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Abstract—With sensor technology gaining maturity and be-
coming ubiquitous, we are experiencing an unprecedented wealth
of sensor data. In most sensing applications, users receive sensor
measurements, which are prone to error. As a result, they are
often annotated with some measure of uncertainty, such as
the distribution variance or a confidence interval, and will be
hereafter referred to as probabilistic measurements. The question
that we address in this paper is how to estimate the accuracy of
these probabilistic measurements, that is, how far they lie from
the ground truth of the measured attribute. Existing studies on
estimating the accuracy of probabilistic measurements in real
sensing applications are limited in three ways. First, they tend
to be application-specific. Second, they typically employ learning
techniques to estimate the parameters of sensor noise models, and
ignore alternative approaches that rely on simple state estimation
without learning. Third, they do not explore whether exploiting
the dynamics of the monitored state can yield significant benefits
in terms of accuracy estimation. In this paper, we address the
above limitations as follows: We define the problem of accuracy
estimation in a general way that applies to a wide spectrum of
application scenarios. We then propose a taxonomy of accuracy
estimation techniques, which include both state estimation and
parameter learning. These techniques are further subdivided into
static and dynamic, depending on whether they exploit knowledge
of system dynamics. All different approaches in the taxonomy are
then applied and compared with each other in the context of two
real sensing applications. We discuss how they trade accuracy for
computation cost, and how this tradeoff largely depends on the
user’s knowledge of the application scenario.

I. INTRODUCTION

The presence of noise in sensor data has motivated a lot
of research in areas of sensor networks, mobile robotics and
machine learning over the last two decades. This work can
be broadly categorized into two classes: 1) state estimation:
The first class has assumed known models of measurement
noise, and has explored the inference algorithms to estimate the
state of the monitored phenomenon; 2) parameter estimation:
the second class has employed learning techniques to estimate
the parameters of the measurement noise that best explains the
generated sensor measurements. In this paper we investigate a
related problem that lies in-between the two canonical prob-
lems of state estimation and parameter estimation, and which
we will hereafter refer to as accuracy estimation. We start
with a probabilistic measurement (e.g. temperature value with
a 95% confidence interval), and our objective is to estimate
how far it lies from the ground truth (given a distance metric).

We first explain why this problem is important in a number
of different settings. First, knowing how much to trust the
measurements of a sensor network is paramount to deciding
whether to use or pay for the service it offers. For example, if
an indoor positioning system reports the user location with a

very small uncertainty ellipse, but the user is often found out-
side that ellipse, then the user should have a way of detecting
the poor accuracy of the service. Second, a user may be faced
with the choice of selecting among multiple co-located sensor
networks that offer a similar service (e.g. a WiFi-based vs. an
FM-based indoor tracking system). In this case, they should
be in a position to select the most accurate one, which may
not necessarily be the one with the smallest reported position
uncertainty. Third, when a sensor network is first deployed,
the network administrator typically assumes a default noise
model for the networked sensors; to detect when a sensor
starts malfunctioning, it is critical to be able to assess when
the accuracy of the measurements drops significantly below
the default assumed accuracy. Finally, the emergence of social
sensing applications has raised the challenge of estimating
the trustworthiness of human participants. When people report
probabilistic sensor measurements (say, estimated mean and
variance of air pollution levels) it is key to be able to assess
the accuracy of the reported data.

The common denominator in the above examples is that
data sources generate probabilistic observations (e.g. mean
and variance pairs), and the goal is to estimate the accuracy
of these observations. If the ground truth of the state was
known, then the problem would be trivial. In the absence
of ground truth, there have been very few efforts to tackle
this problem. For example, the work in [20] estimates the
correctness of measurements and the reliability of partici-
pants in social sensing applications by solving an expectation
maximization (EM) problem. Our previous work shows how
to assess the accuracy of co-located positioning systems by
extending the Baum-Welch algorithm - an expectation maxi-
mization algorithm for dynamic (HMM) systems [21]. These
papers use different algorithms that are tailored to the specific
application scenario. To our knowledge, there is currently no
systematic study that compares the algorithms proposed for
different applications in a common experimental setup. More
importantly, most existing work has tackled the problem of
accuracy estimation by employing learning (EM) techniques.
In this paper we advocate that inference techniques are equally
viable alternatives for accuracy estimation, and they should
not be confined to their traditional use in state estimation
problems. We show that, in certain cases, inference techniques
can offer more attractive tradeoffs between computational cost
and estimation accuracy than their learning counterparts. To
summarize, the contributions of this paper are as follows:

1) We define the problem of accuracy estimation for sensor
networks in a general manner, which covers a broad spectrum
of sensing applications. We have motivated the problem in the
context of pricing sensing services, ranking them if they are
competing for the same users, detecting faults, and establishing
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trustworthiness of different individuals in social sensing.

2) We show that the problem can be addressed in many
different ways. We create a taxonomy of accuracy estimation
techniques for sensor networks, which covers from simple
voting schemes, to state inference-based and learning-based
techniques. We show how inference and learning techniques
can be further sub-divided into those that exploit knowledge
of the dynamics of the monitored process and those that do
not. Finally, we show that any additional prior information
on the monitored phenomenon can be easily incorporated into
both inference and learning techniques in both the static and
dynamic cases. This is the first study where all these techniques
are juxtaposed and compared in a single taxonomy for solving
the accuracy estimation problem for sensor networks.

3) We perform a systematic empirical study to compare the
performance of the various accuracy estimation approaches
in our taxonomy in the context of two real sensor datasets,
one containing position sensor measurements in an indoor
environment, and the other containing light intensity sensor
measurements. The purpose of our study is to explore the
following issues: 1) Learning is inherently more computation-
ally expensive than inference: is the increase in estimation
accuracy worth the extra cost? 2) Does exploiting the dynamics
of a process lead to significantly higher accuracy and at
what computational cost? 3) To what extent is the relative
performance of the various estimation algorithms sensitive to
sensor network co-location? 4) To what extent is the relative
performance of the various accuracy estimation algorithms
sensitive to the application scenario?

The remainder of this paper is organized as follows:
Section II defines the problem of accuracy estimation in the
context of one or more co-located sensor systems. Section III
describes the taxonomy of voting, inference and learning
approaches that can be used to tackle the accuracy estimation
problem, and highlights their differences. Section IV shows
the feasibility of all approaches in the proposed taxonomy
in the context of two real sensor datasets, and evaluates
their performance in terms of accuracy and computation cost.
Section V overviews related work, while Section VI concludes
the paper and discusses the future work.

II. THE ACCURACY ESTIMATION PROBLEM

Let xt be the real value of the signal that a sensor system
is measuring (e.g. temperature or the location of a user), and
zt be the sensor measurement generated at discrete time t,
where 1 ≤ t ≤ T . Without loss of generality, we focus on
monitoring dynamic processes, where the signal state changes
over time. Stationary processes can be viewed as a special
case with T = 1, i.e. where measurements taken at different
timestamps are all collapsed to one timestamp, T = 1.

We assume zt is a random variable, and at each timestamp
t a sensor system generates a probability distribution p(zt) that
approximates the ground truth state xt. Given xt, the accuracy
of the probabilistic measurement zt depends on its expected
distance from the real state: ε(zt;xt) = E[C(zt − xt)], where
C(·) is a cost function. In this paper we use the quadratic form
C(zt− xt) = ‖zt− xt‖2. Then the accuracy of zt is given by

ε(zt;xt) = E[‖zt − xt‖2] =
∫
zt

p(zt)‖zt − xt‖2 dzt (1)

Accuracy Estimation 
Approaches

Voting Inference Learning
Majority voting
Plurality voting
Cumulative voting

Static Dynamic

etc.
ML estimation
MAP estimation

etc.
Gaussian process

Viterbi decoding
Kalman filter

etc.
Particle filter

Static Dynamic
EM algo.
Particle learning
etc.

Kalman learner

etc.
Baum-Welch algo.

Fig. 1: The taxonomy of accuracy estimation approaches
for sensor networks. For each line of approaches, several
representative techniques are listed.

where p(zt) is the probability distribution of the sensor mea-
surement zt. For generality, we do not confine our study to
one sensor system, but consider the case of multiple co-located
sensor systems, each reporting its own probabilistic measure-
ment. In this case, our goal is to estimate the measurement
accuracies of all co-located sensor systems.

We also assume that in certain timestamps, users may
possess prior knowledge of how the state xt is distributed.
For instance, consider an indoor localization scenario where
the states are the actual locations of the user. Planned events
such as calendar entires, or social interactions like store check-
ins, may directly reveal the user location at a given time [21].
We refer to such information as user-provided priors, and use
p(xt) to represent the prior distribution on the state at time t.

As shown in Eqn. 1, given the measurement distribution
p(zt), its accuracy is a function of the state xt, which is
typically unknown. Therefore the actual accuracy ε(zt;xt) can
not be evaluated directly. The accuracy estimation problem
is to approximate the accuracy of a measurement given the
stochastic sensor observations and priors on the states.

III. TAXONOMY OF ACCURACY ESTIMATION

APPROACHES

In this section, we design a taxonomy consisting of the
three main approaches that can be used to solve the accuracy
estimation problem: voting, state inference and learning. The
inference-based and learning-based approaches can be further
divided into two subclasses: static and dynamic, depending
on whether the dynamics of the monitored process are taken
into consideration. All approaches share two key steps: they
first produce an estimate of the ground truth x̂t, and they then
estimate the accuracy of the probabilistic sensor measurement
zt with respect to the ground truth estimate, i.e. ε(zt; x̂t). The
three approaches vary in how they estimate the ground truth
x̂t. Fig. 1 illustrates the taxonomy of the accuracy estimation
approaches discussed above, along with specific examples of
techniques under each class. We are now in a position to
describe the various approaches in more detail. In Section IV
we will evaluate and compare them in the context of two real
sensing applications.

A. Voting-based approach

Voting is a widely used approach when multiple co-located
sensor systems generate measurements about the same state. In
general, voting procedures help aggregate the preferences from
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individual sensor systems to achieve a collective decision. In
the context of accuracy estimation, the voting approach works
on one timestamp at a time, say at time t. It combines the
measurement distributions p(zit) from M co-located sensor
systems (1 ≤ i ≤ M ) into a single probability distribution
(using equal weights for all sensor systems). It then estimates
the latent state at time t according to certain voting rules, such
as majority or plurality [11], and uses the estimated state as
an approximation of the ground truth to evaluate the accuracy
of each stochastic sensor measurement zit .

B. Inference-based approach

The inference-based approach estimates the state, based on
the measurements generated by one or more sensor systems,
and prior information on the state provided by the user. In
this paper, we consider the widely used maximum a posteriori
(MAP) estimator, which chooses the estimate that maximizes
the posterior distribution of the state given the measurements.
The key assumption here is that the measurement model (the
probability of a measurement given a state) is known a priori.

Static inference The static inference approach ignores any
temporal correlations between the latent states, and only ac-
cesses the measurements and priors at a single timestamp t.
For simplicity, suppose that M = 2 co-located sensor systems
are monitoring state xt (our discussion can be easily extended
to M > 2 systems). The MAP estimate of xt is given by:

x̂tMAP
= argmax

xt

p(xt|z1t , z2t ) = argmax
xt

p(z1t , z
2
t |xt)p(xt)

(2)

where p(z1t , z
2
t |xt) is the probability of observing the measure-

ments z1t , z
2
t given xt, and p(xt) is the prior belief on the state.

x̂tMAP
is the mode of the posterior distribution p(xt|z1t , z2t ),

and can be computed analytically if the distribution is given
in closed form, or via numerical or Monte Carlo approaches
in more general cases. If no external noise is considered, and
the measurements z1t , z2t are conditionally independent given
the state xt, Eqn. 2 can be factored as:

x̂tMAP
= argmax

xt

p(z1t |xt)p(z
2
t |xt)p(xt) (3)

If a user-provided prior is available at time t, then p(xt) can
carry such knowledge and bias the estimated state towards the
belief of the user.

Dynamic inference The second variant of the inference
approach exploits the dynamics of the monitored state. It
assumes both the measurement model and the state transition
model are known a priori. Let the states be a time-varying
sequence: x1, . . . , xT , with measurements z1, . . . , zT from a
sensor system. In practice, the dynamics are usually assumed
to be Markovian for simplicity, i.e. p(xt|x1:t−1) = p(xt|xt−1),
and the measurements are considered to be independent con-
ditioned on the states. The dynamic inference approach esti-
mates the most likely state sequence x1:T with all observed
measurements:

x̂1:TMAP
= argmax

x1:T

p(x1:T |z1:T )

= argmax
x1:T

p(x1)p(z1|x1)
T∏

t=2

p(xt|xt−1)p(zt|xt)
(4)

which shows that for any given time t, the posterior distribution
of xt is influenced by all measurements, linked by the state
transition probabilities. Experiments in Sec. IV confirm that
this can improve the state estimation, and further has a knock-
on effect on the quality of accuracy estimation. Eqn. 4 can be
easily extended to accommodate measurements from multiple
sensor networks, as in Eqn. 3.

If for certain timestamps t, the user has prior information
on the state, then the state transition probabilities p(xt|xt−1)
in Eqn. 4 will be scaled by the prior p(xt).

C. Learning-based approach

Unlike the inference-based approach, the learning-based
approach does not assume prior knowledge on the measure-
ment model p(z|x). It starts with an estimate of the model, and
iteratively refines this estimate to be consistent with the ob-
served data. It then uses the learnt model to estimate the latent
states. Finally it evaluates the accuracy of the measurements
with the inferred states.

Static learning The static learning approach operates on the
measurements received within one timestamp, and does not
consider the dynamics of the monitored state. Let xt be the
state at a given timestamp t. For simplicity, let’s assume
that at time t there are only two co-located sensor systems,
which report measurements z1t and z2t . The measurement
model θ = p(z|x) is assumed to be an unknown parameter,
and the goal of the learning step is to find the θ that best
explains the observed measurements z1t and z2t . This is given

by the maximum likelihood estimate (ML estimate) θ̂ML =
argmaxθ p(z

1
t , z

2
t |θ). As in general latent variable models,

θ̂ML can be computed by the Expectation Maximization (EM)
approach [3]. The EM algorithm works iteratively with the
following two steps until it converges to a local maximum:

a) The E-step, which computes the expected log likelihood of
the data given the current parameter setting θ(i):

Q(θ, θ(i)) = Ez1
t ,z

2
t |xt,θ(i) [log p(z1t , z

2
t , xt|θ)]

=

∫
xt

p(z1t , z
2
t , xt|θ(i)) log p(z1t , z2t , xt|θ) dxt

(5)

b) The M-step, which finds the new parameter θ(i+1) that
maximizes the function Q(θ, θ(i)):

θ(i+1) = argmax
θ

Q(θ, θ(i)) (6)

Under the assumption of conditional independence between
measurements, it is also possible to factor the term p(z1t , z

2
t |xt)

as p(z1t , |xt)p(z
2
t |xt), which could further simplify the com-

putation. If a user-provided prior is available at timestamp
t, the prior distribution p(xt) can be directly included into
the derivation of the Q function when evaluating the joint
likelihood p(z1t , z

2
t , xt|θ(i)) = p(z1t , z

2
t |θ(i), xt)p(xt).

With the learnt model parameter θML, the static learning
approach estimates the state x̂t as in static inference, and it
uses x̂t as an approximation of the ground truth to evaluate
the accuracy of the measurements z1t and z2t respectively.

Dynamic learning Similar to dynamic inference, the dynamic
learning approach also assumes the hidden state varies over
time. But instead of relying on the model parameters known
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in advance, the dynamic learning approach takes all measure-
ments into account and learns the parameters from the data
observed. This approach is capable of learning both the state
transition model and the measurement model. However, re-
estimating the state transition model is optional: if we have
solid knowledge on the state transition probabilities, then it
would be better to leave them untouched.

Dynamic learning also uses the EM scheme, which it-
eratively finds the best parameters until it converges. But
the derivation of the likelihood function (the Q function in
Eqn. 5) is different from the static case. We make identical
assumptions as discussed in dynamic inference, i.e. x1:T is
the state sequence with Markovian property, and z1:T are the
measurements from a sensor network. For simplicity, we still
consider only one network, and the technique can be extended
to the multiple case with similar formulation as in Eqn. 5.
We also assume that the approach does not re-estimate the
state transition model, but only learns the measurement model
θ = p(z|x). Then the function Q(θ, θ(i)) becomes:

Q(θ, θ(i)) = Ez1:T |x,θ(i) [log p(z1:T , x1:T |θ)]
=

∫
x1:T

p(z1:T , x1:T |θi) log p(z1:T , x1:T |θ) dx1:T

(7)

where the term p(z1:T , x1:T |θ) is the joint likelihood given θ:

p(z1:T , x1:T |θ) = p(x1)p(z1|x1)
T∏

t=2

p(xt|xt−1)p(zt|xt) (8)

The maximization step is the same as in static case. Note
that in Eqn. 7, the integral (or summation) is over all possible
latent state sequences x1:T , which can be computed efficiently
with dynamic programming in some special cases, such as
forward-backward algorithm in Hidden Markov Models [13].
In the presence of user-provided priors at a given timestamp
t, the prior distribution p(xt) can be incorporated to Eqn. 8
in the same way as in dynamic inference. Prior information
can therefore influence the learnt measurement model and the
estimated state sequence x̂1:T .

IV. EVALUATION

A. Experiment setup

We evaluate and compare the accuracy estimation ap-
proaches on two datasets from real sensor deployments.

Indoor tracking dataset The data is collected from an indoor
localization scenario on the 4th floor of a CS department build-
ing. Three different indoor positioning systems are deployed
and running in parallel, reporting user location, as shown in
Fig. 2(a). Each of the positioning systems, ps1 to ps3, owns
a set of WiFi basestations placed in different positions of the
floor. These basestations periodically broadcast WiFi beacons,
which are received by the nearby mobile devices carried by the
users. Each positioning system also receives data from a set
of Inertial Measurement Units (IMUs) attached to the feet of
the users, and estimates position by combining the inertial data
and the WiFi signal strengths from the basestations it owns.
The ground truth is collected by the users: the map of the floor
is displayed on their mobile devices and they tap the positions
they are to log their coordinates.

Node of ps1
Node of ps2
Node of ps3

(b)

Node of sn1
Node of sn2

(a)

Fig. 2: (a) Experiment setup of the indoor tracking dataset
(left) and the light intensity dataset (right).

We tracked a research students for approximately 3∼4
hours per day (limited by the battery life of the IMUs), and
collected data for 20 days in total. We randomly selected 5
days of the data, retrieved the meaningful trajectories (the
timestamps that the user is actually moving) by thresholding
the accelerometer readings, and subsampled it at a rate of
0.5Hz. We assume space is discrete, i.e. it is a finite set
L = {li} with N discretized locations, e.g. different rooms
or corridor segments. In our experiment, the average size of
a discrete location is 3m×3m and N = 209. The trajectories
were then discretized according to L. For a given timestamp,
the measurement from a positioning system is a probability
vector of length N , where the i-th probability represents the
belief of the system that the user is at location li.

Light intensity dataset The data was collected from the Intel
Lab dataset [8]. The dataset contains temperature, humidity
and light data collected from 54 sensors deployed in a lab
environment for more than a month. We selected the light
intensity readings of approximately 5 consecutive days for our
experiments. We divided the 51 sensors (3 sensors are omitted
since they failed midway) into two groups randomly, where
data from 26 of them were used to generate stochastic light
measurements (as explained below), and the rest were used as
the ground truth.

We created two co-located sensor networks, sn1 and sn2,
by selecting different subsets of the 26 training sensors, as
shown in Fig. 2(b), where sensors that are virtually “shared” by
the two networks are grouped by rectangles. We then applied
Gaussian process non-linear regression to interpolate the data
from each network across the space. Therefore, for a given
timestamp t and a given point in space, the measurement from
sensor network sn1 or sn2 is a Gaussian distribution N (μ, σ),
with an estimated light intensity value μ and variance σ.

B. Competing algorithms

We implemented the following representative algorithms
for accuracy estimation, which cover all of the approaches
discussed in Sec. III:

a) Oracle Algorithm (OA) has access to the latent state xt

(i.e. the ground truth), and for a given measurement zt, the
accuracy it computes is the real accuracy, i.e. εoracle(zt) =
ε(zt;xt). For clarity, we omit the state estimate used to
evaluate the accuracy where it is unambiguous.

b) Report-based Algorithm (RA) uses the mean z̄t of
the measurement as an approximation of the ground truth to
evaluate the accuracy, i.e. εR(zt) = ε(zt; z̄t).
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c) Voting-based Algorithm (VA) takes the measurements
from all co-located networks at a given time t into account. For
each timestamp t, the algorithm approximates the latent state
xt by cumulative voting, i.e. it finds the state estimate x̂t with
the largest probability, and uses it to evaluate the accuracy of
a measurement εV (zt).

d) Static Inference-based Algorithm (SIA) considers all
sensor measurements generated at timestamp t. It infers the
maximum a posteriori (MAP) estimate of the state. The mea-
surement model p(zt|xt) for each sensor network is derived
from the distributions of all stochastic measurements of that
network whose mean is equal to xt, i.e. the measurement
means are used to approximate the ground truth xt when
generating p(zt|xt). It uses this state estimate to compute the
accuracy εSI(zt).

e) Static Learning-based Algorithm (SLA) first learns
the measurement model θ̂ = p̂(zt|xt) that is most consistent
with the observed data at timestamp t, which is given by the
maximum likelihood estimate (MLE) θ̂ML. Then it computes
the MAP state estimate x̂tMAP

with the learnt model in the same
way as SIA does, and uses this estimate to evaluate accuracy
εSL(zt).

f) Dynamic Inference-based Algorithm (DIA) assumes
known system dynamics (state transition model) and exploits
this knowledge to infer the most probable state sequence
x̂1:TMAP

with measurements at all timestamps. The measure-
ment models are directly derived from the stochastic measure-
ments as in SIA. The algorithm then evaluates the accuracy of
a given measurement zt with the t-th element in the estimated
state sequence as εDI(zt).

g) Dynamic Learning-based Algorithm (DLA) considers
measurements at all timestamps and recalibrates the measure-
ment model θ = p̂(z|x) with its MLE θ̂ML. It then uses the
learnt measurement model and known state transition model
to estimate the MAP state sequence x̂1:TMAP

. It uses the state
estimate at time t to compute accuracy εDL(zt).

In the learning algorithms (SLA and DLA) the measurement
models are initialized in the same way as in the inference
algorithms (SIA and DIA). Note that the last four algorithms
(SIA, SLA, DIA and DLA) can also incorporate user-provided
priors, as discussed in Sec. III. We evaluate the above com-
peting algorithms against the metric of Estimation Error EE.
For a given measurement zt, EE is defined as the L1 distance
between the estimated accuracy ε(zt) and the ground truth
accuracy εoracle(zt): EE = |ε(zt)− εoracle(zt)|.

C. Experiment results

The proposed accuracy estimation techniques are imple-
mented in Matlab 8.0, and all experiments were performed on
a quad-core machine with Linux 2.6.32.

Accuracy of sensor networks varies over time and space:
The first set of experiments show that the accuracy of a sensor
network can vary over time and space, while the reported
accuracy may not be a good indicator of the real accuracy.
For the tracking dataset, Fig. 3 shows that the real accuracy
(averaged over all timestamps) of the co-located positioning
systems ps1∼ps3 (the grey bars) vary over space. The accuracy
of a positioning system is higher in areas where it has denser
sensing infrastructure. In this experiment we see that ps1 has

good accuracy (shorter grey bars) at the left bottom part of
the floor, while ps2 performs well at the right side, and ps3
dominates the top area. This experiment also shows that the
reported accuracy is not always reliable; the reported accuracy
(red bars) consistently over or under estimates the real accuracy
(grey bars). The accuracy computed by DLA (blue bars) is
much closer to the real accuracy (grey bars). This shows
that in the absence of ground truth, the real accuracy can be
effectively approximated by applying suitable techniques. For
the light intensity dataset, Fig. 4 shows that the real accuracy
of a sensor network can vary over both location and time.
Figs. 4(a) and 4(b) show snapshots of the light measurements
reported at daytime by networks sn1 and sn2 respectively.
We can see that: a) the differences between the real light
values and reported ones vary across space, and b) the reported
accuracy (variance) is very unreliable and the real light values
consistently fall out of the 95% intervals of the reported ones.
Fig. 4(c) shows a snapshot of real and reported values (by
sn1) at night; notice that the differences here between real
and reported values are very small, which suggests that sn1

becomes more accurate at night.

Comparison of accuracy estimation algorithms: The second
set of experiments compares the performances of the accuracy
estimation algorithms in terms of Estimation Error (EE),
averaged over all measurements. The left graph of Fig. 5(a)
shows the estimation error of different algorithms on the
tracking dataset when we consider the stochastic measurements
of all three co-located positioning systems. We can see that the
gap between voting and report-based algorithms (VA and RA)
is about 40%, which means that measurements from the co-
located sensor networks can indeed help to improve the estima-
tion of accuracy, and simple approaches like voting could be
quite effective in practice. The differences between techniques
that operate on the measurements of a single timestamp (VA,
SIA and SLA) are negligible, due to the limited number of
information sources. When moving to dynamic approaches,
however, we observe significant improvements in estimation
error. Dynamic inference (DIA) features about 30% improve-
ment compared to voting, because it takes all measurements
into account and uses a state transition model that reflects
the underlying state dynamics. Dynamic learning (DLA) offers
approximately 50% benefit compared to voting, since DLA
also learns a new measurement model that best explains the
stochastic measurements. Finally, the improvement from the
naive approach (RA) to the best technique (DLA) is almost
3-fold. For the light intensity data, as shown in Fig. 5(b),
there is a similar trend of improvement as we move to more
sophisticated techniques, but in this case the improvement
from voting to DIA is negligible, because we use a naive
measurement model (that is derived directly from reported
confidence intervals, which often do not cover the ground
truth as shown in Fig. 4). The benefits of DLA, however, are
far more pronounced, since the learnt measurement model is
more accurate. Fig. 5(c) shows that the relative performance
of different algorithms varies significantly over time.

Sensitivity to the number of information sources: The third
set of experiments investigate how the number of co-located
sensor systems affects the accuracy estimation. Fig. 5(a) shows
the results on the tracking data. We can see that with fewer co-
located networks, the performance gaps between the different
techniques become smaller. In the case where only one network
is available, the best performing algorithm (DLA) has similar
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Fig. 4: 3D snapshots showing that the real accuracy varies over space and time. The surfaces show the light intensity measurements
(only the means) across space at different timestamps. The first two graphs show real and reported light intensity data generated
at daytime by sensor networks sn1 (left) and sn2 (middle). The right graph shows real and reported light intensity data generated
by sn1 at night.
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Fig. 5: (a) Average estimation errors of different approaches on tracking dataset when the number of co-located networks varies
from 3 to 1. (b) Average estimation errors of different approaches on the light intensity dataset. (c) Estimation errors of different
approaches on the light intensity dataset vary over time.

estimation error to the naive approach of trusting the reported
accuracy (RA).

Running cost vs. performance gain: The fourth set of
experiments studies the trade-off between accuracy estimation
and computation cost. We measure the execution time of
different algorithms and compare it with the performance gain
in terms of estimation error (EE). Figs. 6 shows the trade-
off on the tracking and light intensity dataset respectively.
In general learning-based techniques are more expensive than
inference-based, since learning requires iterative evaluation of
the likelihood of data, which is essentially multiple runs of
inference. In our experiments, on average learning is 2∼3 times

slower than inference but it can only improve the estimation
performance by at most 30% (from DIA to DLA on the light
intensity dataset). The results are similar on the tracking data,
where moving from static inference to dynamic inference, the
performance gain is about 25% at the expense of tripling the
running time.

Sensitivity to the user-provided priors The last set of
experiments shows how the user-provided prior can influence
different accuracy estimation approaches. For both datasets,
the priors are generated by first selecting a random subset
of the timestamps. At these timestamps, the prior distribution
p(x) is set to be the ground truth value plus a small quantity
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Fig. 6: Running time vs. performance for different algorithms
on the tracking dataset (left) and light intensity dataset (right).
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Fig. 7: Estimation error of different approaches when the
percentage of priors varies on the tracking dataset (left) and
light intensity dataset (right).

of noise. We vary the percentage of timestamps that have
priors, and study the effect on the performance of accuracy
estimation techniques (Fig. 7). On the tracking dataset, as the
percentage of priors increases, the static approaches improve
linearly. For dynamic approaches, the estimation error has a
quick drop before the percentage of priors reaches 20%, and
then becomes flat. This is because the dynamic approaches
exploit temporal correlations in the data, which enables prior
knowledge to impact future states. There is also a small gap
between dynamic inference and learning, since learning can
use priors to better assess measurement models. On the light
intensity dataset, a similar behavior can be witnessed, but the
gap between dynamic inference and learning is larger since the
measurement model used by inference is trivial, while learning
can recalibrate it from the data.

V. RELATED WORK

State Inference: A large body of research in sensor networks
has involved statistical inference about the sensed environ-
ment. Examples are regression and prediction of environmental
variables, such as temperature, light intensity, humidity and
pollution, taking into account spatial and temporal correlations
in the sensor readings, and incorporating measurement noise. A
common approach is to use techniques such as Kriging [2] and
Gaussian Processes (GPs) [14] to interpolate between sensor
readings and infer the values of environmental variables in
places where there are no sensors, or when sensors have failed
or simply did not generate readings at certain timestamps. For
example, Osborne et al. have proposed a computationally ef-
ficient implementation of GPs for sensor network applications
in the context of environmental sensing [10].

A lot of work has also investigated the dynamic version of
the estimation problem. A well-studied example is that of node
tracking, where the physical locations of moving objects are
tracked by fixed and/or mobile sensors. HMMs are commonly
used in the context of map matching, i.e. the problem of finding
the most likely trajectory that accounts for measurement noise
and known map constraints [5], [7], [17], [9], [1]. More
specifically, VTrack uses mobile phones mounted in cars to
estimate road travel times using a sequence of inaccurate
position observations [17]. EasyTracker uses HMMs in the
context of transit tracking, and uses the inferred tracks to detect
transit stops and predict arrival times [1]. An HMM-based
approach is also used in CTrack, where the goal is to associate
a sequence of cellular fingerprints to a sequence of road
segments on a known map [16]. In addition, Bayesian filters,
such as Kalman and Particle filters have also been broadly
used for online position estimation both in sensor networks
and robotics research [4]. A recent comparative evaluation of
different filters for person localization using RSS (Received
Signal Strength) measurements is presented in [15].

Parameter Estimation / Learning: While much of the initial
work was restricted to distributed inference of the monitored
state, more recently there has been considerable interest in
parameter estimation. For example, [20] estimates both the
correctness of measurements and the reliability of participants
in social sensing applications by solving an expectation max-
imization problem. The work in [21] considers the indoor
tracking problem, and assumes the colocation of multiple po-
sitioning systems that compete for the same users. It proposes
an expectation maximization algorithm to learn the observation
model (measurement probabilities) of each positioning system
in various parts of the indoor environment. Note that both
approaches [20], [21] first learn the parameters of the sensor
measurement models, which can then be used to estimate
the accuracy of sensor measurements. In this paper, we show
that parameter learning (or parameter estimation) is not the
only way to estimate the accuracy of sensor measurements.
A simpler alternative approach, which has been largely ne-
glected, is to use inference algorithms that estimate the state
of the monitored phenomenon, and then measure the distance
of stochastic measurements from the inferred state. In this
paper we show that both inference and learning algorithms
can be used to tackle the accuracy estimation problem, and
their relative performance largely depends on the application
scenario, and our prior knowledge of it.

Quality Estimation: Our work is also related to quality
estimation approaches, e.g. fact finding techniques in infor-
mation networks [6], [22], [12]. In these networks, sources
and assertions are represented as nodes, and each fact “source
i made an assertion j” is represented by a link. Nodes are
then assigned credibility scores in an iterative manner: for
example, in a basic fact finder [6], an assertion’s score is set
to be proportional to the number of its sources, weighted by
the sources’ scores; similarly, a source’s score is set to be
proportional to the number of the assertions it made, weighed
by the assertions’ scores. A Bayesian interpretation of fact
finding is offered in [18] that allows quantifying the actual
probability that a source is truthful or that an assertion is true.
Whereas we share the same goal of assessing the credibility
of different data sources, we cannot directly apply fact finding
techniques. The key reason is that fact finding techniques tend
to work well when a large number of sources are used to report
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on the same state (e.g. social sensing), and is therefore not
suitable for traditional sensor networks, where only very few
sensors typically detect and report the same event. The work
proposed in [19] uses a tree of regression models to minimize
the estimation error (maximizing the quality of information)
within certain cost budget. Our work is different in that we do
not possess knowledge of the real states, and thus cannot use
it to train regression models.

In summary, to date, accuracy estimation for sensor net-
works has been done primarily through learning EM algo-
rithms. The parameters of measurement models are first deter-
mined and they are then used to estimate the accuracy of sensor
measurements. Inference has been limited to state estimation
problems, and has seen little use in the context of accuracy
estimation. The learning algorithms that have been used for
accuracy estimation are carefully designed to fit the application
under consideration (for example, [20] has assumed non-
dynamic state, whereas [21] considers a dynamic time-varying
state), and have not been compared with each other. To our
knowledge, the impact of considering system dynamics or not
on the ability to estimate sensor accuracy has not been studied
in real-world scenarios. Research efforts have clearly focussed
on using learning (parameter estimation) algorithms to estimate
the accuracy of sensor measurements, and have shown little
attention to inference algorithms. To our knowledge there are
currently no empirical studies that compare both inference and
learning algorithms in the context of accuracy estimation using
real datasets from different sensing applications.

VI. CONCLUSION AND FUTURE WORK

In this paper we studied the problem of estimating the accu-
racy of stochastic measurements generated by one or more co-
located sensor systems. We considered an array of techniques
from simple voting, to inference-based and learning-based
approaches, and discussed their differences. We then compared
them in the context of two sensing applications for indoor
environments, which generate probabilistic location and light
intensity data. Our key findings from the empirical study are as
follows: 1) Inference and learning are only marginally better
than the voting approach in the static case (when the dynamics
of the monitored state are not taken into account); voting is
thus preferred among the three due to its simplicity and low
cost. 2) Dynamic inference- and learning-based approaches,
however, can significantly reduce the accuracy estimation error
when compared to voting (by up to 50% in our scenarios). 3)
The merits of learning vs. inference are more pronounced in
the scenarios where we have a poor prior knowledge of the
measurement model; when this is not the case, inference is
preferred because its accuracy estimation performance is close
to that of learning, at a much lower computation cost. 4) The
more the co-located sensor systems, the greater the relative
benefits of voting (compared to trusting reported accuracy),
and of dynamic inference and learning (compared to voting). 5)
Prior knowledge on the state distribution significantly impacts
the relative performance of the algorithms: the more the times-
tamps on which we have user-provided priors, the smaller the
estimation error of inference and learning algorithms. Whereas
static approaches improve their performance linearly, dynamic
approaches improve faster with fewer priors because they
exploit the state transition model to propagate prior knowledge
to nearby states.

A limitation of our work is that the accuracy of a sensor

measurement is evaluated with respect to a single estimate
of the ground truth, e.g. the mode of the state’s posterior. In
the future we will extend our approach to estimate accuracy
against the entire posterior distribution of the state. We will
also extend our work to incorporate other forms of prior knowl-
edge on states, which possibly span over multiple timestamps.
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