ones, she does not have to do
this.



reasonable that we can also provided we do not increase the risks inherent from using
it in present methods10.]

(ii) The customer is trying to pay the merchant in person: in present technology she
would hand over cash or credit card, or place her card in some reader presented by
the merchant. Here, the merchant might be a machine, or might be a manned till.

(iii) The customer is shopping over the phone.

In case (C) (mobile banking) we do not concern ourselves with how the secure con-
nection between phone and bank is made, since we can reasonably assume that there is
a long-term key which achieves this. In all cases we assume that a HISP is to be used to
connect the phone to the merchant that is to be paid, thereby proving to Alice that she
is paying the correct entity within the correct transaction.

Except in the case where the the paying device SD is the same telephone over which
the transaction is being conducted, we need to get some connection between SD and
merchant established to that it can be authenticated with a HISP. In technology used for
everyday payments, both of these phases need to be very easy. One advantage of using a
HISP is that the customer’s view of the second phase can be the same in every case. The
following sets out a few options for making the initial insecure connection in the on-line
and point-of-sale cases.

In the on-line case there are two main options for this connection: the first of these is
using the home PC on which the shopping is being done as a link between SD and mer-
chant. The link could then be made by wire (e.g. USB), wireless (e.g. WiFi or Bluetooth)
or infrared. None of these is technologically difficult, and the session on the browser can
instruct the PC about where to route the communications.

The second is using telephony to make the connection: this may be the only option
when Alice is forbidden to connect any personal device to the PC. The only problem then
is giving one or other side of the connection (phone=SD or merchant) the information
required to connect telephonically to the other. This will be the combination of a telephone
number and a (probably one-time) token that identifies the particular transaction. The
merchant’s number can be transferred to the phone from the PC by (e.g.) Bluetooth, but
of course this would fall foul of the no-connection rule if this applied. The user’s number
can be pre-loaded into the browser (and there are strong arguments for this being a
separate number from the one used for ordinary phone functions), and this sent together
with a one-time token to the merchant when a button on the payment site is pressed.

In the point-of-sale case, the same two options (local and telephonic) connection apply.
A literally wired local connection is unlikely, but it would be possible to place a phone
into a special cradle. In that case it is probably not necessary to use a HISP, since the
phone is obviously connected to the merchant. Similarly, if a connection is bootstrapped
from a physical connection that Alice can see, this is still probably not necessary, and
the same may apply for low-value transactions if it is bootstrapped from very short range
radio as used for example, in Oyster cards [4], provided this generates a session key. A
HISP will provide additional assurance in this last case for high-value transactions. Other
options include Bluetooth connection (where it may be necessary for Alice to select which
till she is at) or telephony (where the number can be transferred using any of the methods
described above, or perhaps via scanning of a bar-code displayed on the phone).

In all payment methods, we assume the first action after the secure session is estab-
lished would be for the merchant to send the SD details of the transaction it wishes to be
paid for plus secondary security information such as its name and logo. If Alice agrees to
the payment, she will either press a button or enter the personal information (e.g. PIN

10 In fact we argue that our methods provide a higher degree of security than the traditional use of https
sites, since we are only relying on the communication through it being authenticated, not secret. Thus
neither screen-shot grabbing nor key-sniffing would benefit an attacker.



or biometric) needed to confirm her presence. Whatever payment token is then sent by
her SD will then contain the secondary security information so that a fake merchant who
has “borrowed” these should not be able to obtain payment from them.

An electronic cash payment would simply follow the appropriate protocol over the
secured session.

For a credit card transaction we either have greatly increased the communication
possibilities between SD and merchant or (particularly when Chip-and-PIN terminals are
replaced) ensured that there is much less availability of customer information to merchant.
In either of these cases it makes sense to replace present payment methods by the SD
giving the merchant an e-cheque containing

– Payee, payer, amount, credit card details and time-stamp, as on a conventional cheque.

– Transaction ID.

– Any secondary security information about the payee that Alice has confirmed. The
bank will confirm that this ties up with the payee.

– Evidence that Alice has correctly proved her own identity. This might be either the
actual information (e.g. PIN) she has input, or evidence both that the SD/card has
confirmed this information (noting that at present PINs are typically confirmed by a
credit card and not transmitted) and that the SD/card itself is genuine and behaving
properly.

This would be encrypted a under key that merchants cannot understand (e.g. a symmetric
key specific to this SD/Card or the public key of the banking system) and sent to the
merchant to be forwarded and authorised by the banking system.

Perhaps the most attractive scenarios for using HISPs for payment comes in the con-
text of mobile banking (i.e. on-line banking on a mobile phone). Systems implementing
this with limited functionality are rapidly being developed by banks and rolled out to
customers, but none that we are are aware of allow the user to make a payment a general
point-of-sale or on-line merchant. The deficiency can be remedied once the phone is se-
curely connected by HISP to the merchant. For then M sends details of the transaction
for Alice to confirm, plus bank account details to which the money is to be paid. When
C confirms and gives whatever authorisation code is required by her bank, the on-line
banking session automatically generates a transfer to M ’s bank, and an unforgeable cer-
tificate that this has occurred is sent by C’s bank to M via C. The value of the HISP
here is that it ensures that the bank account details really come from M .

It is worth noting that the total effort that Alice has to make in running a HISP
and confirming the transaction on her SD is substantially less than is required of her in
conventional on-line purchases using credit cards, whether these are performed by entering
card details onto a web-site or by entering her PIN into a secondary device provided by the
card issuer and then copying a one-time authentication code into the web site. (Devices
such as these are, of course designed to help Alice prove her identity – they do not help
Alice to create an authenticated connection to the merchant.)

5 You, me, us and anonymous authentication

One of the strangest qualities that HISPs have is that they provide essentially anonymous
authentication: they can provide security in contexts where the parties being connected
do not know each others’ names. We can imagine this being extremely useful in some
applications such as electronic cash where a payee and payer might want to be assured
that it really is them who are connected for some transaction without actually revealing
their names to each other. The curious thing is that this situation is completely familiar
when carrying out transactions with good, old fashioned, cash. What HISPs can do is



to enable human(s) to connect devices that they trust because of their context without
knowing their names.

In many situations the personal pronoun you, whether singular or plural, typically
indicates that the speaker is addressing a collection of people that both the speaker and
they understand precisely (i.e., what collection of people is being addressed), without
carrying any implication that the participants know each other’s names. The sort of
authentication given to a single individual by running a HISP with such a collection
might thus be termed you-authentication, while the sort achieved by a group who are all
aware of the final agreement might be termed us-authentication for similar reasons.

Thus these protocols allow humans to build networks of secure communications amongst
the devices that they trust, reflecting the same intuitions that guide their everyday life.
For example, each of us develops a good sense of when to hand over money, or our credit
card, to pay for goods and services, and who to hand these things to. This sense is largely
unrelated to our knowing the identity of the person or other entity we are paying. Indeed,
in many cases, one either does not know this identity – how many times do you look
carefully at the name of the filling station where you buy petrol? –or this name is largely
irrelevant – how would it change your behaviour if you had noticed this name? What
matters is context: the payer believes that the payee either has or will supply whatever
it is that she is paying for, and accepts the contract to supply these in return for money.
What our protocols achieve in this context is that they allow the payer to connect her
account to the payee over an insecure network, so that the link becomes secure and she
knows that the communication partner is the same entity that her intuition would have
told her to pay by more conventional means.

Similar situations will arise whenever a party Alice carries some piece of paper, a
card etc that either carries some less-than-public information (often about her), or which
enables something of value to be obtained or transferred. Examples are a passport, driving
licence, ID card, medical details (whether on a record card or derived from some sensor
attached to Alice), company pass, tickets for travel etc, and membership cards. If these
things are held on some electronic device, then Alice will want to know they are connected
to the entity that she trusts with this information (the same one to which she would be
happy to hand over the same details on paper). HISPs appear to be the ideal vehicle for
this.

The role of her handing over this information to Bob (analogous to M) may simply
be to prove her identity to him. She may be very reluctant to let anyone else see this
information because of the dangers of her identity being stolen.

It is interesting to reflect at this point that she may well be interested in proving
her identity to Bob without giving him the wherewithal to steal it, or “mis-lay” her
information by not storing it carefully enough.

There is a potential advantage to Alice in the “card” or similar remaining in her
possession on her own electronic device rather then being handed over to the recipient.
This is that she can limit the transfer of information or value to what are necessary for
the particular transaction, whereas a physical card or piece of paper might well be copied
either as part of the normal procedures of Bob, or if he were less trustworthy than Alice
believes. Even the first case is dangerous to Alice unless Bob protects her information
better than has frequently been the case. Our electronic payment scenario illustrates
this perfectly: if Alice hands Bob her credit card, she is giving him the means to charge
unlimited transactions to her account. On the other hand, if she merely connects her
account to him, she can hand him an e-cheque, usable one-time only for a stated amount
of money. The latter would not be practical without an electronic connection, because it
is too large a piece of data to transfer by hand.



Thus the approach we have devised for payments clearly provides a useful model to
consider for pure identity verification, with the financial component removed. Just as in
the case of a payment, the particular entity Bob with which Alice connects may only
be semi-trusted by her. In the payment case, she wants to avoid disclosing long-term
secrets to Bob and only give him the exact amount of money she is trading with him. In
other cases she may only want to give the exact amount of information required by Bob’s
apparent function, and may wish (as in the payment) to delegate the confirmation of her
identity to a third party whom she and a legitimate Bob fully trust. As in the e-cheque
case, the third party may sit behind Bob, or, as in the e-banking case, it may sit behind
Alice. Depending on the context, there may be also be analogues of the secondary security
information used in payments.

6 Formal modelling: challenges and insights

The science of cryptographic protocols has been transformed by the development of tools
that attempt to verify that they achieve their security goals. The behaviour of such
protocols can be remarkably hard for humans to understand in the presence of intruders
who try to subvert them, and these tools frequently give remarkable insights – positive
or negative – into their behaviour. In this section we discuss the application of such tools
to variants on our protocol.

Unfortunately, established analysis methods only give a very incomplete picture of
HISP protocols. Since it can prove difficult to motivate human users to put in a lot of
effort in the name of security, HISPs present the unusual challenge to protocol verifiers
that we cannot just assume that all cryptography is so strong as to make combinatorial
analysis, cryptanalysis, etc., pointless. Protocol analysers (whether human or automated)
usually make this assumption, so whereas the theory and tools for verification under this
perfect cryptography assumption are now very powerful and sophisticated, they simply
do not apply in our case. So the best that established tools can do is to prove security
in an environment where the attacker does not attempt to exploit the opportunities for
combinatorial search offered by the use of short comparison strings.

For a convincing analysis we need to extend the powers of the attacker inside a tool
so that it can exploit these opportunities.

We have identified two distinct approaches to this problem. The first is to attempt
to capture what is weak about the use of short digests symbolically and discretely, so
that we can adapt existing model-checking or theorem-proving approaches to protocol
verification. Such approaches can still be expected to give a yes or no answer to the
question “is protocol X secure”. The other is to try to quantify security, for example by
calculating the probability with which an optimal strategy by an attacker can lead to a
breach of security.

At the time of writing we have successfully incorporated methods taking the first of
these approaches into the CSP style of protocol as described in [3, 24, 27]. This work is
reported in a new paper [26], and ideas from that paper relevant to the present paper
are summarised below, together with results obtained from analysing variants on the
protocol from Section 2 which we recall below: −→N and −→E denote normal insecure
but high-bandwidth and empirical channels respectively.

Pairwise key-establishment version of SHCBK protocol, [20]

1. C −→N M : hash(0 : hkC), hash(k)
2. M −→N C : hash(1 : hkM ), pk
3. C −→N M : hkC , {k}pk
4. M −→N C : hkM
5. M ←→E C : digest(hkC ⊕ hkM , (pk, hash(k)))



6.1 Modelling digest collisions

The weakness of digests used in HISP compared to traditional hashes can be captured
by building in the assumption that, given a digest value d and an opportunity to modify
either of the values hk or X while knowing the other, it is possible to find such values with
digest(hk,X) = d. In other words we can ensure that the pair (hk,X) is a preimage of d.
The approach of a real attacker to finding these values would be to search through a range
of possibilities for hk and/or X; in our formal model we need to model this symbolically.
Note that this assumes greater weakness than merely assuming the efficacy of the birthday
attack, which would be to remove the above assumption and replace it by the possibility,
given the opportunity to modify (at least) one each of (hk,X) and (hk′, X ′), to ensure
that digest(hk,X) = digest(hk′, X ′). Clearly a protocol proved secure under the first
assumption is also secure under the second, and given the possibility of using digests so
short that attacks of the first sort have a good chance of succeeding, we have concentrated
on that.

We want to emphasise that in this approach the intruder is modelled to look for differ-
ent strong values (e.g. long cryptographic key of say 160 bits or large data) that produce a
weak value when placed in a context. In the following collision induction rule, C[·] denotes
a context or an instance of the digest function. Such a context deterministically depends
on its single input.

Collision induction rule [26]: For every weak value w and every weak-valued con-
text C[·] that the intruder knows, whose value depends on its argument, the intruder
can search for v such that C[v] = w. In other words, we have:

{C[·], w} ` v such that C[v] = w

This is an ability that is very different from the usual sort given to the intruder – even
guessing weak passwords [15] – because rather than allowing it to learn new combinations
based on existing constants, we want it to introduce a new one with a special property.

What we have observed in [26] is that the sort of HISP of Section 2 and many of its
variants described at [21] all have the following features:

– The only roles that weak values have is to be compared over the empirical channel:
no cryptographic functions are ever applied to them.

– A set of weak values are compared at the end of the protocol – two in the case of
a pairwise protocol. An attack is realised if two trustworthy participants have equal
values that are computed from different inputs.

Using the observations, we have been able to show that if the intruder can break the
security of the protocol, it can do so with a single search and hence the state space of our
model checking is reduced significantly [18].

In our CSP model we allow the intruder model to proceed normally, except that
whenever the intruder invents or searches for a fresh value it takes a snapshot of its
memory at the point of search. Subsequently the model asks each time two weak or digest
values are compared whether the intruder could have performed a search to force them to
be equal using the most recent fresh value created by the intruder.

6.2 The security of agreement

Observe that the {k}pk component of Message 3 pays no role in the process of the two
parties agreeing on the digest or the values of pk and k (as hash(k)), but is necessary to
give M knowledge of k.



We therefore chose to analyse two versions of our protocol, one with that component
missing, designed to check that M and C always agree on the values of k and pk, and
a second which exploits it in an extremely simple model of payment: sending a payment
token from C to M , abstracting away details of the transaction, date and amount, from
C to M and encrypted under the session key k: {pay(C,M)}k.

No attack was found on the first, demonstrating that despite the intruder’s ability to
perform searches, agreement on the final digest implies that the participating customer
and merchant agree on the values of k and pk.11

In order to check the accuracy of our CSP model, we ran it again but on a weakened
version of the above protocol where the hash keys hkM and hkC are hashed alone in the
first two messages instead with tags ”1:” and ”0:”. The protocol therefore becomes

Pairwise version of the weakened SHCBK protocol, [19]

1. C −→N M : hash(hkC), hash(k)
2. M −→N C : hash(hkM ), pk
3. C −→N M : hkC , {k}pk
4. M −→N C : hkM
5. M ←→E C : digest(hkC ⊕ hkM , (pk, hash(k)))

This is similar the original version of SHCBK that we presented at a workshop [19].
The tags 0 and 1 are based on the introduction of node names inside the corresponding
hashes in the definitive presentation of SHCBK in [20], which were introduced because
we were aware that the use of ⊕ in combining these hash keys could allow the intruder
to reflect hkC back to C as its own, so that the randomness contributed by hkC to the
computation of the manually compared weak value or short digest is eliminated.

Our CSP checking model indeed discovered an attack on the weakened version of
SHCBK, both in its group version and in the binary model above. In this attack, the
intruder plays the role of the man-in-the-middle: except for the human comparison of the
short digest, the intruder poses as M to interact with C and poses as C to interact with
M in two parallel protocol runs. As seen in the following description, at the point when
the intruder discovers hkM in Message 4’, it will be able to search for a different pk′ such
that

digest(hkM , (pk, hash(k′))) = digest(0, (pk′, hash(k)))

Observe that at the point it delivers Message 1′ with its own choice of session key, the
intruder already knows that it can persuade C to use hash key 0 = hkC ⊕ hkC .

11 There are two important caveats we must make to this claim. The first is that our checks were carried
out on models in which we only examine a single pair of trustworthy nodes able to run the protocol up
to twice each against an intruder with a single identity to use. There is good reason to believe that that
this would find any attack, but we have yet to integrate our model of combinatorial search into the CSP
techniques [27] that prove general versions of protocols under strong encryption. The second caveat is
that nothing can prevent the possibility of the intruder making a single lucky guess that results in a
digest collision with a probability of about 2−b where b is the width of the digest.



An attack on the pairwise version of the weakened SHCBK protocol

1. C −→N I(M) : hash(hkC), hash(k)

1′. I(C) −→N M : hash(0), hash(k′)
2′. M −→N I(C) : hash(hkM ), pk
3′. I(C) −→N M : 0, {k′}pk
4′. M −→N I(C) : hkM

2. I(M) −→N C : hash(hkC), pk′

3. C −→N I(M) : hkC , {k}pk′
4. I(M) −→N C : hkC

5. M −→E C : digest(hkM ⊕ 0, (pk, hash(k′)))
C −→E M : digest(hkC ⊕ hkC , (pk′, hash(k)))

The consequence of this attack is clear: the intruder discovers the key k that C wants
to send to M as well as fools M into believing that a different key k′ comes from C.

6.3 Analysing the full protocol and the role of k

We now turn our attention to the full protocol with the addition of the final payment
message discussed above. The condition for the sending of this message is that the cus-
tomer C observes equal digests. In many potential applications (e.g. online and vending
machines) it will only be the customer that observes this since there will be no human
presence on the part of the merchant. We therefore placed no digest agreement condition
on the merchant accepting a payment message under the session key of its current protocol
session. This is the same as the agreement mode CA discussed in Section 3. The protocol
therefore becomes

Payment version of pairwise SHCBK protocol

1. C −→N M : hash(0 : hkC), hash(k)
2. M −→N C : hash(1 : hkM ), pk
3. C −→N M : hkC , {k}pk
4. M −→N C : hkM
5. M −→E C : digest(hkC ⊕ hkM , (pk, hash(k)))
6. C −→N M : {pay(C,M)}k

Our model also had the merchant use the same public key for all its protocol sessions:
while there is every reason to expect the session key k to be fresh every time, there is no
immediately obvious reason why the merchant should have to perform the computationally
difficult task of generating a fresh asymmetric key pair every time. We are, after all, used
to public keys having a long lifetime.

Our model was designed to detect three different sorts of behaviour that one might
regard as erroneous.

i. The intruder learning the value of the token that a particular customer C uses to pay
a merchant M .

ii. M accepting a payment which he thinks is from C but was actually sent by someone
else. [So someone else settles C’s debt.]

iii. M accepting a payment which he thinks is from a third party, but is actually the
token C uses to pay him.

We will discuss the results of these in turn. The first specification succeeds (i.e the
situation described does not occur), though of course if the hash tags are removed the
reflection attack is available on the agreement protocol and it fails.



The second specification fails: it is possible for anyone to pay M as C. This reflects
the asymmetry of payment: C clearly has an interest in making sure that she does not
pay anyone else’s debts, but very little interest in making sure that no-one else pays hers.
If the merchant insisted on digest agreement prior to accepting payment it could ensure
that the payment has come from the party it has run the protocol with. This reflects our
discussion in Section 3 about the distinction between CA and CS.

Of course most payment methods are a lot more complex than simply sending a single
token, and as we have discussed most require the payer to prove their identity to at least
the bank or entity holding their account to establish that they are allowed to authorise
the payment. Such a protocol might or might not reveal this identity to the merchant,
but of course unless the merchant knows the name of the customer standing in front of
him, or he knows that the digests are agreed, there is nothing to tie this identity to the
person performing the protocol.

The third specification also fails because the intruder record a session between C and
M where he hears the message components hash(k), {k}pk and {pay(C,M)}k (where pk is
the public key M uses in every session) and then, when himself paying M , can substitute
these components into Messages 1 and 3 of the protocol and then replay the last as the
payment.

In practice this attack would not work in payment applications, because the payment
message would be a lot more complex and would almost certainly include a serial number
for this transaction that has been communicated to the payer by M .12 The intruder
could not substitute this into the payment message because he never gets to know k.
Nevertheless it is not really satisfactory that an intruder can apparently agree the same
key with M that C did.

It follows that it would be better to modify the protocol to avoid this replay attack.
A simple way of doing this is to include the merchant’s hashed key share hash(1 : hkM )
in the encrypted component of Message 3, so this message becomes13

3. C −→N M : hkC , {k, hash(1 : hkM )}pk
Note that C cannot substitute hash(1 : hkM ) by hkM because she does not know

this value. In effect this proves to M that whoever constructed this message knew both
k and the session specific hash(1 : hkM ) when the encryption was created: it binds this
component to the specific protocol session that M is running.

This modification means that specification (iii) now holds. In some sense the inclusion
of hash(1 : hkM ) in Message 3 is similar to including the hash tags: it makes it more
explicit what a message component is for. In the case of the hash tags we make a dis-
tinction between those generated by customer and merchant. In the present case we tie
the encrypted component of Message 3 explicitly to the particular session the merchant
is running, preventing a replay from earlier sessions.

Explicitness is a well-established [6] principle in the design of cryptographic protocols,
and we have discovered that this remains true in HISP-based protocols. Message compo-
nents could be made more explicit by the incorporation of node identities, but of course
the role of identities is much weaker in HISPs than in traditional protocols.

An alternative way of eliminating the replay attack would be to substitute k for
hash(k) in the final digest, but our digest specification does not tell us that nothing

12 In the mobile banking variant discussed earlier there is no payment message from customer to merchant,
rather the payment goes through the banking system.

13 The example file supporting this paper splits it into two: hkC and {k, hash(1 : hkM )}pk. In cases like
this where a message consists of the concatenation of two or more parts, rather than being the result
of a cryptographic operation, it is always legitimate to make this transformation: it does not change
the security properties of the protocol. The reason for the transformation is to reduce the sizes of the
types that a tool like FDR has to consider: the alphabet is cut from from 43,668 to 12,920 in this case.



can be inferred about M from digest(k,M) so it may be unwise to digest confidential
information.

This exercise has demonstrated that automated protocol analysis is as valuable in
the case of HISPs as in other sorts of protocol attacks: it is able to reveal unexpected
behaviours and, when successful, to give a high degree of confidence in the protocols
involved.

For more information about our CSP model of protocol analysis the reader can look
at [26] and [2]. A number of CSP files that illustrate the techniques we discuss can be
downloaded from [1] so that the reader can run them and adapt them for other protocols.
These include a group of files investigating the aspects of the key ageement/payment
protocol that we have discussed in this section.

6.4 The prospects for stochastic analysis

In order to follow the second approach to checking these protocols, based on stochastic
analysis, we need a tool that can calculate appropriate probabilistic properties of discrete
systems. We need to build the stochastic model of digest functions in terms of the digest
collision probability ε that we set out earlier into such a tool. We are presently investigating
such tools as Prism [5] for this purpose.

We think that stochastic analysis is more likely to be tractable, and beneficial, on
protocols where the more conventional symbolic methods above find no attack rather
than where they do. There is probably not that much point in doing a detailed stochastic
analysis on a protocol where we know there is an attack.

7 Digest functions

In the preceding sections we have assumed the existence of a digest function with given
properties. In this section we show that this can be realised relatively simply in such a
way that it can be implemented efficiently on all microprocessors. We give below a slightly
more exact definition of a digest function, where M , K and b are the bit length of the
message, the key and the output in a digest function, and R = {0, 1}K , X = {0, 1}M and
Y = {0, 1}b. We note that the specification of our keyed digest function is closely related
to the idea of a universal hash function, as discussed in [8, 30].

Definition 1. [18] A (εd, εc)-balanced digest function, digest : R×X → Y , must satisfy

– for every m ∈ X \ {0} and y ∈ Y : Pr{k∈R}[digest(k,m) = y] ≤ εd
– for every m,m′ ∈ X (m 6= m′): Pr{k∈R}[digest(k,m) = digest(k,m′)] ≤ εc

Since humans only can compare short check values or digests manually or over the em-
pirical channel −→E , it is intolerable that the security bounds εd and εc of the digest
function are significantly greater than 2−b or degrade along with the length of data being
digested. In the following we describe a digest algorithm introduced by us in [18] which
uses word multiplications to obtain a very fast implementation.

Let us divide message m into b-bit blocks 〈m1, . . . ,mt=M/b〉. A (M + b)-bit key k =

〈k1, . . . , kt+1〉 is selected randomly from R = {0, 1}M+b. A b-bit digest(k,m) is defined as

digest(k,m) =
t∑

i=1

[mi ∗ ki + (mi ∗ ki+1 div 2b)] mod 2b (1)

Here, * refers to a word multiplication of two b-bit blocks which produces a 2b-bit output,
whereas both ‘+’ and

∑
are additions modulo 2b. It should be noted that (div 2b) is

equivalent to a right shift (>> b).



This scheme is related to the multiplicative method of Dietzfelbinger et al. [9], as illus-
trated by Figure 1 where all word multiplications involved in Equation 1 can be elegantly
arranged into the same shape as the overlap of the expanded multiplication between m
and k. This algorithm enjoys strong and provable security properties as shown by the
following theorem, which also demonstrates that the security bounds of our construction
are independent of the length of message being digested.

Theorem 1. [18] For any t, b ≥ 1, digest() of Equation 1 satisfies Definition 1 with the
distribution probability εd = 2−b and the collision probability εc = 21−b on equal length
inputs.

digest(k,m)

m1m2m3

k1 k4k3k2

*

k  = k1 || k2 || k3 || k4           
m = m3 || m2 || m1

digest(k,m) = m1 * k1 + (m1 * k2 div 2b) +
     m2 * k2 + (m2 * k3 div 2b) +

                      m3 * k3 + (m3 * k4 div 2b)

Fig. 1. Word multiplication model digest(k,m). Each parallelogram equals the expansion of a word mul-
tiplication between a b-bit key block and a b-bit message block.

We would like to point out that our digest construction digest() improves on several well-
studied and efficient universal hashing algorithms, including (1) the b-bit output MMH
scheme of Halevi and Krawczyk [11] where εc = 6 × 2−b, and (2) the b-bit output NH
scheme within UMAC of Black et al. [7] where εc = 2−b/2. On the other hand, all of
the schemes require the key to be equal to or longer than the message being hashed, i.e.
digest() requires a (M + b)-bit key where M is the bit length of the message. Should
digest() be used directly in creating short check values in HISPs, random and fresh digest
key of similar size as the data being hashed must be generated whenever the protocol
is run. Obviously one can generate a long random key stream from a short seed via a
pseudo-random number generator, but it can be computationally expensive especially
when the authenticated data are of a significant size. What we therefore propose in [18]
is a combination of cryptographic hashing and short-output universal hash functions.

Let hash() be a B-bit cryptotgraphic hash function, e.g. SHA-2 or SHA-3. First the
input key is split into two parts of unequal lengths k = k1 ‖ k2, where k1 is B + b bits
and k2 is at least 80 bits. Then our modified digest construction digest′() which takes an
arbitrarily length message m is computed as follows

digest′(k,m) = digest(k1, hash(m ‖ k2))



We hash the concatenation of m and k2 to make it much harder for the intruder to search
for hash collision because a large number of bits of the hash input will not be controlled
by the intruder. Consequently the intruder cannot carry out effective off-line searching.

We denotes θc the hash collision probability on random messages of hash(), and it
should be clear that θc � 2−b given that b ∈ [16, 32]. The following theorem will demon-
strate that this construction preserves both the collision probability except a tiny bias
due to the hash function and the distribution probability of digest() regardless of what
hash() is. It also removes the restriction on equal length input messages because the hash
function hash() always produces a fixed length value.

Theorem 2. [18] digest′() satisfies Definition 1 with the distribution probability εd =
2−b and the collision probability εc = 21−b + θc.

Extremely efficient yet provably secure cryptographic algorithms like these are always
desirable, though in many financial and ID applications the efficiency may well not be
essential since, as detailed in the next section, the computation required to implement a
transaction dominates when the data being digested is moderately sized. This property
is, however, crucial in cases, like those detailed in [12, 22], where large amounts of data
need to be authenticated.

8 Implementation

In this section we describe some demonstrator implementations of electronic payment
using our technology. Films of these in action can be seen (at the time of writing) at
www.cs.ox.ac.uk/hcbk.

Our initial implementation (labelled low-power on the web site) was of a protocol for
credit card transactions using an e-cheque. The SD is a board with a Teridian 73S1217
processor (with 80515 8-bit core), a card reader, LED display and simple keyboard, and
provides a good model of a cheap card-reading device or a future chip on a card. It has
just 2K of data memory.

The implementation is written in a mixture of C and assembly code, and uses 1024-bit
RSA (with public exponent 65537), 128-bit AES and the SHA-1 hash function. The only
one of these that is time critical is RSA, for which our single encryption takes approxi-
mately 3 seconds on the above platform. (The decryption, which will almost always involve
a more complex exponent, would take much longer on this platform, but fortunately our
protocol means that the decryption takes place on the merchant’s computer, not our-low
power device.) We experimented with Diffie-Hellman and ECC as alternatives to RSA,
but at this level of security we found that RSA was faster on our simple SD thanks to
the use of a low exponent. This implementation runs in conjunction with two PCs: one
modelling the customer’s PC which is connected to the merchant’s via an https session.
The customer’s PC is used as an untrusted intermediary between SD and merchant, who
displays his check-string on the https window.

Essentially the same implementation runs on mobile phones (though without a card
reader). These, of course, have much greater computational power and memory than the
8-bit microprocessor, and our main motivation for this work was to experiment with a
wide variety of ways of connecting SD and merchant. We have used a very wide variety
of methods, including sound and digital telephony, SMS, wifi, Bluetooth and the Internet
(via a central server that it is not necessary to trust). Some of these were in combination
with the user’s PC as an untrusted intermediary, as above and shown in the film On-
line payment. All methods worked well with the exception of SMS messaging (a separate
message for each protocol message), since these simply take too long to arrive through
the telephone system.



The third film is labelled Peer to peer payment. In this, two mobile phones are con-
nected via Bluetooth: the protocol will start after the Bluetooth discover-and-connect
process. An e-cheque is sent to the payee from the payer. To simplify the demonstration,
we do not show a second connection to a bank or a third party. This is implemented on
Nokia N95 and Blackberry 9000: a J2ME Midlet is programmed to run on N95, and a
JAVA (on RIM) application is programmed to run on Blackberry 9000. The Bluetooth is
v2.0 and the profile is no security.

The following pictures show a few details of the above.

The mobile phone implementation has been extended beyond the pairing required for
financial transactions to enable a group of these two be formed. We can presently (shown
in a further video on the web site) form mutually authenticated groups of 4 in around 30
seconds, and expect to be able to reduce this to 15s.

Fig. 2. Demonstrations: SD with card reader, phone-to-phone, phone-to-server (from left to right).

9 Conclusions

We have seen how, in transactions involving Alice proving her identity to some party Bob
whom she can identify by context, it often makes sense for her to get a connection that
she knows is with Bob, even if she does not know Bob’s name. She can then use that
connection to prove her identity securely, and perhaps perform other functions, and has
no need to place a credit card, identity card etc in the hands of another party, thereby
enabling her to control what information is taken. In other words, before she authenticates
herself in one direction, she performs an authentication in the reverse direction.

We believe that this technology will have many applications both within the area of
financial transactions highlighted here and more widely.

We also believe that HISPs will, with time, allow security to become more organic,
based on human trust rather than on some mysterious infrastructure that most users
neither understand nor use properly. Who could put their hand on their heart and say they
had never over-ridden a security certificate failure on their computer without thoroughly
checking the certificate? We are certainly not arguing that they will take over from PKIs
and conventional forms of authentication, but rather that they will become common in
areas where one or more humans have to form a pair or group of devices. Indeed we have
demonstrated here that HISPs can allow conventional security to be bootstrapped more
efficiently and with less leakage of private information.

Since HISPs fundamentally require the participation of humans, it is vital that their
implementations are designed to optimise people’s experience in using them, are designed
to avoid users complacently ignoring the requirements on them, and make it easy to
compare a reasonably secure digest or check-string length quickly. Research is ongoing
into these human factors issues [16, 23, 28].



As we have seen, considerable progress is being made on the implementation, verifica-
tion and novel cryptographic needs of these protocols. But the fact that so much work is
necessary, and that the whole idea of trust needs to be rethought, demonstrates just how
exciting this area is.

References

1. CSP files that illustrate the techniques we discuss in this paper can be downloaded from:
http://www.cs.ox.ac.uk/publications/publication5348-abstract.html

2. CSP files that illustrate the techniques we discuss in [26] can be downloaded from:
http://www.cs.ox.ac.uk/publications/publication5265-abstract.html

3. See: http://www.cs.ox.ac.uk/gavin.lowe/Security/Casper/
4. See: http://en.wikipedia.org/wiki/Oyster card

5. See: http://www.prismmodelchecker.org/
6. M. Abadi and R. Needham. Prudent Engineering Practice for Cryptographic Protocols. IEEE Trans-

actions on Software Engineering, 22(1), January 1996.
7. J. Black, S. Halevi, H. Krawczyk, T. Krovetz, P. Rogaway. UMAC: Fast and Secure Message Authen-

tication. CRYPTO, LNCS vol. 1666, pp. 216-233, 1999
8. J.L. Carter and M.N. Wegman. Universal Classes of Hash Functions. Journal of Computer and System

Sciences 18 (1979): 143-154.
9. M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen. A reliable randomized algorithm for

the closest-pair problem. Journal Algorithms 25 (1997):19-51.
10. C. Gehrmann, C. Mitchell and K. Nyberg. Manual Authentication for Wireless Devices. RSA Cryp-

tobytes 7(1): 29-37 (2004).
11. S. Halevi and H. Krawczyk. MMH: Software Message Authentication in the Gbit/second Rates. In the

Proceedings of FSE 1997, LNCS vol. 1267, pp. 172-189.
12. ISO/IEC 9798-6, L.H. Nguyen, ed., 2010, Information Technology – Security Techniques – Entity

authentication – Part 6: Mechanisms using manual data transfer.
13. S. Laur and K. Nyberg. Efficient Mutual Data Authentication Using Manually Authenticated Strings.

LNCS vol. 4301, pp. 90-107, 2006.
14. A.Y. Lindell Comparison-Based Key Exchange and the Security of the Numeric Comparison Mode in

Bluetooth v2.1. In the Proceedings of RSA Conference 2009, pp. 66-83.
15. G. Lowe. Analysing Protocol Subject to Guessing Attacks. Journal of Computer Security 12(1): 83-98

(2004).
16. J.M. McCune, A. Perrig and M.K. Reiter. Seeing is Believing: Using Camera Phones for Human-

Verifiable Authentication. In the Proceedings of IEEE Symposium on Security and Privacy, 2005, pp.
110-124.

17. A.J. Menezes, P.C. van Oorschot and S.A. Vanstone. Handbook of Applied Cryptography. ISBN: 0-
8493-8523-7.

18. L.H. Nguyen and A.W. Roscoe. Short-output universal hash functions, and their use in fast and
secure message authentication. In the Proceeding of the 19th International Workshop on Fast Software
Encryption FSE 2012.

19. L.H. Nguyen and A.W. Roscoe. Efficient group authentication protocol based on human interaction.
In the Proceedings of FCS-ARSPA 2006, pp. 9-31.

20. L.H. Nguyen and A.W. Roscoe. Authenticating ad hoc networks by comparison of short digests. Infor-
mation and Computation 206 (2008), 250-271.

21. L.H. Nguyen and A.W. Roscoe. Authentication protocols based on low-bandwidth unspoofable channels:
a comparative survey. Journal of Computer Security 19(1): 139-201 (2011).

22. L.H. Nguyen and A.W. Roscoe. Separating two roles of hashing in one-way message authentication.
In the Proceedings of FCS-ARSPA-WITS 2008, pp. 195-210.

23. R. Kainda, I. Flechais and A.W. Roscoe. Usability and Security of Out-Of-Band Channels in Secure
Device Pairing Protocols. In the Proceedings of SOUPS 2009.

24. A.W. Roscoe. The theory and practice of concurrency. Prentice Hall. 1998. ISBN-10: 0136744095.
ISBN-13: 978-0136744092.

25. A.W. Roscoe. Human-centred computer security. (2005) See:
web.cs.ox.ac.uk/oucl/work/bill.roscoe/publications/113.pdf

26. A.W. Roscoe, T. Smyth and L.H. Nguyen. Model checking cryptographic pro-
tocols subject to combinatorial attack. Submitted for publication. Please see
http://www.cs.ox.ac.uk/publications/publication5266-abstract.html

27. P. Ryan (Author), S. Schneider, M. Goldsmith, G. Lowe, A.W. Roscoe. Modelling and Analysis of Se-
curity Protocols. Addison-Wesley Professional. 2000. ISBN-10: 0201674718. ISBN-13: 978-0201674712.

28. J. Suomalainen, J. Valkonen and N. Asokan. Security Associations in Personal Networks: A Compar-
ative Analysis. LNCS vol. 4572, 43-57, 2007.



29. S. Vaudenay. Secure Communications over Insecure Channels Based on Short Authenticated Strings.
Advances in Cryptology - Crypto 2005, LNCS vol. 3621, pp. 309-326.

30. M.N. Wegman and J.L. Carter. New Hash Functions and Their Use in Authentication and Set Equal-
ity. Journal of Computer and System Sciences 22 (1981): 265-279.


