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Abstract

In this thesis of two Parts, we investigate the application of categorical methods to
modelling post-quantum theories.

In Part I we study hyper-decoherence between quantum-like theories. Chapter 1
serves as an introduction to Categorical Probabilistic Theories which combine elements
of Categorical Quantum Mechanics and Operational Probabilistic Theories, and to
CPM categories which generalise the CPM construction of Selinger to allow for richer
group symmetries. In Chapter 2 we study the theory of density hypercubes which
exhibits a hyper-decoherence mechanism witnessing quantum theory as an effectful
subtheory. We show that this hyper-decoherence process is probabilistic within the
theory of density hypercubes and discuss some plausible operational interpretations of
this. As a result, we side-step a no-go result regarding the existence of deterministic
hyper-decoherence maps, showing that it is nevertheless possible for a post-quantum
theory to possess probabilistic hyper-decoherence maps. In Chapter 3 we focus on
a particular case of the CPM construction, where the symmetries are generated by
the Galois group of a finite field extension. We discuss how to construct probabilistic
theories which form towers of decoherence in bijection with the subfields of a Galois
extension. These towers generalise the decoherence process of standard quantum
theory.

In Part II we study profunctorial methods and their application to spacetime and
quantum supermaps. Chapter 4 serves as an introduction to profunctors, promonoidal
categories and premonoidal categories, including the enriched version of the latter.
Chapter 5 introduces some toy categories of causal curves in spacetime and discusses
how we might upgrade the partial monoidal structure of such categories to a total
tensor using both pre- and promonoidal categories. Chapter 6 makes this combination
of pre- and promonoidal categories more formal, introducing the notion of a pro-
effectful category. In the final Chapter 7 we describe how we can use the category of
coend optics as a model of quantum combs. We describe the promonoidal structures
on this category and their interpretation as horizontal and vertical composition of holes
in monoidal categories. We also generalise coend optics to allow for a premonoidal
base category, and point towards how the methods of this Chapter might be extended
to include arbitrary quantum supermaps.



Contributions

Alongside some small changes in presentation and the inclusion of more background
material, this thesis is largely based on work from the papers [96, 95, 97, 94, 72, 98].
Part I focuses on hyper-decoherence between probabilistic theories and is taken from
the following two works co-authored with Stefano Gogioso.

[96] James Hefford and Stefano Gogioso. Hyper-decoherence in Density Hypercubes.
EPTCS, 340:141–159, 2021. doi: 10.4204/eptcs.340.7. In Proceedings QPL
2020.

[95] James Hefford and Stefano Gogioso. CPM Categories for Galois Extensions.
EPTCS, 343:165–192, 2021. doi: 10.4204/eptcs.343.9. In Proceedings QPL
2021.

I was the lead author of both of these works, and carried out the majority of the
research contained therein. Stefano suggested the original idea of studying the phase
groups of density hypercubes and trying to find a causal completion of its hyper-
decoherence map, but the results are my own. Similarly, Stefano suggested studying
CPM categories that were generated by Galois extensions, but the intricaces of the
resulting decoherence towers and the tools required to study these were developed by
myself.

Chapter 2 is based upon [96] and Chapter 3 is based upon [95]. Chapter 1 is
contains a mixture of background material and novel contributions. Section 1.4 is a
generalisation of the construction of [87], and Section 1.5 is novel - both are taken
from [95]. The definitions given in 1.2 of hyper-decoherence within the framework of
CPTs are novel, building upon those given in [117, 89, 96].

Part II focuses on the application of profunctorial methods to models of spacetime
and quantum supermaps, with a particular focus on the monoidal-like structure of
these models. It is taken from the following three works co-authored variously with
Aleks Kissinger, Cole Comfort and Mario Román.

[97] James Hefford and Aleks Kissinger. On the Pre- and Promonoidal Structure
of Spacetime. EPTCS, 380:284–306, 2023. doi: 10.4204/EPTCS.380.17. In
Proceedings ACT 2022.

https://doi.org/10.4204/eptcs.340.7
https://doi.org/10.4204/eptcs.343.9
https://doi.org/10.4204/EPTCS.380.17


[94] James Hefford and Cole Comfort. Coend Optics for Quantum Combs. EPTCS,
380:63–76, 2023. doi: 10.4204/EPTCS.380.4. In Proceedings ACT 2022.

[98] James Hefford and Mario Román. Optics for Premonoidal Categories, 2023. doi:
10.48550/arXiv.2305.02906. arXiv: 2305.02906. To appear in Proceedings
ACT 2023.

I was the lead author of [97] and [98], while [94] was an even contribution.
Aleks and I had been independently thinking about decompositional models of

spacetime, their partial monoidality and the possibility of using promonoidal categories
to model joint systems. The category we describe in [97] is based upon one Aleks
had written down many years ago, and the figures demonstrating the morphisms
and composition in Slice are due to Aleks. All the proofs, including those of the
promonoidality of Slice, and the key result connecting representability with spacelike
separation are my own. The discussion of a possible logical interpretation of Slice is
due to Aleks, and not included in this thesis.

The combination of promonoidal and premonoidal structure suggested by the
investigations into Slice led to the work contained in [98], of which all the proofs and
results are my own. Mario helped to give a better overall view to the work; understand
its connections to his own work on effectful categories [138]; and understand better the
connections to the literature on effectful optics. Futhermore, our conversations during
his visit in October 2022 were very helpful for encouraging me in the development of
this work.

Cole and I worked together on [94] and most results can be considered a joint
effort: in particular the definition of the category of combs; the equivalence with optics
in the Propositions 47 and 48; and the polycategory of combs. The equivalence of
Proposition 49 is wholly mine.

Chapter 4 is almost entirely background material. Section 4.5.1 is novel and does
not seem to have been explicitly written down elsewhere, though it could be considered
to be folklaw and follows from some considerations in [25]. The discussion of enriched
premonoidal categories in Section 4.6 appears to be novel.

Chapter 5 is based upon [97] and is therefore completely novel. Chapter 6 is based
upon [98] - it contains a mixture of background material on effectful categories, and
novel material. In particular, the results on effectful categories as pseudomonoids
(in Section 6.1) is novel and the Sections 6.3 and 6.4 about tight V2-profunctors and
characterising pro-effectful categories as pseudomonoids are also novel.

vi

https://doi.org/10.4204/EPTCS.380.4
https://doi.org/10.48550/arXiv.2305.02906
https://arxiv.org/abs/2305.02906


Chapter 7 is based upon [94] and [98]. Sections 7.2 and some of 7.3 come from
[94]. The remainder of Section 7.3 is background material on Tambara modules, the
produoidal structure of which comes originally from [83] and is also discussed in the
following article co-authored with Mario Román and Matt Earnshaw:

[72] Matt Earnshaw, James Hefford, and Mario Román. The Produoidal Algebra
of Process Decomposition, 2023. doi: 10.48550/arXiv.2301.11867. arXiv:
2301.11867.

No other results from [72] are used in this thesis. Section 7.4 comes from [98]. The
suggestions of how to connect some current investigations into supermaps [161, 160]
with the optics literature and the work contained here are novel.

vii

https://doi.org/10.48550/arXiv.2301.11867
https://arxiv.org/abs/2301.11867


Contents

Introduction 1

I Categorical Approaches to Hyper-decoherence 5

1 Hyper-decoherence in Probabilistic Theories 6
1.1 Probabilistic Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Decoherence and Hyper-decoherence . . . . . . . . . . . . . . . . . . 13
1.3 Post-Quantum Theories from Symmetries . . . . . . . . . . . . . . . . 15
1.4 CPM Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.1 Folding and Equivariant Categories . . . . . . . . . . . . . . . 20
1.4.2 Environment Structures . . . . . . . . . . . . . . . . . . . . . 25
1.4.3 CPM Categories . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5 Environment Structures from Classical Structures . . . . . . . . . . . 27

2 A Post-Quantum Theory: Density Hypercubes 32
2.1 Double Dilation, Double Mixing and Density Hypercubes . . . . . . . 33
2.2 Hyper-decoherence in Density Hypercubes . . . . . . . . . . . . . . . 38
2.3 Phase Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4 Hyper-phase Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5 Double Dilation and Double Mixing . . . . . . . . . . . . . . . . . . . 49
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 CPM Categories Induced by Galois Extensions 53
3.1 A Gentle Introduction to the Classical Galois Theory of Fields . . . . 54
3.2 Galois CPM Categories . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Decoherence Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Examples of Galois CPM Categories . . . . . . . . . . . . . . . . . . 61

3.4.1 Number Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 61

viii



3.4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4.3 CPM Categories for Separable Extensions . . . . . . . . . . . 71

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Afterword, Conclusion and Future Work 75

II Profunctorial Methods for Spacetime and Quantum Su-
permaps 78

4 Profunctors 81
4.1 Profunctors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 String Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3 Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4 Partially Monoidal Categories . . . . . . . . . . . . . . . . . . . . . . 93
4.5 Promonoidal Categories . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5.1 Partially Monoidal Categories as Promonoidal Categories . . . 97
4.6 Premonoidal Categories . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Spacetime 108
5.1 A Category of Spacetime Slices . . . . . . . . . . . . . . . . . . . . . 111

5.1.1 Spacetimes and Causal Curves . . . . . . . . . . . . . . . . . . 112
5.1.2 A Category of Causal Curves . . . . . . . . . . . . . . . . . . 114

5.2 A Promonoidal Structure on Slice . . . . . . . . . . . . . . . . . . . . 117
5.3 The Structure of Slice and Space under Union . . . . . . . . . . . . . 122

6 Pre-promonoidal and Pro-effectful Categories 126
6.1 Effectful Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.2 Closed Effectful Categories . . . . . . . . . . . . . . . . . . . . . . . . 135
6.3 V2-Profunctors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3.1 Tight Profunctors . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.4 Pro-effectful Categories . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7 Supermaps 150
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.2 1-Combs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.2.1 Extensional Combs . . . . . . . . . . . . . . . . . . . . . . . . 154
7.2.2 Intensional Combs: Optics . . . . . . . . . . . . . . . . . . . . 157

ix



7.2.3 Equivalence of Extensional and Intensional Combs . . . . . . . 157
7.3 n-Combs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.3.1 Tambara Modules . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.4 Premonoidal Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.5 Supermaps as Tambara Module Homomorphisms . . . . . . . . . . . 175

Afterword, Conclusion and Future Work 178

Bibliography 180

x



Introduction

One of the current drivers of theoretical physics is the effort to reconcile quantum
theory with gravity, as it is widely understood that the two most successful theories of
modern physics – Quantum Field Theory and General Relativity – are fundamentally
incompatible. There are many ongoing endeavours to a develop a unifying theory,
including string theory and quantum loop gravity, although none have yet to be widely
accepted as the “true” theory.

Alongside this, there are the endeavours of Topological Quantum Field Theory [7,
9] and Algebraic Quantum Field Theory [93] to place Quantum Field Theory on a
firmer mathematical foundation. Both of these frameworks are inherently categorical
- they can be seen very roughly as the studies of certain classes of functors from
categories of “spacetimes” to categories of “processes” or “algebras of observables”. It
is hoped that Topological and Algebraic Quantum Field Theory might also provide a
novel mathematical setting for unifying Quantum Field Theory and General Relativity,
perhaps by providing new perspectives on currently existing reconciliations or by
providing an altogether new theory.

Stepping beyond the quantum into a truly post-quantum theory is also of interest
in the field of Quantum Foundations. Categorical Quantum Mechanics (CQM) [3,
54] and Operational Probabilistic Theories [42] provide frameworks for quantum-like
theories, both taking compositionality as their fundamental paradigm over the more
traditional dynamical view of physics. CQM stresses the importance of studying how
systems and processes compose to produce emergent effects in larger systems, with
category theory being the natural mathematical tool for capturing this.

It is the paradigm of compositionality in which this thesis sits, with a focus on the
post-quantum. In Part I, we consider what it might mean from a process theoretic
perspective for a post-quantum theory to “contain” quantum theory. Much as quantum
theory contains classical theory as an effective subtheory accessed by decoherence,
it is plausible that a post-quantum theory ought to possess a hyper-decoherence
process witnessing quantum theory as an effective subtheory. Taking this view to its
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extreme we could envisage towers of quantum-like theories each contained in each
other and each accessed by a decoherence-like process. Such a tower has not been
developed before and we provide a general framework for constructing an infinite
family of them, while ensuring that they exhibit certain properties which make them
physically reasonable. The construction is based upon a generalisation of the CPM
construction [142, 87] which produces categories of generalised completely positive
maps from an underlying symmetric monoidal category equipped with an action by
monoidal autofunctors. A particular instance of this construction generates the theory
of density hypercubes [90, 96] which we study in some detail to show that it contains
quantum theory as an effective subtheory accessed by a hyper-decoherence map. As a
result we side-step a no-go result [117] and provide a way in which hyper-decoherence
maps could nevertheless exist.

In Part II, we turn our attention to two topics which are challenging to model
adequately in standard CQM: spacetime and quantum supermaps. The main cate-
gorical tool we investigate is this section is profunctors [25, 121], which have seen
much use in the functional programming community [134, 47, 137, 5, 102] and in
Topological Quantum Field Theory [18, 19, 70, 133, 140], but much more limited use
in CQM. Profunctors are generalisations of functors in a similar way to how relations
are generalisations of functions. This allows us to consider more general notions
compositionality than in more standard approaches in CQM and as a result suggest
novel ways of modelling spacetime and supermaps.

In contrast to the compositional view of CQM, to model spacetime we take instead
a decompositional perspective as was first outlined in [55]. There is an assumption
hidden in the foundations of CQM - one of independence of physical systems - which
materialises in the types of categories with which CQM concerns itself. Monoidality
implies that it is always possible to take the joint system A⊗B of any pair of systems
A and B and that therefore the state of A can be independent of the state of B.
When one takes a decompositional view of physics, we mean that we start with
some large system in its entirety, break this down into subsystems and then hope
to recover some fragments of compositionality. In doing so, one cannot expect that
we will recover a monoidal category because there might be some pairs of systems
which are incompatible - for instance the tensor A ⊗ A of a system A with itself
cannot be expected to behave in a bifunctorial fashion. In previous work, partially
monoidal categories have been suggested as a way of circumventing this problem [55,
85, 91], but such categories are somewhat displeasing to work with, for it is not always
clear without additional information about some given systems A and B whether
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their tensor exists or not. In Chapters 4 and 5, we consider ways of upgrading these
structures to richer ones in the form of promonoidal and premonoidal categories. We
develop some toy categories of spacetime which exhibit these structures and suggest
how one might model fields on spacetime categories with such structure.

In Chapter 6 we make formal the combination of promonoidal and premonoidal
structure suggested by our toy spacetime categories. To do so we introduce the
notion of a pro-effectful category which generalises the effectful categories (also known
as Freyd-categories) of Power and Robinson [132, 131, 130]. Along the way we
demonstrate an equivalence between pro-effectful categories and prostrong promonads
and we fully generalise a result of Power on the closed embeddings of effectful categories
[130]. As a result we demonstrate that pro-effectful categories are quite canonical
- just as how promonoidal categories are the “shadow” of closed monoidal presheaf
categories, pro-effectful categories are the “shadow” of closed effectful central presheaf
categories. With this comes the full generalisation of Day convolution and Day’s
theorem [68, 65] to this setting.

In Chapter 7, the final chapter of this thesis, we develop profunctorial semantics
for quantum supermaps - processes that act not on states of systems, but on the
processes of quantum theory themselves [43, 44, 45, 126, 21, 22]. Most approaches to
supermaps in the quantum literature rely on substantial structure on the category of
first-order processes, particularly compact closure [110]. This means that definitions
of “supermap” are very particular to quantum theory and not easily generalised to
other process theories. We study the possibility of using coend optics as a model for
quantum 1-combs (that is, circuits with a single hole) by comparing this definition
with a standard definition used in the quantum literature and show that the two
coincide for a number of categories relevant to quantum theory. We then consider
the categorical semantics of n-combs and discuss how the category of optics has two
promonoidal structures which capture the horizontal and vertical composition of holes
in monoidal categories. The vertical tensor has been known since the seminal paper
on the category of optics [127] but seems to have been neglected in applications. The
horizontal tensor has not been discussed before and arises as a generalisation of the
symmetric monoidal structure known by the optics community [134]. One intriguing
aspect of this tensor is that it does not require the underlying category to be symmetric
monoidal and this allows us to consider horizontal compositions of optics in a wider
setting.

Spurred by our investigations into premonoidal categories we then generalise the
category of optics to premonoidal categories. We show that this category also has
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a promonoidal structure capturing the vertical composition of holes in premonoidal
categories. The horizontal composition is more complicated and leads us to our first
example of a pro-effectful category.

In the very final section we consider an operationally motivated, process theoretic
definition for supermaps given recently in [161] and demonstrate that the natural
categorical setting for this definition is the category of Tambara modules (profunctors
with strength) [155]. These modules are the presheaf category of the category of optics
and as a result we suggest a unifying categorical model for both quantum supermaps
and combs which we feel is deserving of much future investigation.
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Part I

Categorical Approaches to
Hyper-decoherence
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Chapter 1

Hyper-decoherence in Probabilistic
Theories

In quantum theory, the process of decoherence leads to the emergence of the classical
from the quantum. It is caused by the interaction of the quantum system with an
environment system which is inaccessible to the observer. This leads to the irretrievable
loss of information to that environment and the effective classicalisation of the quantum
system.

From a process theoretic point of view one is interested not in the intricacies of
how decoherence occurs in a particular system in the lab, but rather in modelling the
overall process as an abstract mathematical object in its own right. One standard
approach is to consider the following map [58]:

for some special commutative †-Frobenius algebra (†-SCFA) ◦ [57]. Such a decoherence
map models our physical intuition in two-steps:∑

ij

pij |i⟩ ⟨j|
∑
ij

pij |i⟩ ⟨j| ⊗ |i⟩ ⟨j|
∑
i

pii |i⟩ ⟨i|broadcast trace

The †-SCFA acts to broadcast information from the quantum system into an environ-
ment coupling the two, and then the trace acts to discard any knowledge of the
environment system. The result is that these maps act to zero-out the non-diagonal
entries of a density matrix in the basis associated with ◦ and thus send a quantum
state to a classical probability distribution.
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Decoherence maps satisfy a couple of other important physically motivated prop-
erties. Firstly they are normalised, so that they correspond to processes that can be
made to happen with certainty:

=

Secondly they are idempotent:

=

capturing the notion that once a quantum system is decohered to a classical system,
further applications of the decoherence map produce no additional effect.

Hyper-decoherence is analogous to decoherence, but one level up: it leads to the
emergence of quantum theory from some post-quantum theory, by suppression of the
post-quantum part. The existence of hyper-decoherence maps has been considered in
the literature as a possible mechanism for our lack of observation of post-quantum
effects [164, 63, 64, 118, 117, 90, 96]: perhaps we simply cannot perform experiments
accurately enough to see such effects, or perhaps hyper-decoherence happens on
time scales shorter than those currently accessible to experimentalists. If quantum
theory is to be deemed an effective, as opposed to fundamental theory of nature,
hyper-decoherence is one possible mechanism to explain why we have yet to observe
post-quantum phenomena.

In the literature, hyper-decoherence maps have been defined analogously to decoher-
ence maps in quantum theory: idempotent and normalised maps taking hyper-quantum
states to quantum states [117, 141, 90, 96]. In this Chapter we will develop a notion of
decoherence between more arbitrary probabilistic theories, and then provide a way of
constructing infinite families of probabilistic theories arranging themselves in towers of
decoherence structures. A case of this construction is the theory of density hypercubes
which is particularly interesting because it contains quantum theory as an effective
sub-theory.
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1.1 Probabilistic Theories

We will take our framework of “probabilistic theory” to be that of Categorical Prob-
abilistic Theories (CPTs) [89]. CPTs combine elements of Categorical Quantum
Mechanics (CQM) [3] and Operational Probabilistic Theories (OPTs) [42] to allow us
to speak about preparations, measurements, probabilities, joint-systems etc. familiar
to the OPT approach but in the language of category theory.

The underlying mathematical object of a CPT is a symmetric monoidal category
C. A category has a collection of objects or systems A (e.g. qubits, electrons, classical
bits) and morphisms or processes f : A −→ B which evolve a system A into a system
B. Processes can be composed so that given f : A −→ B and g : B −→ C there is a
morphism g ◦ f : A −→ C. This composition is associative (h ◦ g) ◦ f = h ◦ (g ◦ f) and
has two-sided identities: each object is equipped with an identity process 1A : A −→ A

such that f ◦ 1A = f and 1B ◦ f = f for any f : A −→ B.
Monoidal categories have an additional form of composition allowing us to form

joint-systems. For any pair of systems A and B, there is a system A⊗B, and for any
two morphisms f : A −→ B and g : C −→ D there is a morphism f⊗g : A⊗C −→ B⊗D.
More formally, the category C is equipped with a functor ⊗ : C × C −→ C sending
pairs of objects and morphisms to their tensor products. These tensor products are
essentially associative and unital for there exists an object I and natural isomorphisms
with components

αABC : (A⊗B)⊗ C −→ A⊗ (B ⊗ C)

λA : I ⊗ A −→ A

ρA : A⊗ I −→ A

which much satisfy some coherence conditions known as the triangle and pentagon
equations [24, 124, 109] (see Section 4.3 for more on these).

Monoidal categories permit a graphical string diagrammatic calculus which dates
back to Penrose’s notation for tensor calculus [128] and was formalised in [106, 107].
The main ingredients of this calculus can be summarised as follows:

f

A

B

f : A −→ B

A

A

1A : A −→ A

f

A

B
g

C

g ◦ f : A −→ C

f

A

B

g

D

C

f ⊗ g : A⊗ C −→ B ⊗D
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Morphisms are drawn as boxes to be read bottom-to-top; the identity morphisms
are bare wires; composition of morphisms is given by connecting the input and output
wires of the boxes; and the tensor product is given by placing boxes horizontally next
to each other.

The unit object I is represented by the empty diagram and morphisms with domain
or codomain given by I are drawn as triangles showing that they emerge from or
disappear into the empty diagram:

Unit object I

ϕ

A

ϕ : I −→ A

e

A

e : A −→ I

Such morphisms play an important role in CQM and are referred to as states
and effects respectively. Those morphisms where the input and output is the unit
object s : I −→ I are known as scalars. We will at times make use of bra-ket notation
writing |ϕ⟩ for a state and ⟨e| for an effect. A most important category for quantum
theory is FHilb which has finite-dimensional Hilbert spaces as its objects and linear
maps as its morphisms. FHilb is a monoidal category when equipped with the tensor
product of Hilbert spaces. The unit object is the complex numbers I = C. In this
category the states C −→ H are in bijection with elements of the Hilbert space H and
effects H −→ C are in bijection with elements of the dual space H∗. This explains
the connection between the notations for states and effects in monoidal categories,
our usage of bra-ket notation and the traditional bra-ket notation where |ϕ⟩ ∈ H and
⟨e| ∈ H∗.

A monoidal category C is symmetric when it is equipped with a natural isomorphism
with components σAB : A⊗B −→ B ⊗ A which we depict in the graphical calculus as
a crossing:

A B

AB

Like α, λ and ρ, the natural isomorphism σ must satisfy some coherence conditions
known as the triangle and hexagon equations [124].

At this point we are in almost in position to define a Categorical Probabilistic
Theory. The idea is add additional structure to a symmetric monoidal category so
that we have well-defined notions of classical-like system, causality, and probabilistic
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mixtures. Key to this is to fix a semiring R to act as our generalised probabilities -
typically this will be R+ but could be Q+, the booleans B (modelling possibilities), or
more wildly, R (modelling signed probabilities [2]) or Qp (p-adic probabilities [86]).
The category R-Mat is then a model of classical systems. An object of R-Mat is a
natural number n and a morphism f : m −→ n is a n ×m matrix with entries from
the semiring R. Composition is given by matrix multiplication with identities given
by the identity matrices. The symmetric monoidal structure is given on objects by
multiplication and on morphisms by the Kronecker product. The unit object is the
number 1.

Let us now give the definition of a Categorical Probabilistic Theory in full before
unpacking the details.

Definition 1 (Categorical Probabilistic Theory (CPT) [89]). Fix a commutative
semiring R. An R-probabilistic theory (R-PT) is a symmetric monoidal category C
such that:

• C is enriched in the category CMon of commutative monoids,

• there is a full symmetric monoidal subcategory Ccl of C which is symmetric
monoidally and linearly equivalent to R-Mat, that is, the equivalence should
preserve the symmetric monoidal structure and the enrichment,

• C has an environment structure which on Ccl coincides under the equivalence
with that of R-Mat.

Enrichment in commutative monoids means that each hom-object C(A,B) is an
object of CMon, a commutative monoid1. As a result, it is possible to take the sum
f + g of morphisms f, g : A −→ B with the same domain and codomain, and this sum
is associative, commutative and has a unit. Furthermore, this sum behaves well with
composition so that (h+ g)f = hf + gf and h(g + f) = hg + hf .

Taking a monoidal category and enriching in CMon is not enough though to ensure
that sums work well with tensor products. One method for resolving this issue is to
ask for more structure in the form of biproducts and duals [100]. Instead, when we
say that C is a “symmetric monoidal category enriched in CMon”, we mean that C is
enriched in CMon as a monoidal category. So C is no longer equipped with a tensor
product functor ⊗ : C × C −→ C, but a tensor product that is also a CMon-functor

1for a more formal treatment of enriched categories see Chapter 4
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⊗ : C ⊠ C −→ C, where ⊠ is the enriched tensor product of categories2. For objects
A,B,C and D of C, the enriched tensor functor gives a morphism of CMon

C(A,C)⊗CMon C(B,D) −→ C(A⊗B,C ⊗D)

The tensor product ⊗CMon of CMon is given by taking the free commutative monoid on
the product of the sets and quotienting by (f, g) + (f, h) ∼ (f, g+ h), (f, h) + (g, h) ∼
(f + g, h), (f, 0) ∼ 0 and (0, f) ∼ 0. As a result, such an enriched category has a
tensor product that behaves compatibly with sums: f ⊗ (g + h) = f ⊗ g + f ⊗ h,
(f + g)⊗ h = f ⊗ h+ g ⊗ h, f ⊗ 0 = 0 and 0⊗ f = 0.
By environment structure we mean the following:

Definition 2 (Environment Structure [48, 58, 50]). Let C be a symmetric monoidal
category. An environment structure for C consists of a choice of an effect A : A −→ I

for each object A of C such that the following two equalities hold

= =

A B A⊗B I

for all A and B.

The environment structure of a CPT equips the theory with a notion of causality
which allows us to speak about those processes that happen with certainty and those
that can be made to happen probabilistically:

Definition 3 (Normalised/Causal Process). A process f : A −→ B is causal (or
normalised) when:

f =

A A

A process f : A −→ B is sub-causal if there exists an effect e : A −→ I such that:

f =

A

e

A

+

A
2such categories have been called V-monoidal categories [68]
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The idea of a CPT is to combine together elements of the frameworks of CQM [3]
and OPTs [42], allowing us to talk about preparations, measurements, coarse-graining,
classical control, etc, all familiar to the operational framework but in the language of
category theory. In this way, the constraints on a CPT ensure that it is “physically
reasonable” while permitting sufficient scope for theories wildly different than quantum
theory. For instance, it is agnostic to the precise probabilistic setting used, allowing
for any choice of commutative semiring R of probabilities. It is by demanding that
a CPT C contains a subcategory Ccl (the classical sub-theory) equivalent to R-Mat,
and by the CMon-enrichment that we can consider probabilistic mixtures of processes.
The category R-Mat of classical systems comes with an environment structure given
by the effects n : n −→ 1 which act to sum each column of a matrix f : m −→ n. Thus,
the normalised matrices are those which are stochastic, and the normalised states are
the probability distributions.

Many CPTs, including those we consider in this work, arise as the Karoubi envelope
of some other category:

Definition 4 (Karoubi Envelope). Let C be a category. The Karoubi envelope Split(C)
is the category with objects of the form (H, e), where H is some object of C and
e : H → H is an idempotent. The morphisms f : (H, e) → (H ′, e′) in Split(C) are
exactly the morphisms f : H → H ′ in C which are invariant under the idempotents,
such that f = e′ ◦f ◦e. [143, 59, 89] The normalised Karoubi envelope Split (C) is the
full subcategory of the Karoubi envelope spanned by only the normalised idempotents
e.

From an operational perspective, objects (H, e) of the Karoubi envelope capture a
situation in which it can be safely assumed that an idempotent process e has taken
place between any two operations, e.g. because it happens on time-scales much smaller
than those operationally accessible. This is, for example, the way in which classical
systems arise from quantum systems by decoherence.

Taking the Karoubi envelope behaves well with probabilistic theories, sending any
R-probabilistic theory to another R-probabilistic theory:

Proposition 1. Let C be an R-PT. Then Split(C) is an R-PT.

Proof. A proof was given in [89] for the normalised Karoubi envelope Split (C). To
extend this result to the full Karoubi envelope is little work. Like in [89] Split(C)
inherits CMon-enrichment from C and contains a full subcategory of classical systems
equivalent to R-Mat. Indeed, Split(C) contains C as a full subcategory given by the
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objects of the form (H, 1H) and thus also contains Ccl. It is the environment structure
of Split(C) that requires more care than Split (C).

Given an object (H, e) of Split(C) we can take the discarding map to be given by

H ◦ e, that is, the discard for H pre-composed with the idempotent e. Checking
that this is a valid environment structure is straightforward and for the normalised
idempotents, it is the same environment structure as described in [89] because H ◦e =

H .

The previous proposition is useful because whenever we speak of an R-PT we are
able to assume it is of the form Split(C), for if we have an R-PT not of this form we
can utilise Proposition 1 to turn it into one of this form containing the original R-PT
as a full subcategory.

1.2 Decoherence and Hyper-decoherence

We can now define decoherence maps in arbitrary R-PTs:

Definition 5 (Decoherence Map). Let C be an R-PT. A collection of maps {dec} is
a family of probabilistic decoherence maps when:

1. each map dec : H −→ H is an idempotent,

2. the full subcategory of Split(C) spanned by objects of the form (H, dec) is
symmetric monoidally and linearly equivalent to R-Mat,

3. each map dec : H −→ H can be completed to a normalised process in C. That is,
for each dec there exists a process f : H −→ H such that dec + f is causal.

When each map dec is in fact normalised, we call {dec} a causal family of decoherence
maps.

Condition 2 ensures that the family of decoherence maps really behave like deco-
herence maps by producing a category equivalent to the category of classical systems.
Condition 3 ensures that the decoherence maps can be implemented in the theory: by
demanding that there exists a causal completion of each decoherence map we know
we can actualise each decoherence map at least probabilistically.

We can extend the notion of decoherence maps to processes that enact transitions
between different R-PTs:

Definition 6 (Hyper-decoherence Map). Let C be an R-PT. A collection of maps
{hypdec} is a family of probabilistic hyper-decoherence maps when:
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1. each map hypdec : H −→ H is an idempotent,

2. the full subcategory of Split(C) spanned by objects of the form (H, hypdec) is
an R-PT,

3. each map hypdec : H −→ H can be completed to a normalised process in C.

When each map hypdec is in fact normalised, we call {hypdec} a causal family of
hyper-decoherence maps.

We are now in a position to define what it means for a theory to be post-quantum:

Definition 7 (Post-quantum Theory). An R+-probabilistic theory C is post-quantum
if there is a family of probabilistic hyper-decoherence maps {hypdec} (with at least one
of the maps non-trivial) such that the full subcategory spanned by hyper-decohered
systems of the form (H, hypdec) is equivalent to quantum theory CPM(FHilb).

From an operational perspective, a post-quantum theory is one such where quan-
tum theory arises as an effective theory by means of hyper-decoherence happening
probabilistically at time-scales much smaller than those operationally accessible to
quantum experiments. Idempotence of hyper-decoherence maps ensures that once
a system has collapsed to quantum it remains quantum. Idempotence also ensures
that the probabilistic nature of hyper-decoherence manifests exactly once: conditional
hyper-quantum collapse having happened at least once, hyper-decoherence is determin-
istic and does nothing to the quantum system. If observers are for some reason limited
to the quantum part of the theory, hyper-decoherence would happen transparently to
them: this is not too far removed from what is speculated to happen in string theory
and brane cosmology, where the observable world is restricted to a brane within a
larger bulk.

One may wonder why we consider probabilistic (hyper-)decoherence maps. A known
no-go result [117] states that normalised hyper-decoherence maps into quantum theory
cannot exist in operational probabilistic theories with purification if some additional
assumptions are imposed—namely that pure states in quantum theory be pure in the
larger post-quantum theory and that the maximally mixed state of quantum theory
be maximally mixed in the larger post-quantum theory.

Theorem 1 ([117]). Let C be an R+-probabilistic theory which possesses a causal
family of hyper-decoherence maps realising quantum theory. Furthermore suppose that:

• tomography is possible, so that any two processes which give the same scalar on
all state-effect pairs are in fact equal: ⟨e| f |ϕ⟩ = ⟨e| g |ϕ⟩ ,∀ ⟨e| , |ϕ⟩ =⇒ f = g,
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• all mixed states possess an essentially unique purification,

• all states which are pure in quantum theory are pure post-quantumly,

• the maximally mixed quantum state is maximally mixed post-quantumly.

Then the hyper-decoherence maps are identities and thus C is not truly post-quantum.3

As a result, we allow a slightly weaker notion of hyper-decoherence map that can
only be implemented probabilistically.

1.3 Post-Quantum Theories from Symmetries

Producing examples of genuinely post-quantum theories is a surprisingly difficult
endeavour. Unpacking Definition 7 from an operational perspective, we can see that
we would need (roughly):

• a collection of states SA and effects EA for each system type A,

• a collection of transformations between state spaces SA −→ SB for each A and B,

• for each system, a discarding map A,

• for systems A and B, a composite system A ⊗ B, with the state, effects and
discarding maps being compatible with the composites,

• idempotent hyper-decoherence maps which must be extendable to causal maps.

This is quite a lot of data to specify and as a result there have been only a few attempts
namely: density cubes [64], quartic quantum theory [164] and density hypercubes [90,
96].

One point of commonality between these three theories is the usage of higher-
dimensional tensors to describe post-quantum states. Quantum theory is a quadratic
theory, in the sense that its states are matrices ρij. Density cubes on the other hand
is cubic with states ρijk, while quartic quantum theory and density hypercubes are
quartic with states ρijkl.

Like quantum theory, where a density matrix obeys ρ∗ij = ρji due to Hermicity, it
seems reasonable to impose that the higher-dimensional tensors of a post-quantum

3the original work states this result in the framework of OPTs, and thus makes two additional
assumptions convexity and causality which are inherent in the definition of probabilistic theory taken
in the present work.
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theory should satisfy some similar symmetry constraints. The symmetries of a state ρ
are given by a permutation of the indices of the tensor and by an automorphism of
the underlying field K, that is, an action G −→ Aut(K) by a subgroup G ≤ Sn of the
symmetric group where n is the number of indices of ρ. The symmetry of a quantum
state ρij serves a few purposes but foremost it ensures that ρii ∈ R for all i. If we
furthermore demand that ρii ≥ 0 then we can interpret these entries as probabilities
of the outcomes i.

Now, it is reasonable to suppose that the post-quantum theory is defined over C,
indeed this seems necessary for the post-quantum theory to contain quantum theory.4

If we assume that our probabilities should be in R, then it is necessary to only consider
the symmetries of ρ to be given by automorphisms of C which fix R, else we would
have no guarantee that ρii...i ∈ R. These automorphisms have a special name - they
are the Galois automorphisms of the Galois extension R ⊂ C - and there are only two,
the identity and complex conjugation JC.

Starting from the symmetries of a theory is a good way of trying to construct
post-quantum theories as it ensures a certain amount of consistency. Not only can it
be used to ensure that there are sensible probabilities, asking for similar symmetries
of the processes in a theory can ensure that the dynamics do not take us outside the
state-space. Let us now look at each of density cubes and quartic quantum theory in
turn. We leave a thorough investigation of density hypercubes to Chapter 2.

Density Cubes

When we turn to defining density cubes, we need to specify a group homomorphism
G −→ Gal(C/R) for G ≤ S3 to act as the symmetries of the state ρijk. S3 has subgroups
isomorphic to S3, C3, C2 and the trivial group {∗}. It is straightforward to show that
there are no non-trivial homomorphisms C3 −→ C2. For C2, there is a single non-trivial
homomorphism: the faithful one acting by complex conjugation, and for S3 the only
non-trivial homomorphism is:

e, (ijk), (ikj) 7→ 1 (ij), (ik), (jk) 7→ JC

This is the one chosen by Dakić et. al. - permuting any two indices of ρijk conjugates
the entry [64] - and we have seen why it is the only reasonable choice.

The issues with the density cubes framework were pointed out in [118], specifically:
4One could consider trying to work over, say, a division algebra containing C for instance the

quaternions, or maybe over a field such as the hyper-complex numbers ∗C, but for now let us entertain
the simplest possibility.
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• how to form joint systems is not specified and is highly problematic to define,

• transformations between systems are ill-defined. In particular, it is possible to
find transformations which produce states with complex probabilities for some
outcomes.

The second point essentially arises because the transformations do not satisfy the
same symmetries as the states and as a result there is no guarantee that they should
map valid density cubes to density cubes. This is in sharp contrast to quantum theory
where the CP-maps between quantum states are also essentially invariant under the
action of S2 by complex conjugation.

As a result, density cubes does not satisfy all the demands of being a post-quantum
theory.

Quartic Quantum Theory

In quartic quantum theory the states take the form ρijkl and thus their symmetries
should be given by an action G −→ Gal(C/R) of a subgroup G ≤ S4. S4 has many
more subgroups than S3 and many more elements with order divisible by 2. As a
result there are richer choices of possible symmetries of quartic states than cubic states
(assuming an underlying field C with real probabilities).

The states of quartic quantum theory are linear combinations of states of the form:

U∗ U

0 0

HHH∗H∗

(1.1)

where U is a unitary. Such states exhibit C2 symmetry – braiding the H’s over the H∗’s
conjugates the entries – but in general no further symmetries. The transformations
are all CP maps which preserve the state-space, i.e. send mixtures of maps of the
form (1.1) to mixtures of maps of the form (1.1).

The main issue with quartic quantum theory was discussed in [164, 118]: it is not
clear how to define composite systems such that the allowed transformations behave
compatibly. It is possible to compose systems, perform a bipartite transformation and
then discard one of the systems and find oneself outside the state-space. As a result,
quartic quantum theory would fail in its original formulation to form a symmetric
monoidal category, and thus cannot be a post-quantum theory. On the other hand,
if a suitable restriction on the space of transformations could be given, then it is
plausible that quartic quantum theory could form a R+-probabilistic theory.
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One pleasing aspect of quartic quantum theory is that it comes with a hyper-
decoherence mechanism, given by partial trace:

U∗ U

0 0

HHH∗H∗

7→ U∗ U

0 0

HH∗

which sends a quartic state to a quantum state. Any quantum state ρ = tr(|ϕ⟩ ⟨ϕ|) can
be embedded into a quartic state and recovered by this hyper-decoherence mechanism
as:

0 0

HHH∗H∗

ϕ∗ ϕ

The issue with this hyper-decoherence mechanism is two-fold: is it not clear that it
can be implemented as a process (even probabilistically) in the theory and it is not
clear whether it can be used to recover all quantum channels from post-quantum ones,
in part because the set of allowable transformations of quartic quantum states is not
clearly defined. As such, it does not constitute a hyper-decoherence map as specified
in Definition 6 and quartic quantum theory cannot be considered a post-quantum
theory in the sense of Definition 7.

1.4 CPM Categories

Given the discussion in the last section of symmetry as our starting point for construct-
ing post-quantum theories, in this section we will introduce a categorical framework,
a generalised CPM construction, for producing theories with rich symmetry structure.
This construction builds upon the one presented by Gogioso in [87].

The CPM construction inhabits a prominent position in the study of Categorical
Quantum Mechanics [3]. It is the natural categorical generalisation of the transition
from pure quantum theory to mixed state quantum theory, taking a †-compact category
C and producing a category CPM(C) of completely positive maps [142, 143]. The CPM
construction can be understood in two steps. Firstly, we “double” the morphisms of
the original dagger compact category:

f f∗f

K∗

7→

K K

H H H∗

E E∗E
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Secondly, we allow for discarding of environment systems:

f

dbl(K)

dbl(H)

= f∗f

K K∗

H H∗

E∗E

(1.2)

The discarding is defined in terms of the cap arising from the duality of E and
E∗ and can be thought of as a categorical generalisation of the partial trace. If the
underlying category is FHilb (the dagger compact category of finite dimensional Hilbert
spaces and complex linear maps), then the maps in the shape of (1.2) are exactly
the completely positive maps dbl(H)→ dbl(K), where we have defined the doubling
functor dbl(H) := H ⊗H∗ and dbl(f) := f ⊗ f ∗. In particular, the states I → dbl(H)

are Choi-Jamiołkowski isomorphic to positive operators H → H. The dagger compact
category with objects in the form dbl(H) for some finite-dimensional Hilbert space H
and morphisms in the shape of (1.2) is called CPM(FHilb).

These “doubled” categories are ubiquitous in the CQM community, for they provide
the ideal setting in which to study finite-dimensional quantum theory: physically irrel-
evant global phases are cancelled out and the category allows for a natural description
of the interface between quantum and classical theory. Indeed, by considering the
subcategory of the Karoubi envelope of CPM(C) spanned by decoherence maps one
can produce a category of C*-algebras, known elsewhere as the CP* construction,
which unifies quantum theory with classical theory [53, 62, 59].

Example 1. The category Split(CPM(FHilb)) is an R+-probabilistic theory. The full
subcategory spanned by the decohered systems (H, dec) is equivalent to R+-Mat, i.e.
classical theory.

The original CPM construction is a special case of a generalised, “higher-order”
CPM construction [87]: from now on, when talking about the CPM construction
we shall refer to the latter, generalised version. This generalisation expands upon
the inherent C2 symmetry of the original CPM construction to produce categories
with richer symmetries, captured by an essential invariance under the action of a
group of monoidal autofunctors. The resulting categories are no longer necessarily
the “double” of the original category: varying the generating group can produce for
instance “tripled” (C3) or “quadrupled” (C4) categories or categories with much more
exotic symmetry.
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Like the original, the generalised CPM construction proceeds in two-steps. Starting
with a symmetric monoidal category C one:

1. “folds” the objects and morphisms according to a strict left action by monoidal
autofunctors ϕ : G −→ Aut(C) for a finite group G:

A 7→
⊗
g∈G

ϕgA

2. discards environment systems E by applying effects ξE from a collection Ξ of
monoidally closed “discarding maps”:

f 7→ . . .ϕgnf ϕg1f 7→
fold discard

A

BE ϕgnBϕgnE ϕg1Bϕg1E

ϕgnA ϕg1A

. . .ϕgnf ϕg1f

ϕgnB ϕg1B

ϕgnA ϕg1A

ξE
. . .

This two-step process generalises the doubling and discarding from the original CPM
construction [142, 143], where the discarding maps are chosen to be the caps of the
compact closed structure.

In the next two subsections we will formally introduce CPM categories before
studying their connection to decoherence structures.

1.4.1 Folding and Equivariant Categories

Consider a symmetric monoidal category C equipped with a strict left action by
monoidal autofunctors ϕ : G −→ Aut(C), for some finite group G. We restrict our
attention to strict actions, since it is known that any category with a weak G-action
(i.e. one with isomorphisms ϕgϕh ≃ ϕgh satisfying certain compatibility conditions)
can be strictified and is equivalent to a category with a strict G-action ϕgϕh = ϕgh

[145]. From such a symmetric monoidal category with G-action, one can derive a
category of G-equivariant morphisms as follows.

Definition 8 (G-equivariant Category [74, 82]). Let C be a category, G be a finite
group and ϕ : G −→ Aut(C) be a strict left action. The objects of the G-equivariant
category CG are pairs (A, (ηgA)g∈G) of an object A of C and a family of isomorphisms
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ηgA : A −→ ϕgA for each g ∈ G, such that the following diagram commutes for all
g, h ∈ G:

A ϕhA

ϕhϕgA

ηhA

ηhgA

ϕhη
g
A

(1.3)

The morphisms f : (A, (ηgA)g∈G) −→ (B, (ηgB)g∈G) of CG are the morphisms of C which
commute with the isomorphisms ηgA for all g ∈ G:

A ϕgA

B ϕgB

f

ηgA

ϕgf

ηgB

(1.4)

There is a canonical forgetful functor ι : CG −→ C forgetting the equivariant structure.

Proposition 2. Let (C,⊗, I) be a symmetric monoidal category equipped with a G-
action ϕ by strict monoidal autofunctors. Then CG is also symmetric monoidal, with
tensor product ⊠ defined as follows:

(A, (ηgA)g∈G)⊠ (B, (ηgB)g∈G) := (A⊗B, (ηgA ⊗ η
g
B)g∈G)

Proof. The monoidal structure ⊗ of C induces a monoidal structure ⊠ on CG. Strictness
of ϕg implies that ηgA ⊗ η

g
B have the correct type. Everything else quickly follows.

Definition 9 (G-functor [74, 82]). Let C and C ′ be two categories equipped with
G-actions ϕ and ϕ′ respectively. A G-functor (f, σ) : (C, ϕ) −→ (C ′, ϕ′) is a pair of a
functor f : C −→ C ′ and a family of natural isomorphisms σg : fϕg −→ ϕ′

gf for each
g ∈ G, such that the following diagram commutes:

fϕgϕh ϕ′
gfϕh

ϕ′
gϕ

′
hf

σgϕh

σgh
ϕ′gσh

If f is an equivalence of categories, then we call this a G-equivalence.

For any subgroup H ≤ G, the G-action ϕ descends by restriction to an H-action,
so one can form the H-equivariant category CH . It will often be the case that we have
some preferred collection of the isomorphisms ηhA : A −→ ϕhA, chosen to be compatible
with the monoidal product ⊗ of C, so that ηhA ⊗ ηhB = ηhA⊗B for all objects A and B

and group elements h ∈ H. We write ĈH,η for the full subcategory of CH spanned by
objects involving isomorphisms in this family, those of the form (A, (ηhA)h∈H).

21



Proposition 3. The category ĈH,η is equivalent to the naturaliser Nat((ηh)h∈H) of the
unnatural isomorphisms ηh in C, i.e. the largest subcategory of C such that all of the
ηh are natural (so that each autofunctor ϕh is naturally isomorphic to the identity).

Proof. Nat((ηh)h∈H) is the largest subcategory of C such that all ηh : 1 ⇒ ϕh are
natural isomorphisms. It is a wide subcategory containing only the arrows f which
make diagram 1.4 commute. The equivalence to ĈH,η follows immediately by forgetting
the families (ηha)h∈H involved in the objects, that is sending (A, (ηhA)h∈H) to A in
Nat((ηh)h∈H).

Recall that for any group G with subgroup H ≤ G, a left transversal T of H in G
is a choice of representative for each left coset of H in G, i.e. a subset T ⊆ G such
that every left coset of H intersects T in exactly one point, |T ∩ gH| = 1 for all g ∈ G.
A right transversal is defined analogously but with right cosets.

With these definitions in place we can define the first ingredient of the CPM
construction:

Definition 10 (Folding Functor). Let (C,⊗, I) be a symmetric monoidal category
equipped with a G-action ϕ by strict monoidal autofunctors. Let T be a left transversal
of some subgroup H ≤ G. Let (ηha)h∈H be a collection of isomorphisms compatible
with the monoidal product. We refer to the tuple τ := (G,H, η, T ) as the folding data,
and we define the folding functor fldτ : ĈH,η −→ C as follows:

(A, (ηhA)h∈H) 7→
⊗
t∈T

ϕtιA f 7→
⊗
t∈T

ϕtιf (1.5)

Remark. The folding functor from [87] arises as the special case where H is taken to
be the trivial group. A transversal T of H := {e} in G is then precisely the set T = G

of all the elements of G. Since ϕ is strict we have ϕe = idC and hence C{e} ≃ C, so
that the folding functor can be considered an endofunctor fldG on C. We call this a
complete folding functor, since it uses all the elements of its defining group.

Definition 11 (Folded Category). For given folding data τ := (G,H, η, T ), the folded
category FLDτ (C) is the subcategory of C formed by the image of the folding functor,
with objects and morphisms of the form (1.5). For a complete folding functor fldG,
we write FLDG(C).

The folded category has pleasing symmetry properties - it is essentially invariant
under each of the autofunctors ϕg. This follows because for any g ∈ G the autofunctor
ϕg acts on the indices of the tensor product to send a transversal T to another
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transversal T ′. In general, this new transversal differs from the original in two ways
- the ordering of the cosets to which each element belongs is permuted and the
representative of each coset has been altered. To recover the original transversal we
can compose two isomorphisms. Firstly, σg which rearranges the cosets back to the
original ordering, by a composition of the symmetry isomorphisms arising from the
symmetric monoidal structure. Secondly, ρg which recovers the representatives of the
original transversal and is given by a composition of the isomorphisms ηg. Formally,
ρgA is given by

ρgA :=
⊗
t∈T

ϕt(η
ht
A )−1

where each ht is the element of H which separates the representatives of a given coset
of H between the two transversals T and T ′.5 The following proposition establishes
this formally:

Proposition 4. The autofunctors ϕg : C → C restrict to functors ϕg : FLDτ (C) →
FLDτ (C) on the folded category, and are naturally isomorphic to the identity on
FLDτ (C).

Proof. The original proof from [87], valid for complete folding functors, requires slight
tweaking for our generalised setting. Any g ∈ G acts on left transversals of H ≤ G by
sending a left transversal T to another left transversal T ′, obtained by permuting the
left cosets and altering the choice of element in each coset. There is an isomorphism σgA,
given by a suitable composition of the symmetry isomorphisms σ from the symmetric
monoidal structure, which arranges the cosets into their original order. There is also
an isomorphism ρgA, given by a monoidal product of the isomorphisms ηhA, which acts
to recover the original choices in the transversal. Taken together, σgA and ρgA compose
to an isomorphism between the folded object fldτA and the action of G on the indices
in the monoidal product.

ϕgfldτA = ϕg
⊗
t∈T

ϕtιA =
⊗
t∈T

ϕgtιA =
⊗
t′∈T ′

ϕt′ιA
σg
A−→
⊗
t∈T

ϕthtιA
ρgA−→
⊗
t∈T

ϕtιA = fldτA

5That is, if t ∈ T is the representative of a coset tH then in the transversal T ′, the representative
of tH is given by tht for some ht ∈ H.
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where ht in an element of H for each t ∈ T . We then have:

ρgA ◦ σ
g
A ◦ (ϕgfldτf) ◦ (σgA)

−1 ◦ (ρgA)
−1 = ρgA ◦ σ

g
A ◦
⊗
t∈T

ϕgtιf ◦ (σgA)
−1 ◦ (ρgA)

−1

= ρgA ◦ σ
g
A ◦

⊗
t′∈T ′

ϕt′ιf ◦ (σgA)
−1 ◦ (ρgA)

−1

= ρgA ◦
⊗
t∈T

ϕthtιf ◦ (ρ
g
A)

−1

=
⊗
t∈T

ϕtιf = fldτf

Remark. For a complete folding functor, the previous proposition shows that there is
a canonical embedding of FLDG(C) into a G-equivariant category where the structural
isomorphisms ηg are given by the permutations σg arising from compositions of the
symmetry isomorphisms from the symmetric monoidal structure. This remark will be
useful for the following propositions.

Proposition 5. Suppose we have a complete folding functor for the G-action ϕ and
suppose there is a subgroup H ≤ G. Then the complete folding functor factorises into
a complete folding functor for the induced H-action followed by the folding functor for
any choice of transversal T of H in G.

Proof. The G-action restricts to an H-action, giving a complete folding functor
fldH : C −→ FLDH(C). The category FLDH(C) is H-equivariant with respect to
isomorphisms σh given by a suitable composition of the symmetry isomorphisms from
the symmetric monoidal structure; these isomorphisms merely act by “rearranging”
the order of the tensor factors. Therefore, there is an embedding e : FLDH(C) −→ ĈH,η
of the image of fldH into ĈH,η given by sending fldHf : fldHA −→ fldHB to fldHf :

(fldHA, {σhA}) −→ (fldHB, {σhB}). Taking T to be a transversal of H in G, we can form
the folding functor fldτ : ĈH,η −→ C and observe that the following diagram commutes:

C FLDH(C)

C ĈH,η

fldH

fldG e

fldτ

When H ⊴ G is normal in G, we might expect that a complete folding functor for the
G-action factorises through a complete folding functor for the quotient G/H-action.
The following proposition establishes that this is indeed the case.
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Proposition 6. Suppose we have a complete folding functor for the G-action ϕ. Let
H ⊴ G be a normal subgroup of G. Then the complete folding functor for the G-
action factorises through complete folding functors for the H-action and the quotient
G/H-action.

Proof. It is known that there exists an induced action of G on CH given by tak-
ing ψg : CH −→ CH to act on morphisms as ϕg and on objects as (A, (ηhA)h∈H) 7→
(ϕgA, (ϕgη

g−1hg
A )h∈H) [23]. This descends to an action of the quotient by picking a

transversal of H in G containing the identity and defining ψ̂gH := ψg where g is the
representative of the coset gH in the transversal. Any two different choices of transver-
sal T and T ′ result in different G/H-actions ψ̂ and ψ̂′, but there is a G/H-equivalence
(idCH , σ) : (CH , ψ̂) −→ (CH , ψ̂′) given by the natural isomorphisms σg = ϕgη

h where h is
such that g′ = gh for g and g′ the representatives of gH in T and T ′ respectively. Thus
the action is essentially unique. With the G/H-action ψ̂ one can form a complete
folding functor fldG/H : ĈH,η −→ ĈH,η.

Now, consider the complete folding functor fldG : C −→ C. As in the previous
proposition, this restricts to a folding functor fldH : C −→ FLDH(C), and we have the
embedding e : FLDH(C) −→ ĈH,η of the image of fldH into ĈH,η. The following diagram
then commutes:

FLDH(C) ĈH,η

C ĈH,η

C

e

fldG/HfldH

fldG ι

1.4.2 Environment Structures

The folded category FLDτ (C) forms the starting point for a family of CPM categories.
The second ingredient is the choice of environment structure.

Definition 12 (Environment Structure). An environment structure Ξ is a family
of sets ΞA of effects ξA : fldτA −→ I for each object A of C satisfying the following
conditions:

• ξA ∈ ΞA, ξB ∈ ΞB =⇒ (ξA ⊗ ξB) ◦ π−1
A,B ∈ ΞA⊗B
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• ΞI = {idI}

• ξA ∈ ΞA, g ∈ G =⇒ ϕgξA = ξA ◦ (σgA)
−1 ◦ (ρgA)

−1

where σgA and ρgA are the isomorphisms defined in the previous section and πA,B is the
following permutation (obtained by composition of symmetry isomorphisms):

πA,B :
⊗
t∈T

ϕtA⊗
⊗
t∈T

ϕtB −→
⊗
t∈T

ϕt(A⊗B)

The constraints of the environment structure ensure that Ξ is essentially closed under
the monoidal product and that all the effects are invariant under the action of the
autofunctors ϕg, up to (well-behaved) natural isomorphism.

Remark. From now on when we refer to an “environment structure” we mean Definition
12 which subsumes Definition 2. Indeed, the latter is a special case of the former
where each set ΞA contains exactly one element. It is worth noting that it is still
necessary to pick a particular effect for each object A (with the choices being closed
under the monoidal product) to act as the designated overall discarding maps { A},
bestowing the theory with a notion of causality.

1.4.3 CPM Categories

Definition 13 (CPM Category). The CPM category CPMτ,Ξ(C) is the smallest
subcategory of C containing the folded category FLDτ (C), all the effects of Ξ and their
monoidal products with the identity morphisms, defined as follows:

ξA ⊠ idfldτB := (ξA ⊗ idfldτB) ◦ π−1
A,B

Remark. The CPM category is essentially invariant under the autofunctors, because
so are both the folded category and the effects in the environment structure.

Proposition 7. The CPM category CPMτ,Ξ(C) is a symmetric monoidal category when
equipped with the following tensor product, having FLDτ (C) as a monoidal subcategory:

F ⊠G := πC,D ◦ (F ⊗G) ◦ π−1
A,B

where F : fldτA→ fldτC and G : fldτB → fldτD are generic morphisms in CPMτ,Ξ(C).

Proof. This was originally shown in [87] for the complete folding case. CPMτ,Ξ(C) is a
symmetric monoidal category with a monoidal product induced by that of C. It is easy
to check that the original proof generalises to the construction presented here.
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Proposition 8. Let C be a †-compact category equipped with a monoidal G-action
ϕ. If there is some g ∈ G such that ϕg = conjC is the conjugating autofunctor, then
CPMτ,Ξ(C) is a †-compact category.

Proof. The dagger of C extends to the folded category by defining (f ⊠ g)† := f † ⊠ g†

and fldτ (f)† = fldτ (f †). This is precisely the dagger of FLDτ (C) as a subcategory of C.
It is easy to check (cf. [87]) that any morphism b of CPMτ,Ξ(C) has a normal

form, namely b = (idfldτB ⊠ ξE) ◦ fldτ (a) for some morphism a : A −→ B ⊗ E of C and
some effect ξE ∈ ΞE. Since CPMτ,Ξ(C) is a subcategory of C, the dagger descends
immediately to give b† = fldτ (a†) ◦ (idfldτB ⊠ ξ†E): all we need to show is that the
latter is still a morphism in CPMτ,Ξ(C). Using the †-compact closure of C and writing
cupA : I −→ A∗ ⊗ A for the unit, it follows that:

b† = [idfldτA ⊠ ξ
∗
E] ◦ [fldτa† ⊠ idfldτE∗ ] ◦ [idfldτB ⊠ fldτcup∗

E] (1.6)

By assumption the conjugation functor is one of the autofunctors ϕg, so ξ∗E = ξE ◦
(σgE)

−1 ◦ (ρgA)−1 and so each constituent map of (1.6) is in the normal form. It is fairly
straightforward to check the remaining requirements for this to give a valid dagger
structure on CPMτ,Ξ(C).

The compact closure of C then implies that CPMτ,Ξ(C) is also compact closed—its
unit and counit given by folding those of C—and the discussion above is enough to
conclude that the unit and counit are daggers of each other, giving us †-compact
closure.

1.5 Environment Structures from Classical Struc-
tures

Suppose now that we are working in a symmetric monoidal †-category C which is
rich in special commutative †-Frobenius algebras (†-SCFAs, also known as classical
structures). In particular, assume that each object A has at least one †-SCFA on it.
Classical structures provide an analogy to the category FHilb of finite dimensional
Hilbert spaces, where †-SCFAs are in bijection with bases of a given Hilbert space
[57]. These †-SCFAs are of vital importance to the categorical study of quantum
theory, where they capture, to name but a few, phases [51], Fourier transforms [92]
and decoherence.

In the original CPM construction, decoherence can be studied by forming the
Karoubi envelope and then taking a full subcategory spanned by so-called decoherence
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maps. For any †-SCFA, one can use the †-compact closure of FHilb to form the
following map:

δ = :=

H∗ H

H

H∗ H

H

(1.7)

The decoherence maps are given by the composition dec := δ† ◦ δ. One can show
that the full subcategory of the Karoubi envelope Split(CPM(FHilb)) spanned by
objects of the form (H∗ ⊗H, dec) is equivalent to R+-Mat, the category of positive
real valued matrices, while of course the full subcategory spanned by objects of the
form (H∗ ⊗H, id) is equivalent to CPM(FHilb). Consequently, the full subcategory
of Split(CPM(FHilb)) spanned by both decoherence maps and identities captures
just enough to have both quantum theory and classical theory live within the same
categorical setting. Further to its use in decoherence maps, the morphism δ from (1.7)
can be used to construct an isomorphism θ : H∗ −→ H,

θ :=

H∗

H

H∗

H

H

H

This is to be expected, since the existence of a †-SCFA on an object H implies that
H is self-dual. The isomorphism θ is in fact an isomorphism of †-SCFAs, being
both a monoid isomorphism for the multiplication (to its conjugate) and a comonoid
isomorphism for the comultiplication (to its conjugate). Furthermore, we can rewrite
δ in the following form:

=

H∗ H

H

θ

H∗ H

H

Looking at this from the perspective of higher-order CPM constructions, this suggests
that it could be interesting to consider categories C equipped with a choice of iso-
morphisms θgA : A −→ ϕgA for each object A and element g ∈ G, subject to suitable
conditions; together with these isomorphisms, the presence of †-SCFAs implies that A
is dual to ϕgA for all g ∈ G.

Definition 14 (Generalised Classical Structures). Let C be a †-compact category
equipped with a G-action ϕ. A generalised classical structure on an object A of C
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is a pair ( , θA) of a †-SCFA on A and a choice of automorphisms θ = (θg)g∈G on
A satisfying the same commutative diagram (1.3) as ηgA together with the following
compatibility conditions:

ϕg

( )
=

(θg)
−1

(θg)
−1

θg

ϕg

( )
= θg

Definition 15 (Complete Decoherence Maps). Let C be a †-compact category equipped
with a G-action ϕ. The complete decoherence map for a generalised classical structure
( , θ) is the morphism of C defined as follows:

fldGA

fldGA

:=

. . .

. . .

θkA θhA θgA

θkA
−1

θhA
−1

θgA
−1

. . .

. . .

:=

ϕkAϕhA ϕgA

ϕkAϕhA ϕgA

(1.8)

This is also a morphism in any CPM category CPMG,Ξ(C) where the environment
structure Ξ contains the following complete discarding map ( , θ):

fldGA

:= . . .
ϕkA ϕhA

(1.9)

In this case, the spider part of the leftmost diagram in (1.8) is simply the G-folding
fldG( ) of the comultiplication for the †-SCFA .

In (1.8) and (1.9), the diagrams with thick lines are in the graphical calculus for
the †-compact category CPMG,Ξ(C), while the diagrams with thin lines are in the
graphical calculus for the †-compact category C. This follows the same convention as
diagrams for the original CPM construction. Unlike the discarding maps from the
original CPM construction, however, the complete discarding maps defined by (1.9)
depend on a choice of generalised classical structure ( , θ). This dependence is left
implicit in our diagrammatic notation.

Recall, now, the result from Proposition 5: if H ≤ G, then the complete G-folding
factors into the complete H-folding followed by the folding over any transversal T of
H in G. Via this mechanism, we can define discarding maps and decoherence maps
corresponding to all possible choices of H ≤ G and transversal T .
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Definition 16 (H-Decoherence Maps). Let C be a †-compact category equipped
with a G-action ϕ. Let H ≤ G be a subgroup, T be a transversal for H in G, and
τ := (G,H, η, T ) be folding data. The H-decoherence map for a generalised classical
structure ( , θ) and folding data τ is the morphism of C defined as follows:

H

fldGA

fldGA

:= fldτ
(
fldHA

fldHA )

This is also a morphism in any CPM category CPMG,Ξ(C) where the environment
structure Ξ contains the following H-discarding map H : fldGA→ I for ( , θ) and τ :

fldGA

H := fldτ
(
fldHA

)
The dependence of H-decoherence maps and H-discarding maps on both the

generalised classical structure ( , θ) and the folding data τ is left implicit in the
diagrammatic notation: the subgroup H is the only piece of data that will be of
practical interest. Furthermore, by choosing H := G we always recover the complete
decoherence maps and discarding maps from Definition 15.

A straightforward observation, following from the Spider Theorem [54, 100, 113],
is that the H-decoherence maps are idempotent and causal with respect to the
corresponding H-discarding maps:

H

fldGA

fldGA

H
H

fldGA

fldGA

= H

fldGA

=

H

fldGA

H

A similarly straightforward observation is that decoherence maps for subgroups are com-
positionally well-behaved: if decH and decK are the H-decoherence and K-decoherence
maps for two subgroups H,K ≤ G, then the following is true, where H ∨K is the
group theoretic join of the two subgroups:

decH ◦ decK = decK ◦ decH = decH∨K
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Now, suppose that we fix some subgroup H ≤ G, folding data τ = (G,H, η, T )

and that we equip each object of C with a choice of generalised classical structures
Γ := (( A, θA))A∈obj C on all objects, compatibly with its monoidal structure.

Proposition 9. Under the conditions above, we obtain an environment structure
Ξ by associating to each object A ∈ obj C the singleton set ΞA containing only the
H-discarding map.

Proof. The monoidal product of †-SCFAs is again a †-SCFA so the environment
structure is closed under this operation. The autofunctors act essentially trivially on
any effect in the canonical environment structure: if h ∈ H then h just permutes the
legs of each spider and if h /∈ H then it acts to also permute the spiders. In either
case there exists a natural isomorphism given by the symmetric monoidal structure of
C which acts to undo the permutation and this is all we require because we made the
assumption that the isomorphisms θgA satisfy the commutative diagram (1.3) and act
on the †-SCFA in essentially the same way as the autofunctors ϕg.

The environment structure obtained above can be seen to generalise the standard
choice in the original CPM construction: in that case, the group G = C2 only allows a
single non-trivial choice, the one corresponding to H = C2 itself which is just the cap.
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Chapter 2

A Post-Quantum Theory: Density
Hypercubes

In this chapter we will take a close look at a particular instance of the CPM construction
known as the theory of density hypercubes [90, 96]. This is the first fully fledged
probabilistic theory displaying hyper-decoherence to quantum theory and as such
constitutes the first example of a post-quantum theory. The original work [90]
demonstrated that density hypercubes form a R+-probabilistic theory and that there
exist idempotent maps recovering quantum theory as a sub-theory. Unfortunately it
failed to show that such maps had a well-defined operational interpretation: it was
conjectured that they would happen probabilistically as part of some larger process,
but it was not known what that process could look like.

In this section we patch the short-comings of [90] and put density hypercubes on
solid footing as a probabilistic theory, showing that hyper-decoherence truly has a bona
fide operational interpretation as a probabilistic component of a larger deterministic
process [96]. This will allow further operational exploration of post-quantum effects in
density hypercubes to be carried out with the necessary confidence in its theoretical
foundations.

Along the way we will also explore two closely related theories from the literature,
those of double dilation and double mixing [163], developed to describe quantum-like
aspects of ambiguity in natural language processing [56, 129]. It was originally believed
[90] that density hypercubes and double dilation coincided: we show that not to be
the case. We further show that double dilation and double mixing do not feature the
hyper-decoherence maps of density hypercubes, nor the same associated phase group.

Here follows a brief summary of known results about double dilation, double mixing
and density hypercubes, together with open questions which this section addresses.
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• It was originally believed that density hypercubes and double dilation were the
same theory [90]. We will show that not to be the case. Conversely, double
mixing is a sub-theory of double dilation [163] and a straightforward adaptation
of the same argument also shows that double mixing is a sub-theory of density
hypercubes.

• It was known that density hypercubes possesses idempotent maps exhibiting
classical and quantum theory as full sub-categories of the Karoubi envelope
[90]. It was not known whether the hyper-decoherence maps could be completed
to causal maps, i.e. whether they were a probabilistic outcome of some larger
deterministic process of density hypercubes. We will show that this is indeed
the case and thus density hypercubes are a post-quantum theory.

• It was known that the states of a n dimensional density hypercube form a
subset of those of a n2 dimensional quantum state1. We will characterise this
state-space as precisely the R+-linear combinations of symmetric pure quantum
states.

• The structure of the hyper-phase group—the invertible maps which are quotiented
away by hyper-decoherence—for density hypercubes was not known. We will
show that there exist non-trivial elements of this group and thus hypercube
states are truly an extension of those of quantum theory.

• It was not known whether double dilation and double mixing possess hyper-
decoherence maps, or what the associated hyper-phase group would be. We will
show that the same choice of maps from density hypercubes would not work
and we will provide evidence against the existence of such hyper-decoherence
maps by showing that severe restrictions apply to the maps that the associated
hyper-phase group can contain.

2.1 Double Dilation, Double Mixing and Density Hy-
percubes

The states of density hypercubes are given by tensors of the form ρijkl and are
thus similar to those of quartic quantum theory. In contrast to that theory though,
density hypercubes have a higher-order symmetry group: C2 × C2 instead of C2.

1note that this is purely mathematical and not the correct operational interpretation of the theory
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Alongside double dilation and double mixing, density hypercubes arises from the CPM
construction where the folding is generated by the action

ϕ(a,b) :=

{
idC if a⊕ b = 0

conjC if a⊕ b = 1

that is, we iterate the original CPM construction twice. Explicitly, the folding functor
sends objects H to objects H ⊗H∗ ⊗H ⊗H∗, and similarly for morphisms. Different
choices of environment structures then capture different ways of discarding: the three
examples we consider all contain the doubling of the discarding map from CPM(FHilb)

plus one additional effect.
The first choice appearing in the literature is that of double dilation [163], also

known as dual density operators [6]. The environment structure contains the two
possible ways in which caps ϵA : A∗ ⊗ A → I can be applied to dbl(dbl(E)) =

E ⊗ E∗ ⊗ E ⊗ E∗: (i) the doubling dbl(ϵE) of the discarding maps from CPM(FHilb)

and (ii) the cap ϵdbl(E):

ff∗

dbl(K∗) dbl(K)

dbl(H∗) dbl(H)

=
f∗f

K K∗

H H∗

f∗f

K K∗

H H∗

(2.1)

The second choice appearing in the literature is that of double mixing [163]. The
environment structure contains the doubling dbl(ϵE) of the discarding maps from
CPM(FHilb) together with a four-legged spider connecting all four environment systems:

ff∗

dbl(K∗) dbl(K)

dbl(H∗) dbl(H)

=

f∗f

K K∗

H H∗

f∗f

K K∗

H H∗

(2.2)

It can be shown [163] that double mixing is a sub-theory of double dilation, i.e. that
all maps in the form (2.2) can also be put in the form (2.1). Both double dilation
and double mixing have found application to the modelling of ambiguity in natural
language processing [56, 129].
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The third choice appearing in the literature is that of density hypercubes [90]. The
environment structure contains the doubling dbl(ϵE) of the discarding maps from
CPM(FHilb) together with two-legged spiders resembling the cap ϵdbl(E) from double
dilation:

ff

dbl(K) dbl(K)

dbl(H) dbl(H)

=
f∗f

K K∗

H H∗

f∗f

K K∗

H H∗

(2.3)

Despite the apparent similarity, density hypercubes are significantly different from
double dilation: the two-legged spiders used in the RHS of (2.3) are effects on E ⊗ E
and E∗ ⊗ E∗, while the two caps forming ϵdbl(E) in (2.1) are both effects on E ⊗ E∗.
Because of this, the objects of density hypercubes are most naturally written in the
form dbl(H) ⊗ dbl(H) (instead of dbl(H∗) ⊗ dbl(H)) and the folded morphisms in
density hypercubes are most naturally written in the form dbl(f)⊗ dbl(f) (instead of
dbl(f ∗)⊗ dbl(f)). This will turn out to make a very significant difference.

On the LHS of (2.3), the wires have been re-arranged to achieve a more pleasant
visual effect. In more direct analogy with double dilation and double mixing they
would have taken the following form:

ff

dbl(K) dbl(K)

dbl(H) dbl(H)

:= ff

dbl(K) dbl(K)

dbl(H) dbl(H)

We refer to the two legged spider appearing in the middle as a bridge. For convenience,
we will allow for bridges in any choice of †-SCFA ◦: this generalisation yields the
same class of morphisms, but with added flexibility when drawing diagrams.

The three choices of environment structure that lead to density hypercubes, double
dilation and double mixing can be understood as choices of H-discarding maps for
different subgroups H ≤ C2 × C2. All three models contain the H-discarding maps
for the subgroup H := {(0, 0), (0, 1)} ∼= C2, while the other effects are K-discarding
maps for different choices of subgroup K:

• in density hypercubes, Kdh := {(0, 0), (1, 1)} ∼= C2;
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• in double dilation, Kdd := {(0, 0), (1, 0)} ∼= C2;

• in double mixing, Kdm := C2 × C2;

The previously discussed behaviour of H-decoherence maps under composition tells
us that:

Kdd ∨H = G = Kdm ⇒ decH ◦ decKdd
= decKdd

◦ decH = decKdm

Kdh ∨H = G = Kdm ⇒ decH ◦ decKdh
= decKdh

◦ decH = decKdm

which recovers the result of [163] showing that double mixing is a sub-theory of double
dilation, and the result of [90] showing that double mixing is a sub-theory of density
hypercubes. A limitation of this group theoretic approach is that it does not tell us
whether double dilation and density hypercubes coincide; we will see shortly, that in
fact they do not [96]. This also means that theories generated by the same folding
and using discarding maps from isomorphic subgroups of G do not, in general, need
to be equivalent: the G-action itself plays an important role in this. An investigation
of the exact conditions under which such theories are equivalent is left to future work.

In the generalised CPM construction, a single family of effects has to be chosen
within the environment structure to endow the theory with a notion of causality and
normalisation [42, 55, 50]. We make the same choice for all three theories:

=

H H∗ H H∗

We refer to the effects above as the discarding maps for the theories. The normalised
morphisms in the three theories are those which respect the choice of discarding maps
made above, in the following sense:

ff∗ = , ff∗ =

ff =

36



The three theories are also probabilistic: they have the non-negative real numbers R+

as scalars, with morphisms that can be rescaled and added together. In particular,
normalised morphisms form a convex set and are interpreted as processes that can be
made to happen “with certainty”, or “deterministically”. More generally, we say that a
morphism f : H → K is sub-normalised if there is some g : H → K such that f + g

is normalised: sub-normalised morphisms are interpreted as processes that happen
“probabilistically”—with probability dependent on the specific state that they are
applied to—as cases of a larger deterministic process. There is a unique normalised
scalar, the number 1, and sub-normalised scalars coincide with probabilities [0, 1].

Finally, we can precisely characterise the state-space of density hypercubes.

Proposition 10. The state-space of density hypercubes is the R+-linear closure of the
symmetric sector of quantum theory.

Proof. Consider a pure hypercube state ϕ and note that it is invariant under braiding
the outputs.

ϕ ϕ

=

As a consequence the un-doubled version of ϕ must be either symmetric or antisym-
metric.

ϕ ϕ

= ±

Write M for the matrix corresponding to ϕ by bending down the right leg.

ϕ
M :=

Then it follows that M is either a symmetric or antisymmetric matrix.

ϕ

M =
ϕ

=
ϕ

M= =± ±

Firstly suppose that M is symmetric. We note an old result of Autonne and Takagi [8,
154] which says that if M is a complex symmetric matrix then there exists a unitary
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matrix U and a real diagonal matrix D such that M = UDUT . As a result ϕ can be
written in the following form which shows it is a valid density hypercube state.

M = D

U

UT

= U U

√
d

√
d

ϕ

=

Here,
∣∣∣√d〉 is the state (

√
d1, . . . ,

√
dn) with the di given by the diagonal of D.

The case where M is antisymmetric is not compatible with the structure of density
hypercubes. From the definition, we can see that every pure hypercube state must be
symmetric in FHilb.

ϕ ϕ ϕ ϕ ϕ ϕ

= =

So we have shown that the pure hypercube states are precisely those of symmetric
quantum theory. The last thing to note is that the non-pure states arise by discarding
some of the outputs of a pure state. The discard maps can be expanded in a basis of
one’s choosing to see that this is equivalent to taking R+ linear combinations of the
pure states.

Remark. The previous Proposition characterising the state-space of density hypercubes
should be understood as a purely mathematical statement and not the intended physical
nor operational interpretation of the theory. In the next section we will investigate
hyper-decoherence in density hypercubes and we will see how the quantum states arise
as a certain sector of the theory accessed by a probabilistic hyper-decoherence process.

2.2 Hyper-decoherence in Density Hypercubes

It has been shown [90] that the theory of density hypercubes has both decoherence
maps (collapse to classical theory) and hyper-decoherence maps (collapse to quantum
theory), taking the following form:

dec◦ = hypdec◦ =
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Both maps are idempotent, but unfortunately they are not normalised, meaning that
they are not—on their own—bona fide physical processes:

= ̸= (2.4)

In the seminal [90] it was argued that some completion to a normalised process would
indeed be possible in principle, but it was not known whether this be possible within
the theory of density hypercubes. We now process to show that it is possible indeed,
giving hyper-decoherence the operational interpretation of a probabilistic process.

Proposition 11. The hyper-decoherence map is sub-normalised within the theory
of density hypercubes. For qubits, its completion to a normalised process is given as
follows:

+

π

(2.5)

where the white dot is a spider in the Pauli Z basis and the black dot is a phased spider
in the Pauli X basis. For higher dimensions, its completion to a normalised process is
given as follows:

|k⟩∈K(◦)
|k⟩ ≠ |0⟩

∑
λ

=

k

+
λ

(2.6)

where the white dot is a spider in the computational basis, K(◦) is the set of computa-
tional basis states and the black dot is a spider in any Fourier basis.

Proof. The second map of (2.5) can be written with two black π/2 phases on the
bridge and is therefore a valid map of density hypercubes. Applying the discarding
maps we get:

=+

π

For higher dimensions d ≥ 3, the completion is slightly more complicated. Let G be a
finite abelian group on d elements and ◦ correspond to the group element basis in the
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group algebra C[G] ∼= Cd. Let • correspond to the Fourier basis for G, spanned by
the (normalised adjoints of the) characters for G. Let K(◦) = { k : k ∈ G} be the set
of classical states for ◦. Now consider the following CP map:

|k⟩∈K(◦)
|k⟩ ≠ |0⟩

∑
λ

=

k
λ

It is easy to check that this gives a completion of the hyper-decoherence map to a
normalised CP map, but it is not immediately clear that this is a valid map in the
theory of density hypercubes. Indeed, it is not clear that it respects the symmetry
required for maps of density hypercubes. However, writing k̄ for the inverse of k ∈ G
we note the following equality

k k̄
=

Which in turn implies:

k̄k =
|k⟩∈K(◦)
|k⟩ ≠ |0⟩

∑
|k⟩∈K(◦)
|k⟩ ≠ |0⟩

∑
λ == λ

Thus we can write:

λ = λ + λ
1
2

1
2

=

C

1
2

The “control state” C on the RHS above is formed as follows:

V V

π
C

=

where V : C2 −→ C[G] is the isometry in FHilb defined by |0⟩ 7→ |0G⟩ , |1⟩ 7→ |λ⟩.

Proposition 11 above shows that the theory of density hypercubes splits into two
“sectors”: a quantum sector accessed by hyper-decoherence and another sector referred
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to as the Beyond. It also shows that hyper-decoherence occurs probabilistically as one
outcome of the above normalised process.

Discarding the map which completes the hyper-decoherence map (the second part
of (2.6)) gives an important effect which give a special name and symbol.

Definition 17. The Unspeakable Horror from Beyond (UHfB) is the effect completing
the quantum discarding map (LHS of 2.4) to the full discarding map of density
hypercubes. In the qubit case we have:

1 0
π

= (2.7)

We adopt the same symbol for all dimensions.

The importance of the UHfB is that it can be used to complete quantum mea-
surements/POVMs to genuine measurements/POVMs on density hypercubes. For
example, the following completes a computational basis measurement on a qubit to a
measurement of density hypercubes:

1 01100

, ,
{ } (2.8)

This completion is necessary for a meaningful operational perspective on the larger
theory, but is not observable from within quantum theory. Indeed, consider a generic
quantum state, taking the following form [90]:

ψ

This quantum state has probability zero of yielding the UHfB as a measurement
outcome:

=

π

π
= 0
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The first equality is by Hopf rule and the second equality is due to the black π dot
being the scalar 0.

Although the computational basis states take the product form shown in (2.8),
this is not the case for generic quantum states. For example, the state on the left
below is the quantum |+⟩ state, while the state on the right is a post-quantum state
(sent to the quantum |+⟩ state by hyper-decoherence):

+
+ +

Proposition 12. There are no post-quantum decompositions of any given quantum
state.

Proof. Suppose there is a decomposition of a hyper-decohered state of the form:

ψ ψ

=
∑
i

pi
ϕi ϕi

(2.9)

for some pi ∈ R+. Each term ϕi of the right hand side is isomorphic (by compact
closure) to a positive semi-definite matrix which we may write in the basis correspond-
ing to ◦ as

∑
ijkl aij,kl |ij⟩ ⟨kl|. Such a matrix necessarily has its diagonal coefficients

positive real aij,ij ∈ R+. The hyper-decohered state ψ, which can similarly be written
as
∑

ijkl bij,kl |ij⟩ ⟨kl|, must have diagonal coefficients bij,ij = 0 for i ̸= j which means
that (2.9) cannot hold unless aij,ij = 0 for i ̸= j.

Now we use Slyvester’s criterion: a Hermitian matrix is positive semi-definite if
and only if all of its principle minors are non-negative. This allows us to show that
many of the entries of ϕi are necessarily zero. For instance, take the following principle
minor: ∣∣∣∣a00,00 a00,01

a01,00 0

∣∣∣∣ ≥ 0 =⇒ −a00,01a01,00 = −|a00,01|2 ≥ 0 =⇒ a00,01 = 0

As a result, it is only the entries aii,jj which can be non-zero, but these are exactly
the entries which are left invariant by hyper-decoherence. Therefore, each ϕi must be
a quantum state.
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The previous proposition has a number of important consequences. Firstly, all
pure quantum states are pure as post-quantum hypercube states. This was one of the
assumptions of the no-go theorem of [117]: if pure quantum states are states of maximal
knowledge and hyper-decoherence is the loss of information to an environment, then
they should also be pure post-quantumly. Indeed, density hypercubes does not break
this assumption.

Secondly, the quantum maximally mixed state is not the maximally mixed state of
the post-quantum theory. In this way density hypercubes breaks this assumption of
[117]: the maximally mixed post-quantum state is mapped to the maximally mixed
quantum state and as a result to a state of more knowledge! At first this seems to
be a highly odd situation, but if we slightly shift our perspective then there is a
more reasonable explanation. Suppose density hypercubes describes a theory in which
the observer is constrained to the quantum world – there is a sector “the Beyond”
which is inaccessible to them and they only ever see the quantum “shadows” of the
post-quantum states. Such a world is not completely inconceivable, for instance in
brane cosmology it is hypothesised that ordinary matter might be constrained to a
hypersurface known as a brane of a higher-dimensional space known as the bulk which
exotic matter and gravity might be able to propagate through [116, 37]. The existence
of the bulk might provide a way to deal with the extra dimensions predicted by string
theory (other than compactification).

Density hypercubes is phenomenologically similar: the hypercube states evolve
as a bulk, with the observer constrained to a brane of quantum theory. As a result,
although it seems that the maximally mixed post-quantum state is mapped to a
state of more knowledge by hyper-decoherence, this is only the effective state seen
by the constrained observer - to them the state never changed and their knowledge
has remained constant. To a post-quantum observer the hyper-decoherence cannot
be implemented deterministically. This explains the knowledge gained by such a
post-quantum observer - they would need to implement a measurement and only upon
post-selecting for the quantum sector could they be certain they have quantum state.

2.3 Phase Group

In quantum theory, the phase group for a decoherence map dec◦ : H → H is the
group formed by all invertible processes U : H → H which are quotiented away by
dec◦, i.e. such that
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dec◦ ◦ U = dec◦
This is formed by the phase gates, the unitaries diagonal in the decoherence basis, and
is isomorphic to a torus T d−1. For a qubit, it is the circle group T 1.

Proposition 13. The processes obtained by doubling phase gates from quantum theory
are always in the phase group for density hypercubes:

β
2

β
2 (2.10)

Proof. By spider fusion, it is clear that the doubled phase gates are erased by hyper-
decoherence:

=

−α α −α α

The maps in (2.10) are natural choices, as they are sent to the usual phase gates of
quantum theory by hyper-decoherence. The phase gates of quantum theory themselves
are not however in the phase group for density hypercubes, as they are not invertible
within the larger theory.

Are there more elements in the phase group? Restricting temporarily to the case
where dimH = 2, we can certainly find more:

H = π
2

π
4 π

2

π
4 (2.11)

We have used the Euler decomposition of the Hadamard [51] on the right-hand side to
demonstrate that this is indeed a valid map for density hypercubes.2 The map in (2.11)
is clearly invertible, and one can check with ease that it is erased by hyper-decoherence.

2Note that it is not possible to make the map from (2.11) in the double dilation or double mixing,
as the only caps available are those on H and H∗: the conjugation would change the sign of the
phases on one side, causing them to vanish.
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The map also resembles the controlled-Z gate on two qubits, suggesting that there be
an entire additional family of maps just like it living in the phase group.

Proposition 14. The following maps are in the phase group of density hypercubes
for dimH = 2:

=α

−α
2

α
2

α
2 (2.12)

Proof. Showing that the maps (2.12) are erased by decoherence is a simple application
of the Hopf rule. The harder part is showing that the maps (2.12) exist in density
hypercubes: this boils down to showing that they have a symmetric expansion about
the bridge, just as we have previously shown for (2.11). This expansion can be found
by taking the square root of the following map in FHilb:

M(α) = =

α
2 √

2eiα/2
(
cosα/2 0

0 −i sinα/2

)

where the matrix on the RHS is written in the Pauli X basis. Since M(α) is diagonal
in the Pauli X basis, a square root R(α) is guaranteed to exist, itself diagonal in the
Pauli X basis and thus self-transpose in Pauli X basis. Therefore we can safely write
the square root on either side of the bridge as follows:

=M(−α)
R(−α) R(−α)

α
2

α
2

α
2

α
2

It is notable that the maps (2.12) are really a composition of the following two maps:

−α
2

β
2

β
2 (2.13)

It is then the maps on the LHS of (2.13) that introduce something new to the
phase group, since the maps on the RHS are the doubled phase spiders from before.
These new maps have been appeared previously in the literature under the name
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of phase gadgets [111]. It is easy to show that composing phase gadgets adds their
phases:

=

α

γ

α + γ

Phase gadgets and doubled phase spiders commute, so that the phase group for density
hypercubes in dimension dimH = 2 is the torus T 2 = S1 × S1.

Proposition 15. The following maps are in the phase group of density hypercubes
for arbitrary dimensions, generalising (2.12):

ψ
(2.14)

Above, |ψ⟩ =
∑

k∈K(◦) eiθk |k⟩ is a ◦-phase state with θk = θk−1 and is the antipode.

Proof. The doubled phase spiders contribute the usual quantum phase group T d−1. We
also have the maps (2.14). One can check that these maps are erased by decoherence
and thus are in the phase group. All that is left to check is that they are normalised,
invertible and that they exist in the theory of density hypercubes. Existence comes
down to showing that they have a symmetric expansion about a bridge, generalising
what happened in the proof of Proposition 14. Consider the following map in FHilb:

ψ
=

∑
k ∈ K(◦) k

ψk (2.15)

where we have expanded the phase state as its sum over ◦-classical states and ψk

are complex numbers on the unit circle. One can see that (2.15) acts on ◦-classical
states as |g⟩ 7→

∑
k∈K(◦) ψk |g−1k⟩ (up to normalisation). Furthermore, (2.15) acts on

•-classical states |χ⟩ =
∑

g∈K(◦) χ(g) |g⟩ as follows (up to normalisation):
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|χ⟩ 7→

 ∑
k∈K(◦)

χ(k)ψk

 |χ⟩
where |χ⟩ =

∑
g∈K(◦) χ(g)

∗ |g⟩. (In the above, χ ∈ G∧ where G∧ is the group of
multiplicative characters for G.) We are thus able to expand (2.15) as a matrix in the

• basis (again up to appropriate normalisation):

ψ
=
∑
χ∈K(•)

∑
k∈K(◦)

χ(k)ψk|χ⟩ ⟨χ|

We want this matrix to have a square root and for this square root to be self-transpose
with respect to the • basis. Since most entries of the matrix are zero, checking the
existence of a square root comes down to looking at the sub-matrices for the terms
|χ⟩ ⟨χ| and |χ⟩ ⟨χ|, which take the form:(

0 a
b 0

)
(2.16)

for some a and b, where we have considered the case ord(χ) > 2 in G∧. The case of
ord(χ) = 2 is trivial since it contributes a single non-zero diagonal element to the
matrix, which can clearly be square rooted. The matrix (2.16) always has four square
roots, since a, b ̸= 0, but unless a = b none of them are self-transpose in •. In order to
have a = b we need the following to hold for each χ:

∑
k∈K(◦)

χ(k)(ψk − ψk̄) = 0

Note that the above is the Fourier transform of f(k) = ψk − ψk̄ in the finite abelian
group G. By inverting the transform, one sees that ψk = ψk̄. This is trivially satisfied
for those k ∈ G such that ord(k) = 2. Finally we show that the maps (2.14) are closed
under composition:
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ψ

ϕ

=

ψ

ϕ

ψ

ϕ

=

ψ

ϕ

=

ψϕ

=
ψ⊙ϕ=

Above we have have used the Frobenius product |ψ ⊙ ϕ⟩ =
∑

k∈K(◦) ψkϕk |k⟩. This
also shows that the maps (2.14) are invertible. As observed in the proof of Proposition
14 before, the maps are also normalised, by the Hopf law.

2.4 Hyper-phase Group

Having characterised the phase group, we can now look at its post-quantum generali-
sation: the hyper-phase group, defined below. Because decoherence maps are invariant
under pre- or post-composition by hyper-decoherence, the hyper-phase group is always
a subgroup of the phase group.

Definition 18. The hyper-phase group in density hypercubes for a hyper-decoherence
map hypdec◦ is the group formed by all invertible processes U : H → H which are
quotiented away by hypdec◦, i.e. such that

hypdec◦ ◦ U = hypdec◦
Proposition 16. The hyper-phase group of density hypercubes for dimH = 2 contains
exactly the maps from (2.12):

=α

−α
2

α
2

α
2
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Proof. One can check that the maps (2.13) are erased by hyper-decoherence:

= =
α

α

where the final step follows by the Hopf law. On the other hand, the doubled phase
spiders are not erased by hyper-decoherence.

Proposition 17. The hyper-phase group of density hypercubes for arbitrary dimensions
contains the maps from (2.14):

ψ

Proof. The proof for Proposition 16 straightforwardly generalises to higher dimensions.

2.5 Double Dilation and Double Mixing

In this section we look at how many of the post-quantum features from density
hypercubes are also available in double dilation and double mixing.

To start with, a minor alteration of the proof given in [90] can be used to show
that double dilation and double mixing are also probabilistic theories.

Proposition 18. The decoherence maps of density hypercubes are also decoherence
maps for double dilation and for double mixing, i.e. they send double dilated and
double mixed systems to classical systems.

However, the hyper-decoherence maps from density hypercubes are not maps in double
dilation or double mixing. The most likely candidate candidate would be the following
map (which however does not exist for double mixing):

H∗HH∗H

(2.17)
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Proposition 19. Map (2.17) does not give a hyper-decoherence map for double
dilation.

Proof. An arbitrary tripartite pure state on systems A,B and C in double dilation
can be written as follows:

|ψABC⟩ =
∑
ijk

cijk
∣∣eAi eBj eCk 〉

for cijk ∈ C, where {
∣∣eAi 〉} forms an orthonormal basis for A, and similar for B and C.

By partial trace, a general state on A in double dilation can be written as follows:

ρ =
∑
pqrs

〈
eCr e

B
p

∣∣ψABC〉 〈eCs eBp ∣∣ψABC〉 〈eCs eBq ∣∣ψABC〉 〈eCr eBq ∣∣ψABC〉
=

∑
ijklpqrs

cipr
∣∣eAi 〉 c∗ips∣∣eAj 〉ckqs ∣∣eAk 〉 c∗lqr|eAl ⟩

Without loss of generality, we can consider the map (2.17) with ◦ associated to the
basis {

∣∣eAi 〉}. The result of applying the map to ρ is the following state (written up to
Choi-Jamiołkowski isomorphism for convenience):

∑
ijpqrs

ciprc
∗
jpscjqsc

∗
iqr

∣∣eAi 〉 〈eAj ∣∣
We see that each of the coefficients is invariant under conjugation:(∑

pqrs

ciprc
∗
jpscjqsc

∗
iqr

)∗

=
∑
pqrs

c∗iprcjpsc
∗
jqsciqr =

∑
pqrs

ciprc
∗
jpscjqsc

∗
iqr

where we relabelled p and q in the final step. As a consequence, the coefficients are all
necessarily real and we do not recover all quantum states.

A less rigorous but more straightforward way of seeing that map (2.17) cannot possibly
be a hyper-decoherence map is to note that it erases the doubled phased spiders.
In fact, it is easy to show that the hyper-phase group would be limited to doubled
unitaries.

Proposition 20. In double dilation and double mixing the invertible maps are all
doubled unitaries.
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Proof. The maps of double dilation can be written in the following form:

ff∗

dbl(K∗) dbl(K)

dbl(H∗) dbl(H)

(2.18)

In order for maps in the form above to be invertible, the discarding maps need to be
trivial (because of purity in CPM(FHilb)):

ff∗

dbl(K∗) dbl(K)

dbl(H∗) dbl(H)

(2.19)

The diagram above is the doubled version of the following diagram in FHilb:

ff∗

K∗ K

H∗ H

But the diagram above in FHilb corresponds to another CP map:

f

dbl(K)

dbl(H)

(2.20)

For the CP map (2.20) above to be invertible, the discarding map must be trivial.
This in turn implies that the bridge in (2.19) must be trivial and hence that the
original map (2.18) must take the following form if it is to be invertible:
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ff∗

The map above is the double of a pure CP map and it is invertible exactly when f is
unitary.

Proposition 20 above immediately implies that the phase group for double dilation
and double mixing is exactly the same phase group of quantum theory. In particular,
double dilation is not the same theory as density hypercubes. Furthermore, even if
double dilation and/or double mixing did possess hyper-decoherence maps, they would
not quotient away any non-trivial phases: it may ultimately turn out that one or both
are post-quantum theories, but uninteresting ones at best.

2.6 Summary

In this Chapter, we have conclusively shown that density hypercubes possess hyper-
decoherence maps with a well-defined operational interpretation. We studied the
associated phase group showing that there exist non-trivial phases quotiented away
by hyper-decoherence and we have compared our results with analogous statements
for double dilation and double mixing.

The probabilistic nature of hyper-decoherence in density hypercubes presents a
concrete way around the no-go theorem of Lee and Selby [117]. Simply dropping
the constraint that the hyper-decoherence be deterministic allowed the formulation
of an operational theory displaying genuinely post-quantum phenomena, together
with a mechanism for quantum theory to arise as an effective sub-theory. Density
hypercubes also breaks the assumption that the maximally mixed quantum state
is not the maximally mixed post-quantum state. This assumption was imposed in
[117] because it seemed it would be necessary to ensure that the maximally mixed
post-quantum state should not be mapped to a state of greater knowledge by hyper-
decoherence. Nevertheless, we offered an interpretation of density hypercubes where
the observers are constrained to the quantum sector of the theory and as a result
hyper-decoherence happens deterministically and transparently to them. There is no
change in knowledge to such an observer. On the other hand, a truly post-quantum
observer cannot implement the hyper-decoherence map deterministically, and thus it
must be associated with an increase in knowledge.
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Chapter 3

CPM Categories Induced by Galois
Extensions

In this chapter we will consider a particular case of CPM categories where the symmetry
is induced by a finite degree Galois extension. To motivate this, consider the case
of decoherence in standard quantum theory. Starting with the category FHilb, we
form the category Split(CPM(FHilb)) and then we note that classical theory R+-Mat

is recovered as the full subcategory spanned by decoherence maps. A more interesting
connection emerges though when we note that there is an equivalence FHilb ∼= C-Mat.
We see that there are two fields at play here, C and R and that the former is a
Galois extension of the latter. Furthermore, the C2 symmetry of the original CPM
construction is isomorphic to the Galois group of the extension R ⊂ C, while the
positivity of the classical theory arises because the entries of the matrices are in the
image of the field norm NC/R(z) = z∗z.

As a result the quantum and classical theories arrange themselves into a tower
mimicking those arising from the Galois correspondence:

C {∗} CPM(FHilb)

R C2 R+-Mat

If we now replace the extension R ⊂ C with another finite degree Galois extension
k ⊂ K, we could imagine that applying the CPM construction to K-Mat equipped
with the canonical action by its Galois group Gal(K/k) might produce a theory with
decoherence maps exhibiting k+-Mat as the “classical” sub-theory of the “quantum”
CPM(K-Mat). Moreover, if there exists an intermediate field k ⊆ F ⊆ K then perhaps
it might be possible to produce a tower of three probabilistic theories over each field
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with decoherence maps exhibiting transitions between them? This will be the focus of
this chapter.

3.1 A Gentle Introduction to the Classical Galois
Theory of Fields

Let us start with a summary of the required tools, techniques and results from the
classical Galois theory of fields; for a more detailed discussion, we refer the reader
to standard texts [139, 35], although any good undergraduate course on the subject
would suffice for the core concepts. This section can be safely skipped by those readers
who are already familiar with this most beautiful area of mathematics.

Galois theory concerns itself with understanding field extensions by studying a
certain group of field automorphisms known as the Galois group. A field extension
k ⊂ K is simply another way of saying that k is a subfield of K and we will often refer
to k as the base field and K as the extension field. K always forms a vector space over
k and we refer to the dimension of this vector space as the degree of the extension,
denoting it by [K : k]. An extension is finite if the degree is finite; extensions of degree
2 are in particular called quadratic. Given an extension k ⊂ K and a collection of
elements zi ∈ K, we write k(zi) for the smallest sub-field of K containing k and all of
the zi.

Example 2. Here are some examples of field extensions:

• R ⊂ C is a quadratic field extension: all z ∈ C can be written in the form
z = a+ ib for a, b ∈ R, so that 1, i forms a basis of C over R.

• Q ⊂ Q(ζ5), where ζ5 is a primitive fifth root of unity, is a fourth degree extension:
since roots of unity sum to 0, every element z ∈ Q(ζ5) can be written in the
form z = a+ bζ5 + cζ25 + dζ35 for some a, b, c, d ∈ Q.

• Q ⊂ Q(π) is an infinite degree extension.

An element a ∈ K is algebraic over k if there exists a polynomial with coefficients
from k that has a as a root. In other words, there is a polynomial p ∈ k[x], the ring
of polynomials over k, such that p(a) = 0. A field extension k ⊂ K is algebraic if
every element of K is algebraic over the base field k. In particular, all finite degree
extensions are algebraic because for any a ∈ K there must be some linear dependence
between 1, a, a2, . . . , am as m grows sufficiently large—or else K cannot be a finite
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dimensional vector space over k—giving a polynomial with a as its root. An element
a ∈ K which is not algebraic over k is known as transcendental ; extensions which are
not algebraic are also called transcendental.

Example 3. R ⊂ C and Q ⊂ Q(ζ5) are algebraic extensions while Q ⊂ Q(π) is
transcendental. On the other hand, R ⊂ R(i

√
π) is an algebraic extension because

i
√
π is a root of x2 + π.

A polynomial p ∈ k[x] is irreducible if p is not a constant polynomial (that is,
deg p > 0) and whenever p = qr for q, r ∈ k[x] then one of q or r must be a constant
polynomial. An irreducible polynomial is said to split over K if it factorises into linear
factors over K. In general, it is possible that a polynomial could have a root in K

but not all of its roots in K: the polynomial would factor, but not split. An algebraic
field extension k ⊂ K is normal if every irreducible polynomial over k which has at
least one root in K splits, i.e. has all of its roots in K.

Example 4. The polynomial x3− 2 has one of its roots in the field Q( 3
√
2) but not its

other two. Thus this polynomial does not split and this field is not normal. Conversely,
the extension Q ⊂ Q( 3

√
2, ω) where ω is a primitive third root of unity is normal and

the polynomial x3 − 2 now splits.

So far we have implicitly viewed extensions such as Q ⊂ Q(ζ5) as already embedded
into some algebraic closure, in this case C. When constructing the field Q(ζ5), we
adjoin ζ5 to Q and by knowing which polynomial ζ5 is a root of we are able to give
a general expression for an element of the field. There is another way of looking at
this: we could start with a polynomial and try to construct a field from it directly. In
particular, if R is a commutative ring and I ⊂ R is an ideal, then the quotient R/I is
a field if and only if I is maximal. One can show that the ideal (f) generated by a
polynomial f ∈ k[x] is maximal if and only if f is irreducible, in which case we can
take the quotient k[x]/(f) and form a proper field. If a is a root of f , then there is an
isomorphism k[x]/(f) ≃ k(a): a is algebraic over k and f is the minimal polynomial
of a over k.

At this point we are almost in a position to define Galois extensions, but there is a
technical pathology which we must rule out: if an irreducible polynomial over k splits
in K, is it the always case that all of its roots are distinct? We will not delve too far
into the specifics, other than to say that this is always the case for algebraic extensions
of finite fields and fields of characteristic zero. Many extensions—in particular, all
those considered in this work—have the property of being separable, which rules out
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the aforementioned pathology: an irreducible polynomial f ∈ k[x] is called separable
if all of its roots are distinct in some extension field, an element a ∈ K is separable if
its minimal polynomial is separable, and an extension is separable if all its elements
are separable.

A finite degree field extension k ⊂ K is Galois if it is normal and separable. It
can be shown that this is equivalent to K being the splitting field of a separable
polynomial p ∈ k[x], that is K is the minimal degree extension of k such that p splits.

Example 5. The extension R ⊂ C is Galois extension, because it is the splitting field
of x2 + 1. Similarly, the extension Q ⊂ Q(ζ5) is Galois, because it is the splitting
field of 1 + x+ x2 + x3 + x4. The extension Q ⊂ Q( 3

√
2), on the other hand, cannot

be Galois, because it is not normal. But we have already seen that we get a normal
extension Q ⊂ Q( 3

√
2, ω) if we add ω: this is indeed Galois, because it is the splitting

field of x3 − 2.

Galois extensions have attracted a lot of attention in the study of number fields
because of a key property, known as the Fundamental Theorem of Galois Theory. To
understand it, we first need to introduce a few more notions. If k ⊂ L and k ⊂ K

are both extensions of k, a k-homomorphism τ : L −→ K is a field homomorphism
L −→ K which fixes k, i.e. one such that τ(a) = a for all a ∈ k. The k-automorphisms
K −→ K for a field extension k ⊂ K, i.e. the field automorphisms which fix the base
field, always form a group Aut(K/k): for a Galois extension, this is known as the
Galois group and is written Gal(K/k). Importantly, the order of Gal(K/k) coincides
with the degree of the extension, i.e. |Gal(K/k)| = [K : k].

Theorem 2 (Fundamental Theorem of Galois Theory). If k ⊂ K is a Galois extension,
then there is a bijection between subgroups H ≤ Gal(K/k) and intermediate fields
k ⊆ F ⊆ K. Each subgroup H ≤ Gal(K/k) is sent to the field fixed by all elements of
H:

H 7→ Fix(H) := {a ∈ K : τ(a) = a, ∀τ ∈ H}

Conversely, each intermediate field k ⊆ F ⊆ K is sent to the group of F -automorphisms
of K:

F 7→ Gal(K/F ) := {τ ∈ Gal(K/k) : τ(a) = a, ∀a ∈ F}

Example 6. The extension R ⊂ C has Galois group {id, conj} ≃ C2 generated by
complex conjugation. The extension Q ⊂ Q(ζ5) has Galois group ⟨σ | σ4 = id⟩ ≃ C4

where σ :: ζ5 7→ ζ25 . There is only one non-trivial subgroup, ⟨σ2⟩ ≃ C2: one can check
that σ2 :: ζ5 ↔ ζ45 , ζ

2
5 ↔ ζ35 fixes ζ5 + ζ45 = (1 +

√
5)/2 and ζ25 + ζ35 = (1 −

√
5)/2.

Therefore, Fix(⟨σ2⟩) = Q(
√
5).
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For a Galois extension k ⊂ K with intermediate field k ⊂ F ⊂ K, it is always the case
that F ⊂ K is a Galois extension. A corollary of the Fundamental Theorem of Galois
Theory also tells us that k ⊂ F is Galois if and only if Λ := Gal(K/F ) is normal in
Γ := Gal(K/k). As a consequence, Gal(F/k) isomorphic to the quotient Γ/Λ.

Example 7. The extension Q ⊂ Q(ζ5) has an abelian Galois group, so that the
subgroup Λ := Gal(Q(ζ5)/Q(

√
5)) = ⟨σ2⟩ ≃ C2 is automatically normal in Γ :=

Gal(Q(ζ5)/Q) ≃ C4. As a consequence, Gal(Q(
√
5)/Q) ≃ C4/C2 ≃ C2 and can be

explicitly characterised by restricting the automorphisms of Γ to the intermediate field
Q(
√
5):

Gal(Q(
√
5)/Q) = {id, σ |Q(

√
5)=: τ}

where τ ::
√
5 7→ −

√
5 as expected.

The Fundamental Theorem of Galois theory is one of the two notions from Galois
theory that will play a major role in this work; the other is the field norm. All finite
extensions k ⊂ K admit a multiplicative map NK/k : K −→ k, known as the field norm,
which sends elements of the extension back to the base field. To understand how the
field norm is defined, note that every element a ∈ K induces a map ma :: x 7→ ax by
left multiplication. Because K is a finite-dimensional vector space over k, this map
has a matrix representation: the field norm of a is defined to be the determinant of
this matrix, that is NK/k(a) := det(ma). If k ⊂ E is Galois, the field norm can be
written explicitly as follows:

NK/k(a) =
∏

σ∈Gal(K/k)

σ(a) (3.1)

More generally, if k ⊂ E is a finite separable extension, then the field norm can be
written explicitly as follows:

NE/k(a) =
∏
σ∈T

σ(a) (3.2)

where T is a left transversal of Gal(Ê/E) in Gal(Ê/k) [139] and Ê is the normal
closure of E—the separable field extension of E of smallest degree that is normal (and
hence also Galois).

The field norm is a group homomorphism for the multiplicative groups of K and
k, NK/k : K× −→ k×, meaning expressions like NK/k(ab) = NK/k(a)NK/k(b) hold.
Additionally, field norms behave well with towers of extensions, factorising via the
intermediate fields. That is, if we have a tower of field extensions of finite degree
k ⊂ K ⊂ L, then NL/k = NK/k ◦NL/K .

57



3.2 Galois CPM Categories

In this section, we develop the connection between Galois theory and CPM construc-
tions more fully. Let S-Mat denote the category of matrices over a commutative
semiring S, with the positive natural numbers n ∈ N+ as objects and the n × m

matrices with entries from S as morphisms m −→ n. It is well known that S-Mat is
a symmetric monoidal category enriched in commutative monoids, with a wealth of
additional structure (e.g. biproducts). If k ⊂ K is a Galois extension, then its Galois
group Γ := Gal(K/k) induces the following action ϕ on K-Mat by linear monoidal
autofunctors:

• on objects, ϕγ(A) := A for all γ ∈ Γ;

• on morphisms, entrywise application of the automorphism, ϕγ
(
(Mi,j)

i=1,...,n
j=1,...,m

)
:=

(γ(Mi,j))
i=1,...,n
j=1,...,m.

It is worth noting that the complete folding functor fldΓ for this action acts as the
field norm on the scalars of the category.

fldΓ(x) = NK/k(x) (3.3)

Definition 19 (Galois CPM Category). Let k ⊂ K be a Galois extension with Galois
group Γ. The Galois CPM category associated to this extension is the CPM category
CPMK/k(K-Mat) := CPMΓ,Ξ(K-Mat) obtained by considering the Γ-action induced by
the Galois group on K-Mat and the complete folding functor fldΓ. The environment
structure Ξ is obtained by taking the H-discarding maps for all subgroups H ≤ Γ:

Ξn :=
{

H : fldΓn→ I
∣∣H ≤ Γ

}
with respect to the classical structure defined by the standard orthonormal basis
(|i⟩)i=1,...,n and closing the sets Ξn under the tensor product.

For any sub-semiring S ⊂ K we also introduce the notation CPMK/k(S-Mat) :=

CPMΓ,Ξ(S-Mat) for the restriction of the Galois CPM category CPMK/k(K-Mat) to
the semiring S. The category has the same folding and environment structure as the
Galois CPM category but on S-Mat embedded into K-Mat. Note that because the
folding is complete, and thus contains all possible embeddings of K into its algebraic
closure, the choice of embedding of S into K is not important.

Proposition 21. CPMK/k(S-Mat) is CMon-enriched.
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Proof. This follows by the fact that S-Mat is CMon-enriched and the fact that the
complete discarding map is included in the environment structure. Given a collection
{fi : fldΓn −→ fldΓm}li=1 of morphisms in CPMK/k(S-Mat) we can sum them using the
CMon-enrichment of S-Mat but we need to show that the resulting morphism is still
in CPMK/k(S-Mat). For simplicity we will prove the case of summing two morphisms,
but the general case is a straightforward generalisation.

Consider maps F and G of CPMK/k(S-Mat) involving possibly different environ-
ments e1 and e2 and possibly different discarding maps:

f g

n n

m mΛ1 Λ2

e1 e2
F

n

m

G

n

m

= =

We can append additional environments to f and g in S-Mat so that their environments
are the same:

f g

n n

m me1 e2

⇝ f

n

me1

ψ

e2

g

n

me2

⇝ ϕ

e1

0

d

=: ĝ

n

me1 e2

=:

d

1

d

f̂

n

me1 e2d

where |0⟩ and |1⟩ are orthonormal basis elements associated to the †-SCFA defining
the discarding maps, and |ϕ⟩ and |ψ⟩ are chosen suitably so that Λ1

e1
◦ fldΓ |ϕ⟩ = 1

and Λ2

e2
◦ fldΓ |ψ⟩ = 1. It is always possible to find suitable states, for instance just

take a basis element of the basis associated to the †-SCFA defining the discarding
maps .

Now we are able to sum these maps in S-Mat and we have that F + G =(
Γ
d ⊠

Λ1

e1
⊠ Λ2

e2

)
◦fldΓ(f̂+ĝ) showing that this sum is still a map of CPMK/k(S-Mat).

Now, for any Galois CPM category, because the folding functor acts as the field
norm (3.3), the pure scalars fldΓ(x) are always elements of the base field k. Moreover,
because k is closed under addition, the mixed scalars which are obtained by applying
complete discarding maps, i.e. those in the form:

◦ fldΓ (|v⟩) =
n∑
i=1

fldΓ(vi)
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are also elements of k.
Similarly, for generic scalars obtained by using discarding maps for intermediate

subgroups {1} < Λ < Γ, we can write the following:

Λ ◦ fldΓ (|v⟩) =
∏
t∈T

(
n∑
i=1

∏
µ∈tΛ

ϕµ(vi)

)
=
∏
t∈T

ϕt

(∑
i

∏
λ∈Λ

ϕλ(vi)

)

= NF/k

(∑
i

NK/F (vi)

) (3.4)

Since for any vi ∈ K, NK/F (vi) ∈ F and F is closed under addition, we have
α :=

∑
iNK/F (vi) ∈ F . Consequently NF/k(α) ∈ k. Indeed, any generic scalar of the

Galois CPM category must be an element of the base field because it is fixed by all
elements of the Γ-action, just as all morphisms are. As noted, the automorphisms of
the action descend on the scalars to the Galois automorphisms of K by k.

It is not necessarily the case that the set End(I) of all scalars of the Galois CPM
category is isomorphic to k itself but rather it must form a sub-semiring. We have
the additive and multiplicative units, 0 and 1, since they are pure scalars and closure
under multiplication follows immediately from the fact we are working in a monoidal
category. The complete discarding maps act to allow us to take arbitrary sums of
any chosen scalars (by proposition 21) and consequently End(I) is also closed under
addition.

Precisely which sub-semiring of k the scalars form can be difficult to decide in
general. For instance we see from equation (3.4) that we will have to consider not only
the closure of the norm from the top field to the base field, but also the iterative closure
of the norm for each intermediate field where we take the norm to an intermediate
F , close it under addition, and then take the norm of any element of this to the base
field.

Nevertheless, for many large classes of extensions we will see that we can say fair
amount about the semiring of scalars and in many cases fully characterise it.

3.3 Decoherence Structures

By construction, Galois CPM categories come with a family of decoherence maps
which mimic the decoherence of quantum theory to classical theory. Each subgroup Λ

of the Galois group Γ induces a decoherence map via its corresponding effect in the
environment structure Ξ. The similarity with quantum theory is two-fold:
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1. The decoherence maps reduce the Γ-folding to one given by a transversal of
the subgroup in the overall group. In the case of a normal subgroup, this gives
a full folding by the quotient Γ/Λ. This serves to kill-off “interference terms”
as one moves down the tower of subgroups, progressively reducing the degrees
of freedom that can be used to describe the state of a system. This is akin to
how traditional decoherence kills-off non-diagonal terms in the transition from
density matrices to classical probability distributions.

2. The decoherence maps also reduce the degree of the field extensions, producing
theories over a series of sub-fields given by the Galois correspondence. This is
akin to the transition from C to R in quantum theory.

The second point follows immediately by considering the symmetries of any de-
cohered map. For simplicity, consider a state v of a Galois CPM category. We can
expand the H-decohered v in the orthonormal basis (|in⟩)in as

v

. . .

. . .

. . .

. . .

. . .

= Σ
v

. . .

. . .

. . .

. . .

. . .

i1, . . . , in
i1

i1 i1

i1

in

in

in

in

gnHg1H

One sees that a generic term of this state is invariant under all autofunctors ϕh for
h ∈ H while the remaining autofunctors do not, in general, fix it. Thus the entries of
the matrix for the decohered v are fixed by all h ∈ H, i.e. a subgroup of the Galois
group and thus must belong to the corresponding intermediate field of the extension.

The hard part, in exactly the same way as for the scalars, is characterising how
much of the intermediate field a given decoherence hits, since this depends on properties
of the fields in question. Nevertheless, it is clear that it is always a sub-semiring of the
intermediate field. We will study many examples in the next sections where, for large
classes of extensions, we will be able to fully characterise the sub-semirings forming
the images of the decoherences.

3.4 Examples of Galois CPM Categories

3.4.1 Number Fields

An interesting class of Galois extensions to consider are those which are also number
fields : finite algebraic extensions of Q. Our main aim will be to characterise the closures
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of field norms and in doing so constrain the semirings at each level of decoherence.
We start with a few new definitions.

A field K is ordered if there exists a subset P ⊂ K which is closed under addition
and multiplication, with K equal to the disjoint union P ⊔ {0} ⊔ −P where −P :=

{−p : p ∈ P}. In such an ordered field one writes a > b if and only if a− b ∈ P . A
field K is formally real if -1 is not a sum of squares in K which is equivalent to K
being ordered [103]. There is a bijection between orderings of K and embeddings (field
homomorphisms) of K into its real closure (one can just think of R for the fields in
this work) and for a Galois number field the embeddings are equivalent to considering
the Q-automorphisms contained in the Galois group.

An element a ∈ K is totally positive if a > 0 for all orderings of K, or equivalently
if σ(a) > 0 for all real embeddings σ of K. We write K+ for the set of totally positive
elements of K, which forms a semiring if we additionally include 0. The semiring of
totally positive elements actually has the structure of a semifield where every non-zero
element has a multiplicative inverse. If K has no orderings then it is vacuously true
that any element is positive for all orderings and we say that all elements of K are
totally positive. It is the case that total positivity is preserved under field norms.

A number field is called totally real if all embeddings into the complex numbers
lie within the real numbers. If, on the other hand, no embeddings lie within the real
numbers, then the extension is known as totally imaginary (or sometimes as totally
complex ). All Galois number fields are either totally real or totally imaginary and
for them, being totally real is equivalent to being formally real and being totally
imaginary is equivalent to not being formally real.

The well-known Waring’s problem asks whether for each d ∈ N, every natural
number is the sum of some finite number n ∈ N of naturals raised to the dth power,
and was proven by Hilbert in 1909. The result implies that the same is true for the
rationals Q.

One can ask a similar question of a general field. If K is a field then we say that
Waring’s problem of exponent d holds if every totally positive element a ∈ K can be
written as a finite sum of dth powers of totally positive elements of K. That is:

a =
n∑
i=1

adi ai ∈ K

where the ai are all totally positive and n is bounded above by some finite g(K, d)
dependent only on K and d. Ellison [75, 76] reduces this problem to being able to
write all totally positive elements of K as a finite sum of squares alongside a constraint
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about the density of dth powers in K. By a classical result of Siegel [146] the former
of these is possible for number fields: every totally positive element of K is a sum of
at most four squares in K.

For us, the outcome of this discussion is the following useful result:

Theorem 3 (Waring’s Problem for Fields [75, 76]). If either of the following hold:

1. K is a non-real field of characteristic 0

2. K is formally real, every totally positive element of K can be written as a sum
of at most s squares for some s, and dth powers are suitably dense in K

then Waring’s problem holds for all exponents. In particular, if K is a number field
then Waring’s problem holds for all exponents.

As a consequence we are able to show that for any extension k ⊂ K where Waring’s
problem holds, all totally positive elements of k are contained in the closure of the
image of the norm from K to k.

Proposition 22. Let k ⊂ K be a finite extension with Waring’s problem holding in k.
Then k+ ⊂ NK/k.

Proof. Say [K : k] = d, then for any a ∈ k ↪→ K we have NK/k(a) = ad. Thus all
finite sums

∑
i a

d
i ∈ NK/k for ai ∈ k. By Waring’s problem this is all totally positive

elements.

In particular k+ ⊂ NK/k for all number fields. It is worth pointing out that the
upper bound g(K, d) on the number of terms needed in Waring’s problem places an
upper bound on the dimension of ancillary systems we require to form all the totally
positive elements of k in any Galois CPM category.

A simple implication of Proposition 22 is that when k has characteristic 0 and is
not formally real, the closure of the norm coincides with k.

Corollary 22.1. Let k ⊂ K be a finite extension where k has characteristic 0 and is
not formally real. Then NK/k = k.

Proof. Since k is not formally real, every element of k is totally positive.

Proposition 23. Let Q ⊂ k ⊂ K be a tower of extensions where K and k are both
Galois over Q. If K is totally imaginary and k is totally real then NK/k = k+.
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Proof. The embeddings of a totally imaginary field always come in pairs, for if
e : K ↪→ C is an embedding then complex conjugation JC : C −→ C composed with e
gives another embedding of K. Indeed, JC induces an automorphism J of K which
acts like complex conjugation on K. This automorphism is not necessarily independent
of the choice of embedding into C (and in particular will not commute with the other
elements of the Galois group, unless for instance, the field is CM), but nevertheless it
forms a subgroup of Γ := Gal(K/Q) isomorphic to C2.

Now, k is totally real and so must be fixed by J implying that J ∈ Λ := Gal(K/k).
Thus there is at least one embedding of k into R where NK/k(a) > 0 for all 0 ̸= a ∈ K.

Fix this embedding and consider any σ ∈ Gal(k/Q). We have:

σNK/k(a) =
∏
λ∈Λ

σλ(a) =
∏
µ∈σΛ

µ(a) =
∏
µ∈Λσ

µ(a) = NK/k(σ(a)) > 0

where we used that fact that Λ must be normal in Γ and thus left cosets and right
cosets coincide. So NK/k(a) is positive for all embeddings of k. Therefore NK/k ⊂ k+.
Proposition 22 gives the other containment k+ ⊂ NK/k.

Corollary 23.1. Let Q ⊂ K be a totally imaginary Galois extension. Then NK/Q =

Q+

Remark. Corollary 23.1 shows that the scalars of the folded category FLDΓ(K-Mat)

for totally imaginary K are always elements of Q+.

We can also go some way to dealing with decoherences from totally real Galois
number fields.

Proposition 24. Let Q ⊂ K be a totally real Galois extension. Then NK/Q = Q.

Proof. This is immediate if [K : Q] is odd: just note N(−1) = −1 and combine with
proposition 22. If [K : Q] is even then a different argument is needed (which still
holds for the odd case).

By the normal basis theorem we know that there exists some α ∈ K such that
{σ(α) : σ ∈ Gal(K/Q)} forms a Q-basis of K. This means that α is distinct under all
Galois automorphisms σi. Since K is totally real, there is an ordering on K given by
the ordering of R.

If there are an odd number of σi such that σi(α) < 0 then N(α) < 0 and the result
follows.

If there are an even number 2m of σi such that σi(α) < 0 then, ignoring the σi
where σi(α) > 0, we have an ordering, say σ1(α) < · · · < σ2m(α) < 0. There exists
q ∈ Q such that −σ2m(α) < q < −σ2m−1(α) which implies that σ1(α + q) < · · · <
σ2m−1(α + q) < 0 < σ2m(α + q). Thus N(α + q) < 0 and the result follows.
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Remark. Proposition 24 shows that for CPM categories generated by complete foldings
for totally real Galois number fields, the mixed scalars arising from the complete
discarding map are enough to capture all of Q, and thus End(I) ≃ Q.

The case of general decoherences from totally real Galois number fields currently
seems to be more tricky and is left to future work.

3.4.2 Examples

Cyclotomic Extensions

Cyclotomic extensions are obtained by adjoining a primitive nth root of unity ζn to
the rationals. These extensions are always Galois, since they are the splitting fields of
the cyclotomic polynomials Φn(x). They are of interest to us because they give easily
constructible examples of Galois extensions with abelian Galois groups, isomorphic
to (Z/nZ)×. Moreover, the Kronecker-Weber theorem guarantees that every finite
abelian extension of the rational numbers is a subfield of some cyclotomic field.

All cyclotomic extensions are totally imaginary: they are given by an imaginary
quadratic extension of the totally real field Q(ζn + ζ−1

n ) (notably, they are CM-fields).
This means that they inherit the results of section 3.4.1: in particular we can constrain
decoherences with Corollary 22.1 and Proposition 23.

Let us now present our first explicit example of a Galois CPM theory. Consider the
cyclotomic extension Q ⊂ Q(ζ5) where ζ5 is a primitive fifth root of unity. As discussed
in Examples 6 and 7, the Galois group of this extension is Γ := ⟨σ | σ4 = id⟩ ≃ C4,
where σ :: ζ5 7→ ζ25 . The Galois group has a single non-trivial subgroup Λ := ⟨σ2⟩ ≃ C2.
This subgroup is in correspondence with the field Fix(Λ) = Q(

√
5), which is a Galois

extension of Q since Λ is normal in Γ.
We have the following equalities of closures of norms consistent with the results of

Section 3.4.1:

NQ(ζ5)/Q = Q+ NQ(ζ5)/Q(
√
5) = Q(

√
5)+

The states of CPMQ(ζ5)/Q(Q(ζ5)-Mat) take the following form:

σ3(ψ) σ2(ψ) σ(ψ) ψ

idσσ2σ3

Γ

σΛ Λ =

σ(ψ) ψ

Λ

fldΛσfldΛ

ΛΛ
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where the discarding maps on the left have been labelled by the cosets that induce
them. On the left we have used the string diagrams of Q(ζ5)-Mat and on the right
those of CPMQ(

√
5)/Q(Q(

√
5)+-Mat). There are two decoherence maps, corresponding

to the subgroups Λ and Γ respectively:

decQ(ζ)

Q(
√
5)

= = ΛΛ , decQ(ζ)
Q = =

Λ

Proposition 25. Write QuantQ(ζ5)/Q := Split(CPMQ(ζ5)/Q(Q(ζ5)-Mat)) for the Karoubi
envelope of the Galois CPM category from the previous example. The full sub-categories
of the Karoubi envelope QuantQ(ζ5)/Q spanned by the decoherence maps are characterised
as follows:

• decQ(ζ5)
Q decoherence maps ⇒ equivalent to Q+-Mat,

• decQ(ζ5)

Q(
√
5)

decoherence maps ⇒ equivalent to CPMQ(
√
5)/Q(Q(

√
5)+-Mat).

Proof. We will directly construct the functors and show that they are full, faithful
and essentially surjective on objects and thus witness the equivalences.

Start with the decoherences decQ(ζ5)
Q . On objects send (fldΓn, decQ(ζ5)

Q ) to n in
Q+-Mat. This is clearly essentially surjective on objects.

On morphisms f : (fldΓn, decQ(ζ5)
Q ) −→ (fldΓm, decQ(ζ5)

Q ) we do the following:

f 7→ f

which is clearly faithful. We are left to show that the functor is full, which follows
by the results on the closures of norms. The symmetries of the maps are sufficient
to show that the elements of the matrices are in Q - they are fixed by the Galois
group. The fact that NQ(ζ5)/Q = Q+ shows that it is enough to sum pure maps of the
form fldΓg for g : n −→ m using the complete discarding maps in order to get every
matrix of Q+-Mat. That we can get nothing more than this is a consequence of the
preservation of totally positive elements under norms. A general fully decohered map
of QuantQ(ζ5)/Q may contain Λ-discarding maps but the matix elements of such a map
can always be written in the form

∑
iNQ(

√
5)/Q(αi) for αi ∈ NQ(ζ5)/Q(

√
5) = Q(

√
5)+.
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At which point it is enough to note that totally positive elements of Q(
√
5) are sent

to totally positive elements of Q by the norm.
A similar argument holds for the decQ(ζ5)

Q(
√
5)

decoherences. On objects we send

(fldΓn, decQ(ζ5)
Q ) to fldΓ/Λn and on morphisms do similar to the previous case of com-

bining input or output legs on each spider. The symmetries of the maps show that
the elements of the matrices live in Q(

√
5) and that we can only reach the totally

positive ones is a consequence of the closure of the norm.

As a result there is the following correspondence between Galois CPM categories,
fields and groups.

CPMQ(ζ5)/Q(Q(ζ5)-Mat)

CPMQ(
√
5)/Q(Q(

√
5)+-Mat)

Q+-Mat

Q(ζ5)

Q(
√
5)

Q

{∗}

Λ

Γ

Let us now present a second explicit example of a Galois CPM theory. The
cyclotomic extension Q ⊂ Q(ζ7), where ζ7 is a primitive seventh root of unity, is our
first example of an extension where the decoherence structures do not just form a
linear tower. This is because the Galois group has two non-trivial subgroups with
trivial intersection. The Galois group of Q ⊂ Q(ζ7) is Γ := ⟨τ | τ 6 = id⟩ ≃ C6, where
τ :: ζ7 7→ ζ37 . There are two non-trivial subgroups Λ1 := ⟨τ 3⟩ ≃ C2 and Λ2 := ⟨τ 2⟩ ≃
C3. The subgroups give rise to two intermediate fields Fix(Λ1) = Q(ζ7 + ζ67 ) and
Fix(Λ2) = Q(

√
−7), both of which are Galois extensions of Q (note that Γ is abelian).

We have the following equalities of closures of field norms:

NQ(ζ7)/Q = Q+ NQ(ζ7)/Q(
√
−7) = Q(

√
−7)

NQ(ζ7)/Q(ζ7+ζ67 )
= Q(ζ7 + ζ67 )

+ NQ(
√
−7)/Q = Q+

The Galois CPM category induced by this extension has states of the following form:

ψ ψ ψ ψ ψ ψ

τ 5 τ 4 τ 3 τ 2 τ id

Λ2τΛ2

Λ1τΛ1τ 2Λ1 =

ψ ψ

idτ 3

Λ2Λ2

=

ψ ψ

τ 4

Λ1Λ1
ψ

id

Λ1

τ 2
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where the cosets that give rise to each discarding map have been indicated and the
automorphisms on ψ have been suppressed for readability.

There are three decoherence maps, the partial decoherences to the intermediate
theories and the full decoherence down to the base field:

τ 5 τ 4 τ 3 τ 2 τ id

decQ(ζ)

Q(ζ+ζ6)
= = = Λ1Λ1Λ1

id idτ 3 τ 2τ 4

τ 5 τ 4 τ 3 τ 2 τ id

decQ(ζ)

Q(
√
−7)

= = =

id idτ 3 τ 2τ 4

Λ2 Λ2

τ 5 τ 4 τ 3 τ 2 τ id

decQ(ζ)
Q = =

Λ1

idτ 3

=

idτ 2τ 4

Λ2

Proposition 26. Write QuantQ(ζ7)/Q := Split(CPMQ(ζ7)/Q(Q(ζ7)-Mat)) for the Karoubi
envelope of the Galois CPM category from the previous example. The full sub-categories
of the Karoubi envelope QuantQ(ζ7)/Q spanned by the decoherence maps are characterised
as follows:

• decQ(ζ7)
Q decoherence maps ⇒ equivalent to Q+-Mat,

• decQ(ζ7)

Q(
√
−7)

decoherence maps ⇒ equivalent to CPMQ(
√
−7)/Q(Q(

√
−7)-Mat),

• decQ(ζ7)

Q(ζ7+ζ67 )
decoherence maps ⇒ equivalent to CPMQ(ζ7+ζ67 )/Q(Q(ζ7 + ζ67 )

+-Mat).

Proof. The proof is very similar to Proposition 25 - the construction of the functors is
analogous and the arguments about norms hold here too, so we leave the reader to fill
in those details. There is one major additional point which needs to be considered:
what happens when we have a morphism with both Λ1 and Λ2-discarding maps? We
must demonstrate that these do not give rise to any additional maps (i.e. a matrix
with some non-positive entries).
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For instance consider an entry of a Λ1-decohered morphism with a Λ2-discarding
map and note that the following holds:

f f f f f f

c b a c b a

k ij k j i

idττ 2τ 3τ 4τ 5

=

f f f

b c a

j k i

idτ 2τ 4

f f f

b c a

j k i

idτ 2τ 4

τ 3 =

f f f

b c a

j k i

idτ 2τ 4

NQ(ζ7)/Q(ζ7+ζ67 )

so that such a term is in the image of the expected norm. A similar result holds
reversing Λ1 and Λ2 and both are precisely because of the second isomorphism theorem,
also known as the diamond theorem. This tells us that Γ/Λ1 ≃ Λ2/{∗} ≃ Λ2 and so
the folding due to Λ2 is precisely the same as the quotient folding Γ/Λ1. In other
words, the folding “left over” after decohering by Λ1 is that of Λ2.

We have dealt with the decoherences to the intermediate fields, but there is
one more issue which may raise some concern - the full decoherence to Q but on
a morphism with both Λ1 and Λ2-discarding maps. In fact, by a similar method
to the one outlined above one can show that an entry in such a matrix must be
an element of both the closure of the norms to both intermediate fields, while of
course also being an element of Q by the symmetries. Thus it must be an element of
Q ∩Q(

√
−7) ∩Q(ζ7 + ζ67 )

+ = Q+.

The result above gives the following correspondence between fields, groups and Galois
CPM constructions, respectively:

Q(ζ7)

Q(ζ7 + ζ67 ) Q(
√
−7)

Q

{∗}

Λ1 Λ2

Γ

CPMQ(ζ7)/Q(Q(ζ7)-Mat)

CPMQ(ζ7+ζ67 )/Q(Q(ζ7 + ζ67 )
+-Mat) CPMQ(

√
−7)/Q(Q(

√
−7)-Mat)

Q+-Mat

In the third diagram, the categories are “connected” by the decoherence maps.
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Remark. Similar proof methods to those of Propositions 25 and 26 will work for a much
larger class of field extensions. In particular, for Dedekind groups where all subgroups
are normal, all intermediate fields are Galois and many of the results constraining
closures of norms will be useful. In such a case, the second isomorphism theorem will
also come into play allowing one to make similar arguments about morphisms with
discarding maps arising from different subgroups.

Quadratic Fields

A quadratic extension Q ⊂ K is a degree two extension of the rationals, i.e. [K : Q] = 2.
Any quadratic field is isomorphic to one of the form Q(

√
d) for d square-free. If d > 0

then we have a real quadratic field, while d < 0 gives an imaginary quadratic field.
Imaginary quadratic fields are clearly CM, and constitute the motivating examples for
the theory of CM-fields.

Quadratic fields are Galois extensions of Q (they are the splitting fields of x2 − d)
with Galois group isomorphic to C2, generated by the map σ ::

√
d 7→ −

√
d. Since

standard quantum theory has underlying C2 folding symmetry, the CPM categories
induced by quadratic fields look a lot like standard quantum theory.

In the case of imaginary quadratic fields, the similarities are substantial. Writing√
d = i

√
c, the field norm N(x +

√
dy) = x2 + cy2 ≥ 0 is elliptic and non-negative

(consistently with our previous results on folding of scalars in CM-fields). The scalars
form the semiring Q+ and the phases form a subgroup of the standard quantum phases.
By Hilbert’s Theorem 90, these phases take the form σ(b)/b for some b ∈ Q(

√
d).

In the case of real quadratic fields, there are instead substantial differences from
quantum theory. The scalars become the entire field Q and the norm N(x+

√
dy) =

x2 − dy2 is hyperbolic. Hilbert 90 allows for the same description of the phases and
the theory has similarities to hyperbolic quantum theory [86]: the only multiplicative
characters are the real ones, so that hidden subgroup problems [156, 88] can only be
efficiently solved for the groups Zn2 .

Finite Fields

Galois CPM categories induced by finite fields provide simple and nice examples of the
structures we have seen so far. For any power of a prime q = pn there exists a unique
finite field Fq of order q. The non-zero elements F×

q form a cyclic group of order q − 1,
generated by some element a. Extensions of the form Fq ⊂ Fqm are always Galois with
cyclic Galois group generated by the Frobenius automorphism ϕp :: t 7→ tp for t ∈ Fqm .
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Of particular interest to us is the fact that the field norm is surjective. Indeed,
by taking a to generate F×

qm , one always has that NFqm/Fq(a) = a1+q+···+qm−1
=

a(q
m−1)/(q−1), immediately implying that N(a) has multiplicative order q− 1; therefore

N(a) generates Fq. Because the field norm is surjective, the endomorphisms of the
unit object End(I) of CPMFqm/Fq(Fqm-Mat) forms a field isomorphic to Fq, and all
intermediate theories spanned by decoherence maps in QuantFqm/Fq

are Galois CPM
categories for finite fields, not just categories over sub-semirings.

Proposition 27. Let QuantFqm/Fq be the subcategory of the Karoubi envelope of
CPMFqm/Fq(Fqm-Mat) spanned by the decoherence maps induced by the subgroups of the
Galois group. Then for any subgroup Λ ≤ Γ, the subcategory of QuantFqm/Fq

spanned
by the decoherence maps decΛ is equivalent to the category CPMF

ql
/Fq(Fql-Mat) where

Fql = Fix(Λ).

Proof. The proof is very similar to Propositions 25 and 26. By observing that the field
norms are surjective for finite fields, so that their images are isomorphic to the entire
codomain field, one does not need to be nearly as careful as for the aforementioned
propositions. The simple symmetry argument will suffice.

3.4.3 CPM Categories for Separable Extensions

Let us now consider a generalisation of the construction presented in the previous
section, where we have an extension k ⊂ E which is separable but not necessarily
normal. As noted in section 3.1, such an extension still has a concise expression for
the field norm NE/k, but we are forced to work with the normal closure Ê of E. Both
k ⊂ Ê and E ⊂ Ê are then Galois extensions, and the norm NE/k is given by a
product over a transversal of Gal(Ê/E) in Gal(Ê/k) (see equation (3.1)).

The generalisation of the CPM construction to group transversals outlined in
section 1.4 gives the necessary machinery to treat the case of separable extensions.
One way of producing an interesting CPM category (with suitably constrained scalars)
from E is to “upgrade” E-Mat to Ê-Mat, which has a canonical group action ϕ by its
Galois group Γ := Gal(Ê/k). Upon picking a left transversal T of Λ := Gal(Ê/E)
in Γ, one can then take the folding functor fldτ : E-Mat −→ Ê-Mat, where E-Mat is
equivalent to the subcategory of the equivariant category Ê-MatΛ spanned by the
identity isomorphisms ηgA := idA (because ϕg is the identity on objects for all g ∈ Λ).

One consequence of this generalisation is that we are now able to consider Galois
CPM categories induced by extensions with Galois groups which are not Dedekind :
that is, Galois groups with subgroups which are not normal. For such an extension
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there exist intermediate fields which are not Galois over the base field (they are in
bijection with the non-normal subgroups) and complete foldings are not enough to
deal with them in a rigorous way.

As an example, consider the extension Q ⊂ Q(α, ω), where ω is a primitive third
root of unity and α3 = 2. This is the splitting field of x3 − 2 over Q, and is therefore
Galois. It has Galois group Γ ≃ S3 generated by the automorphisms σ :: ω 7→ ω2 and
τ :: α 7→ αω, with the following lattice of subgroups:

{∗}

⟨τ ⟩ ≃ C3 ⟨σ⟩ ≃ C2 ⟨τσ⟩ ≃ C2 ⟨στ⟩ ≃ C2

⟨σ, τ ⟩ ≃ S3

The normal subgroups of Γ are shown here in bold font. This lattice is in bijection
with the following lattice of intermediate fields:

Q(α,ω)

Q(ω) Q(α) Q(αω2) Q(αω)

Q

The Galois extensions of Q are shown here in bold font. With the generalisation of
the CPM construction given in this section, we are now able to consider decoherences
to the non-normal intermediate fields, such as Q(α). The folding of Q(α, ω) over Q(α)

is straightforward, since this extension is Galois. The folding of Q(α) over Q is more
tricky, and requires picking a left transversal of ⟨σ⟩ in Γ; for instance, one can pick
T := {id, τ, τ−1}. These foldings mimic the form of the field norms and act to suitably
constrain the scalars of the theories.

NQ(α,ω)/Q(α)(a) = aσ(a) NQ(α)/Q(a) = aτ(a)τ−1(a)

Although it was possible to pick T to be a subgroup of Γ this need not be the case
in general. A transversal can always be given the structure of a quasigroup, and
if the transversal contains the identity then the algebraic stucture is stronger and
forms a loop. These structures are not associative, making them problematic to study
internally to a category which is why we take the route of describing the foldings
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directly at the level of the transversal. Nevertheless, there are many occasions when a
particular choice of transversal does form a group - yet one must take care since this
group is not, even in the case where Λ is normal in Γ, necessarily a subgroup of Γ (for
instance consider the quaternion group Q8 which has centre Z(Q8) ≃ C2 and quotient
Q8/Z(Q8) ≃ C2×C2 which is not isomorphic to any subgroup of Q8). Finally, we can
write down the decoherence maps in all their glory:

τ−1σ τ−1 τσ τ σ id

decQ(α,ω)
Q(α)

=

τ−1σ τ−1 τσ τ σ id

decQ(α)
Q =

3.5 Summary

In this chapter we have presented an infinite family of probabilistic theories induced
by Galois extensions. We have seen that these categories contain rich decoherence
structures, in correspondence with subgroups of the Galois group, producing intricate
towers of CPM categories with progressively reduced degrees of freedom. The funda-
mental theorem of Galois theory acts to provide the bridge between these subgroups
and intermediate fields, from which we were able to constrain the semirings that
each intermediate theory is over. Totally imaginary number fields are particularly
physically relevant because the scalars of the theory are constrained to be strictly
positive and thus have an immediate and standard operational interpretation. In
this case, it is also fairly straightforward to fully characterise the semirings: if the
intermediate field k is also totally imaginary then decoherence hits all elements of k
and if the intermediate field is totally real then decoherence is restricted to hit only the
totally positive elements which form a semifield. The total positivity of these elements
is preserved under the field norm so subsequent decoherences to lower fields is also
restricted to only the totally positive elements. The case of cyclotomic extensions is
rich enough to produce non-trivial decoherence towers while being relatively simple
fields to work with - they are abelian and constructible by adjoining roots of unity.

More generally, it is the case that the folding of a CPM construction is compositional.
In essence, this is because each folding produces a category with morphisms essentially
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invariant under the action of the group used to generate it. Thus, one can factorise a
folding into a series of lower-order foldings by subgroups and transversals of the overall
group. Of course in the case of normal subgroups (which is particularly relevant for
Galois extensions) this is equivalent to foldings by subgroups and quotient groups.
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Afterword, Conclusion and Future
Work

In Part I we studied hyper-decoherence between CPTs. We furthered the study of
the theory of density hypercubes showing that it is a bona-fide probabilistic theory
exhibiting hyper-decoherence to quantum theory. Then we introduced Galois CPM
categories which generalise the transition from quantum to classical theory, producing
examples of towers of probabilistic theories connected by generalised decoherence
maps. There are several directions for future work that follow directly from this.

• One could study any of the myriad of theories presented here from a GPT/CPT
[42, 41, 89] perspective. Are all processes purifiable in a theory and how do
they interplay with the decoherence tower? Are pure maps in a subtheory pure
in a larger theory? Do purifications exist within the same subtheory or do we
sometimes require enlarging to a larger theory?

• There is also the question of computational advantage. Can we find computa-
tional advantage in some extension theory over its base theory and do we see
this advantage decrease as one decoheres through the tower of intermediates?

• What phases are quotiented away through the decoherence tower of a Galois
CPM category? Can these phases be estimated and are they of computational
use?

• The issue of causality needs to be taken seriously if one wants to discuss the
operational semantics of the theories in this work. One can always make all
the decoherence maps causal by taking the overall discarding map to be the
spider induced by the entire underlying folding group. However, there is a
balancing act between making the decoherences causal and allowing for bona
fide and interesting measurements, which arise as convex decompositions of the
discarding map. This issue was investigated in the particular case of density
hypercubes [96] but the general case has not been considered.
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• A proof is known against the existence of a causal and idempotent hyper-
decoherence map (post-quantum to quantum decoherence map) in a theory
with purifications, where pure quantum states are pure post-quantumly and
where the maximally mixed state is maximally mixed post-quantumly [117]. It
seems necessary then to consider dropping at least one of these assumptions in
the search for plausible hyper-decoherence structures. The theories presented
here could be interesting grounds to explicitly investigate the interplay between
decoherence, purifications and causality and could lead to refinements of the
no-go result. Does a version hold in a wider class of theories? Can we weaken
any of the assumptions or indeed find novel ways to defeat the no-go?

• There is initial evidence suggesting that density hypercubes would exhibit higher-
order interference [90], that is, multi-slit interference which cannot be decomposed
into lower slit interference patterns [149, 148, 14, 118]. Final confirmation will
require a fully fledged simulation of the triple and quadruple slit interference
experiments within density hypercubes. Confirming higher-order interference
would then immediately lead to investigation of computational advantage in
density hypercubes. Is higher-order interference also present in any of the Galois
CPM categories?

• Gaining a better understanding of the structure of the Beyond would also be
an interesting route forward. In general, it seems likely that the Beyond is a
non-trivial sector of density hypercubes, which could define its own operational
theory, perhaps (though we think it is unlikely) equivalent to quantum theory
again. Investigations of this nature might also help shed some light on whether
there are more elements of the hyper-phase group than we discovered in this
work.

• From a foundational perspective, we are also interested in exploring variations on
the current formulation of density hypercubes, e.g. by describing it directly from
the perspective of quantum observers. Perhaps this could yield a post-quantum
theory with deterministic hyper-decoherence maps, but where pure quantum
states would become fundamentally mixed as states of density hypercubes.

• On the technical side of things, it could be interesting to try to extend the
proofs of Propositions 25 and 26 to a wider class of Galois CPM categories.
The difficulties arise when one has a morphism involving many discarding maps
for different subgroups - by symmetry the decoherences will always produce
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morphisms over the corresponding intermediate field but it is not clear precisely
what sub-semiring is produced by the interacting discarding maps in general.
There is also the challenge of dealing with intermediate fields which are not Galois.
We outlined the general idea in section 3.4.3 hinging upon our generalisation
of the CPM construction to group transversals and demonstrated that such a
construction would constrain scalars suitably by capturing the field norm of
these separable extensions. Nevertheless, the general case of what sub-semiring
forms the image of a decoherence is not known. Dealing with the case of totally
real Galois number fields could be a good starting point.

77



Part II

Profunctorial Methods for Spacetime
and Quantum Supermaps
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The second half of this work will concern itself with the application of profuncto-
rial methods to models of physics, focusing on spacetime and quantum supermaps.
Profunctors are a strict generalisation of functors allowing us to study more complex
compositional structure between categories. Whereas a functor F : C −→ D assigns
an object FC of D to each object C of C, a profunctor P : C −7→ D takes each pair
(D,C) of objects C from C and D from D, and assigns them a set P (D,C). Formally,
P is itself a functor P : Dop × C −→ Set.

One of the complexities of profunctors lies in their composition, which is a fairly
abstract procedure that can seem quite opaque to those at the start of their profuncto-
rial journey. Their composition can be understood to be a generalisation of the tensor
product of bimodules over a ring and of the composition of relations between sets.
This is, at least in part, why profunctors are also known as distributors, bimodules
and relators. To see the bimodular nature of a profunctor note that the sets P (D,C)
come with commuting left and right actions by the morphisms of D and C respectively.
To see the relational nature of a profunctor note that a relation between sets A and B
is a function B × A −→ {0, 1}.

Nevertheless, the complexity of the composition of profunctors also contributes to
their strength and utility, since it is this that allows for richer compositional structure
than otherwise. In particular, working with profunctors comes with a significant
conceptual shift: instead of working inside the categories we now work externally
studying the action of the categories on the category of sets. This is akin to the shift
from group theory to group representation theory, where instead of studying a group
G itself one studies how the group acts on vector spaces. A representation is nothing
more than a functor from G as a one object category into the category of vector
spaces that is, a presheaf Gop −→ Vect. Similarly, profunctors are generalisations of
presheaves: P : C −7→ D is a presheaf of the product category D × Cop.

Over the next few chapters, we will see how profunctors can be used to deal with
a number of modelling problems in physics. Firstly, there arise categories which
fail to be straightforwardly monoidal. For instance, decompositional approaches to
physics where one starts with a global system (e.g. a fixed spacetimeM) and breaks
it up into subsystems (e.g. spacelike subsets of the spacetime) will not in general be
monoidal. There is no guarantee that given two spacelike subsets X and Y , their union
X ∪ Y will still be spacelike. This means our category lacks the necessary objects to
define a monoidal structure. From a physical point of view there are obstructions to
this monoidal structure due to the dependency of the systems: the state of a field
defined at Y is certainly not independent of the state at some X in the past light
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cone of Y . In Chapter 5 we will demonstrate how these issues can be overcome by
weakening monoidal structure to promonoidal structure. Roughly speaking, we replace
the functorial structures of monoidal categories with profunctorial structures allowing
us to assign “virtual” tensor products to otherwise problematic objects.

In Chapter 7 we will look at some similar problems that arise in the study of
quantum combs and more general quantum supermaps. Given a category of first-order
processes, it is surprisingly difficult to construct a category of higher-order processes.
Most known methods rely on substantial structure of the category of first-order
processes (such as compact closure, or an explicit assumption that we are working
with FHilb). We compare two methods for constructing a category of combs, the
first inspired by quantum foundations and the second from the study of bidirectional
data accessors in computer science. These categories do not have natural monoidal
structures because pairs of holes in a circuit may not be equivalent to a single hole,
and similar to the spacetime models, our category lacks sufficient objects to describe
these. We will see that promonoidal structure can once again be used to equip these
categories with two “virtual” tensors (roughly horizontal and vertical composition of
combs) and we study how these tensors interact.
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Chapter 4

Profunctors

For the remainder of this thesis (apart from Chapter 5) we will work with categories
enriched over an arbitrary cosmos. We take our cosmos V to be a complete, cocomplete,
closed symmetric monoidal category, writing ⊠ for its tensor product and IV for its
unit object.

Definition 20 (V-Category). A V-enriched category C consists of the following data:

• a collection Ob(C) of objects,

• (hom-objects) for each pair of objects A,B ∈ Ob(C), an object C(A,B) of V ,

• (composition) for each triple of objects A,B,C ∈ Ob(C), an arrow of V

C(B,C)⊠ C(A,B)
◦ABC−−−→ C(A,C)

• (identities) for each object A ∈ Ob(C), an arrow of V

IV
jA−→ C(A,A)

such that a family of diagrams commute ensuring associativity and unitality of
composition (see e.g. [108]).

We can conceptualise a V-category as generalising a usual category by allowing
the homs C(A,B) to have additional structure. This additional structure is captured
by saying that the homs are in fact objects of some other category V. For instance,
V could be taken to be CMon (as was the case in Part I), which means that each
hom-object has a commutative monoid operation allowing us to sum morphisms. In
the case that V = Set, a Set-enriched category is precisely a (locally small) category
in the usual sense.
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Definition 21 (V-Functor). Let C and D be V-categories. A V-functor F : C −→ D
consists of the following data:

• a function F : Ob(C) −→ Ob(D) sending objects of C to objects of D,

• for each pair of objects A,B ∈ Ob(C), an arrow of V ,

C(A,B)
FAB−−→ D(FA, FB)

such that a family of diagrams commute ensuring functoriality of F , so that F respects
both composition and identities (see e.g. [108]).

Definition 22 (V-Natural Transformation). Let F,G : C −→ D be V-functors. A
V-natural transformation η : F ⇒ G consists of an arrow IV −→ D(FA,GA) of V for
each object A ∈ Ob(C) such that a family of diagrams commute ensuring naturality
of η (see e.g. [108]).

Enriched categories, functors and natural transformations assemble into a 2-
category V-Cat generalising the 2-category Cat. This 2-category is monoidal when
equipped with the following tensor product of enriched categories.

Definition 23 (Enriched Tensor Product). Let C and D be V-categories. Their tensor
product C ⊠ D has as objects, pairs (C,D) of an object C of C and D of D. The
hom-objects are given by taking the tensor product in V of the hom-objects of C and
D,

(C ⊠D)
(
(C,D), (C ′, D′)

)
:= C(C,C ′)⊠D(D,D′)

Composition and identities in C ⊠D are induced by those of C and D, together with
the symmetry σV of the cosmos V .

For ease of reading, unless otherwise indicated, “category,” “functor,” “natural
transformation” etc. should from now on be taken to mean V-category etc.

4.1 Profunctors

Let us start with some key definitions concerning profunctors and their composition.
A more comprehensive study can be found in e.g. [121].

Definition 24 (Profunctor). A profunctor P : C −7→ D is a functor P : Dop ⊠ C −→ V .
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There are a variety of ways to conceptualise profunctors. Firstly, they generalise
bimodules over rings. P is an assignment of an object P (D,C) of V to each pair of
objects C in C and D in D, which for our intended applications to physics, it may
be helpful to think of as an object of “generalised processes” p : D ⇝ C. These
generalised processes come equipped with a left action g 5 p := P (g, C)(p) by arrows
g : D′ −→ D of D and a right action p4 f := P (D, f)(p) by arrows f : C −→ C ′ of C.
These actions commute to make the generalised compositions 4 and 5 associative:
(g 5 p) 4 f = g 5 (p4 f).

Secondly, profunctors generalise functors in a similar way to how relations generalise
functions between sets - profunctors are like “relations between categories,” (note that
a relation A ∼ B is equivalently a function out of the cartesian product of the sets
B × A −→ {0, 1}). Just as every function is a special type of relation, every functor
is a special type of profunctor. The Yoneda lemma guarantees the existence of two
embeddings of a category into its presheaves:

Definition 25 (Presheaf). A presheaf on C is a functor F : Cop −→ V. There is a
category Ĉ := [Cop,V ] whose objects are presheaves on C and whose hom-objects are
the natural transformations. There exist two embeddings

よ− : C −→ Ĉ :: C 7→よC := C(−, C)

よ− : Cop −→ Ĉop :: C 7→よC := C(C,−)

The presheaves of the formよC andよC for any C are known as the representable
and corepresentable presheaves respectively. Profunctors share a close relationship
with presheaves, for any P : Dop ⊠ C −→ V can be curried to see that it is equivalently
a functor P : C −→ D̂. This allows us to compose any functor with the Yoneda
embeddings to produce examples of profunctors:

C F−→ D よ−→ D̂ (4.1)

Cop F op

−−→ Dop よ−→ D̂op (4.2)

Up to currying, the profunctors (4.1) and (4.2) are D(−, F=) : C −7→ D and D(F−,=) :

D −7→ C respectively. Profunctors of this form are also known as (co)representable.
The composition of profunctors is somewhat more complicated than for functors.

Before we can discuss it we need the following technical construction.

Definition 26 (Extranatural Transformation, Coend). Given a profunctor P : Cop ⊠

C −→ V, a family of arrows wC : P (C,C) −→ W in V is extranatural if the following
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diagram commutes for all C and C ′.

C(C,C ′)⊠ P (C ′, C) P (C ′, C ′)

P (C,C) W

l

r

wC′

wC

Here the arrows l and r are the left and right actions of the hom on P , given by
transporting the arrows defining P as an enriched functor along the adjunction due to
the closed monoidal structure of V. In the case where V = Set, the extranaturality
condition reduces to the usual “cowedge” diagram.

P (C ′, C) P (C ′, C ′)

P (C,C) W

P (f,C)

P (C′,f)

wC′

wC

The coend of P is a universal extranatural transformation coprC : P (C,C) −→∫ C
P (C,C): this is the extranatural transformation such that all other extranat-

ural transformations factorise uniquely through it.

Remark. It is worth noting that it not necessarily the case that the coend should
exist, though we make the assumption for the remainder of this work that it does.
Nevertheless, in the case that C is small, then

∫ C
P (C,C) does exist and is given by

a certain coequaliser [108]. See also [121] for discussion of existence of coends and
iterated coends.

Coends have a series of nice properties which help to justify the use of an integral
symbol to notate them. Firstly, they satisfy a Fubini-style law allowing us to commute
coends:∫ C∈C ∫ D∈D

P (C,C,D,D) ∼=
∫ (C,D)∈C⊠D

P (C,C,D,D) ∼=
∫ D∈D ∫ C∈C

P (C,C,D,D)

Secondly, the Yoneda lemma implies the following identities, sometimes known as the
ninja Yoneda lemma:∫ C

C(−, C)⊠ F (C) ∼= F (−)
∫ C

G(C)⊠ C(C,−) ∼= G(−) (4.3)

for any functors F : Cop −→ V and G : C −→ V . So the hom-profunctor behaves “like a
Dirac-delta function”.
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Definition 27 (Composition of Profunctors). Given profunctors P : C −7→ D and
Q : D −7→ E , their composite is given by taking the coend

(QP )(−,=) =

∫ D

Q(−, D)⊠ P (D,=) : C −7→ E

When V = Set this coend can be characterised as the coequaliser:⊔
f :D−→D′

Q(−, D)× P (D′,=)⇒
⊔
D

Q(−, D)× P (D,=) −→
∫ D

Q(−, D)× P (D,=)

where the coequalised pair are given by the actions Q(−, f) and P (f,−) on the left
and right under the profunctors. Explicitly, the coend is given by a quotient of the
coproduct: ∫ D

Q(−, D)× P (D,=) ∼=
⊔
D

(
Q(−, D)× P (D,=)

)
/ ∼

Given our interpretation of profunctors as containing generalised processes, we want
(QP )(E,C) to contain compositions of processes in Q(E,D) and P (D,C), e.g. the
pair (q, p) means the composition

E
q
⇝ D

p
⇝ C

Suppose now that we have E q
⇝ D and D′ p

⇝ C together with an arrow D
f−→ D′ of D.

Then we can form the following composites

(q 4 f, p) ≃ (E
q
⇝ D

f−→ D′)
p
⇝ C

(q, f 5 p) ≃ E
q
⇝ (D

f−→ D′ p
⇝ C)

We would like these two composites to be equivalent and this is precisely what the
quotient of the coend achieves: it is the smallest equivalence relation generated by
equivalences of the form (q 4 f, p) ∼ (q, f 5 p). We will refer to these as the “sliding”
relations since it is as though we can slide f from one side to the other (up to changing
Q and P ).

We will, at times, use a shorthand Einstein-style notation for profunctors writing
P (D,C) = PD

C , with subscripts for covariant variables and superscripts for contravari-
ant ones. The composition of profunctors will be written as (QP )(E,C) = QE

DP
D
C in

the Einstein notation, where instead of the summation convention we have a “coend
convention” - repeated indices, once covariant and once contravariant, are to be coend-
ed out. In this way, one also sees the similarity between profunctor composition and
matrix multiplication.
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Categories, profunctors and natural transformations form a monoidal bicate-
gory V-Prof where the monoidal product acts as C ⊠ D on 0-cells and as (P ⊠

Q)(C,D,E, F ) = P (C,D)⊠Q(E,F ) on 1-cells. The hom-profunctors play a special
role in V-Prof: they are the identity 1-cells by the ninja Yoneda lemma (4.3).

By dualising the definition of a coend one can define ends which we also write
with an integral symbol, but with the limit at the bottom

∫
C
P (C,C). Ends will play

a small role in some proofs in this work for they are closely connected to the space
of natural transformations between any two functors F,G : C −→ D by the following
identity.

Nat(F,G) ∼=
∫
C

D(FC,GC) (4.4)

This means ends can be used to talk about the 2-hom, the space of 2-cells, in V-Prof.
Since the hom-functor preserves limits, and ends and coends can be shown to be
(co)limits, we have the following useful identities.

D
(∫ C

P (C,C), D

)
∼=
∫
C

D (P (C,C), D)

D
(
D,

∫
C

P (C,C)

)
∼=
∫
C

D (D,P (C,C))

(4.5)

The identities (4.3), (4.4) and (4.5) form what is sometimes known as the coend
calculus.

4.2 String Diagrams

Monoidal bicategories permit a couple of graphical calculi. The first, and perhaps
most familiar, is very similar to the string diagrams for monoidal categories. 1-cells
are represented by wires and 2-cells as boxes between the wires, leaving us with the
regions which we shade to represent the 0-cells.

C C D

F

ηC D

F

G

The monoidal structure is drawn by layering the sheets on top of each other:
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ε

F

BA

G

ηC D

H

K

There is good reason for the similarity between this calculus and that for monoidal
categories: simply, every monoidal category is a bicategory with a single 0-cell.

There is also another graphical calculus for monoidal bicategories known as wire
diagrams [17] which is the one we will employ in this work. In this calculus we have
string diagrams akin to those of a monoidal category where 0-cells are wires and 1-cells
are boxes between wires. The 2-cells are now represented by arrows between these
diagrams:

f

B

A

g

B

A

η

Vertical composition of 2-cells is represented by composition of the arrows between
diagrams while the tensor product is formed by tensoring the string diagrams in the
domain and codomain:

f

B

A

g

B

A

h

B

A

η

µη

µ
f

B

A

g

D

C

h

B

A

k

D

C

η1⊗η2

The 2-cells act locally on the string diagrams so that 2-cells on independent parts
of diagram interchange giving us the horizontal composition of 2-cells.

g

f

C

A

g

h

C

A

k

h

C

A

η1 η2
=

g

f

C

A

k

f

C

A

k

h

C

A

η2 η1
=

g

f

C

A

k

h

C

A

η2

η1
=

g

f

C

A

k

h

C

A

η2∗η1

As a monoidal bicategory, V-Prof permits the usage of wire diagrams and we will
make some use of these in the subsequent sections.
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It will often be useful for us to be able to “look inside” the profunctors to work
with the generalised processes that they contain. There is yet another diagrammatic
calculus known as internal string diagrams that will let us do this. Internal string
diagrams were first introduced in the Vect-enriched case in [19] and further explored
in [101]. The same sort of graphical calculus was described in [136] where the author
shows that they form a bicategory of pointed profunctors Prof∗. A pointed category
is a pair (C, C) of a category C and a specified object C of C. A pointed profunctor
(P, p) : (C, C) −7→ (D, D) is a profunctor P : C −7→ D and a specified element
p ∈ P (D,C). Finally, a pointed natural transformation η : (P, p)⇒ (Q, q) is one that
preserves the specified elements, ηDC(p) = q. Composition, units and tensor products
are defined in the obvious way.

Internal string diagrams can be seen to be wire diagrams for the bicategory Prof∗.
We will focus on the particular case of internal string diagrams for representable
profunctors (and compositions thereof). These consist of the usual string diagrams
for monoidal categories bounded inside cobordisms. Given a monoidal category C, the
identity, the Yoneda embeddings of the tensor product and the Yoneda embeddings of
the tensor unit are drawn as follows:

f

B

A

f

A B

C

f

B C

A
f

A f

A
(4.6)

The internal diagrams can be manipulated and composed as usual, but they are
constrained by the topology of the cobordisms. Moreover, when we compose these
diagrams together, we are allowed to slide morphisms between them as follows:

f

B

A

∼
f

B

A

The shapes in (4.6) are associative monoids and comonoids

f

g

A B C

D

∼

f

g

B CA

D

f

A

B

∼

A

B

f ∼ f

A

B
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Since the two Yoneda embeddings of any functor are adjoint in Prof, there exist
the following 2-cells which allow us to “pop bubbles”:

f

g

⇒
f

g

, f g ⇒ f g ,
g

f

⇒
f

g
, ⇒ (4.7)

There is much more to say about pointed profunctors, but we will omit the
technical discussion and refer the interested reader to [19] and [136] for a more
in-depth discussion.

4.3 Presentations

There will be many monoidal-like structures introduced in the following sections. It
will therefore be beneficial to have a high-level abstraction that allows us to compare
these structures and see in what ways they are or are not alike. Presentations are
a useful way of considering some abstract algebraic data in a myriad of different
categories - by considering representations of certain freely generated symmetric
monoidal bicategories which encapsulate the algebraic data [140, 19]. By doing so we
are able to interpret the generating data in alternative bicategories and thus more
easily see the connections between the various notions introduced.

A presentation G of a symmetric monoidal bicategory consists of giving a finite
collection of generating 0-cells, 1-cells and 2-cells (where the domains and codomains
of the generating 1-cells and 2-cells are built from those of lower dimension), together
with a collection of coherence equations between composites of generating 2-cells.
There is a symmetric monoidal bicategory F (G) freely generated by a presentation
G [140] and a representation of G in a symmetric monoidal bicategory B is a strict
symmetric monoidal functor F (G) −→ B.

Important to us will be the monoid presentation P as described in [19]. It consists of
a single generating 0-cell, generating 1-cells ( , ), together with invertible generating
2-cells witnessing the unitality and associativity of the monoid.

α

α−1

λ

λ−1 ρ−1

ρ

These must satisfy the triangle and pentagon coherence equations.
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α

α α

α α

α

ρ λ

Representations of P are known as pseudomonoids [105, 69, 152, 71]. Pseu-
domonoids in Cat are nothing more than the monoidal categories we have been
working with all along1. In subsequent sections, we will see how by altering Cat

for other symmetric monoidal bicategories, we can formulate other “monoidal-like”
structures on categories.

In addition to the monoid presentation we will be interested in the module presen-
tation.

Definition 28 (Module Presentation). The left module presentation ML is a 0-
extension of the monoid presentation P, in addition to the data (A, , , α, λ, ρ) of
P we have:

• another generating 0-cell B,

• a generating 1-cell:

A B

B

• invertible generating 2-cells:

a

a−1

l

l−1

Such that the following coherences hold.
1note that in comparison to [19, 101] these are arbitrary monoidal categories as we make no

assumption of Cauchy completeness
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a

λ l

a

α

a

a

a

The right module presentation MR is defined analogously.
The bimodule presentation M consists of two module presentations P, with

different generating 0-cells A and C, together with the data of ML and MR on the
same generating 0-cell B. Additionally we ask for the following invertible generating
2-cell.

A B C

B

A B C

B
b

b−1

Together with the following coherence diagrams.

b

a◦ a◦

b b

b

l l

b

a• a•

b b

b

r r
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The module presentation allows us to abstract some other well-known categorical
structures.

Definition 29 (Actegory). A left actegory is a representation of ML in V-Cat.
Explicitly this means we have a monoidal category (C0,⊗, i) and a category C1 equipped
with a left action by C0: a functor ⋉ : C0 ⊠ C1 −→ C1 and natural isomorphisms
c⋉ (c′ ⋉ d) ∼= (c⊗ c′)⋉ d and d ∼= i⋉ d satisfying the coherence diagrams outlined by
M. Right actegories are representations of MR in V-Cat.

Definition 30 (Biactegory). A biactegory is a representation of M in V-Cat. This
means we have monoidal categories C and D and a category A equipped with a left
C-action ⋉ and a right D-action ⋊ together with a natural isomorphism c⋉ (a⋊ d) ∼=
(c⋉ a)⋊ d such that the coherence diagrams commute.

Example 8. A monoidal category C is canonically a left (and right) C-actegory where
the action is given by the tensor.

Given a presentation G there is an extension G⊣, the adjoint extension, given by
freely adding right adjoints for each generating 1-cell, and additional 2-cells satisfying
the snake or “zig-zag” equations witnessing the adjunction [18, 19]. For instance, for
a 1-cell f : A −→ B we add a new 1-cell f ∗ : B −→ A and 2-cells η : 1A −→ f ∗f and
ε : ff ∗ −→ 1B satisfying the snake equations. In an adjoint presention G⊣, it is possible
to transport the generating 2-cells of G along the adjunction to yield 2-cells between
the newly added right adjoint 1-cells [18]. For instance, in P⊣ we can transport α
along the adjunction to get a 2-cell α̌ witnessing the co-associativity of the comonoid

adjoint to .
For us, whenever we have a representation in Cat of a presentation G, this yields

a representation in Prof of the adjoint presentation G⊣ precisely because the two
Yoneda embeddings are adjoints. For instance a monoidal category is a pseudomonoid
in Cat and thus an adjoint pseudomonoid in Prof. In fact, a monoidal category is a
representable pseudomonoid in Prof but one should be careful to note that this is a
strictly stronger statement than the previous. Without the assumption of Cauchy
completeness, adjoint pseudomonoids are not necessarily representable [34], though
all representable pseudomonoids are adjoint. This discussion can also of course be
generalised to the other presentations including the module presentation. See [19] for
further discussion of the issue of adjoints in the context of presentations.
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4.4 Partially Monoidal Categories

In this section we formally introduce the partially monoidal categories of [55, 115, 85].

Definition 31 (Partial Functor [85]). A partial functor C ⇀ D is a span of functors
C i←−↩ S F−→ D where i is an opisofibration, embedding S as a subcategory of C (so i
is full, faithful and S is a replete subcategory of C). Composition of partial functors
is by pullback. A morphism of partial functors (ϕ, η) : (i, F ) −→ (j,G) is a pair of a
functor ϕ : S −→ S ′ between the apexes of the spans and a natural transformation
η : F =⇒ Gϕ,

S

S ′

C D

ϕ
i F

j G

η (4.8)

Categories, partial functors and morphisms of partial functors form a monoidal
bicategory PCat where the tensor is given pointwise by taking the product of categories
and the product of the underlying functors in the spans. Note that full and faithful
opisofibrations are closed under composition and stable under pullback.

Definition 32 (Partially Monoidal Category [85]). A partially monoidal category C
is a representation of P in PCat. In particular, a category C is partially monoidal if it
is equipped with:

• A tensor product partial functor ⊠ : C × C ⇀ C

• A unit object I

together with associativity and unit natural isomorphisms such that the triangle and
pentagon equations hold. A partially monoidal category is strict when the coherence
isomorphisms are equalities.

The partially monoidal categories introduced here are inspired chiefly by applica-
tions in physics - we ask that the left legs of our partial functors are opisofibrations
so as to ensure that partially monoidal categories have a tensor that is defined on
a subcategory (faithfulness) and that whenever the tensor of objects is defined then
the tensor of all morphisms between those objects is defined (fullness). Repleteness
simply ensures that if A⊗B exists and B ∼= B′ then A⊗B′ also exists. There might
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be interest in weakening some of these demands on the left legs of partial functors2,
for instance by dropping the fullness requirement, but the physical motivation of such
weakened partially monoidal categories is not so clear.

Partially monoidal categories do not seem to have been explored much in the
literature. This is perhaps in part because they are somewhat unnatural from a
mathematical perspective – most categories arising in mathematics have a canonical
tensor product or else they are not monoidal at all. Of course monoidal categories
give straightforward examples of partially monoidal categories:

Example 9. Every monoidal category is also trivially a partially monoidal category.

Yet it is perhaps not immediate whether there exist interesting partially monoidal
categories which are not monoidal? The lack of examples may also come down to
the compositionality versus decompositionality philosophical underpinnings. Many
monoidal categories sit firmly in the former - one considers the category of all vector
spaces, or all rings, for instance, we can then build up the larger objects from the
smaller atomistic blocks.

The few examples of partially monoidal categories in the literature fit more neatly
into the decompositional paradigm.

Example 10. [10, 12, 11] Fix a set N and let Set(N) be the category where objects
are finite subsets of N and morphisms are functions. The Set(N) has a strict partial
monoidal structure given by the union, defined only when the sets are disjoint.

Here, we start with some global system (a set N), which we decompose to produce
the objects of the category. As a result there is a restriction placed on the types
of objects we can consider - a restriction imposed by the universe in which we live
(the set N in this case). Partially monoidal categories seem to be a more natural
construction when thinking in this decompositional way, for instance we can generate
other partially monoidal categories along similar lines:

Example 11. Let [0, 1] be the poset given by the ordering on the elements of the
interval. [0, 1] has a strict partial monoidal structure given by addition x+ y when
x+ y ≤ 1.

Example 12. Fix a finite dimensional vector space V . Let Sub(V ) be the category
whose objects are subspaces of V and morphisms are linear maps. The sum of subspaces
U+W gives another subspace of V but it is not a monoidal product on Sub(V ) because

2while ensuring that they are still closed under composition and stable under pullback
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it is not well-defined on morphisms. For instance suppose U ∩W ̸= {0}. Then if
f : U −→ U ′ and g : W −→ W ′ are such that there is a u ∈ U ∩W with f(u) ̸= g(u)

then it is not clear how to define the tensor product of these morphisms. Sub(V )

does however have a partially monoidal structure given by the sum of subspaces only
defined when the subspaces are disjoint.

4.5 Promonoidal Categories

Before we introduce the formal definition of a promonoidal category let us comment
on the intuition we hope to capture.

In a monoidal category C, the tensor product of two objects of C returns another
object in C, that is, it is a functor C × C −→ C. Returning to the example of a category
of spacetime slices, it is problematic to assign an object of C to the tensor product
whenever the regions of spacetime are timelike separated. The best we could hope
for would be a partial monoidal structure which is only defined when regions are
spacelike separated. Perhaps it might be possible though to assign the tensor of
timelike separated regions to be a different sort of object, one that lives outside the
category C? What is a sensible choice of such “external” objects and how can we
ensure that they work together compatibly such that we might describe the overall
structure as something like a tensor product?

We will investigate the usage of promonoidal categories to deal with the aforemen-
tioned issues. Rather than assign an object of C to the tensor product, we assign it a
presheaf: a functor Cop −→ V. Recall from Definition 25 that presheaves are nicely-
behaved mathematical objects: they form a category [Cop,V] where the morphisms
are natural transformations between the presheaves, and the Yoneda lemma provides
a way of embedding C fully and faithfully into its presheavesよ : C −→ [Cop,V]. The
image of this functor consists of the representable presheaves which are of the form
よA
∼= C(−, A) for some object A of C.
By working with promonoidal categories we are able to assign the tensor a presheaf

(A ⊗ B)(−) : Cop −→ V, and in doing so, work with otherwise undefinable tensor
products. Since C embeds into its presheaves, we do not lose any ability to still assign
some tensor products to essentially be objects of C. Indeed, when the tensor product
of objects of C is a representable presheaf, (A ⊗ B)(−) ∼= C(−, C) we can identify
A⊗B with C under the Yoneda embedding. In this way, promonoidal categories are
like partially monoidal ones - when the presheaf is representable we essentially have
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an object of C again - but rather than the tensor being undefined elsewhere we can
still assign otherwise “untensorable” objects a non-representable presheaf.

We are now in a position to define promonoidal categories.

Definition 33 (Promonoidal Category [68, 65]). A promonoidal category is a repre-
sentation of P in V-Prof. In particular, a category C is promonoidal if it is equipped
with

• a tensor product profunctor ⊗ : C ⊠ C −7→ C

• a unit profunctor I : 1 −7→ C, i.e. a presheaf I : Cop −→ V

together with natural isomorphisms ⊗(⊗⊠1)
α∼= ⊗(1⊠⊗) and ⊗(⊗⊠I)

ρ∼= 1
λ∼= ⊗(I⊠⊗)

subject to the triangle and pentagon coherence conditions similar to a monoidal
category. A promonoidal category is strict when the coherence isomorphisms are
identities. A promonoidal category is symmetric when there is a natural isomorphism
σABC : ⊗ABC −→ ⊗ACB satisfying the hexagon and triangle equations.

We will mostly think of the tensor product profunctor ⊗ : Cop ⊠ C ⊠ C −→ V in its
curried form as a functor into presheaves, ⊗ : C ⊠ C −→ [Cop,V] and in an abuse of
notation we freely switch between using ⊗ for the tensor product in its three different
forms (as a profunctor, a functor into V and a functor into presheaves) so long as it is
clear which we mean.

There are many similarities between the definitions of promonoidal and monoidal
categories. One can think of promonoidal categories as what we get when we “upgrade”
the functors of a monoidal category to profunctors. This really is an upgrade since
every functor induces two profunctors by taking its covariant or contravariant Yoneda
embeddings. Furthermore, by the following result we can consider promonoidal
categories as strictly more general than monoidal ones.

Theorem 4 ([68, 65]). All monoidal categories (C,⊗, I) are promonoidal categories
where we define the tensor profunctor as (A⊗̃B)(−) := C(−, A ⊗ B) and the unit
profunctor as Ĩ(−) := C(−, I). Conversely, a promonoidal category whose tensor and
unit are everywhere representable is a monoidal category.

The connection between promonoidal and monoidal categories goes even deeper
due to the following theorem:

Theorem 5 ([68, 65]). There is an equivalence between promonoidal structures on C
and closed monoidal structures on the presheaf category [Cop,V ].
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The induced closed monoidal structure on [Cop,V] is known as Day convolution
and is given by

(F ∗G)(−) :=
∫ CD

⊗(−, C,D)⊠ F (C)⊠G(D)

with unit object given by the presheaf I(−).
Promonoidal categories can also be seen to be special types of co-multicategories.

A co-multicategory C consists of a collection of objects and for any objects A and
B0, . . . , Bn, a collection of morphisms C(A;B0, . . . , Bn). Given f : A −→ B0, . . . , Bn

and g : Bi −→ C0, . . . , Cm there is a composite

g ◦Bi
f : A −→ B0, . . . , Bi−1, C0, . . . , Cm, Bi+1, . . . , Bn

Each object is also equipped with an identity morphism 1A : A −→ A. The compositions
should be associative, unital and satisfy certain interchange laws, see [119] for more
detailed discussion of these issues.

Monoidal categories are examples of co-multicategories where the morphisms of
type f : A −→ B0, . . . , Bn are given by those f : A −→ B0 ⊗ · · · ⊗ Bn. Promonoidal
categories are also examples of co-multicategories where the collection of morphisms
C(A,B) is given by C(A,B) and C(A;B0, B1) is given by ⊗(A;B0, B1). The higher-
arity collections C(A;B0, . . . , Bn) are defined inductively, for instance C(A;B0, B1, B2)

is given by
∫ X ⊗(A,B0, X)⊠⊗(X,B1, B2). Note that associativity of the promonoidal

structure means it does not matter which of the two isomorphic objects we pick here.
So can think of a promonoidal category in two different ways, either as a (closed)

monoidal structure on presheaf categories or as a special co-multicategory. In the
former mindset we can think of the tensors (A⊗B)(−) as assigning external “virtual”
objects to tensor products of objects of our category. In the latter mindset we can
think of the promonoidal structure as an assignment of the multi-arity morphisms
over our original category, so that for instance ⊗(A;B0, B1) defines the collection of
morphisms A −→ B0, B1. We will revisit these ideas again in Chapter 5 and 7.

4.5.1 Partially Monoidal Categories as Promonoidal Categories

In this Section we will take a slight detour to study some connections between
partially monoidal and promonoidal categories. While this Section is not necessary to
understand the rest of this work, we hope that it will further elucidate some of the
reasons for considering promonoidal categories as a replacement for partially monoidal
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ones, and thus further explain some connections between the approach we take in
Chapter 5 based on [97], and the works [55, 85, 91].

In general, partially monoidal (as defined here and in [85]) and promonoidal
categories are not the same thing, though there is a special type of the former that can
be turned into the latter. There exists a class of partial functors where the left leg is
not only an opisofibration but a proper discrete opfibration. This makes the left leg a
cosieve which coincides with the definition of partial functor given by [25]. Demanding
that the left leg is a cosieve ensures that the subcategory on which the tensor is
defined is closed under post-composition with morphisms of C × C. This captures
the following physical intuition: if X ⊗ Y exists and there is a morphism X −→ X ′

then X ′ ⊗ Y exists too. Thus we maintain the intuition that if one applies a local
map to X then the tensor product should still exist afterwards. From a mathematical
perspective, when the left leg of the tensor product partial functor is a cosieve, the
partially monoidal category is equivalent to a promonoidal one. Indeed, Bénabou notes
that there is an 1-1 correspondence (up to isomorphism) between partial functors with
left leg a cosieve and profunctors which factorise through the representable and empty
presheaves [25]. In this light the following proposition is not surprising but there is a
little effort required in checking that everything works out:

Proposition 28. A partially monoidal category (C,⊠, J) whose left leg of the tensor
product partial functor is a cosieve is a promonoidal category with representable unit
and a tensor ⊗(−, b, c) which is either representable or empty for each (b, c) ∈ C × C.

Proof. In a slight abuse of notation write C × C i←− S ⊠−→ C for the underlying span of
the partial functor ⊠ : C × C ⇀ C, and note that J : 1⇀ C is simply a normal functor
J : 1 −→ C, in other words an object J of C. Just like for monoidal categories we can
define a promonoidal structure on C by taking (X ⊗ Y )(Z) := C(Z,X ⊠ Y ) whenever
(X, Y ) ∈ S and (X ⊗ Y )(Z) := ∅ otherwise. The unit is the representable presheaf at
J ,よJ .

The associativity isomorphism of a partially monoidal category induces the following
arrows:

(S × C)×C×C S

(C × S)×C×C S

C × C × C C

(i×1)π0 ⊠π1
ϕ

(1×i)π0 ⊠π1

α (4.9)
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where π0 and π1 are the canonical projections from the pullback and α is a natural
isomorphism.

Given a cospan of functors C F−→ E G←− D, the pullback C ×E D is the category
consisting of pairs of objects (c, d) with Fc = Gd and pairs of morphisms (f, g)

with Ff = Gg. We can think of (S × C) ×C×C S as the category with objects
( ((a, b), c), (a⊠b, c) ) where (a, b) ∈ S and c ∈ C with (a⊠b, c) ∈ S, while (C×S)×C×CS
has objects ( (a, (b, c)), (a, b ⊠ c) ) where (b, c) ∈ S and a ∈ C with (a, b ⊠ c) ∈ S.
The left triangle of (4.9) ensures that ϕ must act to send ( ((a, b), c), (a ⊠ b, c) ) 7→
( (a, (b, c)), (a, b⊠ c) ). The right triangle of (4.9) then implies that the components of
α have type αa,b,c : (a⊠ b)⊠ c −→ a⊠ (b⊠ c). This induces the necessary isomorphism
⊗axd⊗xbc −→ ⊗abx⊗xcd and checking the pentagon coherence equation now follows the
same standard proof as Theorem 4.

The right unit isomorphism induces the following arrows:

(C × 1)×C×C S

C × 1 C

C C

π0

⊠π1
ψ

∼
1 1

ρ

the components of ρ have type ρa : a ⊠ J −→ a as expected. A similar diagram is
induced by λ and in turn one sees that this has components λa : J ⊠ a −→ a. Checking
the triangle coherence equation follows like Theorem 4.

Now suppose we begin with a promonoidal category C where the unit is repre-
sentable J(−) ∼= C(−, I) and for each (b, c) ∈ C × C, either ⊗(−, b, c) ∼= C(−, xbc) is
representable, or ⊗(−, b, c) ∼= ∅(−) is empty. Define a full subcategory S of C × C
spanned by objects (b, c) where ⊗(−, b, c) is representable. Suppose for a contradiction
that (b, c) ∈ S and there exists a (f, g) : (b, c) −→ (b′, c′) in C × C but with (b′, c′) /∈ S.
Then we would have a natural transformation C(−, xbc) −→ ∅(−), a contradiction.
Thus (f, g) cannot exist and as a result the canonical inclusion functor S ↪→ C × C is
a discrete opfibration.

There are many examples of partially monoidal categories which are not equivalent
to promonoidal ones and vice-versa. For instance, we require that the unit presheaf
J(−) of a promonoidal category is representable to have any hope that it is a partially
monoidal category. Furthermore, given a general partially monoidal category C we do
not have enough data to define a profunctor C×C −7→ C (e.g. by taking the representable
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presheaves at the defined points of the partial tensor). Indeed, a promonoidal category
still has a total tensor, just into the presheaf category,

It is possible though to derive partially monoidal structures from a promonoidal one
with representable unit presheaf J(−), by pulling back the promonoidal tensor along
the Yoneda embedding whenever it is representable. There is of course a canonical
“maximal” such partially monoidal structure induced by defining it everywhere it is
possible to do so, i.e. everywhere the promonoidal tensor is representable.

One may wonder if there are any further connections between partial functors
and profunctors - is there a category that unites them? This would allow us to place
the two on equal footing and compare arbitrary partially monoidal and promonoidal
categories. The key to this unification is the following result:

Theorem 6 ([25, 122]). There is an equivalence of categories between profunctors
C −7→ D and two-sided discrete fibrations DFib(C,D).

A two-sided discrete fibration is a span of functors C F←− E G−→ D where:

• each F (e) −→ c′ in C has unique lift f : e −→ e′ in E such that G(f) = 1G(e),

• each d −→ G(e) in D has unique lift g : e′ −→ e in E such that F (g) = 1F (e),

• for each f : e −→ e′ in E , the codomain of the lift of Ff equals the domain of the
lift of Gf , and their composite is f .

The two-sided discrete fibration corresponding to a profunctor P : C −7→ D is
given by the projections out of the category Sec(P ) of sections of the collage of
P . The objects of Sec(P ) are the elements of the sets P (d, c) for all c and d. A
morphism x ∈ P (d, c) −→ x′ ∈ P (d′, c′) is given by a pair of arrows f and g such that
P (g, 1)(x′) = P (1, f)(x).

Consequently, each profunctor has a canonical span and by working in the category
of spans of functors one can study the partial functors and profunctors side-by-side.
For instance, suppose (C,⊗, J) is a promonoidal category with J(−) ∼= C(−, I). There
is a partial monoidal structure (⊠, I) on C given by pulling back ⊗ along the Yoneda
embedding whenever it is representable - that is, whenever ⊗(−, b, c) ∼= C(−, xbc) for
some objects b and c, we define b⊠ c := xbc. Write C × C for the subcategory of C × C
where the promonoidal tensor is representable. Then there is a 2-cell in Span(Cat)

capturing the extension of the partially monoidal structure on C to the promonoidal
structure:
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C × C

Sec(⊗)

C × C C

ϕ
i ⊠

p1 p0

where ϕ sends (b, c) to 1b⊠c,b⊠c ∈ ⊗(b⊠ c, b, c) and (g, f) to (g ⊠ f, g, f).

4.6 Premonoidal Categories

Alongside promonoidal categories, the other monoidal-like structures we will be
interested in are premonoidal categories. Premonoidal categories are a weakening of
monoidal categories to allow for situations when one can join objects together but
each half of the tensor is only individually functorial, that is, while it is the case that
(g′ ⊗ 1)(g ⊗ 1) = (g′g ⊗ 1) and (1 ⊗ f ′)(1 ⊗ f) = (1 ⊗ f ′f) we no longer have the
interchange law and thus have the following inequality:

f

g f

g
̸=

These categories were originally introduced to model computational semantics with
side-effects [132] but we expect categories of causal curves to have similar structure.
If f and g act on slices which are timelike separated or have a non-trivial intersection,
then their causal ordering can be vitally important; f could change the state space in
ways that later influence g or vice-versa. These “hidden” influences between maps can
be seen to be somewhat akin to the side-effects in the computational semantics for
which premonoidal categories were originally intended.

Let us now take formally define enriched premonoidal categories. We take some
space to spell this out as there are some technicalities in the enriched case which do
not appear to have been explicitly discussed elsewhere.

Definition 34 (Binoidal Category). A category C is binoidal when, for each object
X, it is equipped with a pair of functors X ⋉− : C −→ C and −⋊X : C −→ C such that
for all X and Y , X ⋉ Y = X ⋊ Y .

There is no compatibility condition between the left and right parts of the tensor
on morphisms, so in general it will be the case that (f ⋉Y ′)(X⋊ g) ̸= (Y ⋊ g)(f ⋉X ′)
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for f : X −→ Y , g : X ′ −→ Y ′. In the case V = Set the morphisms which interchange
with all others are known as central.

Definition 35 (Central Morphism [132]). A morphism f : X −→ Y is central if and
only if for all g : X ′ −→ Y ′, the following two diagrams commute:

X ⊗X ′ X ⊗ Y ′

Y ⊗X ′ Y ⊗ Y ′

X⋊g

f⋉X′ f⋉Y ′

Y ⋊g

X ′ ⊗X X ′ ⊗ Y

Y ′ ⊗X Y ′ ⊗ Y

X′⋊f

g⋉X g⋉Y

Y ′⋊f

In the enriched case there are no “morphisms” so a more careful definition is
required.

Definition 36 (Centre Piece). Let C be a binoidal category. A centre piece at objects
(A,B) is an object U(A,B) in V , endowed with an arrow ι : U(A,B) −→ C(A,B), such
that for any objects (C,D) the following diagrams commute.

U(A,B)⊠ C(C,D) C(A,B)⊠ C(C,D) C(AC,BC)⊠ C(BC,BD)

C(A,B)⊠ C(C,D) C(AD,BD)⊠ C(AC,AD) C(AC,BD)

ι⊠1

ι⊠1

(−⋊C)⊠(B⋉−)

◦σ

(−⋊D)⊠(A⋉−) ◦

C(C,D)⊠ U(A,B) C(C,D)⊠ C(A,B) C(CA,DA)⊠ C(DA,DB)

C(C,D)⊠ C(A,B) C(CB,DB)⊠ C(CA,CB) C(CA,DB)

1⊠ι

1⊠ι

(−⋊A)⊠(D⋉−)

◦σ

(−⋊B)⊠(C⋉−) ◦

Note that in the previous diagrams the symbols ⋉ and ⋊ have been suppressed for
space, and e.g. AB should be understood to mean A⋉B = A⋊B.

A morphism of centre pieces at (A,B) is an arrow u : V (A,B) −→ U(A,B) in V
such that ιU ◦ u = ιV . Centre pieces and morphisms of centre pieces form a category
CP (A,B).

Definition 37 (Centre). Let C be binoidal. The centre of C at objects (A,B) is
the universal centre piece, ι : ZC(A,B) −→ C(A,B), such that all other centre pieces
factorise uniquely through it.

Remark. When V = Set, universal centre pieces always exist. We leave it to future
work to investigate precisely when they exist for general V. In all the following
propositions we assume the existence of universal centre pieces.
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Universal centre pieces assemble to give a category ZC with the same objects as C
and with hom-objects given by the universal centre pieces. Composition and identities
are inherited from C because (4.10) and jA are centre pieces and thus factor via the
centre.

Proposition 29. The arrow (4.10), representing composition inherited from C, is a
centre piece at (A,C).

ZC(B,C)⊠ ZC(A,B)
ι⊠ι−−→ C(B,C)⊠ C(A,B)

◦−→ C(A,C) (4.10)

Furthermore, for each object A, the arrow jA : IV −→ C(A,A), representing the
identities, is a centre piece at (A,A). As a result, ZC is a category.

Proof. Ignoring associativity isomorphisms, the following diagram commutes for any
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X and Y , showing that the arrow (4.10) is a centre piece at (A,C).

Z
C(
B
,C

)
⊠
Z
C(
A
,B

)
⊠
C(
X
,Y

)
C(
X
,Y

)
⊠
Z
C(
B
,C

)
⊠
Z
C(
A
,B

)

C(
B
,C

)
⊠
C(
A
,B

)
⊠
C(
X
,Y

)
Z
C(
B
,C

)
⊠
C(
X
,Y

)
⊠
Z
C(
A
,B

)
C(
X
,Y

)
⊠
C(
B
,C

)
⊠
C(
A
,B

)

C(
B
,C

)
⊠
C(
X
,Y

)
⊠
C(
A
,B

)

C(
A
,C

)
⊠
C(
X
,Y

)
C(
B
Y
,C
Y
)
⊠
C(
A
Y
,B
Y
)
⊠
C(
A
X
,A
Y
)
C(
B
Y
,C
Y
)
⊠
C(
B
X
,B
Y
)
⊠
C(
A
X
,B
X
)
C(
C
X
,C
Y
)
⊠
C(
B
X
,C
X
)
⊠
C(
A
X
,B
X
)

C(
X
,Y

)
⊠
C(
A
,C

)

C(
A
Y
,C
Y
)
⊠
C(
A
X
,A
Y
)

C(
B
Y
,C
Y
)
⊠
C(
A
X
,B
Y
)

C(
B
X
,C
Y
)
⊠
C(
A
X
,B
X
)

C(
C
X
,C
Y
)
⊠
C(
A
X
,C
X
)

C(
A
X
,C
Y
)

C(
A
X
,C
Y
)

ι⊠
ι⊠

1

σ

1
⊠
σ

1
⊠
ι⊠
ι

◦⊠
1

(−
⋊
Y
)⊠

(−
⋊
Y
)⊠

(A
⋉
−
)

ι⊠
1
⊠
ι

σ
⊠
1

1
⊠
◦

(C
⋉
−
)⊠

(−
⋊
X
)⊠

(−
⋊
X
)

(−
⋊
Y
)⊠

(B
⋉
−
)⊠

(−
⋊
X
)

(−
⋊
Y
)⊠

(A
⋉
−
)

◦⊠
1

1
⊠
◦

1
⊠
◦

◦⊠
1

◦⊠
1

1
⊠
◦

(C
⋉
−
)⊠

(−
⋊
X
)

◦
◦

◦
◦

1

An analogous diagram also commutes for the other interchange law. As a result
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◦(ι⊠ ι) factorises uniquely via the universal centre piece. This gives us a composition
operation for ZC, say •, such that ◦(ι ⊠ ι) = ι•. Composition in ZC is associative
because the following diagram commutes.

(ZC(C,D)⊠ZC(B,C))
⊠ZC(A,B)

ZC(C,D)⊠
(ZC(B,C)⊠ZC(A,B))

(C(C,D)⊠C(B,C))
⊠C(A,B)

C(C,D)⊠
(C(B,C)⊠C(A,B))

C(B,C)
⊠C(A,B) C(A,D) C(C,D)

⊠C(A,C)

ZC(B,C)
⊠ZC(A,B) ZC(A,D) ZC(C,D)

⊠ZC(A,C)

(ι⊠ι)⊠ι

•⊠1

α

1⊠•

ι⊠(ι⊠ι)

◦⊠1

α

1⊠◦

◦ ◦

ι⊠ι

•

ι
ι⊠ι

•

The following diagram commutes for all C,D, showing that jA is a centre piece at
(A,A).

I ⊠ C(C,D) C(A,A)
⊠C(C,D)

C(AC,AC)
⊠C(AC,AD)

C(A,A)
⊠C(C,D) I ⊠ C(AC,AD) C(AC,AD)⊠ I C(AC,AD)

⊠C(AC,AC)

C(AD,AD)
⊠C(AC,AD) C(AC,AD)

jA⊠1

jA⊠1
1⊠(A⋉−)

(−⋊C)⊠(A⋉−)

σ

(−⋊D)⊠(A⋉−)

σ

jA⋊C⊠1

jA⋊D⊠1 λ

1⊠jA⋊C

ρ
◦

◦

A similar diagram commutes for the other interchange law. As a result jA factorises
uniquely via the universal centre piece as jA = ιj′A. Finally, note that the following
diagram commutes showing the left unit law holds for composition in ZC.
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ZC(B,B)⊠ ZC(A,B) ZC(A,B)

C(B,B)⊠ C(A,B) C(A,B)

I ⊠ C(A,B) C(A,B)

I ⊠ ZC(A,B) ZC(A,B)

ι⊠ι

•

ι

◦

jb⊠1

λ

1j′b⊠1

1⊠ι

λ

1

ι

The right unit law is very similar.

Finally we note that the ι assemble to give an identity on objects functor ZC −→ C.

Definition 38 (Central Natural Transformation). Let C be binoidal and F,G : D −→ C
be two functors. A natural transformation η : F −→ G is central when the components
are central, so that we have a family of morphisms ηA : IV −→ ZC(FA,GA) of V
satisfying the naturality diagrams.

Binoidal categories give us the necessary machinery to define premonoidal cate-
gories.

Definition 39 (Premonoidal Category). A premonoidal category, C, is a binoidal
category endowed with an object I and central natural isomorphisms, (A⊗B)⊗C ∼=
A⊗ (B ⊗ C) and A⊗ I ∼= A ∼= I ⊗ A, such that the triangle and pentagon equations
hold. A premonoidal category is strict when the coherence isomorphisms are identities.

In the case that V = Set, it is possible to combine the left and right tensor functors
X ⋊− and −⋉ Y into a single functor C □ C −→ C from the funny tensor product [80].
A concise definition of the funny tensor is as follows.

Definition 40 (Funny tensor product [157]). The funny tensor product C □ D is
given by the following pushout

C0 ×D0 C0 ×D

C ×D0 C □ D

1×iD

iC×1
⌜

(4.11)

where C0 and D0 are the discrete categories of the objects of C and D respectively.
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Explicitly, the category C □ D has as objects pairs (C,D) of an object C of C and
D of D. The morphisms are generated by freely composing (f ; 1) : (C,D) −→ (C ′, D)

where f : C −→ C ′ in C and (1; g) : (C,D) −→ (C,D′) where g : D −→ D′ in D with the
rule that compositions exclusively in C or D may be contracted: (f ′; 1)(f ; 1) = (f ′f ; 1)

and (1; g′)(1; g) = (1; g′g) but (f ; 1)(1; g) ̸= (1; g)(f ; 1) and thus there is no sensible
notion of “(f ; g)”. There is a oplax monoidal functor C □ D −→ C ×D induced by the
universal property of the pushout, which forces the interchange squares to commute.

We must avoid this definition in the enriched case because it relies on the discrete
category C0 of objects of a category C which is ill-defined over arbitrary V. We will
see later how to define a version of this funny tensor that is more well-behaved with
enriched categories.
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Chapter 5

Spacetime

Categorical approaches to modelling the structures of spacetime have become in-
creasingly rich topics of study leading to both the development of new mathematics
and a greater understanding of the underlying structures of our theories of physics.
Nevertheless, the precise categorical structures that should be present in a model
of spacetime are far from settled. The currently most successful approaches include
Categorical Quantum Mechanics (CQM) [3], Topological and Functorial Quantum
Field Theory (TQFT and FQFT) [7, 9, 123, 140] and Algebraic Quantum Field Theory
(AQFT) [93, 38].

TQFT and AQFT are axiomatised in similar ways, roughly as functors mapping
spacetimes to processes (often Vect) in the former and to observables (often Algk)
in the latter. CQM shares much commonality with TQFT - indeed it can be seen
as a particular low-dimensional case. Nevertheless, by taking the process theoretic
mentality seriously it has led to both conceptual and technical advances in standard
quantum mechanics, for instance in the development of the ZX and other graphical
calculi for quantum circuits [51].

Both CQM and TQFT are compositional in nature with monoidal structure a
standard requirement: CQM often starts with the assumption of a (usually †-compact)
symmetric monoidal category and a TQFT is typically a monoidal functor of the form:

Z : Bordn −→ Vectn

sending the n-category of cobordisms to the n-category of n-vector spaces. The key
physical argument for the assumption of monoidal structure is simple: if one has a pair
of systems, then one should be able to put them together and consider the composite
as a new system. In doing so we build up larger systems from pre-defined atomistic
ones.
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AQFT on the other hand, is conceptually “dual” taking an underlying philosophy
of decompositionality [55]. Monoidal structure is not key in the axiomatics of AQFT,
and instead one studies functors of the form

A : Sp −→ Algk

where Sp is a category of spacetimes (for instance, the objects might be time-orientable
Lorentzian manifolds and the morphisms isometric and time-orientation preserving
embeddings) and Algk is the category of algebras over a field k. The category Sp is
taken to have sufficient structure to encode when morphisms are causally disjoint, e.g.
by being an orthogonal category [27, 26], and instead of monoidality, A is taken to be
a functor sending causally disjoint morphisms to commuting algebras of observables.

It is this philosophy of decompositionality in which we will be primarily interested
in this section. As first explicitly described in [55], rather than starting with a
collection of existent systems and presupposing that it is possible to join them together
arbitrarily, we start with a global system - the whole of spacetime - and carve out
systems with the hope of recovering some fragment of compositional structure. In
such a framework, the tensor becomes problematic, for instance, if we pick a particular
system, say a specified qubit A, it is clearly not possible to form the product A⊗ A
in the usual sense, for what would it mean to consider the composite of a system with
itself? Indeed, the fundamental issue here is trying to tensor two objects that are
not independent and that can influence each other in non-trivial ways; we would also
have issues taking the tensor of timelike separated systems, or of mixed systems whose
environments are not causally disjoint.

There are two main obstructions to hoping for a total tensor product on a category
modelling spacetime regions in a decompositional fashion. Firstly, one would like the
objects of the category to satisfy some mathematical requirements so as to ensure
that they can be interpreted physically and such that we can reasonably consider
functorial assignments of fields over the spacetime. It can often be the case though
that no such physical system exists for the composite of physically reasonable systems
- the mathematical constraints we require of such systems may not be closed under
tensor-like compositions. For instance, if we take the objects of our category to
represent slices of spacetime - closed spacelike subsets of a Lorentzian manifold - when
we try to join two slices together they will not form another slice unless the original
slices were causally separated. To see this explicitly, consider Minkowski spacetime R2

and the two slices given by the intervals A := {t = 0}× [0, 1] and B := {t = 1}× [0, 1].
A reasonable choice of composite system might be to consider set-theoretic unions
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A ∪B, but this new set is not a slice of (1+1)-dimensional Minkowski spacetime as
there exists points of B in the future light cones of points of A and thus there are
causal curves from A to B. So it may not be possible to assign an object of the
category to a tensor A⊗B, and the category would fail to be monoidal.

Even where the tensor does exist, functoriality can fail and one often finds that
the interchange law does not hold:

(g ⊗ 1)(1⊗ f) ̸= (1⊗ f)(g ⊗ 1) (5.1)

while functoriality in each side of the tensor still holds (1⊗ f ′)(1⊗ f) = (1⊗ f ′f) and
(g′ ⊗ 1)(g ⊗ 1) = (g′g ⊗ 1). This occurs because the systems involved in the tensor
may not be independent - they might causally influence each other or possess a shared
environment. Thus the casual ordering of f and g is vitally important.

One possible route forwards could be to define the tensor only partially. It was
noted in [55] that one can recover a partial monoidal structure where the tensor product
is only defined on regions of spacetime that are causally separated. A group theoretic
approach was taken in [85] where the resulting category has partial monoidal structure
defined only on compatible systems, which requires both the causal separation of
systems and also their coupled environments. Another approach starting with a
poset modelling the causal relationships of spacetime events [91], resulted in partial
monoidality, again only defined on causally separated systems. As a result the authors
were led to define a Causal Field Theory (CFT) as a partially monoidal functor:

F : Slices(M) −→ Proc

between the partial monoidal category of slices of some spacetimeM and a monoidal
category Proc of processes [91]. CFTs therefore take a sort of intermediate position
combining elements of TQFTs and AQFTs: they are decompositional like the latter
but in a way that recovers fragments of the compositional structure we would expect
of the former.

One potential issue with CFTs is their partial monoidality. Such categories are
difficult to work with and mathematically displeasing - for instance, given two slices
X and Y it is not clear without additional information about X and Y whether their
tensor X ⊗ Y even exists. It would be more pleasing if X ⊗ Y always existed, say as
some “virtual” generalised object, but that some property of the tensor product could
tell us whether it is an object of the original CFT.

In this Chapter we propose the usage of weakenings of monoidal categories in
the form of the promonoidal [68] and premonoidal [132] categories (see Chapter
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4) to model causal curves in spacetime. Premonoidal categories are like monoidal
ones but dropping the interchange law (5.1). They were developed for modelling
computational semantics with side-effects and have been used previously to model
spacetime particularly in relation to AQFTs [60, 28], where it was argued one could
use them to model the Einstein causality condition. Here, we reinforce their point and
argue that the lack of bifunctoriality seems to be fundamental in a decompositional
approach to spacetime.

As we discussed in Section 4.5, promonoidal categories are loosely like monoidal
categories into the presheaf category. To our knowledge they have not been directly
used in a model of spacetime before. Here, we use them to extend the partial
monoidality of spacetime to a total tensor by allowing us to assign useful mathematical
objects to otherwise physically problematic ones. For instance, the union of two slices
of spacetime is another region of the manifold but not necessarily a slice, thus lacking
physical interpretation. We can assign the union a presheaf, with these presheaves
being representable whenever the union is another slice. The non-representable
presheaves can be thought to act like “virtual systems,” they carry useful information
but are not physically meaningful. We can also think of the promonoidal structure
multicategorically, as an assignment for any slices X and Y1, . . . , Yn of the set of causal
paths X −→ Y1, . . . , Yn.

In Section 5.1 we introduce toy categories Slice and Space of causal curves in
spacetime before showing in Section 5.2 that Slice is a promonoidal category under
the operation of taking intersections of sets of causal curves. In Section 5.3 we discuss
the operation of taking unions of sets of causal curves and demonstrate that this gives
a premonoidal structure on Space while Slice combines the structures of promonoidal
and premonoidal categories. Under either of the tensor-like structures on Slice we
prove that the presheaves assigned to the tensors are representable if and only if the
slices are jointly spacelike and in doing so show that we recover a type of partial tensor
product on causally separated regions.

5.1 A Category of Spacetime Slices

In this Section we develop a toy category of spacetime slices and causal curves and
then demonstrate that it exhibits both premonoidal and promonoidal structures.
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5.1.1 Spacetimes and Causal Curves

Spacetime is usually described in terms of a particular class of Lorentzian manifolds.
Let us work towards this notion in a somewhat informal and conceptual manner.

A manifold is a topological space M that (1) looks locally like Rn - every point
has a neighbourhood which is homeomorphic to Rn, and (2) every point can be
separated by neighbourhoods - the space is Hausdorff so that for any two points there
exist neighbourhoods around each which are disjoint. A differentiable manifold has
additional structure which allows for sensible notions of calculus to be developed. Each
local region U looks like Rn - we have a chart mapping the open set U to an open
subset of Rn. Since Rn is a vector space in which we know how to do calculus, if we
can put charts all over our manifold, known as an atlas, and these charts behave well
together, then it is possible to do calculus anywhere on the manifold in a consistent
manner. This is known as a differentiable atlas, and a differentiable manifold is a
manifold with a differentiable atlas1.

In a differentiable manifoldM it is possible to associate to each point p a tangent
space TpM which can be thought of as a vector space of equivalence classes of
vectors through p, capturing the “directions” one may pass through p. A metric is
an infinitely differentiable, symmetric, bilinear map assigning a real number to each
pair of tangent vectors gp : TpM× TpM −→ R. A pseudo-Riemannian manifold is
a differential manifold with a non-degenerate metric at each point, with the metric
varying smoothly as the point p is changed. By evaluating the metric on an orthogonal
basis {Xi}i one finds a series of non-zero real values gp(Xi, Xi). The number of
these that are positive and negative, respectively is known as the signature (p, q). A
Lorentzian manifold is a pseudo-Riemannian manifold where the signature is (n− 1, 1).

From now on we fix a connected Lorentzian manifoldM with metric g. A tangent
vector X is said to be spacelike, timelike or null if g(X,X) > 0, g(X,X) < 0 or
g(X,X) = 0, respectively. M is said to be time-orientable if it has a non-vanishing
timelike vector field and the timelike tangent vectors at each point can be divided (in
a continuous fashion) into two classes: a future-directed and a past-directed class. We
assume that M is time-orientable and fix a time-orientation. The assumptions we
make of our spacetime are fairly weak causality-wise, and are weaker than those of
past- and future-distinguishability [125, 112] (which was assumed by [91]) and certainly
weaker than the existence of a Cauchy slice (equivalently global hyperbolicity) [84]. As
a result we have not ruled out the existence of closed timelike curves in the spacetime.

1technically a maximal differentiable atlas, and such that the manifold is second countable, but
these are issues beyond the discussion required for this work
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A simple example of the kinds of manifolds we are interested in is Minkowski
space Rn+1 equipped the metric g(X1, X2) = |x⃗1 · x⃗2|2 − t1t2 for Xi = (ti, x⃗i). The
timelike vectors are those (t, x⃗) where t2 > |x⃗|2, of which there are two classes t > |x⃗|
and t < −|x⃗| consisting of vectors which point forwards and backwards in time,
respectively; a timelike vector (t, x⃗) is future-directed when t > 0 and past-directed
when t < 0. There is no issue with restricting oneself to Minkowski space for the
remainder of this Chapter, but we note that the results hold in the fully general case.

A path inM is a continuous map µ : ι −→M where ι ⊆ R is a (possibly unbounded)
real interval. Such a path is smooth if it is infinitely differentiable and regular if its
first derivative is non-vanishing. A smooth regular path is causal when the tangent
vector is timelike or null at all points in the path and a causal path is future-directed
when the tangent at every point is future-directed. For a point x ∈M, the set of all
points y ∈M with a future-directed path x to y is called the future light cone of x,
whereas the set of all points with a future-directed path from y to x is called the past
light cone of x.

Often it is more convenient to work with equivalence classes of paths, up to
reparametrisation, i.e. µ ∼ µ′ if and only if there exists a monotone map r : ι → ι′

such that µ′ ◦ r = µ. An equivalence class of causal paths is called a causal curve.
Since being future-directed is preserved by ∼, we can also say a causal curve is
future-directed without ambiguity.

A point x ∈ M causally precedes another point y ∈ M, written x ≺ y, if there
exists a future-directed causal curve from x to y, or if x = y. The assumption of
time-orientability ofM is not enough to ensure that ≺ gives a total order on points
in a causal curve - for instance there could be closed timelike curves inM containing
points x ̸= y, for which x ≺ y and y ≺ x.

A region is any arbitrary subset A ⊆M of the manifold. Regions are too general
to be useful for many practical applications, they might contain points which causally
precede each other or they might have insufficient topological properties to make them
well-behaved. As a result we will be more interested in a restricted class of regions,
the spacelike regions, where for all x, y ∈ Σ, x ̸= y, x does not causally precede y and
thus there are no future-directed causal curves connecting x with y, or y with x. For
instance, in Minkowski space the surfaces given by fixed times t = τ are examples of
spacelike sets.

Definition 41 (Spacelike Slice). A spacelike slice (or simply a “slice”) is a closed
spacelike set.

113



It is worth noting that slices may still be too weak for many applications, and it
may be necessary to demand further properties of them, by working with the Cauchy
slices for instance. Whilst we do not make these restrictions in this work, in principle,
there is no obstacle to applying many of the same methods to categories of more
restrictive classes of slices.

We will be very interested in the causal relationship between slices X and Y , which
motivates the following definition.

Definition 42 (Jointly Spacelike Slices). Slices X and Y are jointly spacelike if their
union X ∪ Y is spacelike.

Given regions A,B ⊆ M, A ̸= B, we say that a future-directed causal curve γ
with representative path µ : ι −→ M, passes through A and then B if there exists a
q ∈ ι with µ(q) ∈ B and for all such q there exists p ≤ q ∈ ι such that µ(p) ∈ A. We
write C[A,B] for the set of future-directed causal curves passing through A and then
B. We write C[A] := C[A,A] for the set of future-directed causal curves which pass
through A (with no constraint on other regions through which they must pass). This
means that any causal curve γ with representative path µ such that there exists a
q ∈ ι with µ(q) ∈ A, is an element of the set C[A]. It is also worth noting that a
closed timelike curve γ containing both the points a ∈ A and b ∈ B will be in the sets
C[A,B] and C[B,A].

5.1.2 A Category of Causal Curves

With these definitions in place we can define the following categories of slices and
regions of spacetime:

Definition 43 (Slice, Space). The category Slice has as objects slices X ⊂M (closed
spacelike sets). For two slices X, Y ⊂ M, the homset Slice(X, Y ) := P(C[X, Y ]) is
the powerset of C[X, Y ], that is, a morphism X −→ Y is a set of future-directed causal
curves through X then Y . Given two subsets S : X −→ Y and T : Y −→ Z, their
composition is given by intersection: T ◦S := T ∩S ⊂ C[X,Z]. The identity morphism
1X : X −→ X is given by the set C[X,X] of all curves through X.

The category Space has as objects arbitrary regions A ⊆M. All other data is as
Slice.

Proposition 30. Slice and Space are categories.
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⊆
X

Y
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Y 7→

S : X → Y

T : Y → Z

T ◦ S : X → Z

Z

Y
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Z

Figure 5.1: Left: A morphism in the category Slice is a set of causal curves passing
first through X then through Y . Right: Composition of two morphisms in Slice via
intersection. Note that in both pictures, past as future light cones of slices are depicted
as dotted lines, and sets of many causal curves are depicted as filled-in regions.

Proof. Composition is associative because intersection is. Given a set of causal curves
S : X −→ Y , by definition all curves in S pass through X, thus we see S ◦ 1X =

S ∩ C[X,X] = S. Similarly for the left composition with identity morphisms.

Now we examine a few basic categorical properties of Slice and Space.

Proposition 31. Slice and Space have equalisers and coequalisers, given by the
complement of the symmetric difference.

Proof. Take f, g : A −→ B. This pair of parallel arrows is equalised by (f△g)c : A −→ A

and coequalised by (f△g)c : B −→ B where (f△g)c = C[A,B]\(f△g) = (f∪g)c∪(f∩g).
Any other arrow h making the parallel pair f and g equal factorises uniquely via
(f △ g)c because this morphism contains every causal curve that is in both f and g,
or neither. Thus h must be a subset of (f △ g)c.

It is interesting that equalisers and coequalisers essentially coincide in Slice - in
part this is down to the fact that composition is, up to types, commutative - e.g. for
endomorphisms f ◦ g = g ◦ f .

Proposition 32. Let X and Y be jointly spacelike slices with X ∩ Y = ∅. Then the
product and coproduct of X and Y exist in Slice and are given by the set theoretic
union X × Y = X ⊕ Y = X ∪ Y .

Proof. The projections are given by

π0 = C[X] : X ∪ Y −→ X

π1 = C[Y ] : X ∪ Y −→ Y
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while the coprojections are given by

i0 = C[X] : X −→ X ∪ Y

i1 = C[Y ] : Y −→ X ∪ Y

Given f : Z −→ X and f ′ : Z −→ Y , the universal arrow completing the product
diagram is ⟨f, f ′⟩ = f ∪ f ′ : Z −→ X ∪ Y , and given g : X −→ Z and g′ : Y −→ Z, the
universal arrow completing the coproduct diagram is [g, g′] = g ∪ g′ : X ∪ Y −→ Z.
Indeed, it follows that the diagrams commute because X and Y are jointly spacelike
with X ∩ Y = ∅ and thus f ∩ C[Y ] = f ′ ∩ C[X] = g ∩ C[Y ] = g′ ∩ C[X] = ∅.

While we do have products and coproducts of non-intersecting jointly spacelike
slices in Slice, the (co)products of other regions e.g. timelike separated regions and of
intersecting slices do not exist. These regions are the main issue preventing the set
theoretic union from being a monoidal structure on Slice.

Proposition 33. Slice is not a monoidal category under a monoidal product given by
taking the union of regions and curves X ⊗ Y := X ∪ Y and S ⊗ T := S ∪ T .

Proof. The union of slices is not always a slice so X ∪ Y may not be an object
of Slice. For the occasions when it is, ⊗ cannot in general be bifunctorial. For
arbitrary S : X −→ Y , S ′ : Y −→ Z, T : X ′ −→ Y ′ and T ′ : Y ′ −→ Z ′, we have
(S ′⊗T ′) ◦ (S⊗T ) = (S ′∪T ′)∩ (S ∪T ) ⊃ (S ′∩S)∪ (T ′∩T ) = (S ′ ◦S)⊗ (T ′ ◦T ).

One might hope that by relaxing the sorts of objects we are considering and
working instead with the category Space, we could find a monoidal product given by
union. Whilst this resolves the issue of the non-existence of the object X ∪ Y for
arbitrary X and Y , we still find that the union cannot be bifunctorial and thus Space
is also not a monoidal category under union.

We also cannot hope that Slice or Space are monoidal categories under intersection
because there exist causally connected slices which have an empty intersection:

Proposition 34. Slice and Space are not monoidal categories under a monoidal
product given by taking the intersection of regions and curves X ⊗ Y := X ∩ Y and
S ⊗ T := S ∩ T .

Proof. Suppose X and Y are causally connected slices so C[X, Y ] ̸= ∅ but with
X ∩ Y = ∅. Then 1X ⊗ 1Y = C[X,X] ∩ C[Y, Y ] ̸= ∅ because there exists a causal
curve passing through X and Y . On the other hand we see that 1X∩Y = 1∅ = ∅.
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In the following sections we will show that while Slice and Space are not monoidal
categories in either of these ways, Slice is a promonoidal category under intersec-
tion. Under union, Space is premonoidal while Slice combines both promonoidal and
premonoidal structures.

5.2 A Promonoidal Structure on Slice

We now aim to show that Slice is a promonoidal category under intersection, that
is, it is equipped with a tensor product functor Slice× Slice −→ [Sliceop, Set] and unit
presheaf Sliceop −→ Set subject to associativity and unit laws.

To each pair of objects X and Y we assign the presheaf (X7Y )(−) : Sliceop −→ Set

which sends a slice Z to the powerset of causal curves which pass through Z and then
both X and Y

(X 7 Y )(Z) := P(C[Z,X] ∩ C[Z, Y ])

On morphisms S : Z ′ −→ Z this presheaf acts by intersection:

(X 7 Y )(S) : (X 7 Y )(Z) −→ (X 7 Y )(Z ′) :: C 7→ C ∩ S

Lemma 1. (X 7 Y )(−) is a presheaf.

Proof. (X 7 Y )(1Z) :: C 7→ C ∩ 1Z = C because every curve in (X 7 Y )(Z) passes
through Z. Thus (X 7 Y )(1Z) = 1(X7Y )(Z). Now (X 7 Y )(T ) ◦ (X 7 Y )(S) :: C 7→
C ∩ S 7→ (C ∩ S) ∩ T while (X 7 Y )(S ◦ T ) :: C 7→ C ∩ (S ∩ T ) and these are equal
by the associativity of intersection.

⊆
Y

X
Z

Y

X
Z

⊆
Y

X
Z

Y

X
Z

Figure 5.2: Left: An element S ∈ (X 7 Y )(Z), as defined in Section 5.2. Right: An
element T ∈ (X 6 Y )(Z), as defined in Section 5.3.

To each (S, T ) : (X, Y ) −→ (X ′, Y ′) we are required to assign a natural transforma-
tion between the presheaves S 7 T : (X 7 Y )(−) =⇒ (X ′ 7 Y ′)(−).
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For S : X −→ X ′ there is a natural transformation with components

(S 7 Y )Z : (X 7 Y )(Z) −→ (X ′ 7 Y )(Z) :: C 7→ C ∩ S

and for T : Y −→ Y ′ there is a natural transformation with components

(X 7 T )Z : (X 7 Y )(Z) −→ (X 7 Y ′)(Z) :: C 7→ C ∩ T

These natural transformations commute, (S 7 Y ′)Z(X 7 T )Z = (X ′ 7 T )Z(S 7 Y )Z

and we can define (S 7 T ) to be given by their composition.

Lemma 2. (S7Y ) and (X7T ) are natural transformations with (S7Y ′)Z(X7T )Z =

(X ′ 7 T )Z(S 7 Y )Z.

Proof. Note that the following diagram commutes for any U : Z ′ −→ Z

(X 7 Y )(Z) (X 7 Y )(Z ′)

(X ′ 7 Y )(Z) (X ′ 7 Y )(Z ′)

(X7Y )(U)

(S7Y )Z (S7Y )Z′

(X′7Y )(U)

because on the top path we see C 7→ C ∩ U 7→ (C ∩ U) ∩ S while on the bottom path
C 7→ C ∩ S 7→ (C ∩ S) ∩ U . Naturality of (X 7 T ) follows similarly and checking the
commutativity condition is straightforward.

Lemma 3. The assignment (X, Y ) 7→ (X 7 Y )(−) and (S, T ) 7→ (S 7 T ) gives a
functor Slice× Slice −→ [Sliceop, Set].

Proof. Firstly note that each component of 1X 7 1Y : (X 7 Y )(−) =⇒ (X 7 Y )(−)
is just the identity. Thus it is the identity natural transformation and we conclude
1X 7 1Y = 1(X7Y )(−).

Now take S : X −→ X ′ and S ′ : X ′ −→ X ′′. The arrow (S ′ 7 Y )Z ◦ (S 7 Y )Z acts as
C 7→ (C ∩S)∩S ′ while the arrow ((S ′ ◦S)7Y )Z acts as C 7→ C ∩ (S ′ ∩S). Thus the
components of the composite natural transformation (S ′ 7 Y ) ◦ (S 7 Y ) equal those
of ((S ′ ◦ S) 7 Y ).

A similar argument holds for arrows T : Y −→ Y ′ and because (S7Y ) and (X 7T )

commute we are done.

We are now in a position to prove the main result of this section:

Theorem 7. Slice is a symmetric promonoidal category where the tensor is given
above and the unit presheaf is given by I(Z) := P(C[Z,Z]).
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Proof. Let us begin with associativity 7(7× 1) ∼= 7(1×7). Note that by Yoneda
we have

7(7× 1)(W,X, Y, Z) =

∫ A,B

7(W,A,B)×7(A,X, Y )× Slice(B,Z)

∼=
∫ A

7(W,A,Z)×7(A,X, Y )

While

7(1×7)(W,X, Y, Z) ∼=
∫ A

7(W,X,A)×7(A, Y, Z)

Let us show there is a canonical identification 7(7×1)(W,X, Y, Z) ∼= P(C[W,X]∩
C[W,Y ] ∩ C[W,Z]) =: Λ. There are functions

7(W,A,Z)×7(A,X, Y ) −→ Λ :: (S, T ) 7→ S ∩ T

which form a cowedge with apex Λ. By the universal property of the coend this
induces a unique function g :

∫ A 7(W,A,Z)×7(A,X, Y ) −→ Λ making the obvious
cowedge diagrams commute.

We can also construct a function f by composing

Λ
f ′−→ 7(W,W,Z)×7(W,X, Y )

coprW−−−→
∫ A

7(W,A,Z)×7(A,X, Y )

where f ′ acts as S 7→ (S, S).
The universal property of the coend implies that the composition fg = 1, or we

can check explicitly:
(S, T ) 7→ S ∩ T 7→ (S ∩ T, S ∩ T )

upon which we simply need to note that we have (S, T ) = (S∩S, T∩T ) ∼ (S∩T, S∩T ).
Similarly, it is straightforward to show that gf = 1: S 7→ (S, S) 7→ S ∩ S = S.

Thus Λ ∼=
∫ A 7(W,A,Z)×7(A,X, Y ) as sets.

Now note that this isomorphism is in fact natural in W,X, Y and Z. Let w : W ′ −→
W,x : X −→ X ′, y : Y −→ Y ′, z : Z −→ Z ′, then we have

(S, T ) (S ∩ w ∩ z, T ∩ x ∩ y)

S ∩ T S ∩ T ∩ w ∩ x ∩ y ∩ z

gWXY Z gW ′X′Y ′Z′

Thus exhibiting the desired natural isomorphism.
A similar argument shows that 7(1 × 7)(W,X, Y, Z) ∼= Λ, and thus we have

established the associativity natural isomorphism.
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The pentagon equation is given by (writing i for the interchange and ignoring the
associativity isomorphisms of profunctor composition):

7a
xe 7x

yd 7y
bc 7a

xe 7x
by 7y

cd

7a
yx 7x

de 7y
bc 7a

bx 7x
ye 7y

cd

7a
bx 7x

cy 7y
de

1◦α

α◦1 α◦1

(α◦1)i 1◦α

Clockwise we have the following mapping:

(S, T, V ) 7→ (S, T ∩ V, T ∩ V ) 7→ (S ∩ T ∩ V, S ∩ T ∩ V, T ∩ V )

7→ (S ∩ T ∩ V, S ∩ T ∩ V, S ∩ T ∩ V )

while anticlockwise we have

(S, T, V ) 7→ (S ∩ T, S ∩ T, V ) 7→ (S ∩ T ∩ V, S ∩ T, S ∩ T ∩ V )

and it clear that (S ∩ T ∩ V, S ∩ T, S ∩ T ∩ V ) ∼ (S ∩ T ∩ V, S ∩ T ∩ V, S ∩ T ∩ V )
under the coend equivalence relation. Thus the pentagon commutes.

Now we show the existence of the unit isomorphisms 7(I × 1) ∼= 1 ∼= 7(1 × I).
Much of the construction is similar to the previous argument, so we leave the reader to
fill in some of the details. There exist functions 7(−,=, B)×P(C[B,B]) −→ Slice(−,=)

for each B given by sending (S, T ) 7→ S ∩ T . These functions form a cowedge and
therefore induce a unique function

∫ B 7(−,=, B)× P(C[B,B]) −→ Slice(−,=).
The inverse of this function is given by the function S 7→ (S, S) which factorises via

copr. It is straightforward to check that these give the left unit natural isomorphism,
and the construction of the right unit is similar.

Writingよ for an application of the Yoneda lemma, the triangle equation is given
by

7a
bc

7a
xc 7x

by I
y 7a

bxI
y7x

ycα◦1

よρ よλ

and it is little work to check that this commutes.
The symmetry (X 7 Y )(Z) −→ (Y 7 X)(Z) is given by the identity map for all

X, Y and Z.
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Now we know that Slice is promonoidal under intersection, we will study when
the presheaves assigned by this tensor are representable. This allows us to ascertain
where 7 acts like a standard monoidal product on Slice and where it is possible for us
to consider the tensor of slices to be another slice.

Theorem 8. When X and Y are jointly spacelike slices, the presheaf (X 7 Y )(−) is
representable.

Proof. Suppose X and Y are jointly spacelike. Note C[Z,X] ∩ C[Z, Y ] ⊇ C[Z,X ∩ Y ].
Suppose there exists γ ∈ C[Z,X] ∩ C[Z, Y ] with γ /∈ C[Z,X ∩ Y ]. Then γ must pass
through some x ∈ X\Y and some y ∈ Y \X but this would imply that X and Y

are not jointly spacelike. Thus γ cannot exist and it follows that (X 7 Y )(Z) =

P(C[Z,X ∩ Y ]) = Slice(Z,X ∩ Y ) =よX∩Y (Z), noting that X ∩ Y is a slice because
X ∩ Y ⊆ X and thus is an object of Slice.

In particular, the previous theorem shows that on jointly spacelike slices 7 acts
like intersection and we can make the identification (X 7 Y )(−) ≃ X ∩ Y . On the
other hand, when the slices are not jointly spacelike there is no representative for
(X 7 Y )(−). To show this we need the following lemma:

Lemma 4. Let A ⊆M be a closed subset of M. Then for any x ∈M, x /∈ A, there
exists a causal curve through x which does not intersect A.

Proof. The timelike vector field is non-vanishing on M and as a result there must
be a causal curve γ through x. In a sufficiently small neighbourhood U of x, γ must
restrict to a causal curve which is contained entirely within U . Since A is closed
and M is Hausdorff, this neighbourhood can be made sufficiently small such that
U ∩ A = ∅.

Theorem 9. When X and Y are not jointly spacelike, the presheaf (X 7 Y )(−) is
not representable.

Proof. We make much use of Lemma 4. Suppose X and Y are not jointly spacelike
and suppose for a contradiction that (X 7 Y )(−) = Slice(−, Z) for some slice Z.

Now suppose there exists a z ∈ Z such that z /∈ X ∪Y . We can find a causal curve
γ through z that does not also pass through X ∪ Y . It follows that γ ∈ Slice(Z,Z),
but γ /∈ (X 7Y )(Z). So Z cannot represent the presheaf and we conclude Z ⊆ X ∪Y .

Now take a x ∈ X\Y . There exists a causal curve γ passing through x but not Y .
Suppose that x ∈ Z, then γ ∈ Slice(Z,Z), but γ /∈ (X 7 Y )(Z). So x /∈ Z.
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A similar argument shows that any y ∈ Y \X cannot be in Z and thus Z ⊆ X ∩ Y .
Since X and Y are not jointly spacelike, X ∪ Y is not spacelike and there exists a

causal curve γ from X ∪ Y to itself. In particular γ must pass through a point of X
and a point of Y , and not, say, through two points of X, since X and Y are slices.
Then we would have γ ∈ (X 7 Y )(X) but γ /∈ Slice(X,Z) because if γ ∈ Slice(X,Z)

it would pass through X and X ∩ Y ⊆ X, a contradiction with X being a slice.

So we have shown that (X 7 Y )(−) is representable if and only if X and Y are
jointly spacelike. Note that one cannot define a partially monoidal category by just
working with 7 where it is representable because the unit presheaf is not representable
and therefore there is no unit object available in Slice.

5.3 The Structure of Slice and Space under Union

Let us now consider the structure of Slice and Space under union of slices and sets
of curves. The larger category Space where the objects are arbitrary subsets of the
manifoldM and the homsets are powersets of causal curves is a premonoidal category:

Proposition 35. Space is a strict premonoidal category under the operation of taking
the union of regions and curves.

Proof. For objects X and Y assign them the object X ⊗Y := X ∪Y . The assignment
(T : Y −→ Y ′) 7→ (C[X]∪T : X ∪ Y −→ X ∪ Y ′) gives a functor X ⋊− : C −→ C because

X ⋊ 1Y = C[X] ∪ C[Y ] = C[X ∪ Y ] = 1X∪Y

(X ⋊ f ′)(X ⋊ f) = (C[X] ∪ f ′) ∩ (C[X] ∪ f) = C[X] ∪ (f ′ ∩ f) = X ⋊ f ′f

Similarly the assignment (S : X −→ X ′) 7→ (S ∪ C[Y ]) extends to a functor − ⋉ Y :

C −→ C. The unit object is I := ∅ and the unit and associativity isomorphisms are
identities, which it is straightforward to check are central.

The above has a clear issue - X ∪ Y is generally not another slice and thus not an
object of Slice. This means Slice cannot form a premonoidal category under union and
we need to search for something that combines both premonoidal and promonoidal
structures together.

There is no obstacle to defining presheaves (X 6 Y )(−) : Sliceop −→ Set which send
a slice Z to the powerset of causal curves through Z and either X or Y :

(X 6 Y )(Z) := P(C[Z,X] ∪ C[Z, Y ])
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On morphisms S : Z ′ −→ Z this presheaf acts by intersection:

(X 6 Y )(S) : (X 6 Y )(Z) −→ (X 6 Y )(Z ′) :: C 7→ C ∩ S

Lemma 5. (X 6 Y )(−) is a presheaf.

Similarly, there is no obstacle to defining natural transformations acting on either
the left or right of 6. For S : X −→ X ′ there is a natural transformation with
components

(S 6 Y )Z : (X 6 Y )(Z) −→ (X ′ 6 Y )(Z) :: C 7→ C ∩ (S ∪ C[Y ])

and for T : Y −→ Y ′ there is a natural transformation with components

(X 6 T )Z : (X 6 Y )(Z) −→ (X 6 Y ′)(Z) :: C 7→ C ∩ (C[X] ∪ T )

Lemma 6. (S 6 Y ) and (X 6 T ) are natural transformations.

What fails in comparison to 7 is that, in general, the components of these natural
transformations do not obey the interchange law, so we cannot hope that these data
give a functor Slice× Slice −→ [Sliceop, Set]. Nevertheless, the natural transformations
are functorial on each side of the tensor and it is easy to verify that the assignment
does give a functor 6 : Slice □ Slice −→ [Sliceop, Set] where □ is the funny tensor
product of categories.

Lemma 7. The data of Lemmas 5 and 6 specify a functor Slice □ Slice −→ [Sliceop, Set]

Proof. Take S : X −→ X ′ and S ′ : X ′ −→ X ′′. Then (S ′ 6 Y )Z(S 6 Y )Z acts as
C 7→ C ∩ (S ∪ C[Y ]) ∩ (S ′ ∪ C[Y ]) = C ∩ ((S ∩ S ′) ∪ C[Y ]) which is precisely the same
as the action of (S ′S 6 Y )Z . We conclude (S ′ 6 Y )Z(S 6 Y )Z = (S ′S 6 Y )Z .

A similar argument shows that (X6T ′)Z(X6T )Z = (X6T ′T )Z and thus we have
functoriality of (−6 =) in each component. This is enough to extend to functoriality
from the funny tensor.

In this way Slice seems to combine both the structures of premonoidal and
promonoidal categories. We leave it as future work to make rigorous the associativity
and unitality of this structure but we note that the representable presheaf at the
empty sliceよ∅ is likely the unit of a suitably defined structure.

Similarly to the intersection case we can study when the presheaves (X 6 Y )(−)
are representable:
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Theorem 10. When X and Y are jointly spacelike, the presheaf (X 6 Y )(−) is
representable.

Proof. Suppose X and Y are jointly spacelike. Then (X 6 Y )(Z) = P(C[Z,X] ∪
C[Z, Y ]) = P(C[Z,X ∪ Y ]) =よX∪Y (Z) where we have used the fact that X ∪ Y is
spacelike and thus an object of Slice.

Theorem 11. When X and Y are not jointly spacelike, the presheaf (X 6 Y )(−) is
not representable.

Proof. We make use of Lemma 4. Suppose X and Y are not jointly spacelike and
suppose for a contradiction that (X 6 Y )(−) = Slice(−, Z) for some slice Z. By the
same argument made in the proof of Theorem 9 we must have Z ⊆ X ∪ Y .

Since X and Y are not jointly spacelike, X ∪ Y is not spacelike and thus there
exists a causal curve γ connecting two points of X ∪ Y . It must be the case that one
of these points is in X\Y and the other in Y \X else X or Y could not be slices. Write
x ∈ X\Y and y ∈ Y \X for these points that γ passes through and note that they can
be the only points of X ∪ Y that γ intersects else X or Y could not be slices.

Now note that γ restricts to a causal curve γx which passes through x but not y
and similarly a causal curve γy which passes through y but not x.

Suppose that x /∈ Z, then γx ∈ (X 6 Y )(X) but γx /∈ Slice(X,Z), noting that
Z ⊆ X ∪ Y so that γx intersects Z at only x. So we conclude that x ∈ Z.

Similarly, suppose that y /∈ Z, then γy ∈ (X 6 Y )(Y ) but γy /∈ Slice(Y, Z). So we
conclude that y ∈ Z.

We see that γ is a causal curve connecting two distinct points of Z and consequently
Z cannot be a slice.

So we have shown that the presheaf (X 6 Y )(−) is representable if and only if X
and Y are jointly spacelike. By restricting 6 to these slices we can recover a partial
premonoidal structure on Slice by defining the tensor to be given by the representative.
The unit of this partial premonoidal category is the empty slice ∅.

Now that we have two tensor-like structures on Slice we would like to know how
they interact. Given that 6 behaves like union and 7 like intersection, it seems
reasonable to expect some sort of distributivity between them. To understand this at
the level of the profunctors we require the following definition:

Definition 44 (Multiplicative Kernel [66]). Let (C, P, I) and (D, Q, J) be promonoidal
categories. A multiplicative kernel is a profunctor K : C −7→ D such that

Q(K ×K) ∼= KP KI ∼= J
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where concatenation is profunctor composition.

Remark. Viewing C and D as pseudomonoids in Prof, a multiplicative kernel is a
homomorphism of these monoids.

Each slice X determines an endoprofunctor (X 6−)(−) : Slice −7→ Slice and it is
the case that each of these is a multiplicative kernel for Slice equipped with 7.

Theorem 12. For every slice X, (X 6−)(−) is a multiplicative kernel for (Slice,7).

Proof. (Sketch). The proof is similar and uses the same methods as Theorem 7 so we
only sketch the idea.

Fix a slice A. We will show that (A6−)(−) is a kernel.
Starting with the units we need to show that

∫ X 6Z
AXJ

X ∼= JZ . There are functions
6Z
AXJ

X −→ JZ sending (S, T ) 7→ S ∩ (T ∪ C[A]). These are dinatural in X and thus
form a cowedge factorising uniquely via the coend. As a result we have a function∫ X 6Z

AXJ
X −→ JZ . This function is an isomorphism with inverse given by S 7→ (S, S)

which factorises via copr. Indeed,

S 7→ (S, S) 7→ S ∩ (S ∪ C[A]) = S

and

(S, T ) 7→ S ∩ (T ∪ C[A]) 7→ (S ∩ (T ∪ C[A]), S ∩ (T ∪ C[A]))

∼ (S ∩ (S ∪ C[A]), T ∩ T )

= (S, T )

As for the multiplications we want to show
∫ Z 6W

AZ7Z
XY
∼=
∫ ZZ′

6Z
AX 6Z′

AY 7W
ZZ′

which it is easiest to do by showing each is naturally isomorphic to Λ := P(C[W,A] ∪
(C[W,X] ∩ C[W,Y ])). For the former, there is a cowedge with components (S, T ) 7→
S∩ (T ∪C[A]), with the inverse to the induced map given by S 7→ (S, S), as in the case
of the units. For the latter, there is a cowedge with components (S, T, V ) 7→ S∩T ∩V ,
with the inverse to the induced map given by S 7→ (S, S, S).

To show that all the isomorphisms are natural is little work.
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Chapter 6

Pre-promonoidal and Pro-effectful
Categories

In this Chapter we consider a route to making formal the “pre-promonoidal” structure
suggested in the previous section by the union of slices. The idea is to combine together
elements of both premonoidal and promonoidal structure by equipping a category
C with a profunctor P : C □ C −7→ C that behaves like the tensor of a promonoidal
category, but that lacks the interchange law in its domain. One would hope that
this “tensor” should be associative and unital like in monoidal, premonoidal and
promonoidal categories but one runs into an immediate problem trying to define this -
it is not clear how to make sense of the coends such as

∫ C
P (−,−, C)× P (C,−,−)

because the domain of P is the funny tensor C □ C not C × C.
One possibility is to only take coends over the premonoidal centre Z(C) of C so

that we weaken the (co)domains of the associativity and unit natural isomorphisms
to expressions like

∫ C∈Z(C)
P (−,−, C) × P (C,−,−), which we can now make sense

of since we have changed the problematic funny tensor C □ C for the subcategory
C × Z(C).

In order to make this formal it is necessary to equip C with a specified premonoidal
centre from the outset. We call these premonoidal categories with specified centre
effectful categories as in [138], and they have been also known elsewhere as non-cartesian
Freyd categories [131, 130]. Effectful categories have a very close relationship with
strong promonads (monads in the category of profunctors), and it is well-understood in
the functional programming community (where they are known as arrows) that there
is an equivalence between the two [102, 5]. Given a strong promonad T : C −7→ C there
is a corresponding effectful category given by the canonical free functor F : C −→ KlT

into the Kleisli category of T . Conversely, given an effectful category J : C0 −→ C1
there is a strong promonad given by C1(J−, J−) : C0 −7→ C0.
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Here, we will consider “pro-effectful” categories which weaken the structure of
an effectful category J : C0 −→ C1 such that C0 is only promonoidal and C1 is “pre-
promonoidal”. In particular, we will show that pro-effectful categories are equivalently:

• prostrong promonads,

• biproactegories (two-sided actions in the category of profunctors) which suitably
extend a canonical action on the centre of the category,

• pseudomonoids in the bicategory of tight V2-profunctors.

Each of these gives a different perspective on pro-effectful categories, connecting
them, respectively, with monads; the action definition of Freyd categories given by
Levy [120]; the pseudomonoid definition of effectful categories given by Román [138];
and the work on closed effectful categories due to Power [131, 130]. In particular, this
final perspective demonstrates that pro-effectful categories are equivalent to closed
effectful categories on the tight cocompletion, where the effectful structure is given by
a version of Day convolution.

6.1 Effectful Categories

When we defined premonoidal categories in Section 4.6, one may have been surprised
that there was not a swift definition. Since the coherence isomorphisms (α, λ, ρ)
need to be central we were required to define binoidal categories before it was even
possible to define what it means for a morphism to be central. This meant a three-step
definition: make C binoidal, define centrality, and ask for the existence of central
natural isomorphisms satisfying the coherence conditions. Part of the reason for this
long-winded route is that even in the case V = Set, Cat fails to be a monoidal 2-category
under the funny tensor product because the funny tensor of natural transformations
is not well-defined unless the components are all central. This prevents the swift and
elegant definition “a premonoidal category is a pseudomonoid in Cat□.”

Power realised that premonoidal categories are more algebraically well-defined
when one shifts to working with premonoidal categories with specified centre [131],
which we call effectful categories as suggested in [138].

Definition 45 (Premonoidal Functor). A premonoidal functor F : C −→ D between
premonoidal categories is a functor which maps central morphisms to central morphisms
and which preserves the premonoidal structure up to natural transformations FA⊗
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FB −→ F (A⊗B) and I −→ FI subject to coherence conditions like those for a monoidal
functor.

Definition 46 (Effectful Category). An effectful category consists of a monoidal
category C0, a premonoidal category C1 with the same objects as C0 and a strict,
identity on objects, premonoidal functor J : C0 −→ C1.

Remark. If C0 is cartesian then an effectful category is known as a Freyd category.

Example 13. Any premonoidal category C gives rise to an effectful category given by
the embedding of the centre Z(C) −→ C.

The next subsections describe three different equivalent presentations of effectful
categories: as actegories due to Levy [120]; as strong promonads due to Jacobs, Heunen
and Hasuo [102]; and as pseudomonoids which builds upon the work of Román [138].
For the latter, we show that effectful categories are pseudomonoids in the category
V2-Cat□ of V2-categories equipped with the funny tensor product and explain that
this is equivalent to the result of Román due to an equivalence V2-Cat□ ∼= Promonad

with the category of promonads.

Effectful Categories as Actegories

Effectful categories can be seen as particular instances of actegories - that is, a category
with an action by a monoidal category.

Example 14. [120]. An effectful category J : C0 −→ C1 specifies a left and right C0-
action on C1, making C1 into a C0-C0-biactegory. An effectful category is equivalently
the following data:

• a monoidal category (C0,⊗),

• a category C1 with the same objects as C0 and an identity on objects functor
J : C0 −→ C1,

• a left C0-action on C1, ⋉ : C0 ⊠ C1 −→ C1, which preserves the canonical left
C0-action on C0, i.e. J extends the action J⊗ = ⋉(1 ⊠ J) and preserves the
coherence isomorphisms,

• a right C0-action on C1, ⋊ : C1 ⊠ C0 −→ C1, which preserves the canonical right
C0-action on C0,
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• a natural isomorphism C ⋉ (D⋊C ′) ∼= (C ⋉D)⋊C ′ making the actions ⋉ and
⋊ into a biaction.

As a result an effectful category is a (particular) representation of M in V-Cat. This
definition is often the easiest to explicitly work with, particularly when performing
calculations, as it spells out all the required data and removes any difficulty around
the funny tensor product. It will be useful for us later in a number of proofs.

Effectful Categories as Strong Promonads

It turns out that effectful categories are precisely the same thing as strong promonads.
While a monad is a monoid in the category of endofunctors, a promonad is a monoid
in the category of endoprofunctors. Unpacking this yields the following definition:

Definition 47 (Promonad). A promonad is a triple (T, µ, η) of a profunctor T :

C −7→ C, a natural transformation µ : T 2 = T ◦ T −→ T and a natural transformation
η : 1 −→ T such that the following diagrams commute:

T 3 T 2

T 2 T

Tµ

µT µ

µ

T T 2

T 2 T

Tη

ηT µ

µ

Example 15. Let T : C −→ C be a monad. Then the contravariant Yoneda embedding
C(−, T=) : C −7→ C yields a promonad on C.

Conceptually it may be useful to think of a promonad T as a generalised hom-
functor: for each pair of objects A,B there is an object T (A,B) of “arrows” from A to
B together with a composition rule given by µ and a unit rule given by η. In terms of
our spacetime models, we can think of T (A,B) of assigning a generalised set of paths
from A to B, a set of paths that is not necessarily a part of our original category but
which is functorially and compositionally well-behaved over it. We will return to this
idea later after introducing the remainder of the necessary theory.

Any promonad can also be viewed as a cocontinuous monad because of the
equivalence V-Prof ∼= V-Cocont. Given a promonad T , we can view T instead as a
cocontinuous functor T̂ : Ĉ −→ Ĉ. The promonad laws of T can then be shown to make
T̂ into a monad. Conversely, any cocontinuous monad T̂ : Ĉ −→ Ĉ is equivalently a
promonad T : C −7→ C.

The bicategory V-Prof permits the Kleisli construction for monads [153] so that
we can assign any promonad a Kleisli category.
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Definition 48 (Kleisli category). Let T : C −7→ C be a promonad. The Kleisli category
KlT has the same objects as C and hom-objects KlT (A,B) = T (A,B). Composition is
induced by the multiplication µ of the promonad, and units by η.

The unit η of the promonad T induces an identity on objects functor F : C −→ KlT .
Moreover, given any identity on objects functor J : C −→ D one can construct a
promonad D(J−, J=) : C −7→ C. These constructions are mutually inverse so that
KlT (F−, F=) = T (−,=).

Example 16. For simplicity take V = Set. Let T : C −→ C be a monad and write
T ′ = C(−, T=) : C −7→ C for the induced promonad. The Kleisli category of T ′ has
the same objects as C while an arrow A −→ B is an element of C(A, TB), that is an
arrow A −→ TB. We can see that KlT ′ coincides with the standard Kleisli category
KlT of the monad T .

Now when C is promonoidal one can define a prostrength for a promonad on C so
as to ensure that the promonad behaves compatibly with the promonoidal structure.

Definition 49 (Prostrong Promonad). Suppose C is a promonoidal category and sup-
pose (T, µ, η) is a promonad on C. A left prostrength for T is a natural transformation

T

t
=⇒ T

such that the following diagrams commute (ignoring interchange isomorphisms in
V-Prof).

T

T

T

λ−1
λ−1

t

T

T

η η

t

T

T

T

T

T

t

α−1

t

α−1

t

T 2

T

T

T 2

T

T

t

µ

t

µ

t
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A right prostrength s is defined analogously and we say that a promonad is
prostrong if it is equipped with left and right prostrengths such that the two evident
maps agree:

T

T

T

T

T

T

s

α−1

t

α−1

t s

When C is monoidal (so that the promonoidal structure is representable) we recover
the notion of a strong promonad. These are also known as “arrows” because they
axiomatise such objects in functional programming [5, 102].

Given a strong promonad T : C −7→ C there is a canonical premonoidal structure
on the Kleisli category KlT which on objects acts like the tensor of C. On morphisms
we can use the left and right strengths to give left and right actions of C on KlT . In
particular we have a natural transformation:

T
⊗⊥
==⇒

T

t
=⇒ T

which gives the left action C⊠KlT −→ KlT . Similarly one can construct the right action.
Furthermore, one can check that the free functor F : C −→ KlT is identity on objects
and premonoidal, thus F is an effectful category.

Conversely, given an effectful category J : C0 −→ C1, there is a promonad C1(J−, J−) :
C0 −7→ C0. This promonad can be shown to be strong with strengths induced by the
action of C0 on C1. In summary,

Theorem 13 ([102, 83]). To give a strong promonad T : C −7→ C is to give an effectful
category F : C −→ KlT .

Effectful Categories as Pseudomonoids

In this section, we show that effectful categories are pseudomonoids in the category of
V2-enriched categories equipped with a modified version of the funny tensor product,
where V2 = [−→,V ] is the category of arrows and commutative squares in V . In doing
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so we place effectful categories on the same footing as monoidal and promonoidal
categories, showing that they are representations of the same algebraic data P. This
builds upon the work of Power who first studied the algebraicity of effectful categories
in V2-Cat [131, 130].

Proposition 36. Let V be a complete, cocomplete, closed symmetric monoidal category.
Then V2 is also a complete, cocomplete, closed symmetric monoidal category and
therefore constitutes a cosmos.

Proof. The category V2 inherits a symmetric monoidal structure from V . On objects,
which are arrows of V , this monoidal structure acts by

(a0
f−→ a1)⊠ (b0

g−→ b1) := a0 ⊠ b0
f⊠g−−→ a1 ⊠ b1.

On morphisms, which are squares of V , it acts in an analogous way.
Now, consider three objects of V2, say a0

f−→ a1, b0
g−→ b1 and c0

h−→ c1. We aim to
construct the internal-hom and demonstrate the natural isomorphism V2(f ⊠ g, h) ∼=
V2(f, [g, h]). Consider the following pullback in V , which exists because V is complete.

V(b0, c0)×V(b0,c1) V(b1, c1) V(b0, c0)

V(b1, c1) V(b0, c1)

p1

p0

⌟
V(1,h)

V(g,1)

Let us now demonstrate that the internal-hom is given by the projection out of the
pullback, [g, h] = p1. To give an arrow z : f −→ p1 of V2 is to give a pair of arrows
such that the following square commutes,

a0 a1

V(b0, c0)×V(b0,c1) V(b1, c1) V(b1, c1)

f

z0 z1

p1

(6.1)

To give z0 is to give z00 := p0z0 : a0 −→ V(b0, c0) and z01 := p1z0 : a0 −→ V(b1, c1) such
that V(1, h)z00 = V(g, 1)z01. To make (6.1) commute is to ask z01 = z1f .

Under the adjunction due to the closure of V , we now have z∗00 : a0 ⊠ b0 −→ c0 and
z∗01 : a0 ⊠ b1 −→ c1 such that hz∗00 = z∗01(1⊠ g). Also from z1 we get a z∗1 : a1 ⊠ b1 −→ c1

such that z∗1(f ⊠ 1) = z∗01. As a result we find hz∗00 = z∗1(f ⊠ g), so that z is equivalent
to giving z∗ : f ⊠ g −→ h.

Finally, the completeness and cocompleteness of V2 are inherited from V , pointwise.
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Since V2 is a cosmos, we can consider categories enriched in V2 [130]. A V2-category
C consists of a pair of categories C0 and C1 with the same objects and an identity on
objects functor J : C0 −→ C1. A V2-functor F : C −→ D consists of a pair of functors
F0 : C0 −→ D0 and F1 : C1 −→ D1 such that the following square commutes:

C0 C1

D0 D1

JC

F0 F1

JD

A V2-natural transformation η : F ⇒ G between V2-functors F,G : C −→ D consists
of natural transformations η0 : F0 ⇒ G0 and η1 : F1 ⇒ G1 with components that
satisfy JD(η0c ) = η1c . If JD is an embedding then we can think of this transformation
as having components in the centre D0.

There is a 2-category V2-Cat of V2-categories, V2-functors and V2-natural transfor-
mations. This 2-category has an interesting tensor that arises as a slight modification
of the funny tensor product.

Definition 50 (Funny Tensor of V2-Categories). Given two V2-categories JC and JD,
their funny tensor JC□D : C0 ⊠D0 −→ C1 □ D1 is the identity on objects functor given
by the diagonal of the following pushout in V-Cat.

C0 ⊠D0 C1 ⊠D0

C0 ⊠D1 C1 □ D1

JC⊠1

1⊠JD i0

i1

⌜
(6.2)

The pushout exists because V is cocomplete and thus V-Cat is also cocomplete [162].
Given V2-functors F : JA −→ JB and G : JC −→ JD their funny tensor F □ G has
components (F □ G)0 = F0 ⊠ G0 and (F □ G)1 = F1 □ G1 given by the unique
arrow induced by the pushout. The funny tensor is also well-behaved on V2-natural
transformations because their components JD(η0c ) = η1c are central and thus interchange
with all other morphisms in C □ D.

As a result we find that

Theorem 14. V2-Cat is a monoidal 2-category under the funny tensor □.
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Proof sketch. The behaviour of the funny tensor on functors is encapsulated by the
following cube.

B0 ⊠D0 B1 ⊠D0

A0 ⊠ C0 A1 ⊠ C0

B0 ⊠D1 B1 □ D1

A0 ⊠ C1 A1 □ C1

F0⊠G0

F1⊠G0

⌜

F0⊠G1

F1□G1⌜

Functoriality of □ on 1-cells follows by pasting of cubes and the uniqueness of the
arrows induced by the pushout.

Explicitly, we have (α : F ⇒ F ′) □ (β : G ⇒ G′) has components (α □ β)0cd =

(α0
c , β

0
d) and (α □ β)1cd = (α1

c , β
1
d) = (Jα0

c , Jβ
0
d). Naturality of this transformation

follows from naturality of α and β and from the centrality of the components.

In fact, as a 1-category V2-Cat is closed monoidal.

Proposition 37. V2-Cat is a closed monoidal category where the internal-hom is
given by the inclusion [C,D] −→ [C,D]u of the category of V2-functors and V2-natural
transformations into the category of V2-functors and V2-unnatural transformations.

This leads to the main theorem of this section.

Theorem 15. An effectful category is a pseudomonoid (a representation of P) in
V2-Cat□.

Proof. A pseudomonoid in V2-Cat□ consists of a V2-category J : C0 −→ C1 equipped
with V2-functors ⊗ : J □ J −→ J and I : 1 −→ J , such that there are V2-natural
isomorphisms

⊗(⊗⊠ 1)
α∼= ⊗(1⊠⊗) and ⊗ (I ⊠ 1)

λ∼= 1
ρ∼= ⊗(1⊠ I).

Note that ⊗ consists of two functors ⊗0 : C0 ⊠ C0 −→ C0 and ⊗1 : C1 □ C1 −→ C1
such that J⊗0 = ⊗1JC□C. ⊗0 together with I0 and the natural isomorphisms α0, ρ0

and λ0, give a monoidal structure on C0.
The C0-biaction on C1 is given by the compositions ⋉ := ⊗i1 and ⋊ := ⊗i0. That

J preserves the canonical actions given by ⊗0 on C0 follows by the diagram (6.2) and
the equality J⊗0 = ⊗1JC□C, together with the fact that α1, ρ1 and λ1 have components
in the image of J . The coherence equations of the biaction are a consequence of those
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of α1, ρ1 and λ1: for instance α1 is a natural isomorphism between functors with type
C1 □ C1 □ C1 −→ C1. This amounts to “separate” naturality in each C1 of the domain
which in turns induces the left, bimodule and right coherences for the biaction.

Theorem 15 is equivalent to the result of [138] where it is shown that effectful cate-
gories are pseudomonoids in the 2-category of promonads, promonad homomorphisms
and promonad modifications. In fact we have:

Theorem 16. There is an equivalence of 2-categories V2-Cat□ ∼= V-Promonad between
the 2-category of V2-categories under the funny tensor product and the 2-category of
promonads.

Proof sketch. The result follows upon unwinding the definitions in [138] and comparing
with those of the present section.

6.2 Closed Effectful Categories

Now that we have a thorough understanding of effectful categories, we can start to
work towards their “pro-” analogue. To start, recall that a promonoidal category is
equivalently a closed monoidal presheaf category. This suggests we should turn our
attention to the closure of effectful categories, which will be the focus of this Section.

Power gave the following definition of closure for effectful categories, where there
is still an adjunction between tensoring and the internal-hom, but only for the centre
[131].

Definition 51 (Closed Effectful Category). An effectful category J : C0 −→ C1 is right-
closed when for each object X, J(−)⊗X : C0 −→ C1 has a right adjoint [X,−] : C1 −→ C0.
An effectful category is left-closed when for each X, X ⊗ J(−) : C0 −→ C1 has a right
adjoint. We say an effectful category is closed if it is both left and right-closed.

Power proved the following result which generalises Day’s result that every monoidal
category embeds into a closed monoidal category [68].

Theorem 17 ([131]). Every (small) effectful category embeds into a closed effectful
category.

We say that an effectful category J : C0 −→ C1 is small when both C0 and C1 are small.
Given small J , we can take the strong promonad T (−,−) := C1(J−, J−) : C0 −7→ C0
and lift it to a strong monad on the presheaf category T̂ : Ĉ0 −→ Ĉ0. The Kleisli
category KlT̂ has as objects presheaves F : Cop

0 −→ V and homs KlT̂ (F,G) = Ĉ0(F, T̂G).
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Moreover Ĉ0 is monoidal under Day convolution while KlT̂ is premonoidal. As a result
there is an effectful category given by the identity on objects functor Ĉ0 −→ KlT̂ .

Power gave another characterisation of the effectful category Ĉ0 −→ KlT̂ as the free
tight cocompletion of the V2-category J : C0 −→ C1 - that is, the cocompletion in only
V-colimits, not all V2-colimits. In the case of V = Set these are precisely the “conical”
colimits. The name “tight” was first suggested in [114] where the theory of categories
enriched in Cat2 is studied in some detail.

Theorem 18 ([130]). The free tight cocompletion of a small V2-category J : C0 −→ C1
is the bijective on objects functor LanLJop : Ĉ0 −→ C1 induced by the functor of LanJop :

Ĉ0 −→ Ĉ1, via its canonical factorisation into a bijective on objects functor followed by
a fully faithful functor (its bo-ff factorisation).

Note that the bo-ff factorisation of any functor can be constructed in the following
fashion.

Proposition 38. Any V-functor F : C −→ D factorises as the composition of a
bijective-on-objects functor and a fully-faithful functor.

Proof. Define ImF to be the V-category with objects given by those of C and hom-
objects given by ImF (A,B) := D(FA, FB). Its composition and identities are inher-
ited from D. The V-functor F now factorises as the composition of FL : C −→ ImF

and FR : ImF −→ D, where the V-functor FL is identity on objects and on homs,
FL
AB : C(A,B) −→ ImF (A,B) is given by FAB; and the V-functor FR acts as F on

objects, and on homs, FR
AB : ImF (A,B) −→ D(FA, FB) is given by 1D(FA,FB).

As a result, the category C1 := Im(LanJop) of Theorem 18 has as objects presheaves
F : Cop

0 −→ V and homs C1(F,G) = Ĉ1(LanJopF,LanJopG). By the adjunction between
extension and restriction of presheaves along J there is a natural isomorphism

KlT̂ (F,G) = Ĉ0(F, T̂G) ∼= Ĉ1(LanJopF,LanJopG) = C1(F,G)

To see this explicitly, firstly note the following.

(T̂G)(−) ∼=
∫ X

T (−, X)⊠GX =

∫ X

C1(J−, JX)⊠GX ∼= (LanJopG)(J−)
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Then we can demonstrate the adjunction between extension and restriction of presheaves
by some coend calculus.

Nat(F, T̂G) ∼= Nat(F, (LanJopG)(J−))

∼=
∫
X

V (FX, (LanJopG)(JX))

∼=
∫
X

V
(
FX,

∫
Y

V
(
C1(Y, JX), (LanJopG)(Y )

))
∼=
∫
XY

V
(
FX ⊠ C1(Y, JX), (LanJopG)(Y )

)
∼=
∫
Y

V
(∫ X

C1(Y, JX)⊠ FX, (LanJopG)(Y )

)
∼= Nat(LanJopF,LanJopG)

Thus to give a natural transformation F ⇒ T̂G is equivalent to giving one LanJopF ⇒
LanJopG. This demonstrates an isomorphism C1 ∼= KlT̂

As a consequence of Theorem 18, the following diagram commutes, giving a
factorisation (yL, yR) of the V2-enriched Yoneda embedding y : J −→ [Jop,V2], via the
free V-cocompletion.

C0 C1

Ĉ0 C1

[Jop,V2]0 [Jop,V2]1

J

yL0

y0

yL1

y1
LanL

Jop

yR0 yR1

So we now have an effectful category LanLJop into which J embeds. The last thing
to do is to check that it is closed, which follows by noting that LanJop is left adjoint to
the functor which restricts presheaves along J , and taking bo-ff factorisations ensures
that LanLJop is also a left adjoint [132].

6.3 V2-Profunctors

In the previous Section we studied the notion of closure for effectful categories. At this
point we could stop and define “pro-effectful” categories as “closed effectful presheaf
categories” in analogy to promonoidal categories. In fact, this definition is more subtle
than it might first appear and requires a little care. In particular, given that the closed
effectful embedding of any effectful category J is given by the free tight cocompletion
LanLJop and not the free cocompletion [Jop,V2], we must take care of what we mean by
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“presheaf” category here. Furthermore, we would like to place pro-effectful categories
on the same footing as promonoidal categories - as pseudomonoids in some form of
bicategory of profunctors.

This will be the aim of this Section; to study the structure of V2-profunctors
P : Jop

D ⊠ JC −→ V2. By the following result we are able to unpack P into a pair of
V-profunctors together with a natural transformation between them. The V2-natural
transformations ϕ : P ⇒ Q can also be similarly unpacked.

Proposition 39. Let P : Jop
D ⊠ JC −→ V2 be a V2-profunctor. Then P is a triple of:

1. a V-profunctor P0 : Dop
0 ⊠ C0 −→ V,

2. a V-profunctor P1 : Dop
1 ⊠ C1 −→ V,

3. a V-natural transformation η : P0 ⇒ P1(J
op ⊠ J).

A V2-natural transformation ϕ : P ⇒ Q consists of V-natural transformations ϕ0 :

P0 ⇒ Q0 and ϕ1 : P1 ⇒ Q1 such that (ϕ1(J
op ⊠ J))ηP = ηQϕ0.

Proof. This follows by applying a V-enriched version of a result by Power [130, Prop.
24] to the functor category [Jop

D ⊠ JC,V2] ∼= Prof(JC, JD).

The next proposition demonstrates that the coend of a V2-profunctor P is given
by the coends of P0 and P1 together with a canonical arrow between them.

Proposition 40. Let P : Jop ⊠ J −→ V2 be a V2-endoprofunctor. Then the coend∫ C
P (C,C) is given by the arrow

∫ C
P0(C,C) −→

∫ c
P1(C,C) induced by η and the

adjunction yJ ⊣ yJ in V-Prof.

Proof. Suppose we have a V2-extranatural family wC : P (C,C) −→ D. Then we have
the following commutative diagram:

C1(C,C ′)⊠ P1(C
′, C) P1(C

′, C ′)

C0(C,C ′)⊠ P0(C
′, C) P0(C

′, C ′)

P0(C,C) D0

P1(C,C) D1

w1
C′

J⊠ηC′C

w0
C′

ηC′C′

w0
C

ηCC

D

w1
C
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In particular, the families w0
C : P0(C,C) −→ D0 and w1

C : P1(C,C) −→ D1 are V-
extranatural and thus factorise via their respective coends giving arrows

∫ C
P0(C,C) −→

D0 and
∫ C

P1(C,C) −→ D1 making the obvious diagrams commute. Now note that
the arrows P0(C,C)

ηCC−−→ P1(C,C)
coprC−−−→

∫ c
P1(C,C) are V-extranatural, this induces

a arrow
∫ C

P0(C,C) −→
∫ C

P1(C,C).

V2-endoprofunctors and the V2-natural transformations assemble into a V2-category
[Jop⊠J,V2] ∼= Prof(J, J). The category Prof(J, J)0 consists of the V2-profunctors and
V2-natural transformations as outlined in Proposition 39, while Prof(J, J)1 has homs
consisting of only the components ϕ1 of the natural transformations. The identity on
objects functor Prof(J, J)0 −→ Prof(J, J)1 forgets the ϕ0 components.

As with any other category of endoprofunctors Prof(J, J) has a closed monoidal
structure given by composition of the profunctors. Given P = (P0, P1, ηP ) and
Q = (Q0, Q1, ηQ), their composition is given by QP = (Q0P0, Q1P1, ηQP ) - we compose
the underlying profunctors and take ηQP to be given by∫ C

Q(−, C)⊠ P (C,−)
∫
ηQ⊠ηP

=====⇒
∫ C∈C0

Q(J−, JC)⊠ P (JC, J−)

yJ⊣yJ====⇒
∫ C∈C1

Q(J−, C)⊠ P (C, J−)

6.3.1 Tight Profunctors

In Section 6.2 we saw that effectful structure on J : C0 −→ C1 induced a closed effectful
structure on the free tight cocompletion of J . It turns out that this effectful structure
on J is only a sufficient and not necessary condition for closed effectful structure
on the free tight cocompletion of J . Analogously to the case of monoidal categories
where, in order for the presheaf category Ĉ to be closed monoidal it is only necessary
that the category C is promonoidal [68, 65], we only require J to be a “pro-effectful”
category. To define these categories we need firstly to study the class of profunctors
which factor through the tight cocompletion. This will be the aim of this section.

To define pro-effectful categories we would like to replace the functors of a effectful
category with profunctors, but we have a problem: we cannot consider arbitrary
V2-profunctors P : Jop

D ⊗ JC −→ V2 because these assign arbitrary presheaves Jop
D −→ V2

to objects of JC. These presheaves will not in general be contained in the free tight
cocompletion. Thus, we need a restricted class of profunctors, those that we call the
tight profunctors.

139



Definition 52 (Tight V2-Profunctor). A tight V2-profunctor P : JC −7→ JD is a
V2-functor P : JC −→ JD, where JD ∼= LanLJop

D
is the free tight cocompletion of JD.

Tight V2-profunctors can be unpacked component-wise analogously to Proposition
39, to see that they are precisely the V2-profunctors where η is a natural isomorphism.

Proposition 41. Let P : Jop
D ⊗ JC −→ V2 be a tight V2-profunctor. Then P is a triple

of:

1. a V-profunctor P0 : Dop
0 ⊠ C0 −→ V,

2. a V-profunctor P1 : Dop
1 ⊠ C1 −→ V,

3. a V-natural isomorphism η : P0 ⇒ P1(J
op ⊠ J).

Similarly to how a profunctor P : C −7→ D is equivalently a cocontinuous functor
between free cocompletions P̂ : Ĉ −→ D̂, tight V2-profunctors are tightly cocontinuous
functors between free tight cocompletions.

Definition 53 (Tightly Cocontinuous Functor). A V2-functor F : JC −→ JD between
tightly cocomplete categories is tightly cocontinuous if it preserves all tight colimits.

Theorem 19 ([108]). Let JC be the closure of JC in [Jop
C ,V2] under tight colimits and

write yL : JC −→ JC for the inclusion. Then for tightly cocomplete JD, there is an
equivalence

LanyL : [JC, JD] ∼= CocontT ight(JC, JD)

where the right-hand is the category of tightly cocontinuous functors. This exhibits JC
as the free tight cocompletion of JC.

Indeed, yL is fully faithful, so that there is a natural isomorphism F ∼= (LanyLF )yL.
Consequently, we can think of a tight V2-profunctor P : JC −→ JD as a tightly
cocontinuous functor P : JC −→ JD. We can now define the following bicategory of
tight V2-profunctors.

Definition 54. Denote by V2-ProfTight the bicategory that has

• 0-cells the V2-categories J : C0 −→ C1,

• 1-cells, P : JC −7→ JD, the tight V2-profunctors P : JC −→ JD,

• 2-cells the V2-natural transformations.
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Composition of 1-cells is given by taking the left Kan extension along yL and composing
the functors we obtain Q ◦ P = (LanyLQ)P .

Remark. We could also have defined tight V2-profunctors JC −→ JD as usual V2-
profunctors JC −→ [Jop

D ,V2] that factorise via the embedding yR : JD −→ [Jop
D ,V2].

Their usual composition as profunctors coincides (up to natural isomorphism) with
the composition defined previously because yR is fully faithful and thus the unit of
the Kan extension along yR is an isomorphism, F ∼= (LanyRF )yR. It follows that

Q ◦ P = (LanyQ)P = (LanyRyLQ)P ∼= (LanyRLanyLQ)P = (LanyRLanyLQ)yRP ′

∼= (LanyLQ)P ′.

There is a more abstract but cleaner way to define the bicategory V2-ProfTight, by
noting that it is the Kleisli bicategory of a certain relative pseudomonad on V2-Cat.
Relative pseudomonads were introduced in [79] were it also demonstrated that Prof

is the Kleilsi bicategory of the relative pseudomonad (̂·) of presheaves, which freely
adds colimits by acting on 0-cells as C 7→ Ĉ. Due to size issues, (̂·) is a relative
pseudomonad and not just a plain pseudomonad: (̂·) sends small categories to locally
small categories and so it is only a relative pseudomonad over the inclusion Cat −→ CAT

of the 2-category of small categories into the 2-category of locally small categories.
In the same fashion there is a relative pseudomonad (·) over the inclusion V2-Cat −→

V2-CAT which sends a small V2-category to its free tight cocompletion. It is then
fairly straightforward to check that V2-ProfTight is the Kleisli bicategory of this relative
pseudomonad and therefore also check that it is indeed a bicategory.

Proposition 42 (External Tensor Product). Let JC and JD be V2-categories and
write JC and JD be their free tight cocompletions. Then there is a V2-functor

⊗̂ : JC □ JD −→ JC□D (6.3)

with components that act on objects as (F ⊗̂G)(C,D) := FC ⊗GD.

Proof. To give (6.3) is to give a pair of functors such that the following square
commutes:

Ĉ0 ⊠ D̂0 C1 □ D1

̂C0 ⊠D0 C1 □ D1

⊗̂0 ⊗̂1

LanL
J
op
C□D
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The tensor ⊗̂0 acts on objects as (F ⊗̂G)(c, d) := FC ⊠GD and on morphisms in the
obvious way. The tensor ⊗̂1 also acts following the same formula, note that a morphism
of C1 □ D1 is a free composition of natural transformations α : LanJop

C
F ⇒ LanJop

C
F ′

and β : LanJop
D
G ⇒ LanJop

D
G′ with (1; β)(α; 1) ̸= (α; 1)(1; β) in general. Each such

arrow induces a natural transformation LanJop
C□D

(F ⊗ G) ⇒ LanJop
C□D

(F ′ ⊗ G′), for
instance:

LanJop
C□D

(F ⊗G) ∼= Laniop1 (LanJop
C
F ⊗G)

Lan
i
op
1

(α⊗1)

========⇒ Laniop1 (LanJop
C
F ′ ⊗G)

∼= Laniop0 (F ′ ⊗ LanJop
D
G)

Lan
i
op
0

(1⊗β)
=======⇒ Laniop0 (F ′ ⊗ LanJop

D
G′)

∼= LanJop
C□D

(F ′ ⊗G′)

V2-ProfTight has an interesting tensor product given by generalising the funny
tensor product.

Definition 55 (Funny Tensor Product of Tight V2-Profunctors). On categories
the funny tensor acts like in V2-Cat. On tight V2-profunctors P : JA −→ JB and
Q : JC −→ JD we define their funny tensor to be given by their funny tensor in V2-Cat
composed with the external tensor of free tight cocompletions (6.3):

JA □ JC JB □ JD JB□D
P□Q ⊗̂

Theorem 20. V2-ProfTight is a monoidal bicategory under the funny tensor product.

Proof sketch. V2-ProfTight is the Kleilsi bicategory of the relative pseudomonad (·)
that adds tight colimits. Under the funny tensor product on V2-Cat, this pseudomonad
is monoidal, and therefore its Kleilsi bicategory is also monoidal.

6.4 Pro-effectful Categories

Finally in this Section we are in a position to define pro-effectful categories: as
pseudomonoids in V2-ProfTight□ , placing them on equal footing algebraically with
monoidal, promonoidal and effectful categories.

Definition 56. A pro-effectful category is a pseudomonoid (a representation of P) in
V2-ProfTight□ . Explicitly, a pro-effectful category JC is a V2-category equipped with
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• a tensor product tight V2-profunctor P : JC□C −7→ JC,

• and a unit tight V2-profunctor I : 1 −7→ JC,

together with V2-natural isomorphisms P (P □ 1)
α∼= P (1 □ P ) and P (I □ 1)

λ∼= 1
ρ∼=

P (1 □ I) such that the triangle and pentagon equations hold.

Unpacking this definition further we see that a pro-effectful category is an identity
on objects functor J : C0 −→ C1 equipped with functors P0 : C0 ⊠ C0 −→ Ĉ0, P1 : C1 □
C1 −→ C1, I0 : 1 −→ Ĉ0 and I1 : 1 −→ C1 such that the following squares commute:

C0 ⊠ C0 C1 □ C1

Ĉ0 C1

JC□C

P0 P1

LanL
Jop

1 1

Ĉ0 C1

1

I0 I1

LanL
Jop

So we see that a pro-effectful category has a promonoidal centre (C0, P0, I0) (together
with the obvious components of the coherence isomorphisms α, λ, ρ).

Pro-effectful Categories as Pro-actegories

In this subsection we unpack the definition of a pro-effectful category to show that
they are a particular instance of a category equipped with an action by a promonoidal
category.

We will be interested in representations of M in V-Prof which are equivalent to
the proactegories of [39] (in the non-skew case).

Definition 57 (Proactegory). A left proactegory is a representation of ML in V-Prof.
Explicitly this means we have a promonoidal category (C0, P, I) and a category C1
equipped with a left proaction by C0, that is, a profunctor L : C0 ⊠ C1 −7→ C1 and
natural isomorphisms∫ X∈C1

L(A,B,X)⊠ L(X,C,D)
a∼=
∫ X∈C0

L(A,X,D)⊠ P (X,B,C)

∫ X∈C0
L(A,X,B)⊠ I(X)

l∼= C1(A,B)

satisfying the coherence diagrams. Right proactegories are representations of MR in
V-Prof.
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Biproactegories are representations of M in V-Prof and thus in addition to the
data of a left and right proactegory there is a natural isomorphism∫ X

R(D,X,C)⊠ L(X,A,B)
b∼=
∫ X

L(D,A,X)⊠R(X,B,C)

satisfying the coherences.

Example 17. A promonoidal category C is canonically a left (and right) C-proactegory
where the proaction is given by the promonoidal tensor.

Proposition 43. A pro-effectful category is equivalently the following data:

• a promonoidal category (C0, P0, I0),

• a category C1 with the same objects as C0 and an identity on objects functor
J : C0 −→ C1,

• A left C0-proaction on C1, PL
1 : C0 ⊠ C1 −7→ C1, which extends the canonical left

C0-proaction on C0:
C0 ⊠ C0 C0

C0 ⊠ C1 C1

P0p
1×yJ p yJp

P1
p

(6.4)

• A right C0-proaction on C1, PR
1 : C1 ⊠ C0 −7→ C1, which extends the canonical

right C0-proaction on C0:
C0 ⊠ C0 C0

C1 ⊠ C0 C1

P0p
yJ×1p yJp

P1
p

(6.5)

• A natural isomorphism PR
1 (P

L
1 ⊠ 1) ∼= PL

1 (1 ⊠ PR
1 ) making C1 into a C0-C0-

biproactegory.

Proof. Fix a pro-effectful category (J, P, I). J is a V2-category so we have two
categories C0 and C1 with the same objects and an identity on objects functor J :

C0 −→ C1.
The tight V2-profunctor P : JC□C −7→ JC consists of a profunctor P0 : C0⊠C0 −7→ C0

and a functor P1 : C1 □ C1 −→ C1. Similarly, the tight V2-profunctor I : 1 −7→ JC

consists of presheaves I0 : Cop
0 −→ V and I1 = LanJopI0 : Cop

1 −→ V. (P0, I0) induce a
promonoidal structure on C0.
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P1 induces the left and right proactions of C0 on C1. Starting with the left proaction,
P1 induces a functor yR1 P1i1 =: PL

1 : C0 ⊠ C1 −→ Ĉ1. It follows that:

PL
1 (1⊠ J) = yR1 P1i1(1⊠ J) = yR1 P1JC□C = LanJop⊠1⊠1P0

showing that (6.4) commutes and that the left proaction extends the canonical one on
C0. A similar argument holds for the right proaction.

Suppose now that we start with the data specified in the proposition. The
equalities (6.4) together with the universal property of the pushout induce a functor
P1 : C1 □ C1 −→ C1

C0 ⊠ C0 C1 ⊠ C0

C0 ⊠ C1 C1 □ C1

C1

J⊠1

1⊠J i0
PR
1

i1

PL
1

P1

and it follows that P1JC□C = LanLJopP0 making (P0, P1) the components of a tight
V2-profunctor P : JC□C −7→ JC. The presheaf I0 : Cop

0 −→ V together with its Kan
extension I1 := LanJopI0 give the components of a V2-profunctor I : 1 −7→ J . Checking
all the coherences is a long but ultimately routine calculation.

Pro-effectful Categories as Prostrong Promonads

The next proposition generalises the equivalence between effectful categories and
strong promonads [102] to the pro-effectful case. The proof methods are related to
those for promonoidal monads in [67].

Proposition 44. A pro-effectful category is equivalently a prostrong promonad (see
Definition 49).

Proof. Take a prostrong promonad T : C −7→ C. We will show we have the data of
Proposition 43.

T has a Kleisli category in V-Prof and there is an identity on objects free functor
F : C −→ KlT . By assumption C has a promonoidal structure (P0, I0) and we can use the
left and right prostrengths to define left and right proactions of C on KlT . On objects
the left proaction acts as PL

1 (−, C, FC ′) :=
∫ X

KlT (−, FX)⊠ P0(X,C,C
′) extending

the canonical proaction on the centre, so that (6.4) commutes. Its action on homs is
induced by the strength

∫ C
P0(−,−, C)⊠ T (C,−)⇒

∫ C
T (−, c)⊠ P0(C,−,−).
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Conversely, suppose we are given a pro-effectful category J : C0 −→ C1. Then
T (−,=) := C1(J−, J=) a promonad on C0 where the promonad multiplication and
units are given by composition in C1. Moreover, C1 is precisely the Kleisli category of
T . Now, since J is pro-effectful, C0 is promonoidal and we are left to show that T is
prostrong over this structure. By Proposition 43, we have left and right proactions of
C1 on C0 which preserve the canonical proaction on the centre:

J
=

J
=

J

From these we can construct the prostrength of T , for instance the left prostrength is
given as follows.

T
=

J∗

J

J⊢J∗
===⇒

J∗

J

J∗

J

=

J∗

J

J∗

J

J⊢J∗
===⇒

J∗

J

=
T

Closed Embeddings of Pro-effectful Categories

Pro-effectful categories are also exactly what is required to place a closed effectful
structure on the free tight cocompletion of a V2-category. This generalises Day’s
theorem [68, 65] from monoidal to effectful categories, thus also generalising the result
of Power on closed effectful embeddings of effectful categories [131, 130]. The result
follows by generalising the methods of Day’s original proof, and from the folklore
results regarding Day convolution for actegories, see [104, 39].

Theorem 21. There is an equivalence between pro-effectful structures on J and closed
effectful structures on the free tight cocompletion J = LanLJop.

Proof. Suppose J : C0 −→ C1 is a pro-effectful category. We will show that LanLJop :

Ĉ0 −→ C1 is a closed premonoidal category. Since C0 is promonoidal, Ĉ0 is closed
monoidal under Day convolution.

As for the premonoidal structure on C1: on objects it is the same as on Ĉ0. On
morphisms, suppose we are given a η : F ⇒ G in C1. Then we have a η : LanJopF ⇒
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LanJopG and we can describe the left hand part of the premonoidal structure by

LanJop(F ⋆ F ′)(−) ∼=
∫ ABC

C1(−, JC)⊠ P0(C,A,B)⊠ FA⊠ F ′B

∼=
∫ AB

PR
1 (−, JA,B)⊠ FA⊠ F ′B

∼=
∫ BC

PR
1 (−, C,B)⊠ (LanJopF )(C)⊠ F ′B

∫
η

==⇒
∫ BC

PR
1 (−, C,B)⊠ (LanJopG)(C)⊠ F ′B

∼= LanJop(G ⋆ F ′)(−)

and similarly for the right hand part. It is easily seen that LanLJop factorises through
the centre of this premonoidal structure.

The internal-hom of the left-closed premonoidal structure, [G,−] : C1 −→ Ĉ0 is given
by

[G,H](A) ∼=
∫
CD

V
(
PL
1 (C,A,D),V

(
(LanJopG)(D), (LanJopH)(C)

))
while the right-closed structure is similar, replacing PL

1 with PR
1 . In both cases,

checking we have the required adjunction is a matter of standard coend calculus e.g:

Ĉ0(F, [G,H]) ∼=
∫
A

V
(
FA,

∫
CD

V
(
PL
1 (C,A,D)⊠ (LanJopG)(D), (LanJopH)(C)

))
∼=
∫
ACD

V
(
FA⊠ PL

1 (C,A,D)⊠ (LanJopG)(D), (LanJopH)(C)

)
∼=
∫
C

V
(∫ AB

FA⊠ PL
1 (C,A, JB)⊠GB, (LanJopH)(C)

)
∼=
∫
C

V
(

LanJop(F ⋆ G)(C), (LanJopH)(C)

)
∼= C1(F ⊠G,H)

Suppose now that LanLJop is a closed effectful category. Then it follows that Ĉ0 is a
closed monoidal category because:

Ĉ0
(
−, [G,LanLJop(=)]

) ∼= C1 (LanLJop(−)⊠G,LanLJop(=)
)

= C1
(
LanLJop(−⊗G),LanLJop(=)

)
∼= Ĉ0

(
−⊗G, Jop∗(LanLJop(=))

)
∼= Ĉ0 (−⊗G,=)

where Jop∗ is the right adjoint to LanLJop , both of which are ioo. Therefore C0 is a
promonoidal category.
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The left C0-proaction on C1 is given by PL
1 (−, A,B) := yL0 (A)⊠y

L
1 (B) = ⊠i1(yL0 (A), y

L
1 (B))

and similarly for the right. These extend the canonical proaction because:

PL
1 (−, A, JB) = ⊠i1(y

L
0 (A), y

L
1 (JB)) = ⊠i1(y

L
0 (A),LanLJopyL0 (B))

= ⊠i1(1⊗V LanLJop)(yL0 (A), y
L
0 (B))

= LanLJop⊗(yL0 (A), yL0 (B))

= LanLJopP0(−, A,B)

where we have written the monoidal operation ⊗ on Ĉ0 and the premonoidal operation
⊠ on C1 with prefix notation.

Pro-effectful Categories as Premulticategories

For simplicity, in this section we take V = Set, but there is no true obstruction to
applying the following discussion to enriched multicategories.

Premulticategories were defined by Staton and Levy by dropping the interchange
law from the definition of a multicategory [151].

Definition 58 (Premulticategory). A premulticategory C consists of

• a class C0 of objects,

• for objects A1, . . . , An, A ∈ C0, a class C(A1, . . . , An;A) of arrows, an element of
which is written f : A1, . . . , An −→ A,

• for any pair of arrows f : A1, . . . , Al −→ A and g : B1, . . . , Bm, A,B
′
1, . . . , B

′
n −→ B

where the codomain of f matches one those of the domain of g, a composite
arrow g ◦A f : B1, . . . , Bm, A1, . . . , Al, B

′
1, . . . , B

′
n −→ B,

• for each object A ∈ C, an identity arrow 1A ∈ C(A;A)

such that the following two conditions are satisfied:

• Associativity: h ◦B (g ◦A f) = (h ◦B g) ◦A f whenever this is well-typed,

• Unitality: 1A ◦A f = f ◦Ai
1Ai

whenever this is well-typed.

Just as promonoidal categories are examples of (co)multicategories, pro-effectful
categories are examples of co-premulticategories. Given a pro-effectful category
J : C0 −→ C1, there is a co-premulticategory C with objects given by those of C1. For
A,A1 ∈ C the class of arrows is given by C(A;A1) := C1(A,A1) and for A,A1, A2 ∈ C
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the class of arrows is given by C(A;A1, A2) := P1(A,A1, A2). The rest of the classes
of arrows are defined inductively.

It is worth noting that pro-effectful categories provide non-degenerate examples
of co-premulticategories where the interchange law does not hold (in contrast to
promonoidal and monoidal categories which are multicategories) and where the “tensor”
is not representable (in contrast to monoidal and premonoidal categories).
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Chapter 7

Supermaps

7.1 Introduction

The traditional way in which physical systems are modelled is by considering a state
space which evolves according to processes which act on that space. For example, a
quantum circuit is traditionally viewed in terms of linear operators being applied to a
Hilbert space; electrical circuits in terms of certain operators acting on phase space;
probabilistic theories in terms of stochastic maps acting on probability spaces.

This approach has proven to be amenable to categorical analysis. For example,
the ZX-calculus [51, 159], graphical affine algebra [32, 30, 61] and Markov categories
[81] have all been successful in formally modelling these respective classes of systems
using the theory of monoidal categories. Moreover, categorical quantum mechanics [3,
49, 89] and the framework of generalised/operational probabilistic theories [16, 42]
provide semantics for modelling more general quantum-like theories.

However, the approach of modelling systems merely in terms of the action of
operators on the state space may not fully capture the behaviour of the system. When
the collection of operators is itself regarded as the state space, this traditional approach
gives little insight into the evolution of this new, “higher order” state space. What is
missing is a theory of second order processes, a theory of processes which themselves
act on (first order) processes. Or indeed a theory of nth order processes which act on
(n− 1)th order processes.

In the theory of quantum circuits, these higher order processes are known as
quantum supermaps [45, 21, 22, 110, 126, 158]. We may think of a quantum supermap
η as a process whose input is itself a process.
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η
A′

A

B′

B

::

A′

A

f 7→ η
A′

A

B′

B

f

The simplest quantum supermaps are the circuits with holes also known as combs
[43, 44]. Here, one has a quantum circuit with slots that can be filled with first-order
maps.

It turns out that all second-order deterministic single-party supermaps on quantum
channels possess a factorisation as a circuit [45, 73, 110]. Nevertheless, it is also
known that there exist multi-party quantum supermaps, such as the quantum switch,
which go beyond the standard quantum circuit model by not possessing a factorisation
as a circuit with definite causal ordering of gates and no time-loops [46, 40]. This
makes the study of quantum supermaps very deep and rich with investigations from
perspectives including computational advantage and causality.

In this chapter we will consider the problem of developing categorical semantics
for supermaps, with minimal assumptions on the category of first-order processes.
This contrasts many other approaches to supermaps which either do not consider
categorical aspects or where they do, rely on significant structure on the category
of first-order processes. For instance, in the original [45], the setting is taken to be
completely positive maps between Hilbert spaces and supermaps are defined in terms
of this, with requirements on positivity and linearity. We do not restrict ourselves
to only quantum theory here, meaning our approach is applicable to subclasses of
quantum theory (e.g. only unitaries, or isometries) and also to other process theories.

One explicitly categorical approach is the Caus(−) construction of [110]. There, it
is assumed that the first-order processes form a compact closed category and therefore,
the Caus(−) construction assumes that all higher-order processes are already present
as processes in the underlying “raw materials” process theory C: this is precisely
because we can bend wires around to turn higher-order maps into states, and thus
consider the maps on them as lower-order. Causality is the guiding principle of the
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framework, which equips the processes of C with new types capturing certain causality
constraints on the processes; indeed there is a functor Caus(C) −→ C which forgets
this typing data by sending all the “copies” of a process f with different causality
conditions to the same underlying f in C.

In contrast, we do not make the assumption of compact closure here, with the
framework applicable to any process theory. Rather than starting with processes of all
orders, the constructions here may generate new processes, so that the higher-order
processes may not be part of the original process theory. This philosophy is very
similar to that taken in [161, 160].

In Section 7.2 we will consider the simplest case and compare two constructions
which take an arbitrary symmetric monoidal category and produce a symmetric
monoidal category of 1-combs. In Section 7.3 we generalise this category to produce
a polycategory of n-combs. We then discuss how this polycategory is a fragment of
the duoidal category of Tambara modules, thus giving us a way of embedding the
polycategorical semantics into a (doubly) monoidal one. We also discuss the monoidal-
like structure of the category of combs without the assumption of symmetry. In Section
7.4 we generalise the category of combs even further to allow for a premonoidal category
of first-order processes. This provides us with our first example of a pro-effectful
category and we anticipate possible applications of this category to premonoidal
models of spacetime, and also to effectful programming semantics.

In the final Section 7.5 we consider the laws for supermaps in terms of locally-
applicable transformations suggested in [161, 160] and we demonstrate that these
can be formalised categorically as the homomorphisms of Tambara modules. This
connects the work of this chapter with the approach of [161, 160] and suggests a
fruitful direction forward for further research.

7.2 1-Combs

In this Section we restrict our attention to 1-combs [43, 44], the single-party supermaps
which possess a factorisation as a circuit. These maps are often drawn suggestively as
diagrams of the following form.
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A

A′

B

B′

=

g

f

B

B′

A
A′

E (7.1)

Some care is needed to make these drawings rigorous and to demonstrate that a
suitable (possibly symmetric monoidal) category of combs can be defined. In much of
the quantum literature it is assumed that the base category of first order processes is
compact closed, or at least embeds into one. In this case it is possible to bend input
and output wires to express combs as maps without holes and use the drawing (7.1)
in an unambiguous way [43, 110]. For example, we could define the drawing (7.1) to
mean:

g

f

B∗ B′

A∗A′

E

and so we are able to reduce higher-order maps to lower-order ones and interpret the
diagrams in the original symmetric monoidal category.

Outside of the quantum literature there are approaches to defining comb diagrams
without the assumption of closure [136, 135], but it is not clear when this coincides
with the quantum definition. Let us start by comparing two constructions which
represent a comb as a pair of morphisms (f, g) from the theory of first order processes,
quotiented by their behaviour on first-order processes.

The first construction, which we define in Subsection 7.2.1, Comb : SymMonCat→
SymMonCat, quotients combs by their extensional behaviour: two combs are equal
when they produce the same output on all first-order inputs. In other words this
identifies two combs when they appear to be the same when probed with all first order
processes λ:

(f, g) ∼comb (f ′, g′) when

g

f

λ =

g′

f ′

λ ∀λ
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This equivalence relation has been discussed before [52] 1 and is perhaps the one that
would be most immediate to those studying quantum theory.

The second construction, which we review in Subsection 7.2.2, is that of the category
of coend optics, Optic : SymMonCat → SymMonCat (which we shall henceforth just
call optics) [47, 134, 137, 127]. Optics are used to encompass bidirectional data
accessors familiar to the computer science community such as lenses, prisms and
grates, amongst many others. Their usage to model combs and more general “circuits
with holes” has been described in [136, 135]. In contrast to the previous construction
this quotients the combs by their intensional behaviour, allowing first-order maps to
slide along the shared environment connecting the two factors together:

g

f

v
∼opt

g

f

v

In Subsection 7.2.3 we show that there is always a full and identity on objects
monoidal functor from optics to the extensional definition, Optic(C) −→ Comb(C). We
then give some sufficient conditions for this functor to exhibit an isomorphism of
symmetric monoidal categories. In particular we show that when the category of
first-order processes is cartesian and there exists a state for every type or when it is
compact closed, the two definitions coincide. We also show that in the case of the
category of unitaries between Hilbert spaces, the definitions again coincide. This case
(alongside compact closed categories) is particularly important for quantum theory.
We leave it as future work to fully characterise when Optic(C) ∼= Comb(C) and note
that there are important cases of combs not covered by the sufficient conditions proven
in this work.

7.2.1 Extensional Combs

Let us begin by considering possible extensional definitions of combs. Firstly, one
could ask that the combs are equal as morphisms in the original category when we

1we note that our category of combs is distinct from that developed there: the objects of their
category being different than those studied in this document
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extend their inputs:

(f, g) ∼σ (f ′, g′) ⇐⇒
f

g

A

A′

E

B′

B

f ′

g′

A

A′

E ′

B′

B

= (7.2)

While this is an equivalence relation on pairs of morphisms, it is not a congruence
with respect to composition. Suppose (f, g) ∼σ (f ′, g′) and (h, k) ∼σ (h′, k′). Then
(h, k) ◦ (f, g) = ((1⊗ h)f, g(1⊗ k)) ∼σ ((1⊗ h′)f, g(1⊗ k′)) = (h′, k′) ◦ (f, g) which is
not in general equivalent to (h′, k′) ◦ (f ′, g′).

We could instead ask that two combs are equivalent if they are equal on all inputs
to the comb:

(f, g) ∼τ (f ′, g′) ⇐⇒ λ

f

g

A

A′

E
B′

B
λ

f ′

g′

A

A′

E ′
B′

B

=∀λ : B −→ B′

This also forms an equivalence relation on pairs of morphisms, although it is too
coarse. Consider the free symmetric monoidal category generated by one object A,
two states ϕ, ψ : I → A and an effect ! : A → I such that ! ◦ ϕ = ! ◦ ψ = 1I . Then
(1I ⊗ ψ, 1I ⊗ !) ∼τ (1I ⊗ ϕ, 1I ⊗ !); however evaluating these combs on the braid one
finds,

ψ

!
ψ

!

= ̸=
ϕ

!
ϕ

!

=

Here, the monoidal structure of our category is allowing us to probe the combs in
ways the naive equivalence relation ∼τ does not, and in doing so access additional
information about the behaviour of the combs. So if we want combs to behave
compatibly with the monoidal structure of the category, we need something stronger
than equality on all inputs.

Definition 59 (Extensional Comb Equivalence). We say that two combs are equivalent
if they are equal on all extended inputs:
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(f, g)E ∼comb (f ′, g′)E′ ⇐⇒ λ

f

g

A Λ

A′ Λ′

E
B′

B
λ

f ′

g′

A Λ

A′ Λ′

E ′
B′

B

=∀Λ,Λ′

∀λ : B ⊗ Λ −→ B′ ⊗ Λ′
(7.3)

This definition subsumes both of the previous definitions, but in the compact
closed case (7.2) is sufficient to recover the full extensional equivalence.

Proposition 45. When C is compact closed (f, g) ∼comb (f ′, g′) ⇐⇒ (f, g) ∼σ
(f ′, g′).

Proof. The forwards direction is immediate. The backwards direction follows by
graphical manipulation:

f

g

A

A′

E

B′

B

f ′

g′

A

A′

E ′

B′

B

= λ

f

g

A Λ

A′ Λ′

E ==⇒ λ

f ′

g′

A Λ

A′ Λ′

E ′

Definition 60. Given a symmetric monoidal category C, the symmetric monoidal
category of extensional combs Comb(C) has objects given by pairs (A,A′) of objects of C.
A morphism (f, g) : (A,A′) −→ (B,B′) is an equivalence classes of pairs of morphisms
f : A −→ E ⊗B and g : E ⊗B′ −→ A′ of C under the comb equivalence relation ∼comb.
Composition of morphisms is given by (f ′, g′) ◦ (f, g) = ((1⊗ f ′)f, g(1⊗ g′)).

The monoidal structure acts on objects as (A,A′) ⊗ (B,B′) = (A ⊗ B,A′ ⊗ B′)

and on morphisms:

f

g

A

A′

E
B′

B

h

k

C

C ′

F
D′

D
⊗ =

f

g

A

A′

E
B′

B

h

k

C

C ′

F
D′

D

The unit object is (I, I) with structural isomorphisms given by (λ, λ−1) : (A,A′)⊗
(I, I) = (A⊗ I, A′ ⊗ I) −→ (A,A′) and (ρ, ρ−1). The symmetry σ is defined similarly.
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Lemma 8. Comb defines a functor SymMonCat→ SymMonCat.

7.2.2 Intensional Combs: Optics

Optics provide another potential definition of combs; albeit an intensional one, as
opposed to the extensional one described in the previous subsection.

Definition 61 (Category of optics [127, 47]). Given a symmetric monoidal category
C, the category of optics Optic(C), has objects given by pairs (A,A′) of objects of
C. Morphisms are pairs (f, g)E like in Comb(C) however, instead of quotienting
the morphisms by the equivalence relation ∼comb, we quotient morphisms by the
equivalence relation ∼opt imposed by embedding the combs inside the cobordisms:

g

f

v
∼opt

g

f

v
(7.4)

The string diagrams can be freely moved around the interior of the cobordism, but
can not pass through the surface: as a result we are able to slide maps on the
environment wire between the two halves with the equivalence relation generated by
((v ⊗ 1)f, g)E′ ∼ (f, g(v ⊗ 1))E. Explicitly the hom-sets of Optic(C) are given by the
following coend: ∫ E

C(A,E ⊗B)× C(E ⊗B′, A′)

Composition, identities, and symmetric monoidal structure is as in Comb(C). That
∼opt is a congruence and that the composite of two optics is another optic (i.e. that
the composite of the comb-shaped cobordisms in (7.4) can be manipulated to give
another comb-shaped cobordism) follows by a composition of the 2-cells in (4.7), see
e.g. [134] for more details.

7.2.3 Equivalence of Extensional and Intensional Combs

In this section we consider the question of when Optic(C) and Comb(C) are equivalent.
It is fairly straightforward to show that there is always a functor Optic(C) −→ Comb(C)
turning the intensional combs into extensional combs.

Proposition 46. Given a symmetric monoidal category C, there is a bijective on
objects, full symmetric monoidal functor Optic(C) −→ Comb(C).
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Proof. For each λ there is a mapping:

g

f

v 7→

g

f

B

B′

v λ

Λ′

Λ

This preserves the sliding of morphisms v along the ancillary wire.

Remark. Formally, the mapping above gives a cowedge for C(A,−⊗B)×C(=⊗B′, A′)

and must therefore factor uniquely via the coend.

It is not immediately obvious whether the functor of the previous proposition is
faithful and thus witnesses an equivalence of categories.

Counterexample 1. Consider the free commutative monoidal category generated
by one object A and a single idempotent f : A −→ A. Then (1A, f)I ≁opt (f, 1A)I but
(1A, f)I ∼comb (f, 1A)I and thus Optic(C) ≇ Comb(C) in this case.

We now explore some classes of categories where there is an equivalence Optic(C) ∼=
Comb(C).

Proposition 47. Given a compact closed category C, there is a symmetric monoidal
isomorphism of categories Optic(C) ∼= Comb(C).

Proof.

g

f

=

g

f

∼opt

g

f =

g′

f ′ ∼opt

g′

f ′

=

g′

f ′

So we have established that comb equivalence implies optic equivalence. This is
sufficient to show that the functor of proposition 46 is also faithful.

Remark. The previous result could also be established by Yoneda reduction (see e.g.
[135, Sec. 4.2]) as follows:∫ E

C(A,E ⊗B)× C(E ⊗B′, A′) ∼=
∫ E

C(A,E ⊗B)× C(E,B′∗ ⊗ A′)

∼= C(A,B′∗ ⊗ A′ ⊗B) ∼= C(A⊗B′, A′ ⊗B)

Note that (f, g)E ∼comb (f ′, g′)E′ implies (f, g)E ∼σ (f ′, g′)E′ which ensures they are
the same element of the set C(A⊗B′, A′ ⊗B).
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Proposition 48. Given a cartesian category C where each type is inhabited, so that
there exists a state I −→ A for any A, there is a symmetric monoidal isomorphism of
categories Optic(C) ∼= Comb(C).

Proof. Suppose (f, g)E ∼comb (f ′, g′)E′ . We know that these combs are equal on the
braid:

f

g

A

A′

E

B′

B

f ′

g′

A

A′

E ′

B′

B

=

By the universal property of the product, this map is completely determined by its
projections into A′ and B. The former gives:

f

g

A

A′

E

B′

f ′

g′

A

A′

E ′

B′

=

! !

∈ C(A×B′, A′) (7.5)

while the latter gives

f

g

!

A

E

B′

B

f ′

g′

!

A

E ′

B′

B

= =⇒
f !

!

A

E

B′

B

f ′ !

!

A

E ′

B′

B

=

Pick a map ϕ : I → B′, then

f

ϕ

!
!

A

E

B

f ′

ϕ

!
!

A

E ′

B

=
f ′

!

A

E ′

B

=
f

!

A

E

B

= (7.6)

Thus:

g

f

=

g

∆

f f

! !

∼

g

∆

f

f

!

!

=

g′

∆

f ′

f ′

!

!

∼

g′

∆

f ′ f ′
! !

=

g′

f ′
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Remark. The final part of the proof can also be derived by Yoneda reduction (see e.g.
[47, Sec. 3.1]):∫ E

C(A,E ×B)× C(E ×B′, A′) ∼=
∫ E

C(A,E)× C(A,B)× C(E ×B′, A′)

∼= C(A,B)× C(A×B′, A′)

and then noting that the projections (7.5) and (7.6) precisely determine an element of
C(A,B)× C(A×B′, A′).

Proposition 49. There is a symmetric monoidal isomorphism Optic(Unitary) ∼=
Comb(Unitary), where Unitary is the category of unitary maps between (not necessarily
finite dimensional) Hilbert spaces.

Proof. f : A −→ E ⊗ B is a unitary and thus A ∼= E ⊗ B are isomorphic as Hilbert
spaces. Similarly from f ′ we see A ∼= E ′⊗B and from g and g′, A′ ∼= E⊗B′ ∼= E ′⊗B′.
This means there must exist a unitary U : E ⊗B −→ E ′ ⊗B such that f ′ = Uf and a
unitary V : E ′ ⊗B′ −→ E ⊗B′ such that g′ = gV .

Using the fact that (f, g)E ∼comb (f ′, g′)E′ and that f and g have two-sided inverses,
we see that for all λ:

λ

f

g

A Λ

A′ Λ′

E
B′

B
λ

f

g

A Λ

A′ Λ′

E ′=

U

V

=⇒ λ

Λ

Λ′

E

B′

B

λ

Λ

Λ′

E ′=

U

V

E

E B

B′E

(7.7)

Taking λ = σ we arrive at the following equality:

=U V −1

There exists a faithful embedding of Unitaries into Hilb where we can pick any state
|ψ⟩ and effect ⟨e| with ⟨e|ψ⟩ = 1 to see that:

=U V −1

ψ

e
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As a result U can be seen to ⊗-separate as U = U ′ ⊗ 1 where U ′ := (1⊗ e)V −1(1⊗ ψ)
must be a unitary else U could not be unitary and we would have a contradiction.
Analogously one can show that V ⊗-separates as V ′⊗ 1. Inserting these factorisations
into the right hand side of (7.7) one can see that V ′U ′ = 1.

Therefore:
g′

f ′

=

g

f

U ′

V ′

∼opt

g

f

U ′
V ′

=

g

f

7.3 n-Combs

In this section we consider generalisations of the Optic and Comb constructions to
encompass n-combs. There are several categorical structures that could provide an
adequate semantics for dealing with the many inputs and outputs that a generalised
n-comb could have. Here we will use polycategories to handle n-combs.

A candidate definition of such an n-comb was suggested in [135] as a generalisation
of the Optic construction. We generalise this even further, obtaining a polycate-
gory. Our definition of the combs themselves is similar, but crucially our notion of
composition is very different and coincides more closely with that of [52].

Definition 62. Given a symmetric monoidal category C, the polycategory of n-combs
OPTIC(C) has objects given by pairs of objects in C. The polymorphisms of type
[(A1, A

′
1), . . . , (An, A

′
n)]→ [(B1, B

′
1), . . . , (Bm, B

′
m)] are elements of the set (where the

zero-fold tensor in C is the tensor unit):∫ X0,...,Xm+1

C

(
n⊗
i=1

Ai, X0

)
×

m∏
j=1

C(Xj−1, Xj⊗Bj)×C(Xj⊗B′
j, Xj+1)×C

(
Xm+1,

n⊗
i=1

A′
i

)
For example, the following is an internal string diagram for a polymorphism of this
type (drawn from left to right to conserve space).

⟨f1, . . . , fn|g1, . . . , gn⟩X1,...,Xn : [(A1, A
′
1), . . . , (An, A

′
n)]→ [(B1, B

′
1), . . . , (Bm, B

′
m)]

= ...

.....
.

f1 f2 fng1 gn-1 gn

×

×

×

×A1

A2

An

A′
1

A′
2

A′
nB1 B2 BmB′

1 B′
m-1 B′

m

(7.8)
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The identities are the same as in optics. Given a map as above and another map

⟨h0, . . . , hℓ|k0, . . . , kn⟩Y1,...,Yℓ : [(C1, C
′
1), . . . , (Cℓ, C

′
ℓ)]→ [(D1, D

′
1), . . . , (Dp, D

′
p)]

where (Cq, C
′
q) = (Bj, B

′
j) for some 0 ≤ q ≤ ℓ, 0 ≤ j ≤ m. Then the composite

⟨f1, . . . , fn|g1, . . . , gn⟩X1,...,Xn ◦(Bj ,B′
j)
⟨h0, . . . , hℓ|k0, . . . , kn⟩Y1,...,Yℓ

is given by plugging the first comb into the (Bj, B
′
j) hole and the collapsing the

bubble. This can be verified to produce a diagram of the same shape via a lengthy,
yet elementary application of the coend calculus, or equivalently a composition of the
2-cells (4.7) and associators.

There is also a polycategory of n-combs that generalises the Comb construction,

Definition 63. Given a symmetric monoidal category C, the polycategory of n-combs
COMB(C) has the same objects as OPTIC(C). The polymorphisms are given by tuples
of maps under a generalisation of the comb equivalence relation where two combs are
equivalent if they are equal on all extended inputs:

f1 g1 f2 gn-1 fn gn
. . ....

...
λ1 λ2 λn-1 λn. . .

. . .

f ′1 g′1 f ′2 g′n-1 f ′n g′n
. . ....

...
λ1 λ2 λn-1 λn. . .

. . .

=∀λ1, . . . , λn

Composition and identities are the same as in COMB(C).

As in the case of 1-combs we can always quotient the intensional optics definition
to get the extensional comb definition:

Proposition 50. There is a full and identity on objects polyfunctor OPTIC(C) −→
COMB(C).

Proof. (Sketch) The proof is similar to proposition 46: removing the cobordisms
and evaluating the comb on the given λ1, . . . , λn gives a cowedge and thus factorises
uniquely via the coend.

Proposition 51. When C is compact closed there is an isomorphism of polycategories
OPTIC(C) ∼= COMB(C).

Proof. (Sketch) The isomorphism is shown in a similar way to the proof of Proposition
47, by pulling all of the circuits into the same bubble.
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7.3.1 Tambara Modules

Let us now investigate another way to formalise n-combs, this time using the theory of
Tambara modules [155, 127]. Suppose we have a category C with a right action −⋉− :

C ⊠M −→ C by a monoidal category M. A Tambara module is an endoprofunctor
T : C −7→ C equipped with a strength for the action byM.

Definition 64 (Tambara Module [155, 127]). A right Tambara module (T, ζ) consists
of an endoprofunctor T : C −7→ C and a natural transformation:

T

ζ
=⇒ T

such that the following diagrams commute:

T T T

T T

ζ

ζ ⊗

ζ

α∗α

T

T T

ζ⊗

ρ∗ρ

Left Tambara modules for a left actegory and are defined analogously. Given
an M-N -biactegory C, we can also define the Tambara bimodules. These are en-
doprofunctors T : C −7→ C which are simultaneously left and right modules with an
additional compatibility condition.

T T T

T T

ζr

ζl ζr

ζl

b∗b
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Given two Tambara modules we can define the arrows between them.

Definition 65 (Tambara Module Homomorphism [155, 127]). A homomorphism
η : (S, ζ) −→ (T, ξ) of right Tambara modules consists of a natural transformation
η : S −→ T such that the following square commutes.2

S S

T T

ξ

η η

ζ

Left, right and bi- Tambara modules and their homomorphisms assemble into
categories LTambM(C), RTambM(C) and TambM,N (C) respectively.

The categories of Tambara modules share a lot in common with the category
Prof(C) of endoprofunctors on C. It is clear that there are forgetful functors U from
each which simply forget the strengths. Furthermore given any endoprofunctor there
are functors F and G generating free and cofree Tambara modules which are adjoints
to the forgetful functor in the expected way [127, 47].

Prof(C) LTambM(C)

G

F

U
⊥

⊥
Prof(C) RTambM(C)

G

F

U
⊥

⊥

Prof(C) TambM,N (C)

G

F

U
⊥

⊥

Given P : C −7→ C, the free left, right and bi- Tambara modules are given
respectively by:

P , P , P

2Technically to work in the enriched setting we need to be slightly more careful when defining the
homomorphisms of Tambara modules since it is not clear with our presentation that the space of
homomorphisms form an object of V . See [127, 47] for the more careful definition. Nevertheless, it is
usually okay to think of the homomorphisms as being the natural transformations that commute
with the strengths, and when V = Set this is true precisely.
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The cofree Tambara modules are given by the following formulae involving ends:∫
X

P (X⋊−, X⋊=),

∫
X

P (−⋉X,=⋉X),

∫
XY

P (X⋊−⋉Y,X⋊=⋉Y )

Perhaps the most important result of [127] connects Tambara modules with the
category of optics. This result was extended in [47] to include Tambara modules for
actions as presented here.

Theorem 22 ([127, 47]). There are equivalences of categories:

[LOpticM(C)op,V ] ∼= LTambM(C)

[ROpticM(C)op,V ] ∼= RTambM(C)

[OpticM,N (C)op,V ] ∼= TambM,N (C)

Now, we note that Prof(C) has a monoidal structure given by composition of the
endoprofunctors, P ⊗V Q := P ◦Q. Furthermore this monoidal structure is closed -
the internal-hom [−,=]V can be calculated with some coend calculus.

Nat(P ⊗V Q,R) ∼=
∫
XZ

V
(∫ Y

P (X, Y )⊠Q(Y, Z), R(X,Z)

)
∼=
∫
XY Z

V
(
P (X, Y ),V

(
Q(Y, Z), R(X,Z)

))
∼=
∫
XY

V
(
P (X, Y ),

∫
Z

V
(
Q(Y, Z), R(X,Z)

))
∼= Nat

(
P (−,=),

∫
Z

V
(
Q(=, Z), R(−, Z)

))
One consequence of this is to equip C⊠ Cop with a promonoidal structure. The cat-

egory of endoprofunctors is precisely the presheaf category Prof(C) ∼= [Cop ⊠ C,V ]. We
then note that Day’s theorem gives an equivalence between closed monoidal structures
on presheaf categories and promonoidal structures on the underlying category. The
behaviour of this promonoidal structure on C ⊠ Cop, can be calculated by evaluating
the monoidal structure of Prof(C) on representable presheaves.

よA ⊗VよB = (C ⊠ Cop)((−,=), (A,A′))⊗V (C ⊠ Cop)((−,=), (B,B′))

= (C(−, A)⊠ C(A′,=))⊗V (C(−, B)⊠ C(B′,=))

=

∫ X

C(−, A)⊠ C(A′, X)⊠ C(X,B)⊠ C(B′,=)

∼= C(−, A)⊠ C(A′, B)⊠ C(B′,=)
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Similarly to Prof(C), the categories of Tambara modules also have closed monoidal
structures given by composition of the endoprofunctors together with the following
induced strength.

T

S

T

S

T

S

ζr∗ξr ε⋉

This in turn induces promonoidal structures on LOpticM(C), ROpticM(C) and
OpticM,N (C). On the latter this acts as,

(A⊗V B)(C) =

∫ XX′Y Y ′

C(C,X⋊A⋉X ′)⊠C(X⋊A′⋉X ′, Y ⋊B⋉Y ′)⊠C(Y ⋊B′⋉Y ′, C ′)

Simplifying to the case when a monoidal C acts canonically on itself we can draw
the tensor ⊗V in the internal string diagrams as follows.

hgf A′A B B′ C ′C (7.9)

Now, when C is monoidal, the category Prof(C) permits another tensor product
given by Day convolution over the monoidal structure of C ⊠ Cop.

(P ⊗H Q)(−,=) =

∫ XX′Y Y ′

C(−, X ⊗ Y )⊠ P (X,X ′)⊠Q(Y, Y ′)⊠ C(X ′ ⊗ Y ′,=)

= P Q

The tensor ⊗H is also closed, the internal-hom [−,=]H can be calculated with some
coend calculus.

Nat(P ⊗H Q,R)

∼=
∫
ZZ′
V

(∫ XX′Y Y ′

C(Z,X⊗Y )⊠ P (X,X ′)⊠Q(Y, Y ′)⊠ C(X ′⊗Y ′, Z ′), R(Z,Z ′)

)
∼=
∫
XX′
V
(
P (X,X ′),

∫
Y Y ′
V
(
Q(Y, Y ′), R(X ⊗ Y,X ′ ⊗ Y ′)

))
∼= Nat

(
P (−,=),

∫
Y Y ′
V
(
Q(Y, Y ′), R(−⊗ Y,=⊗ Y ′)

))
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The two tensors ⊗V and ⊗H interact to make Prof(C) into a duoidal category [83].

Definition 66 (Duoidal Category). A category C is duoidal when it is equipped with
two monoidal structures ( , ) and ( , ) and the following natural transformations
witnessing the distributivity of one tensor over another.

⇒ , ⇒ , ⇒ , ⇒

These structural transformations must satisfy a series of coherence conditions which
can be found in e.g. [4, 13, 20]. A duoidal category is normal when the two units
coincide = , and closed when both tensors are closed.

For Prof(C) the natural transformations giving the duoidal structure are as follows.

Q

P

S

R
⇒

Q S

P R

, ⇒ , ⇒ , ⇒

Normal duoidal categories are interesting because they can be interpreted as
roughly encoding a notion of dependent and independent composition [144] with
one distributing over the other. For Prof(C), the dependent composition is ⊗V and
the independent is ⊗H , roughly we might think of these as timelike and spacelike
composition operations.

Tamb(C) inherits a tensor given by a quotient of the tensor ⊗H on Prof(C) [83].
More precisely, suppose P and Q are now Tambara modules, then we take the
coequaliser of the following pair of arrows.

P Q P Q P ⊗∼
H Q

ζrP

ζlQ

(7.10)

Note that for presentational simplicity we have freely neglected the associators α. As
a result we get a tensor ⊗∼

H (which for notational simplicity we now will also refer to
as ⊗H) on Tamb(C). This tensor is also closed [83], with the internal-hom (for the left
closure) constructed by an equaliser, similar to that presented in [15].

[
Q , R

]∼
H

[
Q , R

]
H

[
Q , R

]
H

[
Q , R

]
H

1⊗H−

[ζlQ,1]

[1,ζlR]
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The internal-hom constructed above is precisely the object of natural transformations
that equalise the left strengths of Q and R. The internal-hom for the right closure is
similar.

Since ⊗H is closed on Tamb(C) we yield another promonoidal structure on Optic(C).
We can find the action of this promonoidal structure by calculating the coequaliser
(7.10) on representable presheaves.

Proposition 52. The tensor ⊗H acts on representable presheaves as:

(よA ⊗HよB)(−,=) =

∫ XY Z

C(−, X ⊗A⊗ Y ⊗B ⊗Z)⊠ C(X ⊗A′ ⊗ Y ⊗B′ ⊗Z,=)

f

g

A
A′

B
B′

C

C ′

(7.11)

Proof. The proof essentially comes down to finding the coequaliser of the following
parallel pair (freely neglecting associators).

ε⊗

ε⊗
(7.12)

This coequaliser is the value of 1C ⊗H 1C where 1C = C(−,=). It is demonstrated
in [83] that 1C is the unit of the monoidal structure ⊗H so that 1C ⊗H 1C ∼= 1C.

So we have seen that Tamb(C) has two closed monoidal structures ⊗V and ⊗H
inherited from the analogous ones on Prof(C). It is demonstrated in [83] that the
duoidal structure of Prof(C) also transfers to Tamb(C), which now has the same unit
for both tensors and is therefore a normal duoidal category. We can also discuss these
tensors at the level of C ⊠ Cop and Optic(C) but we require the notion of a produoidal
category.

Definition 67 (Produoidal Category [33]). A category C is produoidal when it is
equipped with two promonoidal structures and natural transformations analogous to
those of Definition 66 (where we now interpret the string diagrams in Prof), satisfying
analogous coherence conditions. A produoidal category is normal when the unit
presheaves of the two promonoidal structures are equal.
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The relationship between duoidal and produoidal categories is akin to that between
monoidal and promonoidal ones. Day’s theorem can be extended to this setting to
show that there is an equivalence between produoidal structures on C and closed
duoidal structures on Ĉ.

The end result of this discussion is that, given a monoidal category C, we now
have a normal produoidal category Optic(C) which allows us to discuss the horizontal
and vertical composition of holes in C. That is, it is an ideal replacement for the
polycategorical structure of Section 7.3 allowing us to study these structures without
having to leave the world of monoidal categories.

Whilst the tensor ⊗V has been known since the original work on the category
of optics [127], its use in applications has been rather neglected. Perhaps this can
be attributed to the complexity and initial conceptual overhead in working with
promonoidal categories. Nevertheless, given the natural interpretation of ⊗V as the
vertical composition of holes, it seems an ideal setting for the study of n-combs.

On the other hand, the tensor ⊗H has only been discussed on the category of
Tambara modules and its interpretation as a promonoidal structure on optics does
not seem to have been noticed until very recently [72]. One interesting aspect of
this tensor is that is does not require symmetry of C in order to define horizontal
composition of holes. Typically, C is assumed to be symmetric from the outset, in
which case LOptic(C) permits a tensor product given by horizontal composition of
combs [134]. Let us see how this arises from the promonoidal structure ⊗H .

Recall that P ⊗H Q coequalises the right action on P and the left action on Q.
This was possible in Tamb(C) because all objects are bimodules and thus have both
left and right actions. Given two left modules or two right modules there is no clear
way of defining an analogous tensor, but in the presence of symmetry on C, all left
Tambara modules are canonically right Tambara modules, and vice versa. This allows
us to extend the tensor ⊗H to the categories LTamb(C) and RTamb(C) - to define
P ⊗H Q we simply regard P as a right module and Q as a left module and take the
coequaliser as before.

Remark. It is worth noting that ⊗H is conceptually no different than the tensor
product of modules over a ring, and on LTamb(C) and RTamb(C), ⊗H is analogous to
the tensor product of modules over a commutative ring.

The following result recovers the tensor on the category of optics in the presence
of symmetry.
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Proposition 53. Let C be symmetric. Then LTamb(C) has a tensor product ⊗H given
by the coequaliser (7.10). On representable presheaves of LOptic(C) this acts as follows.

(よA ⊗HよB)(−,=) =

∫ X

C(−, X ⊗ A⊗B)⊠ C(X ⊗ A′ ⊗B′,=)

As a result, ⊗H is representable and descends to a tensor on LOptic(C) which acts on
objects as (A,A′)⊗H (B,B′) = (A⊗B,A′ ⊗B′).

Proof. Given left Tambara modules P and Q define their tensor by the coequaliser
(7.10) by considering P with its canonical right action given by applying the symmetry
to the left action. Taking representable presheaves and calculating the coequaliser
proceeds much like Proposition 52 and yields the claimed expression. One then notes
that this is precisely the representable Tambara module at (A⊗B,A′ ⊗B′).

Consequently, LTamb(C) has both a tensor product ⊗H and a promonoidal tensor
⊗V . These are precisely the structures required to capture the polycategorical structure
described in Section 7.3. For instance, a polymorphism (7.8) in OPTIC(C) is given
by a morphism in LTamb(C) between the the representable presheaves at ⊗H tensor
products of objects of Optic(C) and presheaves in the image of ⊗V . For instance,
consider an arrow in LTamb(C) of the type:

(よB1⊗H ···⊗HBm)(−,=) −→ (A1 ⊗V A2 ⊗V · · · ⊗V An)(−,=)

By the Yoneda lemma there is a natural isomorphism between such arrows and the
object of arrows of OPTIC(C).

(A1 ⊗V A2 ⊗V · · · ⊗V An)(B1 ⊗H · · · ⊗H Bm) =∫ X1...Xn

C

(
m⊗
i=i

Bi, X1 ⊗ A1

)
⊠ C(X1 ⊗ A′

1, X ⊗ A2)⊠ · · ·⊠ C

(
Xn ⊗ A′

n,
m⊗
i=1

B′
i

)

7.4 Premonoidal Optics

In this section we will generalise optics over a monoidal base C to allow for a pre-
monoidal base C. Since not all morphisms in a premonoidal category interchange,
there is now additional subtlety to formalising optics. Firstly, the coends that are
usually used to quotient to allow for the sliding of morphisms can only be taken over
the centre ZC of the premonoidal category C. This leads us to consider the category
OpticZC(C) with objects given by pairs (A,A′) of those of C and homs given by the
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coend
∫ XY ∈ZC C(A,X ⊗B ⊗ Y )⊠ C(X ⊗B′ ⊗ Y,A′), allowing us to slide only central

morphisms between the top and bottom of the optic.

g

f

u v

A

B
B′

A′

∼

g

f

u v

A

B
B′

A′

We might then hope to equip OpticZC(C) with two tensors analogous to those
in equations (7.9) and (7.11). While the vertical tensor ⊗V poses no immediate
difficulties, the horizontal tensor ⊗H does: we cannot expect this to be promonoidal
because C does not satisfy interchange. This leads us to our first bona-fide example of
a pro-effectful category.

Secondly, there is an additional challenge with premonoidal optics: there is the
category Optic(ZC) of optics over the monoidal centre and an embedding, Optic(ZC) −→
OpticZC(C), of these central optics into the optics over the entire premonoidal category.
Optic(ZC) is equipped with the two promonoidal structures, ⊗H and ⊗V , and we
would like to understand how these behave in relation to any tensors we can define
on OpticZC(C). This requires us to keep track of the centre and understand fully how
it behaves in relation to the rest of the premonoidal category. Thus we must take
seriously the V2-enrichment of the category of optics over a premonoidal base.

Whilst optics over a premonoidal base may at first seem niche there are several
plausible applications we foresee. In a seminal work on optics, Riley [134] introduced
the notion of “effectful optics”: optics over the Kleisli category of a strong monad. These
optics allow the emergence of side-effects, and extend the optics of pure functional
programming to other programming languages with effects; with a similar purpose,
Abou-Saleh et al. [1] have introduced “monadic lenses”. More recently, much applied
category theory has been written about optics that create effects in different categories
[31, 36, 47, 150]. The novel definition of optic over an effectful category introduced
here serves to justify this previous terminology: optics over the Kleisli category of a
strong monad are particular cases of our effectful optics. Furthermore, our approach
leads to a pro-effectful algebra over them that had been previously neglected.

We also envisage applications in physics. If premonoidal categories are deemed to
be a useful tool for modelling spacetime [28, 60, 97] or causal structure more generally,
we might expect such structure to arise in models of supermaps. Similarly to how
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we have argued for the usage of optics to model combs over monoidal categories, the
premonoidal optics developed here could be a natural category to model combs over
premonoidal spacetime categories.

Let us now present the category of optics over a premonoidal category and outline
its two tensor-like structures. Suppose we fix a premonoidal category C and write
J : ZC −→ C for the inclusion of the centre. There is a V2-category Optic(J) with
objects given by pairs A := (A,A′) of those of J , i.e. pairs of those of the underlying
premonoidal category C. The homs are given by∫ XY

ZC(A,X⊗B⊗Y )⊠ZC(X⊗B′⊗Y,A′) −→
∫ XY ∈ZC
C(A,X⊗B⊗Y )⊠C(X⊗B′⊗Y,A′)

as in Figure 7.1. Thus Optic(J)0 = Optic(ZC) is the usual category of optics over the
centre and Optic(J)1 = OpticZC(C) is the category of optics given by the action of
the centre ZC on the whole premonoidal category C. The identity on objects functor
Optic(ZC) −→ OpticZC(C) is the one induced by J .

Theorem 23. Optic(J) is a promonoidal V2-category. The V2-profunctors forming
the tensor product P : Optic(J) ⊠ Optic(J) −7→ Optic(J) and unit I : 1 −7→ Optic(J)

have components given in Figures 7.2 and 7.3. These are explicitly,

P0(C,A,B) =

∫ XX′Y Y ′

ZC(C,X⊗A⊗X ′)⊠ZC(X⊗A′⊗X ′, Y⊗B⊗Y ′)⊠ZC(Y⊗B′⊗Y ′, C ′),

P1(C,A,B) =

∫ XX′Y Y ′∈ZC
C(C,X⊗A⊗X ′)⊠ C(X⊗A′⊗X ′, Y⊗B⊗Y ′)⊠ C(Y⊗B′⊗Y ′, C ′),

I0(A) = ZC(A,A′), I1(A) = C(A,A′).

Proof. J has commutative left and right actions by the monoidal V2-category 1ZC :

ZC −→ ZC. Consider the V2-category Tamb(J) of Tambara modules on J [127,
47], whose objects are the V2-endoprofunctors P : J −7→ J equipped with left and
right strengths over the action by 1ZC. The morphisms are the bistrong V2-natural
transformations. We can use Proposition 39 to unpack Tamb(J) into two V-categories
and an identity on objects functor, Tamb(J)0 −→ Tamb(J)1. The objects of Tamb(J)0

and Tamb(J)1 are the bistrong endoprofunctors P : J −7→ J which are equivalently
triples (P0 : ZC −7→ ZC, P1 : C −7→ C, η : P0 ⇒ P1(J

op ⊠ J)). Tamb(J)0 has arrows
ϕ : P ⇒ Q given by pairs (ϕ0 : P0 ⇒ Q0, ϕ1 : P1 ⇒ Q1) while Tamb(J)1 has only the
ϕ1 as arrows.

It is known that the category of Tambara modules is equivalent to the presheaf
category of the category of optics [127, 47], which in this particular case implies
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[Optic(J)op,V2] ∼= Tamb(J). The V2-category Optic(J) has objects given by pairs
A = (A,A′) of Optic(J) and homs given by

Optic(J)(A,B) =

∫ XY ∈1ZC

J(A,X ⊗B ⊗ Y )⊠ J(X ⊗B′ ⊗ Y,A′)

where J(−,−) := ZC(−,−) −→ C(−,−) is the hom of J as a V2-category and the
coend is taken in this fully enriched setting. By Proposition 40 this coend is given by
the following arrow.∫ XY

ZC(A,X⊗B⊗Y )⊠ZC(X⊗B′⊗Y,A′) −→
∫ XY ∈ZC
C(A,X⊗B⊗Y )⊠C(X⊗B′⊗Y,A′)

This recovers the expected the identity on objects functor Optic(ZC) −→ OpticZC(C)
equivalent to Optic(J).

Now, since Tamb(J) has a closed monoidal structure given by composition of the
profunctors, there is an induced promonoidal structure on Optic(J). To arrive at the
explicit expressions claimed in the Theorem, take objects A and B of Optic(J) and
consider the tensor (i.e. composition as profunctors) of the associated representable
presheaves.

(yA⊠yB)(−) ∼=
∫ WXY Z∈1ZC

J(−,W ⊗A⊗X)⊠J(W ⊗A′⊗X, Y ⊗B⊗Z)⊠J(Y ⊗B′⊗Z,−)

This can be unpacked by Proposition 40 to give the result.
Finally note that the unit of the monoidal structure on Tamb(J) is 1J : J −7→ J ,

which is (1ZC, 1C, η : 1ZC ⇒ yJyJ).
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Figure 7.1: Homs.

f

A′

A

−→ f

A′

A

Figure 7.2: Promonoidal unit I.
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Figure 7.3: Promonoidal tensor P .

Now let us turn our attention to another tensor-like structure on Optic1ZC
(J), this

one induced by the premonoidal structure on C.
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Theorem 24. Optic(J) is a pro-effectful category. The tight V2-profunctors forming
the tensor product P : Optic(J)⊠Optic(J) −→ Optic(J) and unit I : 1 −→ Optic(J) have
components which act on objects as,

P0(C,A,B) = P1(C,A,B)

=

∫ XY Z

ZC(C,X ⊗ A⊗ Y ⊗B ⊗ Z)⊠ ZC(X ⊗ A′ ⊗ Y ⊗B′ ⊗ Z,C ′),

I0(A) = I1(A) = ZC(A,A′).

(7.13)

Proof. The free tight cocompletion of Optic(J) is given by [Optic(ZC)op,V ] −→ OpticZC(C).
We will show that this is a closed effectful category and then by Theorem 21 we will
be done.

Start by considering the effectful category Jop ⊠ J : ZCop ⊠ ZC −→ Cop ⊠ C. The
free tight cocompletion of this category is LanLJop⊠J : Prof(ZC) −→ Prof(C) which is
closed effectful. The domain is the duoidal category Prof(ZC) of endoprofunctors on
ZC and it has a closed monoidal structure given by Day convolution over the monoidal
structure of ZC:

P ∗Q :=

∫ AA′BB′

ZC(−, A⊗ A′)⊠ P (A,B)⊠Q(A′, B′)⊠ ZC(B ⊗B′,−) (7.14)

The premonoidal structure on Prof(C) is given on objects by (7.14). On homs, given
a η : P ⇒ P ′ in Prof(C) (that is, a η : LanJop⊠JP ⇒ LanJop⊠JP

′) the left side of the
premonoidal structure is given by:

LanJop⊠J(P ∗Q) ∼=
∫ AA′BB′

C(−, J(A⊗ A′))⊠ P (A,B)⊠Q(A′, B′)⊠ C(J(B ⊗B′),−)

∼=
∫ A′B′∈ZC,CD∈C
C(−, C ⋊ A′))⊠ (LanJop⊠JP )(C,D)⊠Q(A′, B′)⊠ C(D ⋊B′,−)

∫
η

==⇒
∫ A′B′∈ZC,CD∈C
C(−, C ⋊ A′))⊠ (LanJop⊠JP

′)(C,D)⊠Q(A′, B′)⊠ C(D ⋊B′,−)

∼= LanJop⊠J(P
′ ∗Q)

Since LanLJop⊠J is a left adjoint, it follows that it is a closed effectful category.
There is a V2-category Tamb(ZC) −→ Tamb(C) with objects given by the Tambara

modules on ZC. The homs of Tamb(ZC) are the bistrong natural transformations
while the homs of Tamb(C) are the bistrong natural transformations between the left
Kan extensions along Jop ⊠ J of the Tambara modules. This V2-category inherits a
closed effectful structure from LanLJop⊠J given by a certain quotient of (7.14) which
acts to normalise the duoidal structure on Prof(ZC) [83, 72].
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Finally note that the presheaf category of optics is equivalent to the category of
Tambara modules, ̂Optic(ZC)op ∼= Tamb(ZC) [47], and we can finally check that we
also have OpticZC(C) ∼= Tamb(C).

On the homs of ZC, P0 and I0 act in the expected way, essentially by nesting
of optics. On the homs of C, P1 and I1 act somewhat unusually. Formally non-
central optics are sent to natural transformations between left Kan extensions of the
expressions in (7.13), that is between presheaves of the form:

(LanJop⊠JP0)(C,A,B)

∼=
∫ WVXY Z

C(C, JW )⊠ ZC(W,X⊗A⊗Y⊗B⊗Z)⊠ ZC(X⊗A′⊗Y⊗B′⊗Z, V )⊠ C(JV,C ′)

∼=
∫ XY Z∈ZC

C(C,X ⊗ A⊗ Y ⊗B ⊗ Z)⊠ C(X ⊗ A′ ⊗ Y ⊗B′ ⊗ Z,C ′)

(LanJop⊠JI0)(A) ∼=
∫ XY

C(A, JX)⊠ ZC(X, Y )⊠ C(JY,A′)

∼=
∫ X∈ZC

C(A,X)⊠ C(X,A′)

This justifies thinking of the pro-effectful structure as having the components described
in Figures 7.4 and 7.5.
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Figure 7.4: Pro-effectful tensor.
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Figure 7.5: Pro-effectful unit.

7.5 Supermaps as Tambara Module Homomorphisms

In this final section we will discuss some connections between our suggestion of using
optics to model combs and the approach of [161, 160]. There, an abstract framework
is developed for supermaps over any symmetric monoidal category using a notion
they introduce called a locally-applicable transformation. When the base category is
taken to be the category of quantum channels they demonstrate that their definition
recovers the more traditional definition of deterministic quantum supermap [45]. This
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is pleasing since most other approaches require additional structure such as compact
closure [110], on the category of first-order processes, and therefore their framework
offers a vast generalisation of the notion of supermap applicable to many other settings.

Given a symmetric monoidal category, [161] defines a locally-applicable transfor-
mation η : (A,A′) −→ (B,B′) to consist of a family of maps for each pair of systems
X,X ′ of the form:

ηX,X′

X

X ′

X ′

X

A′

A

B′

B

These maps must satisfy the following two laws, capturing the idea that the supermap
only acts locally on the systems A and A′.

• Naturality

ηX,X′ ϕ

g

f

= ηY,Y ′ ϕ

g

f

(7.15)

states that the supermap commutes with the actions of agents on other systems.

• Strength (known originally as dragging):

ηX,X′ ϕ = ηXY,X′Y ϕ (7.16)

states that ⊗-separable parties are not affected by the supermap.

Wilson et al. describe how the naturality law (7.15) can be captured by saying
that η is a natural transformation of the following type.

η : C(A⊗−, A′ ⊗=)⇒ C(B ⊗−, B′ ⊗=). (7.17)

This makes their locally-applicable transformations arrows of the category Prof(C).
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What they do not discuss is how to capture the strength law (7.16). The first
thing to note is that for any A and A′, C(A⊗−, A′ ⊗=) is a Tambara module with
the strength maps given as follows.

C(A⊗X,A′ ⊗X ′)→ C(A⊗X ⊗ Y,A′ ⊗X ′ ⊗ Y ) :: ϕ 7→ ϕ⊗ 1Y

It is straightforward to check that to ask for a strong natural transformation of the
type (7.17) is exactly to ask for the strength law (7.16). As a result locally-applicable
transformations are precisely arrows of the category Tamb(C). Since Tambara modules
are the presheaf category of optics, this unites general supermaps with the optics
approach to combs suggested here. Moreover it suggests that combs inhabit a very
special place in the study of these general supermaps.

Additionally the supermaps are immediately endowed with the tensor products
⊗H and ⊗V . The suitability of these for modelling physically relevant compositions of
supermaps is worthy of further investigation, particularly comparing this structure
with the polycategorical structure developed in [160].
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Afterword, Conclusion and Future
Work

In Part II we have considered profunctorial approaches to modelling supermaps and
quantum supermaps. There are several lines of future work we feel are worthy of
active investigation.

• Chapter 6 introduced the theory of pro-effectful categories as a way of combining
premonoidal and promonoidal categories. Sadly, there is a missing part of this
theory as we were not able to define “pre-promonoidal” categories - that is
pro-effectful categories without specified centre. It is straightforward to define
pro-binoidal categories by upgrading the definition of a binoidal category to Prof.
The problem with this endeavour is adequately “restricting” the profunctors to
give a good notion of centre. Perhaps the notion of centre pieces can be further
generalised to solve this?

• It is not clear whether the category Slice is a pro-effectful category and it would
be interesting to know whether this is true. One issue is that it is not obvious
what the centre of the category should be. Which sets of causal paths satisfy
the interchange law on the presheaves (X 6 Y )(−)?

• It would be interesting to compare the profunctorial methods suggested here for
spacetime to the approaches of [99, 78, 77]. Can anything be learnt by generalising
e.g. the definition of idempotent subunits to the promonoidal setting?

• Comparing the spacetime categories Slice with the approach of [144] would
also be interesting. Here and in [72] we discussed the weaker notion of a
normal produoidal category and showed the category of optics to have this
structure. This connects duoidal categories for compositional dependency with
the promonoidal methods used here.
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• It would be clarifying to pin down precisely when Optic(C) ∼= Comb(C), or
at least know whether this holds in cases beyond the few investigated here.
Particularly for quantum theory we would like to know what happens in the case
of Isometry and CPTP. The cases of ∗-autonomous categories and monoidally
closed categories would also be interesting so we could better understand any
connections with the Caus-construction [110].

• In Section 7.5 we argued the category of Tambara modules is a good setting
for modelling general quantum supermaps in terms of the locally-applicable
transformations of [161]. It would be good to understand how maps like the
quantum switch can be studied alongside combs in this category. It would
also be vital to understand the behaviour of the tensors ⊗H and ⊗V on general
supermaps and compare this with the polycategorical semantics of [160]. Do any
of the structures there become representable when thought of through the lens of
Tambara modules? Are there good physical interpretations of the tensors? How
does the produoidal structure of Optic(C) compare with the isomix structure of
the Caus-construction [110, 147]? We note that any normal duoidal category
is immediately isomix (see e.g. [83]), so that a normal produoidal category is
“pro-isomix”.

• It may be possible to use profunctors to capture the causal structure of maps.
Informally, one can replace causal graphs with profunctor tubes whose topology
acts to restrict the families of maps that are compatible with the causal struc-
ture, for instance by enforcing one-way signalling constraints. By taking these
profunctors to be the domains and codomains of arrows in Tamb(C) one would
be able to study the supermaps that only act on certain classes of processes.

• The methods for studying n-combs suggested here could be compared to the
double categorical framework of [29].
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