
Applications of Description Logics: State of the
Art and Research Challenges

Ian Horrocks

School of Computer Science, University of Manchester
Oxford Road, Manchester M13 9PL, UK

horrocks@cs.man.ac.uk

Abstract. Description Logics (DLs) are a family of class based knowl-
edge representation formalisms characterised by the use of various con-
structors to build complex classes from simpler ones, and by an emphasis
on the provision of sound, complete and (empirically) tractable reasoning
services. They have a range of applications, but are mostly widely known
as the basis for ontology languages such as OWL. The increasing use of
DL based ontologies in areas such as e-Science and the Semantic Web is,
however, already stretching the capabilities of existing DL systems, and
brings with it a range of challenges for future research.

1 Introduction

Description Logics (DLs) are a family of class (concept) based knowledge repre-
sentation formalisms. They are characterised by the use of various constructors
to build complex concepts from simpler ones, an emphasis on the decidability of
key reasoning tasks, and by the provision of sound, complete and (empirically)
tractable reasoning services.

Description logics have been used in a range of applications, e.g., configura-
tion [1], and reasoning with database schemas and queries [2–4]. They are, how-
ever, best known as the basis for ontology languages such as OIL, DAML+OIL
and OWL [5]. As well as DLs providing the formal underpinnings for these lan-
guages (i.e., a declarative semantics), DL systems are widely used to provide
computational services for a rapidly expanding range of ontology tools and ap-
plications [6–11].

Ontologies, and ontology based vocabularies, are used to provide a common
vocabulary together with computer-accessible descriptions of the meaning of rel-
evant terms and relationships between these terms. Ontologies play a major role
in the Semantic Web [12, 13], and are widely used in, e.g., knowledge manage-
ment systems, e-Science, and bio-informatics and medical terminologies [14–17].
They are also of increasing importance in the Grid, where they may be used,
e.g., to support the discovery, execution and monitoring of Grid services [18–20].

The success of the current generation of DLs and DL reasoning brings with
it, however, requirements for reasoning support which may be beyond the capa-
bility of existing systems. These requirements include greater expressive power,

improved scalability and extended reasoning services. Satisfying these require-
ments presents a major research challenge, not only to the DL community, but
to the logic based Knowledge Representation community as a whole.

2 Ontology Languages and Description Logics

The OWL recommendation actually consists of three languages of increasing
expressive power: OWL Lite, OWL DL and OWL Full. Like OWL’s predecessor
DAML+OIL, OWL Lite and OWL DL are basically very expressive description
logics with an RDF syntax. OWL Full provides a more complete integration
with RDF, but its formal properties are less well understood, and key inference
problems would certainly be much harder to compute.1 For these reasons, OWL
Full will not be considered in this paper.

More precisely, OWL DL is closely related to the well known SHIQ DL [21];
it restricts the form of SHIQ number restrictions to be unqualified (see [22]),
and extends SHIQ with nominals [23] (i.e., concepts having exactly one in-
stance) and datatypes (often called concrete domains in DLs [24]). Following the
usual DL naming conventions, the resulting logic is called SHOIN (D) (where
O stands for nominals, N stands for unqualified number restrictions and (D)
stands for datatypes). OWL Lite is equivalent to the slightly simpler SHIF(D)
DL. These equivalences allow OWL to exploit the considerable existing body of
description logic research, e.g.:

– to define the semantics of the language and to understand its formal prop-
erties, in particular the decidability and complexity of key inference prob-
lems [25];

– as a source of sound and complete algorithms and optimised implementation
techniques for deciding key inference problems [21, 26];

– to use implemented DL systems in order to provide (partial) reasoning sup-
port [27–29].

2.1 SHOIN Syntax and Semantics

The syntax and semantics of SHOIN are briefly introduced here (we will ignore
datatypes, as adding a datatype component would complicate the presentation
and has little affect on reasoning [30]).

Definition 1. Let R be a set of role names with both transitive and normal role
names R+ ∪RP = R, where RP ∩R+ = ∅. The set of SHOIN -roles (or roles
for short) is R ∪ {R− | R ∈ R}. A role inclusion axiom is of the form R v S,
for two roles R and S. A role hierarchy is a finite set of role inclusion axioms.

1 Inference in OWL Full is clearly undecidable as OWL Full does not include restric-
tions on the use of transitive properties which are required in order to maintain
decidability [21].

An interpretation I = (∆I , ·I) consists of a non-empty set ∆I , called the
domain of I, and a function ·I which maps every role to a subset of ∆I × ∆I

such that, for P ∈ R and R ∈ R+,

〈x, y〉 ∈ P I iff 〈y, x〉 ∈ P−I ,
and if 〈x, y〉 ∈ RI and 〈y, z〉 ∈ RI , then 〈x, z〉 ∈ RI .

An interpretation I satisfies a role hierarchy R iff RI ⊆ SI for each R v S ∈ R;
such an interpretation is called a model of R.

Definition 2. Let NC be a set of concept names with a subset NI ⊆ NC of
nominals. The set of SHOIN -concepts (or concepts for short) is the smallest
set such that

1. every concept name C ∈ NC is a concept,
2. if C and D are concepts and R is a role, then (C u D), (C t D), (¬C),

(∀R.C), and (∃R.C) are also concepts (the last two are called universal and
existential restrictions, resp.), and

3. if R is a simple role2 and n ∈ N, then 6nR and >nR are also concepts
(called atmost and atleast number restrictions).

The interpretation function ·I of an interpretation I = (∆I , ·I) maps, addition-
ally, every concept to a subset of ∆I such that

(C uD)I = CI ∩DI , (C tD)I = CI ∪DI , ¬CI = ∆I \ CI ,
]oI = 1 for all o ∈ NI ,

(∃R.C)I = {x ∈ ∆I | There is a y ∈ ∆I with 〈x, y〉 ∈ RI and y ∈ CI},
(∀R.C)I = {x ∈ ∆I | For all y ∈ ∆I , if 〈x, y〉 ∈ RI , then y ∈ CI},

6nRI = {x ∈ ∆I |]{y | 〈x, y〉 ∈ RI} 6 n},
>nRI = {x ∈ ∆I |]{y | 〈x, y〉 ∈ RI} > n},

where, for a set M , we denote the cardinality of M by]M .
For C and D (possibly complex) concepts, C v̇ D is called a general concept

inclusion (GCI), and a finite set of GCIs is called a TBox.
An interpretation I satisfies a GCI C v̇ D if CI ⊆ DI , and I satisfies a

TBox T if I satisfies each GCI in T ; such an interpretation is called a model
of T .

A concept C is called satisfiable with respect to a role hierarchy R and a
TBox T if there is a model I of R and T with CI 6= ∅. Such an interpretation is
called a model of C w.r.t. R and T . A concept D subsumes a concept C w.r.t.
R and T (written C vR,T D) if CI ⊆ DI holds in every model I of R and T .
Two concepts C,D are equivalent w.r.t. R and T (written C ≡R,T D) iff they
are mutually subsuming w.r.t. R and T . (When R and T are obvious from the
context, we will often write C v D and C ≡ D.) For an interpretation I, an
individual x ∈ ∆I is called an instance of a concept C iff x ∈ CI .
2 A role is simple if it is neither transitive nor has any transitive subroles. Restricting

number restrictions to simple roles is required in order to yield a decidable logic [21].

Note that, as usual, subsumption and satisfiability can be reduced to each
other, and reasoning w.r.t. general TBoxes and role hierarchies can be reduced
to reasoning w.r.t. role hierarchies only [21, 26].

2.2 Practical Reasoning Services

Most modern DL systems use tableaux algorithms to test concept satisfiability.
These algorithms work by trying to construct (a tree representation of) a model
of the concept, starting from an individual instance. Tableaux expansion rules
decompose concept expressions, add new individuals (e.g., as required by ∃R.C
terms),3 and merge existing individuals (e.g., as required by 6nR.C terms). Non-
determinism (e.g., resulting from the expansion of disjunctions) is dealt with by
searching the various possible models. For an unsatisfiable concept, all possible
expansions will lead to the discovery of an obvious contradiction known as a
clash (e.g., an individual that must be an instance of both A and ¬A for some
concept A); for a satisfiable concept, a complete and clash-free model will be
constructed [31].

Tableaux algorithms have many advantages. It is relatively easy to design
provably sound, complete and terminating algorithms, and the basic technique
can be extended to deal with a wide range of class and role constructors. More-
over, although many algorithms have a higher worst case complexity than that of
the underlying problem, they are usually quite efficient at solving the relatively
easy problems that are typical of realistic applications.

Even in realistic applications, however, problems can occur that are much too
hard to be solved by naive implementations of theoretical algorithms. Modern
DL systems, therefore, include a wide range of optimisation techniques, the use
of which has been shown to improve typical case performance by several orders of
magnitude [32–34, 29, 35, 36]. Key techniques include lazy unfolding, absorption
and dependency directed backtracking.

Lazy Unfolding In an ontology, or DL Tbox, large and complex concepts are
seldom described monolithically, but are built up from a hierarchy of named
concepts whose descriptions are less complex. The tableaux algorithm can take
advantage of this structure by trying to find contradictions between concept
names before adding expressions derived from Tbox axioms. This strategy is
known as lazy unfolding [32, 34].

The benefits of lazy unfolding can be maximised by lexically normalising and
naming all concept expressions and, recursively, their sub-expressions. An ex-
pression C is normalised by rewriting it in a standard form (e.g., disjunctions are
rewritten as negated conjunctions); it is named by substituting it with a new con-
cept name A, and adding an axiom A ≡ C to the Tbox. The normalisation step
allows lexically equivalent expressions to be recognised and identically named,
and can even detect syntactically “obvious” satisfiability and unsatisfiability.
3 Cycle detection techniques known as blocking may be required in order to guarantee

termination.

Absorption Not all axioms are amenable to lazy unfolding. In particular, so
called general concept inclusions (GCIs), axioms of the form C v D where C
is non-atomic, must be dealt with by explicitly making every individual in the
model an instance of Dt¬C. Large numbers of GCIs result in a very high degree
of non-determinism and catastrophic performance degradation [34].

Absorption is another rewriting technique that tries to reduce the number
of GCIs in the Tbox by absorbing them into axioms of the form A v C, where
A is a concept name. The basic idea is that an axiom of the form A u D v D′

can be rewritten as A v D′ t ¬D and absorbed into an existing A v C axiom
to give A v C u (D′ t ¬D) [37]. Although the disjunction is still present, lazy
unfolding ensures that it is only applied to individuals that are already known
to be instances of A.

Dependency Directed Backtracking Inherent unsatisfiability concealed in
sub-expressions can lead to large amounts of unproductive backtracking search
known as thrashing. For example, expanding the expression (C1tD1)u. . .u(Cnt
Dn)u ∃R.(AuB)u ∀R.¬A could lead to the fruitless exploration of 2n possible
expansions of (C1 t D1) u . . . u (Cn t Dn) before the inherent unsatisfiability
of ∃R.(A u B) u ∀R.¬A is discovered. This problem is addressed by adapting a
form of dependency directed backtracking called backjumping, which has been
used in solving constraint satisfiability problems [38].

Backjumping works by labelling concepts with a dependency set indicating
the non-deterministic expansion choices on which they depend. When a clash is
discovered, the dependency sets of the clashing concepts can be used to identify
the most recent non-deterministic expansion where an alternative choice might
alleviate the cause of the clash. The algorithm can then jump back over inter-
vening non-deterministic expansions without exploring any alternative choices.
Similar techniques have been used in first order theorem provers, e.g., the “proof
condensation” technique employed in the HARP theorem prover [39].

3 Research Challenges for Ontology Reasoning

Ontology based applications will critically depend on the provision of efficient
reasoning support: on the one hand, such support is required by applications
in order to exploit the semantics captured in ontologies; on the other hand,
such support is required by ontology engineers to design and maintain sound,
well-balanced ontologies. Experience with a wide range of applications and the
development of user-oriented environments has highlighted a number of key re-
quirements that will need to be met by the next generation of DL reasoners if
they are to provide the basis for this support:

Greater expressive power For example, in ontologies describing complex
physically structured domains such as biology [40] and medicine [41], it is
often important to describe aggregation relationships between structures and
their component parts, and to assert that certain properties of the component

parts transfer to the structure as a whole (a femur with a fractured shaft
is a fractured femur) [42]. The importance of this kind of knowledge can be
gauged from the fact that various “work-arounds” have been described for
use with ontology languages that cannot express it directly [43].
Similarly, in grid and web services applications, it may be necessary to de-
scribe composite processes in terms of their component parts, and to express
relationships between the properties of the various components and those of
the composite process. For example, in a sequential composition of processes
it may be useful to express a relationship between the inputs and outputs of
the composite and those of the first and last component respectively, as well
as relationships between the outputs and inputs of successive components
[13].

Improved scalability Practical ontologies may be very large—tens or even
hundreds of thousands of classes. Dealing with large-scale ontologies already
presents a challenge to the current generation of DL reasoners, in spite of
the fact that many existing large-scale ontologies are relatively simple. In the
40,000 concept Gene Ontology (GO), for example, much of the semantics is
currently encoded in class names such as “heparin-metabolism”; enriching
GO with more complex definitions, e.g., by explicitly modelling the fact
that heparin-metabolism is a kind of “metabolism” that “acts-on” the car-
bohydrate “heparin”, would make the semantics more accessible, and would
greatly increase the value of GO by enabling new kinds of query such as
“what biological processes act on glycosaminoglycan” (heparin is a kind of
glycosaminoglycan) [40]. However, adding more complex class definitions can
cause the performance of existing reasoners to degrade to the point where
it is no longer acceptable to users. Similar problems have been encountered
with large medical terminology ontologies, such as the GALEN ontology [41].
As well as using a conceptual model of the domain, many applications will
also need to deal with very large volumes of instance data—the GO, for
example, is used to annotate millions of individuals, and practitioners want
to answer queries that refer both to the ontology and to the relationships
between these individuals, e.g., “what DNA binding products interact with
insulin receptors”. Answering this query requires a reasoner not only to iden-
tify individuals that are (perhaps only implicitly) instances of DNA binding
products and of insulin receptors, but also to identify which pairs of indi-
viduals are (perhaps only implicitly) instances of the interactsWith role. For
existing ontology languages it is possible to use DL reasoning to answer such
queries, but dealing with the large volume of GO annotated gene product
data is far beyond the capabilities of existing DL systems [44]. A require-
ment to store and query over large numbers of individuals is common in
many application areas, e.g., in the Semantic Web, where ontologies are to
be used in the annotation of web resources, and where users may want to an-
swer queries such as “which bioinformatics researchers work in a university
department where there is also a DL researcher?”.

Extended reasoning services The ability to explain unexpected inferences
is also crucial in ontology development and would be useful in query an-

swering: when the DL reasoner returns an unexpected answer, such as an
unintended sub-class relationship, users often find it difficult to understand
(and if necessary fix) the causes of the unexpected inference; expert users
may even doubt the validity of such inferences, and lose confidence in the in-
ference system. Moreover, existing DL reasoners provide only a limited range
of reasoning services, such as class subsumption and instance retrieval. In
practice, users often want to ask questions for which it may only be possible
to provide an approximate answer. For example, the user may want to be
told “everything” that can be inferred about a class or individual, what it
is “reasonable” to assert about a class or individual, or what the difference
is between two classes or two individuals.

The following sections highlight interesting work in progress that addresses some
of the above problems; they do not constitute an exhaustive survey.

3.1 Expressive Power

Some of the above mentioned requirements may be met by tableau algorithms
that have recently been developed for DLs that are more expressive than those
currently implemented in state-of-the-art reasoners. These algorithms are able to
deal with, e.g., nominals (singleton classes) [26], complex role inclusion axioms
[45], the use of datavalues as keys [46], the representation of temporal constraints
[47], and the integration of reasoning over datatypes and built-in predicates [48].
The increased expressive power of these DLs would satisfy (at least partially) key
application requirements, e.g., supporting the description of complex structures
and the transfer of properties to and from structures and their component parts.

Some expressive requirements will, however, call for very expressive ontology
languages based on (larger fragments of) FOL, where key reasoning problems are
no longer decidable in general, e.g., the recently proposed SWRL language [49].
How to provide practical reasoning support for such languages is still an open
problem, but encouraging results have already been obtained using a state-of-the
art first order theorem prover with special optimisation and tuning designed to
help them cope with the large number of axioms found in realistic ontologies
[50].

3.2 Scalability

Even for SHIQ, class consistency/subsumption reasoning is ExpTime-complete,
and for SHOIN this jumps to NExpTime-complete [26]. There is encourag-
ing evidence of empirical tractability and scalability for implemented DL sys-
tems [34, 51], but this is mostly w.r.t. logics that do not include inverse properties
(e.g., SHF 4). Adding inverse properties makes practical implementations more
problematical as several important optimisation techniques become much less

4 SHF is equivalent to SHIQ without inverse properties and with only functional
properties instead of qualified number restrictions [21].

effective. Work is required in order to develop more highly optimised implemen-
tations supporting inverse properties, and to demonstrate that they can scale as
well as SHF implementations. It is also unclear if existing techniques will be
able to cope with large numbers of class/property instances [52].

Coping with the large volumes of instance data that will be required by many
applications (i.e., millions of individuals) will be extremely challenging, given
that existing DL implementations cannot deal with more than (in the order
of) a few thousand individuals, even when the relational structure is relatively
simple [44]. It seems doubtful that, in the case of instance data, the necessary
improvement in performance can be achieved by optimising tableaux based algo-
rithms, which are inherently limited by the need to build and maintain a model
of the whole ontology (including all of the instance data).

Several alternative approaches are currently under investigation. One of these
involves the use of a hybrid DL-DB architecture in which instance data is stored
in a database, and query answering exploits the relatively simple relational struc-
ture encountered in typical data sets in order minimise the use of DL reasoning
and maximise the use of database operations. A successful prototype of this ar-
chitecture, the so-called instance store, has already been developed [44]. This
prototype is, however, only able to deal with data that has no relational struc-
ture (i.e., in which the instance data does not include any role assertions), and
so cannot answer queries involving relationships between individuals. Work is
underway to extend the prototype to deal with arbitrary instance data, but it
is too early to say if this will be successful.

Another technique that is under investigation is to use reasoning techniques
based on the encoding of SHIQ ontologies in Datalog [53]. On the one hand,
theoretical investigations of this technique have revealed that data complexity
(i.e., the complexity of answering queries against a fixed ontology and set of
instance data) is significantly lower than the complexity of class consistency
reasoning (i.e., NP-complete for SHIQ, and even polynomial-time for a slight
restriction of SHIQ) [54]; on the other hand, the technique would allow relatively
efficient Datalog engines to be used to store and reason with large volumes of
instance data. Again, it is still too early to determine if this technique will be
useful in practice.

3.3 Extended Reasoning Services

In addition to solving problems of class consistency/subsumption and instance
checking, explaining how such inferences are derived may be important, e.g., to
help an ontology designer to rectify problems identified by reasoning support, or
to explain to a user why an application behaved in an unexpected manner.

Work on developing practical explanation systems is at a relatively early
stage, with different approaches still being developed and evaluated. One such
technique involves exploiting standard reasoning services to identify a small set of
axioms that still support the inference in question, the hope being that presenting
a much smaller (than the complete ontology) set of axioms to the user will

help them to understand the “cause” of the inference [55]. Another (possibly
complementary) technique involves explaining the steps by which the inference
was derived, e.g., using a sequence of simple natural deduction style inferences
[56, 57].

As well as explanation, so-called “non-standard inferences” could also be
important in supporting ontology design; these include matching, approximation,
and difference computations. Non-standard inferences are the subject of ongoing
research [58–61]; it is still not clear if they can be extended to deal with logics
as expressive as those that underpin modern ontology languages, or if they will
scale to large applications ontologies.

4 Summary

Description Logics are a family of class based knowledge representation for-
malisms characterised by the use of various constructors to build complex classes
from simpler ones, and by an emphasis on the provision of sound, complete and
(empirically) tractable reasoning services. They have been used in a wide range
of applications, but perhaps most notably (at least in recent times) in providing
a formal basis and reasoning services for (web) ontology languages such as OWL.

The increasing use of DL based ontologies in areas such as e-Science and the
Semantic Web is, however, already stretching the capabilities of existing DL sys-
tems, and brings with it a range of challenges for future research. The extended
ontology languages needed in some applications may demand the use of more
expressive DLs, and even for existing languages, providing efficient reasoning
services is extremely challenging.

Some applications may even call for ontology languages based on larger frag-
ments of FOL. The development of such languages, and reasoning services to
support them, extends these challenges to the whole logic based Knowledge
Representation community.

Acknowledgements

I would like to acknowledge the contribution of the many collaborators with
whom I have been privileged to work. These included Franz Baader, Sean Bech-
hofer, Dieter Fensel, Carole Goble, Frank van Harmelen, Carsten Lutz, Alan
Rector, Ulrike Sattler, Peter F. Patel-Schneider, Stephan Tobies and Andrei
Voronkov.

References

1. McGuinness, D.L., Wright, J.R.: An industrial strength description logic-based
configuration platform. IEEE Intelligent Systems (1998) 69–77

2. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Description
logic framework for information integration. In: Proc. of the 6th Int. Conf. on
Principles of Knowledge Representation and Reasoning (KR’98). (1998) 2–13

3. Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query contain-
ment under constraints. In: Proc. of the 17th ACM SIGACT SIGMOD SIGART
Symp. on Principles of Database Systems (PODS’98). (1998) 149–158

4. Horrocks, I., Tessaris, S., Sattler, U., Tobies, S.: How to decide query containment
under constraints using a description logic. In: Proc. of the 7th Int. Workshop on
Knowledge Representation meets Databases (KRDB 2000), CEUR (http://ceur-
ws.org/) (2000)

5. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. J. of Web Semantics 1 (2003) 7–26

6. Knublauch, H., Fergerson, R., Noy, N., Musen, M.: The protégé OWL plugin: An
open development environment for semantic web applications. In McIlraith, S.A.,
Plexousakis, D., van Harmelen, F., eds.: Proc. of the 2004 International Semantic
Web Conference (ISWC 2004). Number 3298 in Lecture Notes in Computer Science,
Springer (2004) 229–243

7. Liebig, T., Noppens, O.: Ontotrack: Combining browsing and editing with reason-
ing and explaining for OWL Lite ontologies. In McIlraith, S.A., Plexousakis, D.,
van Harmelen, F., eds.: Proc. of the 2004 International Semantic Web Conference
(ISWC 2004). Number 3298 in Lecture Notes in Computer Science, Springer (2004)
244–258

8. Rector, A.L., Nowlan, W.A., Glowinski, A.: Goals for concept representation in the
galen project. In: Proc. of the 17th Annual Symposium on Computer Applications
in Medical Care (SCAMC’93), Washington DC, USA (1993) 414–418

9. Visser, U., Stuckenschmidt, H., Schuster, G., Vögele, T.: Ontologies for geographic
information processing. Computers in Geosciences (to appear)

10. Oberle, D., Sabou, M., Richards, D.: An ontology for semantic middleware: ex-
tending daml-s beyond web-services. In: Proceedings of ODBASE 2003. (2003)

11. Wroe, C., Goble, C.A., Roberts, A., Greenwood, M.: A suite of DAML+OIL
ontologies to describe bioinformatics web services and data. Int. J. of Cooperative
Information Systems (2003) Special Issue on Bioinformatics.

12. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic Web. Scientific American
284 (2001) 34–43

13. The DAML Services Coalition: DAML-S: Web service description for the semantic
web. In: Proc. of the 2003 International Semantic Web Conference (ISWC 2003).
Number 2870 in Lecture Notes in Computer Science, Springer (2003)

14. Uschold, M., King, M., Moralee, S., Zorgios, Y.: The enterprise ontology. Knowl-
edge Engineering Review 13 (1998)

15. Stevens, R., Goble, C., Horrocks, I., Bechhofer, S.: Building a bioinformatics on-
tology using OIL. IEEE Transactions on Information Technology in Biomedicine
6 (2002) 135–141

16. Rector, A., Horrocks, I.: Experience building a large, re-usable medical ontology
using a description logic with transitivity and concept inclusions. In: Proceedings
of the Workshop on Ontological Engineering, AAAI Spring Symposium (AAAI’97),
AAAI Press, Menlo Park, California (1997)

17. Spackman, K.: Managing clinical terminology hierarchies using algorithmic cal-
culation of subsumption: Experience with SNOMED-RT. J. of the Amer. Med.
Informatics Ass. (2000) Fall Symposium Special Issue.

18. Emmen, A.: The grid needs ontologies—onto-what? (2002)
http://www.hoise.com/primeur/03/articles/monthly/AE-PR-02-03-7.html.

19. Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S., Kesselman, C., Vander-
bilt, P.: Grid service specification (draft). GWD-I draft , GGF Open Grid Services
Infrastructure Working Group (2002) http://www.globalgridforum.org/.

20. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid:
An open grid services architecture for distributed systems integration (2002)
http://www.globus.org/research/papers/ogsa.pdf.

21. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description
logics. In Ganzinger, H., McAllester, D., Voronkov, A., eds.: Proc. of the 6th Int.
Conf. on Logic for Programming and Automated Reasoning (LPAR’99). Number
1705 in Lecture Notes in Artificial Intelligence, Springer (1999) 161–180

22. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F., eds.:
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press (2003)

23. Blackburn, P., Seligman, J.: Hybrid languages. J. of Logic, Language and Infor-
mation 4 (1995) 251–272

24. Baader, F., Hanschke, P.: A schema for integrating concrete domains into con-
cept languages. In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence
(IJCAI’91). (1991) 452–457

25. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W.: The complexity of concept
languages. Information and Computation 134 (1997) 1–58

26. Horrocks, I., Sattler, U.: Ontology reasoning in the SHOQ(D) description logic.
In: Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001). (2001)
199–204

27. Horrocks, I.: The FaCT system. In de Swart, H., ed.: Proc. of the 2nd Int. Conf.
on Analytic Tableaux and Related Methods (TABLEAUX’98). Volume 1397 of
Lecture Notes in Artificial Intelligence., Springer (1998) 307–312

28. Patel-Schneider, P.F.: DLP system description. In: Proc. of the 1998 Description
Logic Workshop (DL’98), CEUR Electronic Workshop Proceedings, http://ceur-
ws.org/Vol-11/ (1998) 87–89

29. Haarslev, V., Möller, R.: RACER system description. In: Proc. of the Int. Joint
Conf. on Automated Reasoning (IJCAR 2001). Volume 2083 of Lecture Notes in
Artificial Intelligence., Springer (2001) 701–705

30. Pan, J.Z.: Description Logics: Reasoning Support for the Semantic Web. PhD
thesis, University of Manchester (2004)

31. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive de-
scription logics. J. of the Interest Group in Pure and Applied Logic 8 (2000)
239–264

32. Baader, F., Franconi, E., Hollunder, B., Nebel, B., Profitlich, H.J.: An empirical
analysis of optimization techniques for terminological representation systems or:
Making KRIS get a move on. Applied Artificial Intelligence. Special Issue on
Knowledge Base Management 4 (1994) 109–132

33. Bresciani, P., Franconi, E., Tessaris, S.: Implementing and testing expressive de-
scription logics: Preliminary report. In: Proc. of the 1995 Description Logic Work-
shop (DL’95). (1995) 131–139

34. Horrocks, I.: Using an expressive description logic: FaCT or fiction? In: Proc.
of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR’98). (1998) 636–647

35. Patel-Schneider, P.F.: DLP. In: Proc. of the 1999 Description Logic Work-
shop (DL’99), CEUR Electronic Workshop Proceedings, http://ceur-ws.org/Vol-
22/ (1999) 9–13

36. Horrocks, I., Patel-Schneider, P.F.: Optimizing description logic subsumption. J.
of Logic and Computation 9 (1999) 267–293

37. Horrocks, I., Tobies, S.: Reasoning with axioms: Theory and practice. In: Proc.
of the 7th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 2000). (2000) 285–296

38. Baker, A.B.: Intelligent Backtracking on Constraint Satisfaction Problems: Exper-
imental and Theoretical Results. PhD thesis, University of Oregon (1995)

39. Oppacher, F., Suen, E.: HARP: A tableau-based theorem prover. J. of Automated
Reasoning 4 (1988) 69–100

40. Wroe, C., Stevens, R., Goble, C.A., Ashburner, M.: A methodology to migrate the
Gene Ontology to a description logic environment using DAML+OIL. In: Proc. of
the 8th Pacific Symposium on Biocomputing (PSB). (2003)

41. Rogers, J.E., Roberts, A., Solomon, W.D., van der Haring, E., Wroe, C.J., Zanstra,
P.E., Rector, A.L.: GALEN ten years on: Tasks and supporting tools. In: Proc. of
MEDINFO2001. (2001) 256–260

42. Rector, A.: Analysis of propagation along transitive roles: Formalisation of
the galen experience with medical ontologies. In: Proc. of DL 2002, CEUR
(http://ceur-ws.org/) (2002)

43. Schulz, S., Hahn, U.: Parts, locations, and holes - formal reasoning about anatom-
ical structures. In: Proc. of AIME 2001. Volume 2101 of Lecture Notes in Artificial
Intelligence., Springer (2001)

44. Horrocks, I., Li, L., Turi, D., Bechhofer, S.: The instance store: DL reasoning with
large numbers of individuals. In: Proc. of the 2004 Description Logic Workshop
(DL 2004). (2004) 31–40

45. Horrocks, I., Sattler, U.: Decidability of SHIQ with complex role inclusion axioms.
Artificial Intelligence 160 (2004) 79–104

46. Lutz, C., Areces, C., Horrocks, I., Sattler, U.: Keys, nominals, and concrete do-
mains. J. of Artificial Intelligence Research (2004) To Appear.

47. Wolter, F., Zakharyaschev, M.: Temporalizing description logics. In Gabbay, D.,
de Rijke, M., eds.: Frontiers of Combining Systems II. Studies Press/Wiley (2000)
379–401

48. Pan, J.Z., Horrocks, I.: Extending Datatype Support in Web Ontology Reasoning.
In: Proc. of the 2002 Int. Conference on Ontologies, Databases and Applications of
SEmantics (ODBASE 2002). Number 2519 in Lecture Notes in Computer Science,
Springer (2002) 1067–1081

49. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A semantic web rule language combining owl and ruleml. W3C Member
Submission (2004) Available at http://www.w3.org/Submission/SWRL/.

50. Tsarkov, D., Riazanov, A., Bechhofer, S., Horrocks, I.: Using Vampire to reason
with OWL. In McIlraith, S.A., Plexousakis, D., van Harmelen, F., eds.: Proc. of
the 2004 International Semantic Web Conference (ISWC 2004). Number 3298 in
Lecture Notes in Computer Science, Springer (2004) 471–485

51. Haarslev, V., Möller, R.: High performance reasoning with very large knowledge
bases: A practical case study. In: Proc. of the 17th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2001). (2001) 161–168

52. Horrocks, I., Sattler, U., Tobies, S.: Reasoning with individuals for the description
logic SHIQ. In McAllester, D., ed.: Proc. of the 17th Int. Conf. on Automated
Deduction (CADE 2000). Volume 1831 of Lecture Notes in Computer Science.,
Springer (2000) 482–496

53. Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ-description logic to disjunctive
datalog programs. In: Proc. of the 9th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR 2004). (2004) 152–162

54. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. In:
Proc. of the 2004 International Semantic Web Conference (ISWC 2004). (2004)
549–563

55. Schlobach, S., Cornet, R.: Explanation of terminological reason-ing: A preliminary
report. In: Proc. of the 2003 Description Logic Workshop (DL 2003). (2003)

56. McGuinness, D.L.: Explaining Reasoning in Description Logics. PhD thesis, Rut-
gers, The State University of New Jersey (1996)

57. Borgida, A., Franconi, E., Horrocks, I.: Explaining ALC subsumption. In: Proc.
of the 14th Eur. Conf. on Artificial Intelligence (ECAI 2000). (2000)

58. Baader, F., Küsters, R., Borgida, A., McGuinness, D.L.: Matching in description
logics. J. of Logic and Computation 9 (1999) 411–447

59. Brandt, S., Turhan, A.Y.: Using non-standard inferences in description logics —
what does it buy me? In: Proc. of KI-2001 Workshop on Applications of Description
Logics (KIDLWS’01). Volume 44 of CEUR (http://ceur-ws.org/). (2001)

60. Küsters, R.: Non-Standard Inferences in Description Logics. Volume 2100 of Lec-
ture Notes in Artificial Intelligence. Springer Verlag (2001)

61. Brandt, S., Küsters, R., Turhan, A.Y.: Approximation and difference in description
logics. In: Proc. of the 8th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR 2002). (2002) 203–214

