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Abstract

Fusion-based quantum computing is a new method of implementing measurement-
based quantum computing (MBQC) algorithms on photonic hardware. It
constructs the highly entangled graph state by fusing together smaller re-
source states in a scalable, fault tolerant way. Fusions are inherently non-
deterministic and so strategies must be employed to ensure failures are toler-
ated whilst minimising the required resources.

Here we consider the problem of implementing MBQC patterns with the
fewest number of fusions using both bounded and unbounded linear clus-
ter states. We focus on the cases of constructing MBQC patterns using solely
X fusions, Y fusions, and both fusions separately and provide a mathematical
reduction of each case to a graph minimisation and show that all cases are
NP-hard except for the case of X fusions with unbounded resource states. We
then present approximation algorithms for the NP-hard problems and prove
tight bounds on their accuracy. In addition, we introduce a graph rewrite
strategy for each case to reduce the number of required fusions. We have im-
plemented our proposed algorithms in software and conclude this work with
empirical results and show how our methods outperform existing benchmarks
in key areas.
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Chapter 1

Introduction

Recent breakthroughs have made photonic computing a promising platform for scalable
quantum computing in the near term [1–3].

It is the natural candidate for executing algorithms formulated in the language of
measurement-based quantum computing (MBQC) due to long coherence times and sim-
plicity of performing single qubit rotations and measurements [4, 5]. Developments in
photonic technologies have lead to the development of efficient cluster state generators[6,
7] and routers[8] with linear optics which has facilitated the development of full stack
photonic architectures[9–11]. In addition, photon computing is unique in its ability to
efficiently transmit qubits long distances which could power the quantum internet[12].
Unlike the commonly used quantum circuit model [13], MBQC has no classical counter-
part and has been shown to provide a linear speed up for many real-world algorithms
such as the Quantum Fourier Transform[14].

Fusion-based quantum computing (FBQC) is new strategy for efficiently executing
MBQC patterns executing high fidelity on near-term photonic hardware[15]. Directly
constructing the highly entangled graph state of an MBQC pattern is challenging due
to the lack of deterministic entangling operations in photonics. FBQC details a method
for performing 2-qubit entangling measurements to “fuse” together small, constant size
graph states called resource states to construct the graph state.

⇝X X

Figure 1.1: Fusing three star resource states with X fusions to create a larger graph state.

Previous work has focused primarily on FBQC strategies using star resource states [15,
16] as these cluster states offer a large degree of flexibility when constructing the graph
and may be efficiently generated by linear optical devices[17, 18]. In this paper, we in-
stead focus on linear resource states which are being explored as an option for developing
alternative fusion-based architectures which aim to have a lower resource overhead[11].
Quantum emitters are a promising class of devices for reliably constructing linear re-
source states and have been demonstrated with atomic systems [19, 20], superconducting
circuits [21], and quantum dots [22, 23].

There are many ways to implement an MBQC pattern with fusions which have dif-
ferent resource and performance trade-offs. A particular choice of resource states and
fusions is called a fusion network. Due to the probabilistic nature of fusions, reducing
the number of fusions in the fusion network is critical to ensuring the MBQC pattern is
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implemented with high probability on limited hardware. In this work, we address the
problem of finding fusion networks with minimal fusions.

1.1 Structure and Novel Contributions

Chapter 2 presents the background on measurement-based and fusion-based quantum
computing as well as relevant details regarding photonic computing.

Chapter 3 we formulate the problem of compiling MBQC patterns as fusion networks
as a graph-theoretic minimisation problem. We define a new graph theoretic structure
which we call a trail cover (Definition 8) of a graph and show that minimising fusions is
equivalent to solving two graph theoretic problems (Theorem 4): that of finding minimum
trail covers of a graph, and the problem of transforming the graph to minimise certain
properties. The rest of this work considers the cases of X fusions, Y fusions, and both
fusions, and the cases where the linear resource states are bounded or unbounded.

Chapter 4 address the problems of finding minimum path covers, trails decomposi-
tions, and trail covers as well as their bounded counterparts and prove their complexity
classes. Minimum path covers have been studied extensively as well as their bounded
counterparts, and so I merely present the most recent results to date. Trail decomposi-
tions are known of but not widely studied, in particular, the minimisation problems have
never been studied and are first defined here (Definition 15 and Definition 17). As such,
except Definition 14 and Theorem 7 (finding a minimum trail decomposition is in P), all
other results are my own, including the proof that finding minimum 2-trail decomposition
is solvable in polynomial time (Proposition 4), the test for determining whether a trail
belongs to some minimum trail decomposition (Proposition 3), and the proof that finding
bounded minimum trail decompositions is NP-hard (Theorem 9). Section 4.3 covers the
problem of finding minimum trail covers to study linear XY-fusion networks in its most
general form. The concept of a trail cover is my own and consequently all subsequent
results are my own. This includes a proof that finding the minimum trail cover is NP-
hard (Theorem 10), that there is an underlying subclass of minimum trail covers which
have identical structure to minimum trail decompositions (Theorem 11). The definition
of the bounded counterparts of minimum trail decompositions and minimum trail covers
and all results from them are my own.

In Chapter 5, we describe novel approximation algorithms for the new NP-hard prob-
lems in the previous chapter. Concretely, for bounded minimum trail decompositions we
provide an approximation algorithms (Algorithm 1) and prove tight bounded on its com-
plexity and accuracy (Proposition 7). We additionally give an approximation algorithm
for finding minimum trail covers (Algorithm 2) and for bounded minimum trail cover
(Algorithm 3) and alternate algorithm based on a reduction to the travelling salesman
problem (Proposition 11) which can leverage existing tools to find a solution.

In Chapter 6 we formulate the minimisation problem concerning graph rewrites and
present novel graph rewrite strategies to minimise certain properties of the graph to reduce
the number of required fusions. We present an algorithm for Y fusions (Algorithm 4) and
for X fusions and show how these can be generalised to the case when considering both
types of fusions.

In Chapter 7 we discuss the problems associated with implementing the fusion net-
works on real hardware and introduce photon loss as a potential source of error. We define
a new calculus (Definition 22) for expressing computation in this class of architectures
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defined in [10] to enable us to define the general optimisation problem for generating fu-
sion networks on this architecture (Definition 24). We then define a concrete architecture
(Definition 23) within the general class of architectures which serves as a compilation
target and precisely evaluate the error associated with our fusion networks. We then give
an approximation algorithm (Algorithm 5) for generating fusion networks with the aim
of minimising the total error on this hardware.

We conclude in Chapter 8 with a discussion of empirical benchmarks obtained from
the algorithms in previous chapters on random graph states, common error correcting
codes, and real-world algorithms.

Appendix A contains — to the best of our knowledge — the first of proof the proba-
bility fusion success for arbitrary types of fusion in FBQC protocols.

1.2 Related work

Fused-based quantum computing was originally introduced by PsiQuantum in 2021 [24]
and who are now manufacturing photonics chips with their technology at a large scale [25,
26]. This work considers the more general class of resource states with X and Y fusions
from which the fusion networks with star resource states in the original proposed can be
seen as a special case. Section 2.4.1 discusses this point in more detail and makes this
claim precise.

The first proposal for a fusion-based architecture with linear resource states was given
by Zilk et al. [27] which used both GHZ and linear resource states together. In contrast,
our architecture uses only linear resource states with the aim of achieving a lower resource
overhead by using longer resource states and by constraining the optimisation landscape
to enable us to find better fusion networks efficiently. Chapter 8 compares benchmarks
between the architecture in this work and that in [27]. Most recently, Quandela has
proposed an architecture that works exactly as our proposed setup intends [11] and this
was later mathematically formalised by De Felice et al. [10] who then outlined a repeat-
until-success protocol for boosting the probability of success and mathematical tools for
its analysis. This work builds on top of these work of these two papers, namely adopting
the architecture originally proposed in [11] and using the theoretical results of [10] to
allow us to formulate the problem of finding fusion networks with minimal fusions in the
language of graph theory which forms the main contribution of this work.

Lee and Jeong [28] provided two graph rewrites for fusion networks the cases of bipar-
tite subgraphs and complete subgraphs that reduced the total number of fusion required.
Their rewrites in particular work in the case of star cluster states but do not always
provide an improvement in the case of linear resource states. In this work, we precisely
characterise the optimisation problem for minimising fusions as a graph theoretic prob-
lem and so we can better determine when certain rewrites will reduce the total number
of fusions. This will allow the techniques of [28] to be applied to the more general case
of linear cluster states.

Kumabe et al. [29] defined the graph theoretic notion of CZ-complexity to be the
fewest number of edges in any graph that can be reach from another graph through local
complementations or vertex insertions. They proved a lower bound on the CZ-complexity
of a graph to be n+ r− 2 where n is the number of vertices in a graph and r is the rank-
width of the graph. In addition, they provided an algorithm for transforming graphs
and showed that the number of edges in the resulting graph state is bounded above by
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O(nr log n). Though reducing the number of edges in a graph is the primary heuristic
used in our algorithms presented in this work, Theorem 3 demonstrates that this is not
the entire picture and that the number of nodes and the number of trails used to cover
the graph are equally important for reducing the number of fusions. Furthermore, graphs
with the fewest number of edge need not have the smallest trail cover and hence will not
lead to optimal fusion networks. We discuss this point more in Chapter 6.

Trail decompositions are not widely studied and are primarily mentioned in the study
of Eulerian trails. The most comprehensive background can be found in [30]. The problem
of finding a minimum trail decomposition is not formally stated but is proved in Theorem
2.3 of [31].
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Chapter 2

Background

This chapter covers relevant concepts for understanding the framework that FBQC oper-
ate. We assume familiarity with quantum computing fundamentals and refer the reader
to [13] for a more comprehensive introduction.

2.1 Graph states

Graph states are quantum states comprised solely from preparing qubits in the |+⟩ =
1√
2
(|0⟩ + |1⟩) state and applying controlled-Z gates. They are known as graph states as

they may be visualised as graphs where qubits are the vertices and CZ gates are the
edges.

CZ1,4CZ2,3CZ3,4CZ2,4|+⟩1234

1 2

3 4

=

Similarly, a graph G = (V,E) corresponds to a graph state |G⟩ constructed by prepar-
ing a |+⟩ state for each vertex and a controlled-Z gates is applied between two qubits if
there is an edge between their respective vertices in G.

|G⟩ =
∏

(x,y)∈E

CZx,y
∏
v∈V

|+⟩v

The connectivity of graph states may be changed through local complementations.
Locally complementing a graph G about a vertex v is equivalent to toggling the edges
between the neighbours of v (See Fig. 2.1). On graph states, local complementations are
performed by applying an X rotation with angle −π

2
to the qubit corresponding to v and

a Z rotation with angle π
2
to the qubits corresponding to the neighbours of v.

In addition to local complementations, we may introduce extra qubits into the graph
state which are connected to any nodes provided they are measured in the Z basis and
may introduce Pauli errors on the nodes.
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v

⇝
⇝

v

Figure 2.1: Local complementation (left) of the node v toggles edges between its neighbours.
Z-deletion (right) removes a node and all of its edges when it is measured in the Z basis with
no phase.

In fact, all single qubit Clifford operations on graph states correspond to local com-
plementations [32] and so we may consider local complementations together with adding
Z-measured nodes as the two fundamental operations with which to transform a graph
state into an equivalent state up to local Clifford operations on the qubits. The problem
of determining if two graphs can be obtained through local complementations alone is
solvable in polynomial time [33]. However if we add the ability to remove nodes through
Pauli measurements the problem becomes NP-complete [34].

2.2 Measurement-Based Quantum Computing

Measurement-based quantum computing (MBQC) [35] is a model of quantum computa-
tion with no classical analogue and is well suited for photonic architectures. In contrast
with the quantum circuit model [13], which closely resembles thee classical circuit model,
an MBQC algorithm consists of a highly entangled graph state and a procedure for adap-
tively measuring qubits to perform the computation. This type of computing is also
known as “one-way computation” due to the destructive nature of quantum measure-
ments.

Two qubit entangling operations are inherently non-deterministic in photonics which
makes it challenging to reliably execute algorithms formulated in the quantum circuit
model. In contrast, MBQC computations only require single qubit rotations and mea-
surements to perform the computation after the initial graph state is constructed, which
makes MBQC a more naturally computing paradigm for photonics [4, 5]. MBQC has
additionally been shown to provide a linear performance increase over the circuit model
for many real-world algorithms such as the Quantum Fourier Transform[14].

MBQC computations consists simply of a graph state and a procedure for perform
single qubit measurements. These are commonly encoded in a single structure known as
a labelled open graph.

Definition 1. A labelled open graph is a tuple (G, I,O, λ, α) consisting of a simple undi-
rected graph G = (V,E), a selection of input and output nodes I, O ⊆ V , and for all
non-output nodes, an assignment of measurement planes λ : V \O → {XY, Y Z,XZ} and
measurement angles α : V \O → [0, 2π).

A measurement performed in the λ plane with angle α has two possible outcomes,
⟨+λ,α| and ⟨−λ,α| which are given as

√
2⟨±λ,α| =


⟨0| ± eiα⟨1| if λ = XY

⟨+| ± eiα⟨−| if λ = Y Z

⟨i| ± eiα⟨−i| if λ = XZ
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The target linear map of a labelled open graph G = (G, I,O, λ, α), written T (G), is the
linear map obtained by initialising the graph state |G⟩ and measuring all non-output
nodes according to λ and α and post-selecting on the measurement outcome ⟨+λ,α|.
Considering the nodes in I and O to be the inputs and outputs respectively gives us the
target linear map of the open graph.

a b f

c

d e g

λ(a) = Y Z
λ(b) = XY
λ(c) = XZ
λ(d) = Y Z
λ(e) = XY

α(a) = 0
α(b) = π

2

α(c) = π
α(d) = π

3

α(e) = π
2

I = {a}
O = {f, g}

Figure 2.2: A labelled open graph given by a simple undirected graph with inputs and outputs
together with measurement planes (λ) and measurement angles (α).

In reality, measuring a qubit may produce different measurement outcomes which
introduce Pauli errors into the graph state that may need to be corrected by future
measurements. The existence of an adaptive measurement strategy capable of correcting
all such Pauli errors on a graph is captured in the notion of gflow flow [36, 37].

Theorem 1 ([37]). A labelled open graph may be executed to deterministically implement
its target linear map up to local Cliffords if and only if it has gflow.

The conditions of gflow are not relevant to the contents of this submission and so
we will omit its definition and mention it solely as an essential criterion for realising the
MBQC computations. In future chapters, we assume the labelled open graphs we wish to
execute have gflow and we will merely show that all transformations that we use preserve
the flow and thus the result of our pipeline may always deterministically implement the
target linear map.

2.3 Photonic computing

Photonic computing uses photons as qubits to perform quantum computations, and is a
strong candidate for realising near-term quantum computing due to their scalability, long
coherence times and simple integration with quantum networks.

Qubits are usually encode from a pair of bosonic states associated with the photon,
known as the dual rail encoding. The most common of these is the spatial encoding where
the qubit states |0⟩ and |1⟩ correspond to the location of the photon. It is often useful to
visualise this dual rail encoding with two lines representing the bosonic modes annotated
with the number of photons present in the mode. These diagrams are not to be confused
with the graph state diagrams drawn elsewhere.

|0⟩ = 1
0

|1⟩ = 0
1

The primary focus of this work centers around linear cluster states which may be
visualised as a graph state corresponding to a linear graph.
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Figure 2.3: Linear resource states of length zero, 1, and 4 respectively.

Quantum emitters are a promising class of devices for reliably constructing entangled
resource states and have been demonstrated with atomic systems [19, 20], superconduct-
ing circuits [21], and quantum dots [22, 23]. These can be idealised as a devices that
produces a stream of entangled photons which may optionally apply a single qubit uni-
tary. Each vertex in the graph may contain multiple entangled photons in a GHZ state
which are useful for performing multiple fusions on the node or realising repeat-until-
success protocols. We will address the point in more detail in Section 2.4.1.

Since quantum emitters are currently produce only a limited number of entangled
photons we have also considered the problem of finding fusion networks comprised of
linear resource states of bounded length as an equally, if not more important, problem to
solve.

Fusions are a class of non-deterministic 2-qubit entangling measurements. At the core
of all fusions is the projector

|0⟩⟨00|+ (−1)k|1⟩⟨11| (2.1)

which is implemented by the following photonic experiment where k = 1
2
(a + b) and

a, b ∈ {0, 1} and qubits are encoded in the dual rail encoding.

a

b

The resulting bosonic states that contain either two or zero photons are outside of the
qubit subspace and mark fusion failure. Failure is heralded by the measurement outcomes
a, b ∈ {0, 1}. Hence given a normalised state α1|00⟩+ α2|01⟩+ α3|10⟩+ α4|11⟩ as input,
fusion will fail with probability |α2|2 + |α3|2.

We may compose this experiment to form fusions between any number of qubits. This
type of fusion is known as n-ary fusion and in some cases have a higher probability of
success than multiple individual fusions.

a

b a

b

a

b

a

b

⇝

In this work we only consider 2-ary fusion and leave the analysis with n-ary fusions
as future work.

In general we may consider a general fusion to be specified by applying a unitary to
each of the qubits followed by the projector (2.1) followed by a single qubit measurement.
This can be drawn as the following photonics experiment.
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a

b

U1

U1

U1
c

d

De Felice et al. [10] categorised the class of fusions which preserve the original graph
structure on fusion failure as green fusions. This class of fusions is important as it makes
the compilation tolerant of fusion failures. Fusions of this kind were shown to have prob-
ability of exactly 50% of failing during an MBQC computation [10]. By only considering
to symmetric fusions with Pauli errors that are constructed with Pauli measurements, we
obtain only two distinct types of fusion: X fusion and Y fusion. These correspond to the
two most commonly studied fusions, Type II [24, 27] and CZ fusion [38] respectively.

Definition 2. X fusion is when all unitaries U1, U2, and U3 are Hadamard gates.
Y fusion is when U1 = U2 = RX(

π
2
) and U3 = RX(

−π
2
).

X fusion corresponds to the projector ⟨00| + ⟨11| up to a Pauli X error and has the
effect of merging to nodes of a graph state into one. Y fusion has the effect of constructing
a controlled-Z gate between the two qubits and then measuring in the X basis. On graph
states, this corresponds to constructing an edge between two nodes.

...
...

...
...

...
...= = ...

...

X fusion Y fusion

We use the thick dashed line to denote X fusions and the blue dashed line for Y fusions
throughout this paper.

2.4 Fusion-based Quantum Computing

Fusion-based quantum computing (FBQC) is new method of efficiently executing MBQC
patterns on near-term photonic hardware[15]. Directly constructing the highly entangled
graph state of an MBQC pattern is error prone due to the lack of deterministic entangling
operations in photonics and so FBQC protocols construct the graph state by fusing small
cluster states together with 2-qubit measurements in an way that is tolerant of the non-
deterministic nature of the fusions.

This presents an additional challenge since fusions fail with a probability of 50% (see
Theorem 2) and so FBQC protocols must be able to tolerant fusion failures. The probabil-
ity of fusion success may be boosted to 75% with ancillary qubits [39] but most protocol
feature some method to tolerant failures such as repeat-until-success protocols [10] or
ballistic approaches [40].

Small, efficiently generated cluster states are the building blocks of any FBQC com-
pilation strategy and are called resource states. The most commonly used resource state
is the star cluster state [15, 16] as it offers a large degree of flexibility when constructing
the graph and generating such state have already been extensively studied [17, 18]. Here
we instead focus on the less studied linear cluster states which are produced efficiently by
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quantum emitters. Architectures using these resource states may required fewer fusion
and in fact subsume the case of star resource states as we show in Section 2.4.1.

Figure 2.4: (Left) A 5-vertex star cluster state. (Right) A 4-vertex linear resource state.

Whether a graph may be more efficiently implemented with X or Y fusions depends
on its structure. In general, parts of a graph that are highly connected are more efficiently
implemented with X fusions, and less connected parts are more efficiently implemented
with Y fusions. Thus by using both kinds of fusions, we may be able to construct graph
states in fewer fusions that if we were only allowed one type.

1 X fusion

2 Y fusions
1 X + 1 Y fusion

3 X fusion

3 X fusionor
1 Y fusion

2 X fusions

or
or

or

Figure 2.5: Example of case when a graph may be implemented in fewer X fusions than Y
fusions (left), fewer Y fusions than X fusions (middle), and fewer hybrid fusions than either
type of fusion alone (right)

In order to define an FBQC computation, we must specify the resource states and
the fusions between them together with the measurement strategy on the graph. This is
information is encoded in the notion of a fusion network.

Definition 3 (Fusion Network [10]). An XY-fusion network F = (G, I,O,X, Y, λ, α) is
given by the following:

1. a labelled open graph (G, I,O, λ, α) where G = (V,E), and

2. sets of unordered pairs X, Y ⊆ {{a, b} | a, b ∈ V } corresponding to X fusions and Y
fusions on the nodes respectively.

We define X-fusion networks and Y-fusion networks to be XY-fusion networks com-
prised solely of X fusion and Y fusions respectively.

Since X fusions correspond to joining two vertices together in the underlying graph
state, and Y fusions correspond to constructing an edge we can make the following defi-
nition.

We say that an XY-fusion network F = (G, I,O,X, Y, λ, α) implements the labelled
open graph (G′, I, O, λ, α) where G′ is defined as

G′ =
(V,E + Y )

a ∼ b if {a, b} ∈ X
(2.2)

where + means the disjoint union. Informally, G′ is created by turning Y fusions into
edges, and my merging vertices that belong to X fusions.
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The target linear map T (F) of the fusion pattern F is the target linear map of labelled
open graph implemented by G. Implicitly, this is like post-selecting on the fusion success
outcome with no induced Pauli errors.

Despite introducing additional Pauli errors into the graph, De Felice et al. [10] showed
that any fusion network that implements a labelled open graph with gflow is able to do so
deterministically. Furthermore, it was also shown that no corrections need be performed
at the fusions, which implies fusions may be performed any time before it’s nodes are
measured.

Since in our case we are focusing a on using linear resource states we define a special
type of fusion network known as a linear XY-fusion network.

Definition 4. A linear XY-fusion network F = (G, I,O,X, Y, λ, α) is an XY-fusion
network where G is the disjoint union of linear graphs.

For the rest of this paper we will only consider simple undirected graphs because two
edges in a graph correspond to two controlled-Z gates in the graph state which cancel.
In fact, we can show that any linear XY-fusion network that implements a labelled open
graph whose graph has a double edge, can be converted to an equivalent fusion network
that implements a simple graph in the same number of fusions.

To see this, first note that if both edges in the double edge are created by Y fusions,
then these fusions are unnecessary since removing both fusion results in the same graph
state with fewer fusions. If one edge is created by a linear cluster state and one is a Y
fusion. Then we could have split the linear cluster state into two pieces to avoid creating
the edge in the first place, and omitting the Y fusion to obtain the same graph state
with fewer fusions. If both edges are from linear cluster states, then it must be the case
that the vertices at either edge of the edge must be merged by X fusions. In this case,
we can again split the linear cluster states into multiple pieces to avoid any edge from
being created in the first place and the number of fusions will remain the same. This is
illustrated below with linear resource states T1 and T2 which are split to become T ′

1, T
′
2,

T ′
3, T

′
4.

v1 v2 v1 v2

T1

T2

T3

T4

T1 T1

T2 T2

⇝

We remark that this result does not hold in the case of n-ary Y fusions. An example
is shown below that requires one 6-ary which has probability 2−5 of success, compared to
using nine normal Y fusions which have a probability of 2−9 of success.

Five 9-ary Y fusion One 6-ary fusion
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We remark that n-ary fusions are a promising avenue of research as it greatly improves
the probability of success is certain cases, though we will leave it as future work.

2.4.1 Resource states for FBQC

Resource states are smaller, efficiently generated graph states that form the building
blocks of fusion networks. The choice of resource state and how they are generated
comes with trade-offs. We have already introduced star cluster states and linear cluster
states at the beginning of this chapter, and so we will now discuss certain implementation
details which affect their performance and show how the structure of fusion networks
constructed from star resource states is mirrored by fusion networks with linear resource
states of length zero.

Since fusions are two-qubit measurements, both photons are destroyed after the fusion.
Therefore if a node in the graph state is implemented by a single photon then it would
not be possible to perform any further operations on the node. This presents a significant
problem as some nodes are involved in many fusions and all non-output nodes in a labelled
open graph must be measured. To overcome this limitation, we can assume that every
node in the graph state consists of an arbitrary number of photons entangled in a GHZ
state. In this model, if we post-select on fusion success, we can perform an arbitrary
number of fusions on each node as well as a final measurement.

Indeed quantum emitters are able to implement this resource state by applying a
unitary operator on consecutive photons in the stream and is the foundation for the
architecture proposed by Quandela in [11] and mathematically formalised in [10]. Since
the photons emitted by the quantum emitter are originally in entangled in a GHZ state,
applying no unitary operator will keep them in the GHZ state, and applying a CZ gate
between them will create a graph state with the two photons belonging to separate nodes
joined by an edge. Thus give a perfect quantum emitter capable of producing entangled
streams of photons of arbitrary length, we can assume any node in the linear resource
state is implemented with a GHZ state of any size. Therefore for the rest of this work we
assume that fusions are non-destructive, meaning that we can perform as many fusions
as we like before the final single qubit measurement. We will return to this detail in
Chapter 8 where we discuss the number of photons required to implement a certain
MBQC pattern with high probability with the fusion networks we generate.

This is in contrast to the most commonly studied fusion networks which use star
resource states together with destructive X fusions. We will now show that these fusion
networks may be modelled by linear XY-fusion network with resource states of length
zero. To see this, note that there are three ways to perform X fusions on star resource
states.

12
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Figure 2.6: The three distinct types of X fusion (Type II fusion) that can be performed on star
resource states. Each circle is a node in the graph state which is annotated with the number of
photons contained in it.

The root-root fusion has the effect of entangling the two root nodes though the new
root does not has any photons. The root-tail fusion has the effect of constructing a CZ
between the two root nodes, and the tail-tail has the effect of merging the two root nodes
together to create a new root node with two photons.

Looking at the actions that these fusions have on the root nodes, we see that tail-
tail fusion merges root nodes, and root-tail fusion constructs an edge between them.
This is therefore identical to performing X and Y fusion on the root nodes respectively.
Thus any fusion network built with star resource states and destructive X fusions can be
translated into a linear XY-fusion network with non-destructive fusions where each star
state corresponds to a linear cluster state and root-root and tail-tail fusions correspond to
X fusions, and root-tail fusions correspond to Y fusion. We note however that additional
fusions may be required for the star resource states to replenish photons in the root node
or the legs of the root node to facilitate further fusions.
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Chapter 3

Problem formulation

Fusions are an inherently non-deterministic process which significantly affect the proba-
bility of successfully implementing an MBQC pattern on fusion-based architectures. It is
therefore critical to find fusion networks that require minimal number of fusions. In this
chapter we formalise this problem mathematically and prove its equivalence to a graph
minimisations problem which will be analysed in more detail in the rest of this work.

Though the focus of this work centers around reducing fusions, Chapter 7 discusses
the implementation of these fusion networks on real photonic hardware where we discuss
the other major source of error: photon loss. We will then show how the design of the
fusion network significantly impacts the probability of photon loss and propose alternate
strategies for generating fusion networks which reach a trade-off between the number of
fusions and the likelihood of photon loss. This discussion has been kept isolated in its
own chapter and so we will for now focus solely on the problem of minimising fusions.

3.1 Minimising fusions

Fusions are a probabilistic process which fail with probability 50% when applied in fusion
networks.

Theorem 2. The probability of X and Y fusion success when executing on a fusion
network is 50%.

Proof. In Appendix A.

In the case of quantum emitters, the probability of fusion success may be boosted
with repeat-until-success protocols [10] and with ancillary qubits [39]. Since there are
many possible fusion networks which implement a labelled open graph, it is natural to
ask how we can find fusion networks that use the fewest number of fusions possible.

Assuming access to linear resource states of unbounded length and non-destructive
fusions simplifies the analysis in later chapter, however we are not guaranteed such a
resource state in practice. At the time of writing, quantum emitters have so far only
been able to generate linear resource states with 14 photons [20]. Hence, even though we
can expect the performance of quantum emitters to improve over time, it is likely that
the number of photons will significantly constraint the length of the resource states we
can use in practice.

It is therefore important to consider the case where the resource states are imple-
mented with a bounded number of photons. Post-selecting of fusion success, in order
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to facilitate F fusions and one single qubit measurement on a node in the graph state,
the node must be implemented by a GHZ state with F + 1 photons. We then consider
three variants of the fusion network minimisation problem, those are the cases where
the resource states are: unbounded, bounded by the number of photons, bounded in
the number of nodes. The third variant, though it does not accurately reflect the true
constraints of a physical setup, it much more easily analysed in graph theory and we will
show that complexity results and approximation algorithms that solve this problem may
be adapted to the case with bounded photons.

Definition 5. MinXYFusionNetwork
Input: A graph G.
Output: A linear XY-fusion network F which implements G using the fewest total
number of fusions.

Definition 6. MinBoundedPhotonXYFusionNetwork
Input: A graph G and a positive integer L.
Output: A linear XY-fusion network F which implements G where every resource state
of F contains at most L photons, and uses the fewest total number of fusions.

Definition 7. MinBoundedXYFusionNetwork
Input: A graph G and a positive integer L.
Output: A linear XY-fusion network F which implements G where every resource state
of F contains at most L edges, and uses the fewest total number of fusions.

3.2 Linear XY-fusion networks as trail covers on graphs

There are three primary levels which we can see the computation: fusion networks,
labelled open graphs (with gflow), and linear maps. The goal of an MBQC computation
is to implement a certain linear map and to do so we need to specify a labelled open
graph. In this section we will show that the set of all labelled open graph that implement
a target linear map can be generated from a single labelled open graph through local
complementations and Z-deletions. We then show that the set of all linear XY-fusion
networks that implement a given labelled open graph (G, I,O, λ, α) corresponds to the
set of trail covers on the graph G. We then conclude by equating the problem of finding
fusion networks with minimum fusions to be one of transforming graphs and finding
minimum trail covers that minimise a certain graph theoretic property.

Fusion Network Open Graph

L

Linear map

··
·

··
·

It has been shown that graph rewrites are sufficient to show any two open graphs
implement the same linear operator.
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Lemma 1 (Backens and McElvanney [41]). Let G1 and G2 be two labelled open graphs
with flow. Then T (G1) = T (G2) if and only if G1 can be reached from G2 using local
complementation and Z-deletions.

This tells use the scope of graph transformations possible and to complete the graph
theoretic reduction of fusion network we need to characterise all fusion networks that
implement a specific labelled open graph.

Definition 8 (Trail cover). A trail is a sequence of vertices where adjacent vertices are
connected by an edge and where edges may not be repeated. The length of a trail T ,
denoted |T | is the number of edges in the trail. A trail cover of a graph G is a set of edge
disjoint trails that traverse each vertex of G at least once.

A trail can also be seen as a path that may revisit vertices by not edges. A trail that
traverses the entire graph is called an Eulerian trail and an Eulerian trail that ends at
the same vertex it started from is called an Eulerian circuit. A trail that has at most L
edges is known as an L-trail and an L-trail cover is a trail cover consisting of L-trails.

Observe how a target graph below can be implemented with the following fusion net-
work. This fusion network can be seen as a trail cover of G where each trails corresponds
to a linear resource state where for every vertex that is traversed by more than one trail
we use an X fusion to merge the two nodes, and we add a Y fusion for every edge in the
graph that is not present in the trail cover.

→

Proposition 1. Let G = (G, I,O, λ, α) be a labelled open graph. Then linear XY-fusion
networks that implement G are in one-to-one correspondence with trail covers of G.

Proof. Suppose we have a linear XY-fusion network F that implements G. Then by (2.2)
we know that F must be of the form F = (G′, I, O,X, Y, λ, α) with G′ = (V,E) and
where

G =
(V,E + Y )

a ∼ b if {a, b} ∈ X
. (3.1)

Since F is a linear XY-fusion network, G′ is the union of linear graphs G =
⋃
iGi where

Gi ⊆ G is linear and each Gi is mutually disjoint. Then for any Gi, each vertex in Gi is
mapped to a vertex in G under the transformation in (3.1) and vertices are adjacent in
Gi if and only if they are adjacent in G. Since G is simple, the image of Gi corresponds
to a trail in G. Since the transformation is surjective on the vertices of G, the image of
G′ is a trail cover in G.

Now suppose we have a trail cover C for G. Then we can construct a fusion network F
consisting of a linear graph for each trail in C, thus we can simply create the graph G′ to
be the disjoint union of the trails in C. Denote the function that carries vertices in G′ to
vertices in G by f . Every time a trail traverses a vertex that has already been traversed by
another trail, we add an X fusion between the two nodes. We then create the remaining
edges of the graph with Y fusions. We can then create the measurement planes λ′ and
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α′ for the fusion network as follows. For each v ∈ G, let f−1(v) be pre-image of v under
the transformation. We then choose one vertex in the pre-image v0 ∈ f−1(v) and define
λ′(v) = λ(v) and α′(v) = α(v). For the remaining vertices in the pre-image w ∈ f−1(v) we
define λ′(w) = Y Z and α′(w) = 0. Then fusion network (G′, I, O,X, Y, λ′, α′) implements
G.

Then from Proposition 1 and Lemma 1 we obtain the full characterisation of all linear
XY-fusion networks in graph theoretic terms.

Proposition 2. Let G = (G, I,O, λ, α) be a labelled open graph. Then every linear XY-
fusion network F where T (F) = T (G) is in one-to-one correspondence with pairs (G′, C)
where G′ is a graph reachable from G using local complementations and Z-deletions, and
C is a trail cover of G′.

From Proposition 2, since every graph has many possible trail covers, there are many
distinct fusion networks that implement it. Which fusion network has the highest proba-
bility of success implementing the MBQC on real hardware will depend on the hardware
itself. There are several likely sources of error such as: holding many active qubits,
photon coherence times, chance of photon loss in delay lines. Common to all hardware
however, is the probability of fusion failure. We will restrict ourselves the problem of
generating fusion networks with the smallest number of fusions.

Theorem 3. Given a graph G = (V,E) and trail cover C. Let XG and YG denote the
number of X and Y fusions required to implement G with C respectively. Then

XG + YG = |E| − |V |+ |C|.

Proof. Let T ∈ C be a trail and let E(T ) and V (T ) denote the number of edges in T and
V (T ) denote the number of vertices in T . Then V (T ) = E(T ) + 1 and summing over all
trails gives ∑

T∈C

V (T ) =
∑
T∈C

(E(T ) + 1) =
∑
T∈C

E(T ) + |C|. (3.2)

Y fusions are required for edges that are not contained in the trail cover, so
∑

T∈C E(T ) =
|E| − FY . Furthermore, each X fusion reduces the number of vertices by one, and so∑

T∈C V (T ) = |V |+ FX . Substituting into (3.2) gives

FX + FY = |E| − |V |+ |C|.

We can now state the main graph minimisation problems and show their equivalence
to the original fusion network minimisation problems.

Definition 9. MinEquivTrailCover
Input: A graph G.
Output: A trail cover C of graph G′ = (V,E) reachable from G using local complemen-
tations and vertex insertions such that |E| − |V |+ |C| is minimised.

Definition 10. MinEquivBoundedTrailCover
Input: A graph G and a positive integer L.
Output: An L-trail cover C of graph G′ = (V,E) reachable from G using local comple-
mentations and vertex insertions such that |E| − |V |+ |C| is minimised.
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Applying Theorem 3 to Proposition 2 proves the equivalence.

Theorem 4. MinXY(Bounded)FusionNetwork is equivalent to MinEquiv(Bounded)TrailCover.

We have not precisely formulated the MinBoundedPhotonXYFusionNetwork problem
as a graph minimisation problem as it does not offer a natural representation in graph
theory. However, in future chapters we will point out how complexity results and ap-
proximation algorithms can be carried over to the bounded photons case which may be
of some practical utility.

We can now see that these problems have two components, namely: transforming
the graph through local complementations and vertex insertions, and finding minimum
trail covers. We will analyse the problem of finding minimum trail covers in Chapter 4
and Chapter 5, and the problem of reducing the graph in Chapter 6. We then present
a benchmarks analysing the results of these algorithms for generating efficient fusion
network for real-world algorithms in Chapter 8.
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Chapter 4

Finding Trail Covers

We know from Theorem 3 that finding a linear XY-fusion network with minimum fusions
requires finding a minimum trail cover of a graph. In this section, we first analyse the
corresponding problems for the restricted cases of linear X-fusions networks and linear
Y-fusion networks before presenting the general case for linear XY-fusion networks. All
graphs in this section are simple and undirected unless stated otherwise.

4.1 Y Fusions

Without X fusion to join vertices together, every node in a linear Y-fusion network
corresponds to a unique node in the target graph, and any edges that are not implemented
by the resource states are implemented with Y fusions. Thus the linear resource states
correspond to paths in the target graph, and so the trail cover constitutes a path cover
of the graph.

Definition 11 (Path cover). A path in a graph is a sequence of vertices such that adjacent
vertices in the sequence are adjacent in the graph, and vertices are not repeated. A path
cover of G is a set of vertex-disjoint paths where every vertex in G is contained in exactly
one path in the cover.

Therefore in order to find linear Y-fusion networks with minimal fusions, we must be
able to find minimum path covers of a graph.

Definition 12. MinPathCover
Input: A graph G.
Output: A path cover of G with the fewest number of paths.

A path of length at most L is called an L-path and an L-path cover is a path cover
comprised of L-paths. The bounded variant of the minimum path cover problem is the
minimum L-path problem.

Definition 13. MinBoundedPathCover
Input: A graph G an integer L.
Output: An L-path cover of G with the fewest number of paths.

The minimum path cover problem is NP-hard since the existence of a path cover
containing a single path indicates that the graph has a Hamiltonian path, and deciding
whether a graph has a Hamiltonian path is NP-complete [42]. Given a minimum path
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cover, we cannot verify whether it is a valid solution without solving the minimisation
problem and so MinPathCover is NP-hard. Classes of graphs for which the Hamiltonian
path problem is known to be polynomial are cataloged [43] and may admit efficient
algorithms for finding minimum path covers.

Moran et al.[44] introduced a 1
2
-approximation algorithm for finding path covers on

weighted graphs where the total weight is maximised. This is equivalent to the minimum
path cover problem when the weight of all edges is one.

Hence finding a minimum L-path cover is also NP-hard for L > 1. In the case
where L = 1, the problem reduces to the maximum matching problem which is solvable
in polynomial time [45]. Kobayashi et al.[46] generalised this problem to consider path
covers where each path is associated with a weight based on its length. Setting the weight
to be one regardless of its length gives us the bounded minimum path cover problem.
They then showed that the bounded minimum path cover is solvable in polynomial time
for graphs with bounded tree width.

Theorem 5 ([46]). Let G = (V,E) be an undirected graph with bounded treewidth at most
W . Then the minimum L-path cover problem can be solved in time O(22WW 2W+2(L +
2)2W+2|V |).

We present no new results on path cover problems and instead provide graph rewrites
in Chapter 6 to reduce the number of Y fusion and the size of the minimum path covers.

4.2 X Fusions

In the case of linear X-fusion networks, resource states can traverse the same node in
the graph twice by using an X fusion to merge two vertices together. Therefore linear
resource states correspond to trails in the graph. Since we do not have Y fusions to
construct edges, every edge in the graph state must be implemented by a resource state.
This leads us to the notion of a trail decomposition of a graph.

Definition 14 (Trail Decomposition). A trail decomposition of a graph is a set of edge
disjoint trails that together contain every edge of the graph.

Trail decompositions are in one-to-one correspondence with linear X-fusion networks
that implement the graph and by Theorem 3, fusions are minimised when the fusion
network corresponds to a minimum trail decomposition.

4.2.1 Minimum trail decompositions

We can now give the corresponding minimisation problem for the case of linear X-fusion
networks.

Definition 15. MinTrailDecomposition
Input: A graph G.
Output: A trail decomposition of G with the fewest number of trails.

Fortunately, there is an efficient algorithm finding a minimum trail decomposition by
connecting vertices of odd degree and finding an Eulerian circuit of the resulting graph.

Lemma 2 (Euler [47]). A connected graph has an Eulerian circuit if and only if every
vertex in the graph is even.
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Definition 16. Let G = (V,E) be a graph. Then Odd(G) ⊆ V is the set of all vertices
of G that have odd degree. We say such vertices are odd and all other vertices are even.

Theorem 6 (Theorem 2.3 [31]). Let G be a connected graph. Then there exists a mini-
mum trail decomposition of G that has 1

2
|Odd(G)| trails if |Odd(G)| > 0 and a single trail

otherwise.

Proof. This is certainly a lower bound for the number of trails in a decomposition since
any trail decomposition of G must have at least one trail end at every odd vertex. Thus
a minimum trail decomposition has at least 1

2
|Odd(G)| trails if |Odd(G)| > 0 and a single

trail otherwise.
We can construct a decomposition that reaches this bound by connecting all odd

vertices in G with edges in any arrangement to create a graph with only even vertices.
Then by Lemma 2 we can find an Eulerian circuit of the modified graph and remove the
introduced edges from the circuit to create 1

2
|Odd(G)| trails if |Odd(G)| > 0 and one trail

otherwise.

Since there are efficient algorithms for finding an Eulerian circuit in time O(|E|) such
as Hierholzer’s algorithm [30], we can conclude that the minimum trail decomposition
can be found in polynomial time.

Theorem 7. MinTrailDecomposition is in P .

Minimum trail decompositions admit a particularly nice structure that allows us to
test whether a trail belongs to some minimum trail decomposition efficiently. We will use
this test extensively when proving future results and when devising heuristic algorithms
for related NP-hard problems.

Theorem 6 may be generalised to disconnected graphs to obtain the following lemma.

Lemma 3. Let G be a possibly disconnected graph. Then the minimum trail decompo-
sition of G contains at least 1

2
|Odd(G)| trails with equality if and only if every connected

component of G has a non-zero odd vertices.

We may now state the necessary criteria for a trail to belong to a minimum trail
decomposition.

Proposition 3. Let G be a connected graph with non-zero odd vertices. A trail T in G
belongs to a minimum trail decomposition of G if and only if T begins and ends at distinct
odd vertices and every connected component of G\T has non-zero odd vertices.

Proof. Suppose T is a trail in a minimum trail decomposition T of G. Then T \T must
be a minimum trail decomposition for G\T . Therefore by Theorem 6

|Odd(G\T )| = 2|T \T | = 2(|T | − 1) = |Odd(G)| − 2.

When removing T from G, the number of odd vertices can only decrease if T ends at an
odd vertex. Hence if removing T from the graph decreases the number of odd vertices
by two, T must end at distinct odd vertices. Lemma 3 also tells us that every connected
component of G\T has non-zero odd vertices.

For the other direction, assume the trail T in G ends at odd vertices and that ev-
ery connected component of G\T has non-zero odd vertices, and hence |Odd(G\T )| =
|Odd(G)| − 2 by Lemma 3. Since every connected component of G\T has non-zero odd
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vertices, there exists a minimum trail decomposition T ′ of size 1
2
|Odd(G\T )|. Then the

trail decomposition T = T ′ ∪ {T} of G has size

|T | = |T ′|+ 1 =
1

2
(|Odd(G\T )|) + 1 =

1

2
(|Odd(G)| − 2) + 1 =

1

2
|Odd(G)|.

This is the minimum from Theorem 6 and therefore T belongs to a minimum trail de-
composition.

Remark 1. This also implies that in a graph with non-zero odd vertices, the minimum
trail decomposition does not contain any closed trails.

4.2.2 The Bounded Minimum trail decomposition problem is
NP-hard

We now consider the case where trails can have at most L ≥ 1 edges. We call such trails,
L-trails, their decompositions L-trail decomposition and their corresponding optimisation
problem the minimum L-trail decomposition problem.

Definition 17. MinBoundedTrailDecomposition
Input: A graph G and positive integer L.
Output: An L-trail decomposition of G with the fewest number of trails.

One might suspect that there is always an L-trail decomposition of size |E|/L or
1
2
|Odd(G)|, but this is not always the case as in the example below.

which for L = 3 has |E|/3 = 2, 1
2
|Odd(G)| = 2 but the minimum 3-trail decomposition

has 3 trails.
The minimum 1-trail decomposition is simply the edge set E. There also exists an

efficient algorithm for computing a minimum 2-trail decomposition by converting it to a
matching problem.

Proposition 4. Let G = (V,E) be a graph. Then the minimum 2-trail decomposition of
G contains

⌈
1
2
|E|
⌉
trails and can be found in polynomial time.

Proof. Observe that 2-trails in G correspond to matchings on the line graph L(G) of G. A
2-trail decomposition in G is minimal when it contains the most number of trails of length
2 of any 2-trail decomposition. This therefore corresponds to a maximum matching on
L(G). Since line graphs are connected and claw free, L(G) has a perfect matching if the
line graph has an even number of vertices [48], which corresponds to the case where G
has an even number of edges. In this case, the line graph has 1

2
|E| matches and thus

there exists a 2-trail decomposition with 1
2
|E| edges.

If G has an odd number of edges, we could remove a non-bridge edge and obtain
a graph with an even number of edges and find a perfect matching of size 1

2
(|E| − 1).

Taking each match to be a 2-trail on the original graph and implementing the removed
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edge with a 1-trail, gives us a minimum 2-trail decomposition of size 1
2
(|E| − 1). Thus

in general, we can find a minimum 2-trail decomposition of size
⌈
1
2
|E|
⌉
which is minimal

due to being comprised of the most number of 2-trails possible.
Maximal cardinality matchings can be found in polynomial time [45] and therefore

minimum 2-trail decompositions can also be found in polynomial time.

The situation is not as simple when L ≥ 3 and is in fact NP-hard. To show this, we
first proof the corresponding decision problem is NP-complete.

Theorem 8. Given a graph G = (V,E), determining whether there exists an L-trail
decomposition of G of size K ≥ 1 is NP-complete.

Proof. First note that given a solution, we can verify whether it is a valid L-trail de-
composition with K trails in polynomial time, so the problem is in NP. The rest of the
proof follows constructing a polynomial reduction from the bin packing problem which is
known to be NP-complete.

The bin packing problem can be stated as follows: given a set of n items with integer
weights (wi)

n
i=1 where wi > 1 for all i, and positive integers C and K. Determine whether

there exists a partition of the items into K disjoint sets p1, . . . , pK such that the total
weight of all items in each partition is at most C, that is,

∑
j∈pk j ≤ C for all 1 ≤ k ≤ K.

We begin by constructing a graph G with 2K vertices {ui}2Ki=1, all connected to another
vertex v. Then for each item j, construct a loop comprised of wj edges which starts and
ends at v. Since all weights are greater than one, there are no self loops and so the graph
is simple.

· · ·

· · ·
w1 · · · ···

wm

v

u2Ku1

We claim that solutions to the original bin packing problem are in one-to-one corre-
spondence with (C + 2)-trail decompositions of size K for G.

Suppose we have a (C + 2)-trail decomposition T of G of size K. First observe that
each trail in T must start and end at one of the vertices in {ui}2Ki=1. Therefore every trail
either fully traverses a particular loop or doesn’t traverse any edge in the loop. Since the
trail has length at most C + 2, subtracting the first and last edge of the trail between
v and its endpoints in {ui}2Ki=1, the sum of the edges of the loops it traverses must not
exceed C.

Each trail therefore corresponds to a partition of the items, namely the items associ-
ated with the loops it traverses that solves the original bin-packing problem. Conversely,
it is straightforward to see that any partition of the items can be converted into a (C+2)-
trail decomposition of the graph by mapping each partition to a trail that begins and
ends at one of the vertices in {ui}2Ki=1, and traverses every loop associated with the items
in the partition.

Therefore since the bin packing problem is NP-complete, the L-trail decomposition
decision problem is also NP-complete.
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Given that the decision problem is NP-complete, we can infer that the corresponding
minimisation problem is NP-hard.

Theorem 9. MinBoundedTrailDecomposition is NP-hard.

Approximating the bin packing problem with ratio smaller than 3
2
is NP-hard[49].

This therefore equally applies to the minimum L-decomposition problem as well, though
we will show in Chapter 5 that in general, the accuracy of approximation algorithms
depends on the number of odd vertices and offer a heuristic algorithm that returns an
L-trail decomposition containing no more than 1

4
|Odd(G)| trail on average.

4.3 XY Fusions

Chapter 3 already outlined the equivalence of minimising fusions in linear XY-fusion net-
works and finding minimum trail covers. In this section, we will use the results from our
discussion of path covers and trail decompositions to prove the complexity of finding min-
imum trail covers and develop the theory that underpins the approximation algorithms
in Chapter 6.

4.3.1 Minimum trail covers

Recalling the definition of a trail cover from Definition 8, we can precisely state the
general minimisation problem for trail cover and its bounded counterpart.

Definition 18. MinTrailCover
Input: A graph G.

Output: A trail cover of G with the fewest number of trails.

Definition 19. MinBoundedTrailCover
Input: A graph G an integer L.

Output: An L-trail cover of G with the fewest number of trails.

To see how trail covers may be smaller than both trail decompositions and path covers,
consider that if we can find two adjacent odd vertices where removing their common edge
does not break the graph into connect components with non-zero odd vertices, then
from Proposition 3, the 1-trail corresponding to this edge belongs to a minimum trail
decomposition. Therefore the trail cover obtained by removing this 1-trail from the
decomposition produces a trail cover with strictly less trail than is possible from any trail
decomposition.

This naturally leads to a heuristic algorithm for finding trail covers. However, selecting
edges at random will not always lead to a minimum trail cover as we can see in the graph
below.

e2e1 e3

Figure 4.1: If we removed e2, the minimum trail cover of the resulting graph has four trails.
If we instead removed edges e1 and e3 from the graph, the resulting trail cover only has three
trails and is in fact minimal. By choosing e2 we are no longer able to chose either e1 or e3
since taking them would produce a connected component with no non-zero odd vertices.
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4.3.2 The minimum trail cover problem is NP-hard

Since there are efficient algorithms for finding minimum trail decompositions, it is natural
to ask if there exist efficient algorithms for finding minimum trail covers. Here we show
that in general the problem of finding the optimal trail cover is NP-hard. We might expect
that the minimum trail cover problem should be at least as hard as the minimum path
cover problem. We confirm this intuition by showing that solutions to MinTrailCover

can produce solutions to MinPathCover on cubic graphs.

Theorem 10. MinTrailCover is NP-hard.

Proof. Let G be a cubic graph and suppose C is a minimum trail cover for G. Then
for any vertex traversed by two trails in C, one of the trails must have its endpoint at
the vertex since the degree of the vertex is three. Then retracting the trail by removing
the final edge producing a trail cover of the same size. By performing these retractions
wherever possible, we obtain a trail cover where no two trails traverse the same vertex.
Thus each trail in now a path and we have found a minimum path cover of G.

Since finding a Hamiltonian path in a cubic graph is NP-hard [50], finding a minimum
path cover is also NP-hard and therefore MinTrailCover is NP-hard.

It naturally follows that the MinBoundedTrailCover is also NP-hard.

Remark 2. This also implies the corresponding graph problem for minimising fusion
networks with linear resource states of bounded photon length is NP-hard.

Suppose we have a trail T in a cubic graph where each trail corresponds to a linear
resource state of length L. Then by the proof of Theorem 10, we see that we take T to
be a path. Then each node in the resource state has one photon for a measurement (or
for output) and one photon for every fusion that occurs at the node. Since T is in a cubic
graph, each intermediate node has one fusion and each endpoint has two fusions. Thus
the resource state consists of at most 2(L − 1) + 2 ∗ 3 = 2L + 4 photons. Therefore a
solution to the bounded photon fusion network problem of size 2L+4 is a solution to the
minimum L-trail cover on cubic graphs which we know to be NP-hard from the proof of
Theorem 10. Observe that if we had 2L+5 photons, the size of our resource states would
not change since any additional intermediate node required two photons. Therefore we
can conclude this problem is also NP-hard.

4.3.3 Maximal trail covers

We now introduce a special class of trail cover than have a remarkably similar structure
to minimum trail decompositions we call maximal trail covers. This will help guide the
development of efficient approximation algorithms in Chapter 5.

We denote the subgraph of G covered by the trail T by G(T ), and similarly, denote
the subgraph of G covered by the trail cover C by G(C).

Definition 20. A trail cover C of a graph G is maximal if C is a minimum trail decom-
position of G(C) and for any trail cover C ′ of G where G(C) ⊊ G(C ′), |C| < |C ′|.

Informally, this means that any trail cover that covers more than the subgraph of a
maximal trail cover must have strictly more trails.

The main insight in this section is that every maximal trail cover is a subset of some
minimum trail decomposition. This is important as minimum trail decompositions are
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highly structured and by establishing this link, we can carry over results and heuristics
for minimum trail decompositions to the task of finding minimum trail covers.

A closed trail is a trail whose endpoint are located at the same vertex, otherwise we
say it is open. We define the rotations of a closed trail T to be all the trails that can be
obtained by moving the end point to another vertex traversed by the trail. The rotations
of a trail is simply just the trail itself.

Figure 4.2: All possible rotations of a closed trail. The grey dashed edge denotes a vertex in
the graph where potentially multiple trails may end at.

Note that if a graph G is connected and has no odd vertices, then the minimum trail
decomposition is an Eulerian circuit which a is a minimum trail cover that is maximal.
For all other cases, we have the following proposition.

Proposition 5. Let C be a maximal trail cover of a connected graph G with non-zero
odd vertices. Then for all T ∈ C, neither T nor any rotation of T ends at a vertex with
adjacent edges in G\G(C).

Proof. Let C be a maximal trail cover for G. Then if a trail or its rotation in C ends at
a node with edges in G\G(C), we could extend the trail to include one of the edges and
obtain a trail cover of the same size which covers a larger subgraph, hence contradicting
the maximality of C.

From this proposition, we obtain two simple lemmas.

Lemma 4. Let C be a maximal trail cover of a connected graph G. Then every connected
component of G(C) has non-zero odd vertices if G has non-zero odd vertices.

Proof. Since C is a minimum trail decomposition on G(C), if there exists a connected
component S of G(C) with zero odd vertices, then there is a trail T ∈ C which is an
Eulerian circuit of S. Then if Proposition 5 holds, then no vertex in S has is adjacent to
a vertex in G\S. Since G is assumed to be connected, this implies S = G, and thus G
has zero odd vertices. Thus by the contrapositive, if G has non-zero odd vertices, then
every connected component of G(C) has non-zero odd vertices.

Lemma 5. Let C be a maximal trail cover of a connected graph G. Then vertices that
are odd in G(C) are odd in G.

Proof. Now assume that G has non-zero odd vertices. Then by Lemma 4, any trail in
C belongs to a connected component with non-zero odd vertices. Therefore since C is
a maximal trail cover which is a minimum trail decomposition on G(C), each trail in C
ends at distinct vertices that are odd in G(C). By Proposition 5 these vertices have no
adjacent edges in G\C and therefore they are odd in G as well.
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We are now able to proof the main theorem of this section which demonstrates the
link between maximal trail covers and minimum trail decompositions.

Theorem 11. A trail cover C of a graph G is maximal if and only if it is a subset of a
minimum trail decomposition of G and G\G(C) is a tree.

Proof. In the case where G has no odd vertices, maximal trail covers are exactly minimum
trail decompositions consisting of a single Eulerian tour of G and so the theorem holds.
For the rest of the proof we will consider the case where G has non-zero odd vertices.

Let C be a maximal trail cover of G and let T be a trail in C. Then from Lemma 4,
the connected component of G(C) that contains T has non-zero odd vertices. Since C is
a minimum trail decomposition on G(C), T ends at vertices that are odd in G(C) which
by Lemma 5, are odd in G as well.

Similarly, it follows that since T is in a minimum trail decomposition of G(C), every
connected component of G(C)\T has odd vertices and since odd vertices in G(C) are odd
in G, every connected component of G\T must also have odd vertices. Therefore by
Proposition 3, T belongs to a minimum trail decomposition of G. Since T was arbitrary,
we conclude that C is a subset of some minimum trail decomposition of G.

Now suppose C is a trail cover and is a subset of some minimum trail decomposition of
G and G\G(C) is a tree. Then naturally C is a minimum trail decomposition of G(C). For
any trail cover C ′ that is a minimum trail decomposition on G(C ′) where G(C) ⊊ G(C ′),
Proposition 5 tells us that every edge in G(C ′)\G(C) is adjacent to a vertex that is even
in G(C). Since G\G(C) is a tree, any subgraph of G\G(C) has non-zero odd vertices
and therefore G(C ′) must have strictly more odd vertices than G(C). Since C and C ′

are both minimum trail decompositions on a graph with non-zero odd vertices, we have
|C| = 1

2
|Odd(G(C))| < 1

2
|Odd(G(C ′))| = |C ′|. Therefore C is maximal.

Note that any set of edge disjoint paths that belong to a minimum trail decomposition
form a tree. Therefore we can find maximal trail covers by removing paths that belong to a
minimum trail decomposition and finding minimum trail decompositions of the remaining
graph. For example:

Original Minimum trail decomposition Minimum trail cover

We will formalises this intuition into a heuristic algorithm in Chapter 5.
As a final note on maximal trail covers, every trail cover can be converted into a

maximal trail cover in polynomial time of the same size. Therefore the problem of finding
minimum trail covers and that of finding minimum trail covers that are maximal are
polynomially equivalent.

Proposition 6. Given a trail cover C of a graph G, we can find a maximal trail cover C ′

such that |C ′| ≤ |C| in polynomial time.

Proof. Suppose we are given a trail cover C of G. First replace C with a minimum trail
decomposition on G((C)), denoted C ′. Then for each trail in C ′, check if it can be extended
to traverse an edge in G\C. We continue this until it is no longer possible and obtain a new
trail cover C ′′. Then for all trails in C ′′ that traverse a vertex which belongs to a closed loop
in G\C ′′, we modify the trail to traverse this loop whilst remaining the same everywhere
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else. We then replace the remaining trail cover again with a minimum trail decomposition
on G(C ′′) to obtain the trail cover C ′′′. This trail cover has the property that all of its
trails end at vertices with no adjacent trails in G\C ′′′. Therefore odd vertices in G(C ′′′)
are odd in G. Since trails in C ′′′ belong to a minimum trail decomposition removing any
of them from G(C ′′′) will produce connected components with non-zero odd vertices, and
thus the same holds if we were to remove the trail from G. Therefore trails in C ′′′ are part
of a minimum trail decomposition in G. Since we modified our trail cover to traverse any
loops in the complement graph, G\C ′′′ is loop-free and if therefore a tree.

Thus by Theorem 11, C ′′′ is a maximal trail cover. This constitutes a polynomial
reduction since each of the operations can be performed in polynomial time.
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Chapter 5

Approximating Trail covers

Previous chapters have show the NP-hardness of finding minimum trail covers and its
related problems. In this chapter we will present approximation algorithms for each
problem and prove bounds on their complexity and accuracy.

5.1 Approximating minimum L-trail decompositions

Since the minimum L-trail decomposition problem is NP-hard (Theorem 9), we will now
focus our attention on finding efficient approximation algorithms. A natural choice would
be to find a minimum trail decomposition of unbounded length of the graph and subdivide
the trails into L-trails. We will prove tight bounds on this algorithm and show that the
accuracy depends linearly on the number of odd vertices and discuss more advanced
heuristics.

Lemma 6. Let (ti)
N
i=1 and L be positive integers. Then

N∑
i=1

⌈
ti
L

⌉
−

⌈
N∑
i=1

ti
L

⌉
=

N∑
i=1

⌈
ti mod L

L

⌉
−

⌈
N∑
i=1

ti mod L

L

⌉
. (5.1)

Proof. For positive integers a and b, we have a
b
=
⌊
a
b

⌋
+ a mod b

b
. Therefore

N∑
i=1

⌈
ti
L

⌉
=

N∑
i=1

⌊
ti
L

⌋
+

N∑
i=1

⌈
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L

⌉
. (5.2)

and ⌈
N∑
i=1
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L

⌉
=

N∑
i=1

⌊
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L

⌋
+

⌈
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L

⌉
(5.3)

Subtracting (5.3) from (5.2) gives

N∑
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⌈
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L
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−
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i=1

ti
L
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⌊
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⌉
−
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⌊
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This sum is bounded above by the following inequality.

Corollary 1. Let (ti)
N
i=1 and L be positive integers. Then the following inequality holds

and is tight.
N∑
i=1

⌈
ti
L

⌉
−

⌈
N∑
i=1

ti
L

⌉
≤ N −

⌈
N

L

⌉
.

Proof. By Lemma 6, it is sufficient to show that

N∑
i=1

⌈
ti mod L

L

⌉
−

⌈
N∑
i=1

ti mod L

L

⌉
(5.4)

maximised when ti mod L = 1 for all 1 ≤ i ≤ N and is equal to N −
⌈
N
L

⌉
.

Suppose that for some 1 ≤ i ≤ N we have ti mod L = 0. Then if instead we had
ti mod L = 1, the first sum of (5.4) increases by one and the second sum increase by
at most one. Hence (5.4) does not decrease. Suppose now that ti mod L > 1. Then if
ti mod L = 1, first sum in (5.4) will not change and the second sum may decrease by
one. Hence (5.4) will not decrease in this case either.

Therefore the configuration where t1 mod L = · · · = tN mod L = 1 is no less than
any other assignment of (ti)

N
i=1 and is therefore the maximum. Substituting these values

into (5.4) gives us the desired equality.

Now we can present our approximation algorithm and prove tight bounds on its ac-
curacy.

Proposition 7. We can find an L-trail decomposition of a graph G in polynomial time
which has at most

⌊
1
2
|Odd(G)|(1− 1

L
)
⌋
more trails than the minimum.

Proof. Suppose we have a minimum trail decomposition T = {T1, . . . , TK} for some
integer K. Then subdividing each trail into L-trails produces an L-trail decomposition

of size
∑K

i=1

⌈
|Ti|
L

⌉
where |Ti| is the number of edges in the trail Ti.

A lower bound for the minimum number of trails in an L-trail decomposition is
⌈
|E|
L

⌉
,

or equivalently
⌈

1
L

∑K
i=1 |Ti|

⌉
. Hence the difference between the number of trails in T

and in the minimum L-trail decomposition is at most

K∑
i=1

⌈
|Ti|
L

⌉
−

⌈
K∑
i=1

|Ti|
L

⌉
≤ K −

⌈
K

L

⌉
=

⌊
K

(
1− 1

L

)⌋
.

where the inequality follows from an application of Corollary 1.
From Theorem 6 we know that K = 1

2
|Odd(G)| if |Odd(G)| > 0 and K = 1 otherwise.

However, in the case where |Odd(G)| = 0, this subdivision gives a minimum L-trail
decomposition anyway, so the proposition still holds.

Note that when L is larger than the length of any trail in the decomposition, it is
impossible for the case outlined in the proof of Proposition 7 to occur, and naturally
there is no error in our approximation since it is exactly the optimal solution with no
subdivisions.

This is a tight bound as can be seen in the example below where we illustrate this
subdivision algorithm. Suppose we wish to find a minimum 2-trail decomposition for the
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graph (A). We first find a minimum trail decomposition (B) and subdivide it to get 4
2-trails (C). However the minimum 2-trail decomposition has size 3 (D). This achieves the
maximum error bound stated in Proposition 7, namely 1

2
|Odd(G)|(1− 1

L
) = 1

2
×4(1− 1

2
) = 1.

D
CA B

Thus reducing the number of odd vertices increases the accuracy of the approximation.
Indeed if there are less than 3 odd vertices, then we obtain a minimum trail decomposition.
We now show that on average this trail performs twice as good as the worst case.

Proposition 8. The result of Proposition 7 on average contains at most 1
4
|Odd(G)| trails

more than the minimum.

Proof. Let T be a minimum trail decomposition, and suppose that suppose that N of
the trails in T are a multiple of L. Then on average the remaining trails Ti have length
Ti mod L = 1

2
L. Therefore substituting into (5.4) we have at most

K −N −
(K −N)(L

2
)

L
=
K −N

2

more trails than the minimum. This reaches a maximum of K
2
when N = 0. Therefore

the expected number of trails is at most K
2
more than the minimum. Substituting K =

1
2
|Odd(G)| gives the result.

Remark 3. This subdivision algorithm can be easily modified for the case of linear
resource states with a bounded number of photons. Instead of subdividing the trails based
on the length of the trail, we can subdivide based on the number of photons required in
the linear resource states implementing them. Each node in the resource state requires
one photon for each fusion that acts on it and one photon for a measurement (or for
output). We can then search for trails that belong to a minimum trail decomposition
and be subdivided based on the number of photons they require. We can then find a
minimum trail decomposition of the remaining graph and subdivide again to obtain the
entire trail decomposition.

We now establish a link between bounded minimum trail decompositions and un-
bounded counterparts.

Proposition 9. Any trail decomposition can be transformed into a minimum trail de-
composition with two rules:

• if a trail ends where another trail ends then join them together, and

• if a closed trail traverses the same vertex as another trail, join them together

These two rules are illustrated below. The dash lines represent a node in the graph
which may be traversed by multiple trails.
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⇝

⇝

Proof. Let T be a trail decomposition of G obtained by applying the two rules on some
trail decomposition. We will show that all trails in the decomposition satisfy the definition
of belonging to a minimum trail decomposition.

Let T ∈ T . If T is the only trail in its connected component, then it belongs to a
minimum trail decomposition and we are done. Now suppose that T is not the only trail
in its connected component. Then no other trail in T can end at the same vertices that
T ends at since otherwise we could have joined them. This also implies that T ends at
distinct odd vertices or both endpoints are at an even vertex and T is closed. However, if
T is closed we would have been able to apply the second rule to join it with another trail
in the connected component. Thus T ends at distinct odd vertices. Since T was arbitrary,
this implies that every trail in the connected component of T also ends at distinct odd
vertices and therefore T is a minimum trail decomposition on the connected component
of T . We can therefore conclude that every CT is minimum trail decomposition on any
connected component of G and thus T is a minimum trail decomposition on G.

Remark 4. The reduction in Proposition 9 can be used to prove Theorem 6 without the
need to invoke Euler’s Theorem.

We now present the key result that will enable us to provide a better heuristic for
finding minimum L-trail decompositions.

Proposition 10. For any graph G, there exists a minimum L-trail decomposition of G
that is a subdivision of a minimum trail decomposition of G.

Proof. Suppose we have a minimum L-trail decomposition T of G. Then by using the
reduction in Proposition 9, we are able to convert it into a minimum trail decomposition
T ′ of G. Since for each trail T in T , every edge in T is included in exactly one trail in
T ′, subdividing each trail of T ′ will produce a minimum L-trail decomposition.

To see how we may formulate this into a heuristic, suppose we have a minimum trail
decomposition T = {T1, . . . , TK} of a graph G which has K = 1

2
|Odd(G)| if |Odd(G)| > 0

and K = 1 otherwise. Then subdividing it into L-trails produces

K∑
i=1

⌈
|Ti|
L

⌉
trails. This sum is minimised when the number of trails whose length is a multiple of

L is maximum.
We can then summarise this finding by saying that MinBoundedTrailDecomposition

is equivalent to the problem of finding an unbounded minimum trail decomposition which
has a maximum number of trails whose length is a multiple of L. Hence generating all
minimum trail decompositions is NP-hard since other we could use it to find a solution
for MinBoundedTrailDecomposition which we know to be NP-hard.
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Algorithm 1.
Input: A graph G.
Output: An L-trail decomposition of G.

1. If |Odd(G)| ≤ 2, then find an Eulerian path and subdivide into L-trails and return.

2. Otherwise, search for a trail of length some multiple of L that satisfies the conditions
of being in a minimum trail decomposition.

3. Repeat Step 1 and 2 again until we can not find any more such trails.

4. Remove these trails from the graph and find a minimum unbounded trail decompo-
sition on the remaining graph.

5. Subdivide the overall trail decomposition intro L-trails and return.

Algorithm 1 terminates with a solution in polynomial time if the search algorithm
terminates in polynomial time. Since the search algorithm may fail to find a suitable
trail despite one existing, Algorithm 1 has the same approximation ratio as the original
subdivision algorithm in Proposition 7.

The search algorithm may be implemented using a breadth first search which termi-
nates after a predetermined time if no suitable trail is found. Though the search space
consists of all possible paths of a graph and is therefore exponential in size, the search
algorithm can exploit the structure of the minimum trails to speed up the search.

5.2 Approximation Minimum trail covers

We now turn our attention to the problem of finding heuristic algorithms for minimum
trail covers. From Proposition 6 we know that it is sufficient to search in the space of
maximal trail covers which have the structure of minimum trail decompositions.

We may then formalise this in to a greedy algorithm for finding a trail cover of a given
graph.

Algorithm 2.
Input: A graph G.
Output: A maximal trail cover for G.

1. Search for paths belonging to a minimum trail decomposition that traverse only edges
with degree at least two taking the shortest possible path.

2. Remove this path from the graph and continue until we can not remove any more paths

3. Find a minimum trail decomposition of the remaining graph.

4. Return the trail decomposition which is a maximal trail cover by Theorem 11.

This algorithm can be easily modified to find L-trail covers.

Algorithm 3.
Input: A graph G and an integer L.
Output: An L-trail cover for G.

1. Execute Steps 1 and 2 of Algorithm 2 to remove paths from the graph.
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2. Modify Algorithm 1 to attempt to find a trail decomposition of the remaining graph
where the length of the trails are of the form L + k(L + 1) for some non-negative
integer k.

3. Subdivide the trails into L-trails and return.

The reason we search for trails with length of the form L + k(L + 1) is because
when subdividing we can break the trail into k trails of length L by omitting the edge
between successive trails and still have a trail decomposition. See the example below for
deconstructing a trail of length 5 into three 1-trails.

⇝

Algorithm 2 may be executed in polynomial time and Algorithm 3 may be executed in
polynomial time if the search algorithm used in the invocation of Algorithm 1 is executed
in polynomial time. In the worst case we do not find any suitable trails with Algorithm 1
and so we just return a minimum trail decomposition of size 1

2
|Odd(G)|. It may be the

case that the minimum trail cover contains only one trail, and therefore our solution
contains at most 1

2
|Odd(G)| − 1 more trails than the minimum.

Remark 5. Algorithm 3 is based on subdivision and is therefore easily adapted to the
problem of minimising fusions fusion networks with resource states with bounded photons
in the same way as previously outlined in the case of the heuristic algorithm for minimum
L-trail decompositions.

5.2.1 Reduction to Travelling Salesman Problem

The Travelling Salesman Problem (TSP) is one of the most well known and widely studied
problems in computer science. The problem is to find a Hamiltonian cycle in a weighted
graph that minimises the sum of the edges it traversed. Despite being NP-hard, many
advanced heuristics and optimisations exist to allow the TSP to be solved efficiently for
graphs containing thousands of vertices [51].

We will show how the minimum trail cover problem can be reduced to an instance
of the graph-theoretic TSP and therefore may leverage existing solvers. We define the
multi-visit TSP to be a variant of the TSP where we relax the requirement of finding
a Hamiltonian cycle to that of finding a trail that visits every vertex in the graph. We
then show how the multi-visit TSP can be solved with the original TSP to conclude the
reduction.

Proposition 11. Let G = (V,E) be a graph with non-zero odd vertices. Define G′ =
(V ′, E ′) to be the weighted undirected graph obtained by starting with G and adding an
addition vertex v, V ′ = V ∪ {v}, additional edges between v and odd vertices of G,
E ′ = E ∪ {(v, w) | w ∈ Odd(G)}, and setting the weight of edges in the original graph G
to be zero, and the weight of the new edges adjacent to v to be one. Then solutions to the
multi-visit TSP on G′ correspond to minimum trail covers on G that are maximal.

Proof. Let T be a solution to the multi-visit TSP on G′ with total weight W . Then by
removing edges from T that are adjacent to the added vertex v, we obtain a trail cover
on G ⊂ G′ of size W/2.

Similarly, given any minimum trail cover that is maximal, we know from Theorem 11
that trails in C belong to some minimum trail decomposition and hence each trail ends
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at distinct odd vertices (Proposition 5). Thus we can construct a solution to the multi-
visit TSP problem by connecting trails through the added vertex v. Since there are |C|
trails and each edge adjacent to v has weight one, the resulting trail has a total weight
of 2|C|. This is the same weight as was obtained by the solution to the multi-visit TSP
and therefore the trail cover obtained from the solution is a minimum trail cover that is
maximal.

This procedure is illustrated in the example below where we begin with the original
graph (1), then add the vertex v with edges of weight one (2), then find a solution to the
multi-visit TSP (3) and finally take the image of the solution of the original graph to be
our minimum trail cover (4).

v

v

⇝ ⇝

⇝

(1) (2)

(3) (4)

Note that we can adapt this result to the normal TSP by replacing each node in G′

with degree d > 2 with a complete subgraph of size d. Under this transformation, all
trails in the original graph become paths and so solutions to the multi-visit TSP become
solutions to the TSP on the new graph.

An example is drawn below where the original graph on the left has a trail that begins
and ends at the vertex s and covers every vertex in the graph, however it traverses one
vertex twice and so is not a solution to the TSP. The graph on the right has undergone the
transformation outlined above and so the solution to the multi-visit TSP now corresponds
to a solution to the normal TSP and hence to a minimum trail cover.

⇝

s s

35



Chapter 6

Graph Rewrites for fusion networks

In this section we outline several strategies for transforming graphs to generate fusion
networks with fewer fusions. We will use the techniques from the previous chapters to
develop graph rewrites strategies which modify the graph state to reduce the number of
required fusions and enhance the performance of the approximation algorithms developed
in Chapter 5. The algorithms here will normally reduce the number of edges in the graph
state and so will be of some utility for fusion networks created with star resource states,
however we note that the algorithms presenting in [29] would be more useful in this case.

From Chapter 4 we know that without graph rewrites, finding linear XY-fusion net-
works with the minimum number of fusions is NP-hard in all cases except for the case
of X fusions with resource states of unbounded length. It is unknown whether these
problems remain NP-hard even when allowing rewrites, and so we will instead present
rewrite strategies which heuristically reduce the total number of fusions.

In order for the open graph to be deterministically implementable, we require that
our rewrites preserve gflow in the graph. Backens and McElvanney[41] showed that local
complementation and Z-deletion (and their inverses) preserve gflow and are sufficient to
transform any two labeled open graph with gflow and the same target linear map into
each other, and so we these are the only two graph transformations we will consider here.

Our main optimisation stems from the fact that the number of fusions required to
implement a graph state with a given trail cover C is

|E| − |V |+ |C|. (6.1)

From (6.1) we can reduce the number of fusions in a linear XY-fusion network by
either decreasing |E| and |C| or increasing |V |. Finding a trail cover C such that |C| is
minimal was the topic of Chapter 4. In this section we primarily focus on reducing the
number of edges in the graph state.

We remark that one may ask whether we can transform any graph into one with
bounded tree-width and so we could solve the trail cover problems in polynomial time.
This is not possible however as tree-width is bounded below by rank-width [29] and since
the rank-width is invariant under local complementation then we can’t reduce it to an
arbitrary size.

6.1 Reducing Y Fusions

In this section, we look at rewriting graphs to reduce the number of Y fusions required to
implement linear Y -fusion networks. In general, Z-deletions increase the number of edges
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in the graph and hence the number of fusions. However, there is one special case which
we can show will never increase the number of Y fusions required in a linear Y-fusion
network.

Definition 21. Given a graph with a triangle, complementing the triangle means using
inverse Z-deletion to add a vertex to the graph that is connected to the three vertices of
the triangle. Then performing local complementation on the vertex.

⇝ ⇝

Figure 6.1: Complementing a triangle by first adding a new node connected to the vertices of
the triangle and performing a local complementation about it.

Complementing the triangle keeps the number of edges the same but increases the
vertices by one. Therefore by (6.1) it will decrease the number of fusions if the path cover
stays the same size or increases by one. We will now show that indeed this is always the
case.

Theorem 12. Complementing a triangle will never increase the minimum number of
required fusions to construct a graph state from an unbounded linear resource state using
Y fusions.

Proof. Assume we have a triangle and some minimum path cover P . We will show that
we can always update P after complementing the triangle such that the number of fusions
never increases.

Consider the cases where the triangle contains either 0, 1, or 2 edges from the cover.
It cannot contain 3 edges as this would imply the paths are not vertex disjoint. These
cases are illustrated in Figure 6.2 alongside a modified path flowing through the triangle
which does not increase the number of fusions.

⇝ ⇝ ⇝

Zero paths One path Two paths

3 fusions 3 fusions 2 fusions 1 fusion 1 fusion 1 fusion

Figure 6.2: Complementing the triangle never increases the number of fusions. The thick blue
lines represent a edges belonging to the path cover, and the dashed lines are edges that must be
fused.

We note that this result may not hold in general for the case of bounded path covers.
Although it is easily to generalise this technique to cliques of arbitrary size. For cliques
of size four or greater, it is easy to see that the number of fusions does not increase since
when n = 4 the number of edges reduces by 2 and vertices increases by 1. However
note that edges in 4-clique could be traversed by at most two paths, so complementing
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the clique will at most, split one path into two and increase the size of the path cover
by one. Therefore from (6.1) we will always strictly decrease the number of fusions by
complementing cliques of size four or greater.

We can then formulate these and the general local complementations into an algo-
rithm.

Algorithm 4.
Input: An open graph.
Output: A fusion network with linear resource states and Y fusions.

1. Apply local complementation whenever it strictly reduces the number of edges.

2. Complement all cliques.

3. Find a path cover of the resulting graph

4. Convert the path cover into a fusion network and return.

Algorithm 4 will terminate in a finite number of steps since Step 1 will terminate
because it strictly reduces the number of edges in the graph at each step, and Step 2 will
terminate because there is a finite number of triangles in the graph and complementing a
triangle does not induce any other triangles in the graph. This can be seen from Figure 6.1
where there can not be any new triangles formed by the new edges.

Step 1 is a heuristic and will not always find the optimal equivalent graph state that
requires the fewest fusions to implement. An example of such a situation is illustrated in
Figure 6.3.

⇝ ⇝ ⇝

Figure 6.3: The ring graph state is transformed into a linear graph state requiring fewer
fusions through a series of local complementation. However, any local complementation applied
to the ring will increase the number of edges in the graph state and so our Step 1 procedure
would not apply any rewrites, and therefore does not always find the optimal graph state.

We also obtain a slight reduction in the number of edges in the graph, which may
reduce the time required to find the minimum path cover, however the there is a trade-off
in the number nodes and number of edges.

6.2 Reducing X fusions

Reducing the number of edges will also help reduce the number of X fusion and so we
may use the same rewrites as in the case of Y fusions. Though in the case of X fusions, we
have the advantage that we know the number of odd vertices will increase the number of
fusions in the unbounded case (Theorem 6) and will reduce the accuracy of our heuristic
algorithm in the case of bounded trails (Algorithm 1). Therefore our rewrites should aim
to reduce both the number of edges and the number of odd vertices, which will require
us to add additional preconditions on the rewrites from the previous section.

Proposition 12. Complementing the triangle reduces the number of X fusions required
with resource states of unbounded length.
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Proof. Let G = (V,E) be the graph and S ⊂ G be a triangle in G. Then after comple-
menting the triangle we obtain the graph G′ = (V ′, E ′) and the number of odd vertices
will increase by 4 − 2|Odd(S)|. The total number of edges in the graph have stayed the
same, so |E ′| = |E|, but the number of vertices has increased by one, so |V ′| = |V | + 1.
Let T be a minimum trail decomposition for G. Then the number of fusions required to
implement the graph will increase by

|E ′| − |V ′|+ |T |+ 1

2
(4− 2|Odd(S)|)− (|E| − |V |+ |T |) = 1− |Odd(S)|

Therefore the number of required fusions only decreases when there are two or more odd
vertices in the triangle.

However, this does not hold in general for bounded trail decomposition as we can see
in the counterexample below which is a minimum trail decomposition if therefore the
optimal 4-trail decomposition.

⇝

If we were to complement the triangle we get the following graph whose minimum
4-trail decomposition.

⇝

The original graph required six 4-trails whereas after complementing the triangle, the
new graph required eight.

In addition to complementing cliques, we may also greedily locally complement ver-
tices whenever it reduces the number of edges plus odd vertices. The following example
illustrates the important of reducing odd vertices well.

G∗v
⇝

v v

Local complementation about the vertex v keeps the number of edges the same but
reduces the number of odd vertices from 6 to 2. This means we can implement the
graph using fewer unbounded trails and hence less X fusions, and also that we can find

39



the optimal solution for the bounded trail case by simply subdividing a minimum trail
decomposition. The latter reason is important and may grounds to prioritise reducing
the number of odd vertices over reducing the number of edges.

We still suffer from the same local minima problem as with the rewrite strategy for
Y fusions however. For example, in the following figure, if we first complement by node
v, then we get stuck in a minima, whereas it would have been better to first complement
by w.

v

v
→

G ∗ v

w

w
→

G ∗ w
w

→
G ∗ v

To help overcome this limitation, we experimented with a simulated annealing ap-
proach with moderate success and tabulated the results in Chapter 8.

6.2.1 Reducing XY Fusions

To reduce the number of fusions in linear XY-fusion networks, we may use the rewrite
rules for the X fusions case as they are the same as the case for Y fusions but with more
preconditions. We do not prove that these will always reduce the number of fusions but
instead use them as a heuristic, which the benchmarks in Chapter 8 show to be quite
effective.
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Chapter 7

Full-stack compiler for FBQC with
linear resource states

In this section we describe a photonic compiler for a specific type of fusion-based archi-
tecture proposed in [10]. In the paper, the authors present three main stages in their
compilation pipeline: open graph, fusion network, and the optical protocol.

The open graph is the original formulation of the MBQC algorithm at a high level.
The fusion network is the implementation strategy used to execute the open graph and
is hardware agnostic, though different hardware may work better with different types of
fusion networks. The optical protocol is the concrete set of hardware instructions that
are executed to implement the fusion network.

Previous chapters have addressed the problem of translating open graphs to fusion
networks. Here we will present the problem of converting fusion networks to optical
protocols as well as highlighting architectural details which we can use to find better
fusion networks which have more performant optical protocols.

Since computations in near-term quantum computing occur incredibly fast, the main
factor we wish to optimise in our compilation procedure minimising error. Here we present
the class of architectures proposed in [10] but restricted to the case of X and Y fusions.

M

F

(1)
(2)

(3)

(4)

(5)

This architectures consists of the following components: (1) linear graph state gener-
ator, (2) fusion module, (3) a measurement module, (4) line, and (5) a photon router.

In these architectures, a single quantum emitter emits a stream of entangled pho-
tons in the form of linear cluster states of arbitrary length. One photon is released per
timestep during which it is fed into a photon router which directs the photons into either
a measurement module, fusion module, or delay line.

The measurement module performs an arbitrary single qubit measurement on the
photon, the fusion module performs either an X or Y fusion on the photon and another
photon from the delay line, and the delay line holds the photon for a predetermined
period of time before directing it into the fusion or measurement modules.
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We refer to this as a class of architectures as there are many possible constraints a
physical setup could place of the operations we can perform. The primary choices to be
made are: how many photons can be held in a delay line and for how long, whether a
measurements and a fusion can be performed on separate photons during the same time
step, and the number of photons that can be measured simultaneously during a given
time step. We will fix a concrete architecture in Section 7.1 to act a compilation target
which we can then analyse and optimise for.

We note that the primary sources of error in this model arise from photon loss in the
router and delay line, and fusion failures. The probability of photon loss when passing
through the router is p and there is a e−µt chance of photon loss in the delay line when
held for time t and µ is some constant.

Assuming the probability of fusion failure is 50% and the probability of photon loss
from the delay loop is exp(−µt) where t is the delay time and µ > 0 is a small constant.
The error can therefore be formulated as:

P (µ, p, d1, . . . , dn) = pn2−F
n∏
i=1

exp(−µti) = 2−F exp(−µ
n∑
i=1

ti)

where there are n photons and ti is the delay for photon i. Note that pn is minimised
when the number of fusions is minimised. Therefore our optimisation problem is find to
minimise P (F , µ) which amounts to minimising fusions and minimising the sum of the
delay times.

We will now define a set of instructions called an optical pattern that can characterise
any computation on this class of architectures and which allows us to precisely evolute
the error associated with a particular implementation in our simplified error model.

Definition 22 (Optical Pattern). An optical pattern is a sequence of pairs. The first
element the pair is a photon emission command

• N : Emit an entangled photon.

• NH : Emit a photon that has changed basis.

and the second element is a router command.

• F [d]: Fuse a photon. d is an integer denoting an optional time to delay the photon
before it is fused.

• M [d]: Measure a photon. d is an integer denoting an optional time to delay the
photon before it is measured.

The only rule regarding the ordering of the sequence is that when fusing a photon,
there must be another photon coming out of the delay at the same time.

We need not consider the case where we need to fuse two delayed photons since De
Felice et al. [10] showed that correction never need to be performed at fusions, and so
there is no need to delay the second photon before performing the fusion.

This calculus bears a close resemblance to the commonly used measurement calcu-
lus [52]. However the main difference is the photon emission command and the X fusion
operation, which is a non-unitary projection and so isn’t easily expressed in the measure-
ment calculus.
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Note that we have not included the measurement angles or fusion types necessary
for the calculus to completely describe any quantum computation. This is because our
purpose is to use to analyse errors arising from delays and fusion and leave the full
characterisation as future work.

Given an optical pattern P , we define the total delay of P to be the sum of the total
delays of each photon. If D is the total delay of P , then we define the total error of P

E(P, µ, p) = pn2−F exp(µD)

where µ and p are constants and F is the number of fusions in P .
If the probability of photon loss in the delay line is low, the problem of minimising

error simply becomes to minimise the number of fusions. In this case, the problem is
exactly that considered in previous sections. We will now consider the case where the
probability photon loss is high.

7.1 Minimising delays on SEMM devices

In order to precisely state the error associated with a fusion network, we must first fix a
concrete architecture to act as a compilation target.

Here we define the notion of a single emitter-multiple measure device as a simple
concrete architecture with a well defined error model with which to analyse the problem
of reducing errors.

Definition 23 (SEMM). A single emitter-multiple measure device is a single emitter
architecture which does not restrict the number of number of photons we can measure
simultaneously or hold in a delay line. An optical protocol on such a device has no
additional constraints.

Relieving any restriction on the number of photons which can be delayed at the same
time prevents a cascade of photons from preventing others from being measured and
greatly simplifies the analysis and allows us to define the minimisation problem.

Definition 24. MinErrorFusionNetwork
Input: An open graph G, and real constants µ and p.
Output: An optical pattern P that is executable on an SEMM machine and implements
G such that E(P, µ, p) is minimised.

If you have a variable number of emitters then the problem becomes much simpler
since the partial order given by gflow induces a DAG on the graph and would be able
to be efficiently implemented if we have the same number of emitters as the width of
the DAG. In this case, no photon would need to enter a delay line if photons could be
emitted asynchronously.

Note that there is not a canonical translation between fusion networks and optical
patterns. Since given a linear XY-fusion network F = (G, I,O,X, Y, λ, α) where G is
the disjoint union of linear graphs R1, . . . , Rk, there is a choice to be made as to which
order to emit the resource states in (there are k! possible combinations), and from what
end of each linear graph we should start emitting from. Hence, given a linear XY-fusion
network, creating an optical pattern which have minimum delay is also a minimisation
problem with an exponential search space.
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Not every minimum trail cover will produce an optical pattern with the smallest delay.
For instance, consider the fusion networks below which have inputs a and b and outputs
e and f . The fusion networks F1 and F2 drawn below are both minimum trail covers but
have different delay structures. This is because in order for fusion to occur, one photon
must wait for the other photon to be emitted. The vertices in the graphs below have
been annotated with the time stamp at which the photon for each vertex was emitted.

1

2

3 4

5

6e

c

a b

d

f 5

4

1 2

3

6

Target graph F1 F2

We can see in this example that in the first fusion network F1 the fusion photon in
node e are delayed for 5 time stamps and the photons in c are delayed for three time
stamps which gives a total delay of 8. In the second fusion network F2, the photons a
and d are delayed for 3 timesteps which gives a total delay of 6. Therefore the second
fusion network is when the probability of photon loss is high.

In general, emitting photons that are lower in the partial order given by gflow on the
open graph (such as the inputs) will reduce the total delay of the optical protocol. We
can encode this fact into a heuristic algorithm for finding fusions networks with the goal
of minimising the total delay.

Algorithm 5.
Input: A graph G and a partial order ≺ of the vertices of G.
Output: A fusion network F that implements G.
Hyperparameters: A loss function which takes a tuple of integers as inputs

1. Assign a number called the “layer number” of a node based on the partial order ≺.
Higher layers require nodes from the lower layers to be measured first. Layer 0 can be
measured immediately.

2. Start at a node with the smallest layer number and search for a trail of length L that
minimises the loss function when supplied with the layer numbers associates with all
the nodes in the trail.

3. Remove the trail from the graph and repeat Step 2 until the graph is covered.

4. Return the trail cover

We experimented with loss functions corresponding to the L1, L2 and Lmax norms and
found the Lmax norm to be the most successful for small L and L2 to be more effective
for larger values of L. The intuition is the guide the algorithm into finding paths with
nodes that have small layer numbers. These nodes correspond to vertices lower in the
partial order and as such, do not have to be delayed as long before they are measured.

L1(x1, . . . , xn) =
n∑
i=1

xiL2(x1, . . . , xn) =
n∑
i=1

x2iLmax(x1, . . . , xn) = max
i
xi
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Chapter 8

Benchmarks

8.1 Graph rewrites

8.1.1 Y fusions

To test the effectiveness of Algorithm 4 for transforming graph to reduce the number of
Y fusions, we benchmarked its performance on all connected graphs with less than 10
vertices. For every graph we calculated a minimum path cover before and after applying
Algorithm 4 and recorded the results in Table 8.1.

Additionally, we were able to experimentally verify that greedily locally complement-
ing vertices whenever it decrease the total number of edges never increases the size of the
minimum path cover when the graph has less than 9 vertices. There is does exist a graph
with 9 vertices however that fails to hold.

We can see that on average Algorithm 4 reduces the number of required fusions to
construct the graph state by more than 50%. Though the data is limited, it shows a trend
that that the algorithm becomes less effective at reducing fusions as the size of the graph
increases. It is therefore possible that it will cease to be an effective heuristic beyond a
certain graph size.

Vertices
No. Fusions No. Edges No. Nodes

Before After Perc Before After Perc Before After Perc
3 0.50 0.00 0% 2.50 2.00 80% 3.00 3.00 100%
4 1.33 0.50 38% 4.17 3.17 76% 4.00 4.00 100%
5 2.38 0.90 38% 6.19 4.57 74% 5.00 5.00 100%
6 3.71 1.50 40% 8.49 6.28 74% 6.00 6.19 103%
7 5.37 2.17 40% 11.20 8.29 74% 7.00 7.46 107%
8 7.53 3.19 42% 14.41 10.83 75% 8.00 8.92 112%
9 10.28 4.53 44% 18.22 13.92 76% 9.00 10.57 117%

Table 8.1: Change in the average number of fusions, edges, and vertices before and after
applying Algorithm 4 to a graph state.

To analyse the performance on larger graph, we ran Algorithm 4 on randomly gen-
erated graphs with different levels of sparsity. A graph with edge density p means that
each edge has probability p of being present in the graph. We repeated the experiment
for graphs with 20 vertices and 50 vertices.
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Figure 8.1: Average reduction in the number of edges after applying Algorithm 4.

It is clear that the algorithm is most effective on dense graphs. This is because local
complementations are only performed when the number of edges strictly decreases. In
fact, using this simple procedure any graph can be reduced to one with density less than
0.5. For dense graphs, we see a much greater reduction in the number of edges due to
tendency for local complementations to significantly reduce the number of edges. This is
most easily seen in the case of complete graphs where locally complementing any vertex
will transform the graph into a star graph — the sparsest connected graph.

It is also worth pointing out that the graphs with 50 vertices were not reduced as
much as the graphs on 20 vertices, and they appear to plateau around an edge density
of 0.5. This could be due to the algorithm being caught in local minima which may be
mitigated by more advanced algorithms such as simulated annealing.

8.1.2 X fusions

Here we applied the graph rewriting procedure for reducing X fusions (Algorithm 1)
on all graphs with a fixed number of vertices and found the average number of fusions
required to implement the resulting graph. We display results from two variations of our
algorithm, one using a greedy approach to perform local complementations and one using
simulated annealing. Alongside these results we have included the theoretical optimum
that could be obtained by using the most efficient rewrites.

Vertices Before Optim Greedy Sim. Annealing Theoretical Optimum
3 0.50 0.00 0.00 0.00
4 1.50 0.50 0.33 0.33
5 2.52 0.71 0.71 0.52
6 4.14 1.67 1.50 1.05
7 5.98 2.80 2.46 1.65

Table 8.2: Average minimum number of X fusions required to implement a graph state before
and after applying the graph rewrites.

We can see that the simulated annealing approach outperforms the greedy approach
in all situations which is to be expected. On average the number of fusions reduces by
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significantly for smaller graphs but begins to move closer to 50% for larger graphs which
reflects the results from Y fusions case.

8.2 Approximation Algorithms

We have implemented the heuristic trail cover finding algorithms from Chapter 5 and
benchmarked their performance by running then on common error correcting codes to
compare how the graph rewrites reduce the number of fusions.

Here we use common error correcting codes, namely star graphs [53, 54] — which
are used in the original formulation of FBQC [24] — lattices [55], trees [56, 57] and
repeaters [58].

4-star 3-repeater6-cycle (3, 3)-lattice (3, 2,2)-tree

Graph Y X XY
6-vertex star 3 2 2
12-vertex star 9 5 5
18-vertex star 15 8 8
24-vertex star 21 11 11
(3,3)-lattice 4 5 4
(4,4)-lattice 9 12 9
(5,5)-lattice 16 21 16
(6,6)-lattice 25 32 25
(2,2,2)-tree 7 6 4
(3,3,3)-tree 26 13 13
(4,4,4)-tree 63 41 33
3-repeater 13 12 12
4-repeater 26 24 24
6-repeater 63 60 60

Table 8.3: Benchmarks for unbounded length resource states

This table illustrates well the various scenarios in which Y fusions can outperform
X fusions and vice versa. We can see quite clearly that X fusions greatly outperform
Y fusions on the star graphs due to the high degree of the central vertex of the graph.
However in the case of lattices, Y fusions outperform X fusions since there is a Hamiltonian
path of the graph which means the minimum path cover of the graph consists of a single
path, whereas any trail decomposition must contain many trails due to the high number
of odd vertices. It is also worth mentioning that we can see that the minimum trail covers
we find do no worse than either of the trail decompositions or path covers which is to be
expected.
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Since most error correcting codes are sparse, there were no opportunities to apply
effective graph rewrites except in the case of k-repeater codes which contain a complete
subgraph of size 2k which can be locally complemented to greatly reduce the number of
fusions required to implement it.

Graph
Before reduction After Reduction
Y X XY Y X XY

3-repeater 13 12 12 8 9 7
4-repeater 26 24 24 12 13 10
6-repeater 63 60 60 20 21 16

Table 8.4: Fusions required to implement repeater codes before and after applying graph
rewrites.

We remark that repeater graphs would be benefit from n-ary Y fusions which apply
a Y fusion between all nodes with probability 2−(n−1) of success. This is contrast to
manually performing 1

2
n(n − 1) separate Y fusions or introducing a node and locally

complementing to get n edges which would have a probability of success of 2−n. We leave
an analysis of n-ary fusions as future work.

Graph Y X XY
6-vertex star 3 2 2
12-vertex star 9 5 5
18-vertex star 15 8 8
24-vertex star 21 11 11
(3,3)-lattice 6 9 7
(4,4)-lattice 14 21 15
(5,5)-lattice 24 37 26
(6,6)-lattice 36 56 42
(2,2,2)-tree 8 8 5
(3,3,3)-tree 27 19 19
(4,4,4)-tree 64 49 36
3-repeater 15 20 18
4-repeater 28 39 35
6-repeater 66 94 84

Table 8.5: Benchmarks with L = 2

Observer that X fusions does far worse for smaller resource states. This is because
it is far more economical to have Y fusions introduce an edge which is already half the
size of the resource state. A linear graph state of length 5 can be implemented with 2 Y
fusions and 3 1-trails, but requires 4 X fusions when using 1-trails as illustrated below.

Y fusions X fusions

In general, a line of length |E| edges could be implemented with |E|/2 trails (ideally),
but |E|/3 paths with Y fusion. Hence in the case of many graphs that contain long lines
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such as lattices and repeaters, the number of X fusion requires is approximately 50%
higher than Y fusions.

Since our XY algorithm is built on top of the algorithm for X fusions, it tends to fair
worse in these cases as well, resulting in a fusion network with slightly higher fusions.
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Chapter 9

Future work

One simple way to reduce the number of photons required would be to use n-ary fusions.
n-ary X fusion for example has the same probability of success of normal 2-ary fusions,
but fusing n nodes together with one n-ary fusion required n photons, whereas with
normal 2-ary fusion it would require a total of 2n photons. However the architecture
described in Chapter 7 would need to change significantly to support these fusions and
it would impact the time photons spend in delay lines which may increase the overall
error of the compilation pipeline. n-ary Y fusions are able to implement the complete
graph on n nodes with probability 2−n+1 which outperforms the normal 2-ary Y fusion
case which has probability 2−n of success (by using a Z-deleted node), though it suffers
from the same architectural concerns as the n-ary X fusion case.

The complexity classes of the original problems we defined in Chapter 3 regarding min-
imising fusions in fusion networks, that is MinXYFusionNetwork, MinBoundedXYFusionNetwork,
and MinBoundedPhotonXYFusionNetwork remain unknown despite knowing that the prob-
lem of finding minimum trail covers in NP-hard. We conjecture that these problem are
also NP-hard but have not yet found an suitable argument to support it.

Recent fusion-based architectures include the ability to locally complement a resource
state before fusions are applied which may yield fusion networks with fewer total fu-
sions [27, 28]. As a trivial example, any graph state that can be reach from a linear
graph state through local complementation could be realised with zero fusions in this
architecture. This is incompatible with the architecture detailed in Chapter 7 and the
definition of fusion network in Chapter 2 and so further work required to extend the
results to this case.
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Appendix A

Probability of Fusion success

Here we will proof the probability of fusion success for any general type of fusion used in
a FBQC protocol. The proof is forumated in the ZX calculus which we will not introduce
and instead refer the reader to [59] for a more thorough introduction.

Lemma 7. For any angle β ∈ [0, 2π).

−ββ = cosβ

Proof. We can simplify the diagram as follows. Here we use an implicit summation
notation where every term containing the value of k is actually a sum over k ∈ {0, 1}.

−ββ
−β

β
β

−β

β

−β

β + π

−β + π
+ π =

β

−β

β + π

−β + π

π

π
+

π

π
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β + π

−β + π

π

π
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== = =
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−β + π
+

=
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1
2

1
2

1
2

1
2

1
2

1
2

1
2

kπ

kπ
−β

β

kπ
β + kπ

−β + kπ
kπ

Then the last constant simplifies from the fact that

α = 1
2
(1 + eiα)
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and hence

β

−β

β + π

−β + π
+

=
1

4
(1 + eiβ)(1 + e−iβ)− 1

4
(1 + ei(β+π))(1 + ei(−β+π))

=
1

2
(eiβ + e−iβ)

= cos β

Therefore

−ββ = +
π

π

1
2
cos β1

2
= cosβ

In our case we consider the repeat until success model where the two photons we are
fusing have output wires, this is necessary because if fusion fails then we need to retry it.

Proposition 13. Consider the diagram below where U and V are unitary operations with
Euler decompositions U = Z(γ)X(β)Z(α) and V = Z(γ′)X(β′)Z(α′), and the inner Z
spider is a probabilistic operation referred to as fusion.

γ

α

α′

γ′

β′

β

ψ

Then the probability of fusion success given the state |ψ⟩ is

P (ψ) =
1

2
+

1

2
cos β cos β′⟨ψ|Z ⊗ Z|ψ⟩

Proof. The inner Z spider is a (non-deterministic?) projector and so discarding the
outputs and undoubling the wires gives us the probability of the projector (and hence
fusion) succeeding.

γ

α

α′

γ′

β′

β

ψ
−γ

−α

−α′

−γ′

−β′

−β

ψ
β′

β

ψ
−β′

−β

ψ=

Then apply Lemma 7 to obtain
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β′

β

ψ
−β′

−β

ψ = ψ ψ = ψ ψ

= ψ ψ ψ ψ1
2

1
2
cos β cos β′ π

π

ψ ψ ψ ψ1
2

1
2
cos β cos β′

π

π

+

+=

cosβ

cosβ′

cosβ cosβ′

Since we |ψ⟩ is normalised, the first term in the sum equals the constant 1
2
. Therefore

the probability of fusion success for the given state |ψ⟩ is

Pψ =
1

2
+

1

2
cos β cos β′⟨ψ|Z ⊗ Z|ψ⟩.

Corollary 2. The angles α, γ, α′, γ′ do not affect the probability of fusion success.

Corollary 3. Write |ψ⟩ = a0|00⟩+a1|01⟩+a2|10⟩+a3|11⟩. Then the probability of fusion
success is always 50% for all angles β and β′ if and only if |a0|2 + |a3|2 = |a1|2 + |a2|2.
Proof. Observe that ⟨ψ|Z⊗Z|ψ⟩ = |a0|2−|a1|2−|a2|2+|a3|2 = 0. Therefore P (ψ) = 1

2

Corollary 4. Every graph state has 50% chance of fusion success regardless of β or β′.

Proof. Every entry in the vector corresponding to a graph state has equal modulus,
therefore Corollary 3 applies.

Corollary 5. The probability of fusion success is constant for all inputs if any only if
either β = π

2
or β′ = π

2
, and the probability is 50%.

Proof. P (ψ) can only be constant for all inputs if the term cos β cos β′⟨ψ|Z ⊗ Z|ψ⟩ is
constant. Since ⟨ψ|Z⊗Z|ψ⟩ is not constant for all inputs |ψ⟩ and therefore cos β cos β′ = 0
which implies either β = π

2
or β′ = π

2
.

There are some limitations on the fusions we consider for implementation since it
is preferred to be “green fusions”, where if there is fusion failure (something I haven’t
discussed yet) then it should not destroy the rest of the graph.

Corollary 6. Green fusion succeeds with constant probability 50% for all inputs.

Proof. Green fusion is a special type of fusion where β = β′ = π
2
.

Theorem 2. The probability of X and Y fusion success when executing on a fusion
network is 50%.
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