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Novel contributions:

• Section 3.1 is a pedestrian introduction to weak 𝑛-category theory (via homotopy.io, underpinned by the theory of associative 𝑛-categories) from the per-
spective of generalising familiar string-rewrite systems to higher dimensions. The chief development of this section is a demonstration that context-free
grammars and tree-adjoining grammars may be formalised in the 𝑛-categorical setting.

• Section 3.2 spells out a generative grammar for text using an 𝑛-categorical signature as a rewrite system, which additionally provides a unified framework
from which the Text Circuit Theorem first proved in [WLC23] is recovered.

• Section 4.1 introduces the category ContRel of continuous relations. I detail the relationships (or lack thereof) of ContRel to its cousins Top and Rel in
Section 4.3. Though ContRel is constructed naïvely, its definition and an exposition of its expressivity from the monoidal perspective appears to be novel.

• Section 4.4 string-diagrammatically characterises set-indexed collections of disjoint open subsets of spaces in ContRel as sticky spiders – special frobenius al-
gebras that satisfy certain interaction relations with an idempotent. The diagrammatic outcome is that reasoning with such set-indexed collections remains
as graphically intuitive as with spiders.

• Section 2.1 argues for the centrality of explaining communication as a criterion for formal approaches to syntax, and explores the relationship between
productive and parsing grammars as organised by a monoidal cofunctor. A diagrammatic treatment of monoidal cofunctor boxes is introduced for this
purpose.

• In Section 5.6, by parsing text as circuits (Section 3.2) and using merge-boxes (Section 2.1) to interpret those circuits in ContRel as iconic representations, I
show how one may compute metaphors by hand.

And there are a couple of odds and ends in the corrections and the sketches. The diagrams in this work were mostly created using TikZiT, and they are avail-
able at https://github.com/vinnylarouge/Thesis. If you have comments, suggestions, or corrections, my email is vincentwangsemailaddress@gmail.com

https://github.com/vinnylarouge/Thesis




1

Context and synopsis

There are potentially practical and theoretical benefits to a fresh mathematical take on basic formal linguis-
tics. String diagrams are formal, intuitive, expressive, fun, and pretty. I review the relevant research context.
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ℳ

Figure 1.1: Let’s say that the meaning of text is how
it updates a model. So we start with some model of
the way things are, modelled as data on a wire.

ℳ 𝒯

Figure 1.2: Text updates that model; like a gate
updates the data on a wire.

ℳ 𝒮1 𝒮2 𝒮3

Figure 1.3: Text is made of sentences; like a circuit
is made of gates and wires.

Figure 1.4: Let’s say that The meaning of a sentence
is how it updates the meanings of its parts. As a
first approximation, let’s say that the parts of a sen-
tence are the nouns it contains or refers to. Noun
data is carried by wires. Collections of nouns are
related by gates, which play the roles of verbs and
adjectives.

1.1 What this thesis is about

This thesis is about studying language using string diagrams.
I am interested in using contemporary mathematical tools as a fresh approach to modelling some features

of natural language considered as a formal object. Specifically, I am concerned with the compositional aspect
of language, which I seek to model with the compositionality of string diagrams. Insofar as compositionality
is the centrepiece of "knowledge of language", I share a common interest with linguists, but I will not hold
myself hostage to their methods, literature, nor their concern with empirical capture. I will make all the usual
simplifying assumptions that are available to theoreticians, such that an oracular machine will decide on
lexical disambiguation and the appropriate parse using whatever resources it wants, so that I am left to work
with lexically disambiguated words decorating some formal grammatical structure. It is with this remaining
disambiguated mathematical structure that I seek to state a general framework for meaningful compositional

representations of text, in the same way we humans construct rich and interactable representations of things-
going-on in our minds when we read a storybook. So if you are interested in understanding language, this
thesis is an invitation to a conception of formal linguistics that’s maybe worth a damn in a world where large
language models exist.

Objection: Isn’t that reinventing the wheel?
Yes, to an extent. I am not interested in the human language faculty per se, so my aims differ. There are

several potential practical and theoretical benefits that a fresh mathematical perspective on language enables.
First, the mathematics of applied category theory allows us to unify different views of syntax, and conserva-
tively generalise formal semantics to aspects of language that may have seemed beyond the reach of rigour,
such as metaphor. Practically, the same mathematics allows us to construct interfaces between syntax/struc-
ture and semantics/implementation in such a way that we can control the former and delegate the latter by
providing specifications without explicit implementation, which (for historical reasons I will explain shortly)
is possibly the least-bad idea for getting at natural language understanding in computers from the bottom-
up. Second, there are probably benefits to expressing linguistics in the same mathematical and diagrammatic
lingua franca that can be used to represent and reason – often soundly and completely – about linear and
affine algebra [Sob15, BSZ17, BPSZ19], first order logic [HS20, BDGHS24], causal networks [LT23, JKZ19], sig-
nal flow graphs [BSZ14], electrical circuits [BS22], game theory [Hed15], petri nets [BM20], probability theory
[FGP21], machine learning [CGG+22, KLLW24, RFL+24], and quantum theory [CK17, CG23], to name a few
applications. At the moment, the practical achievements of language algorithms de-emphasise the structure
of language, and there is no chance of reintroducing the study of structure with dated mathematics.
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Figure 1.5: Gates can be related by higher order
gates, which play the roles of adverbs, adpositions,
and conjunctions; anything that modifies the data
of first order gates like verbs.

Figure 1.6: In practice, higher order gates may be
implemented as gates that modify parameters of
other gates. Grammar, and function words – words
that operate on meanings – are in principle ab-
sorbed by the geometry of the diagram. These
diagrams are natural vehicles for dynamic semantics

[NBvV22], broadly construed, where states are
prior contexts and sentences-as-processes update
prior contexts.

Definition 1.1.1 (Text Circuits). Text circuits are made up
of three ingredients:

• wires

• boxes, or gates

• boxes with holes that fit a box, or 2nd order gates

Point of information: What do you mean by natural language?
Natural language is a human superpower, and the foundation of our collective achievements and mistakes

as a species. By natural language I mean a non-artificial human language that some child has grown up speak-
ing. English is a natural language, while Esperanto and Python are constructed languages. If you are still
reading then you probably know a thing or two already about natural language. Insofar as there are rules
for natural languages, it is probable that like most natural language users, you obey the rules of language
intuitively without knowing what they are formally. For example, while you may not know what adpositions
are, you know where to place words like to, for, of in a sentence and how to understand those sentences.
At a more complex level, you understand idioms, how to read between the lines, how to flatter, insult, teach,
promise, wager, and so on. There is a dismissive half-joke that "engineering is just applied physics", which
we might analogise to absurdity as "law is just applied linguistics"; in its broadest possible conception, lin-
guistics is the foundational study of everything that can possibly be expressed.

Point of information: What are string diagrams?
String diagrams are a heuristically natural yet mathematically formal pictorial syntax for representing

complex, composite systems. I say mathematically formal to emphasise that string diagrams are not merely
heuristic tools backed by a handbook of standards decided by committee: they are unambiguous mathemati-
cal objects that you can bet your life on [JS91, Joy, Mac63, Lan10, Sel10].

String diagrams are also compositional blueprints that we can give semantics to – i.e. instantiate – in just
about any system with a notion of sequential and parallel composition of processes. In particular, this means
string diagrams may be interpreted as program specifications on classical or quantum computers, or as neu-
ral net architectures. Moreover, we can devise equations between string diagrams to govern the behaviour of
interacting processes without having to spell out a bottom-up implementation.

Many fields of study have developed string diagrams as informal calculational aids, unaware of their com-
mon usage across disciplines and the rather new mathematics that justifies their use; everybody knows, but
it isn’t common knowledge. Why is that so? Because just as crustaceans independently converge to crab-like
shapes within their own ecological niches by what is called carcinisation, formal notation for formal theo-
ries of "real world" problem domains undergo "string-diagrammatisation" in similar isolation. Why is that
so? Because our best formal theories of the real world treat complexity as the outcome of composing sim-
ple interacting parts; perhaps nature really works that way, or we cannot help but conceptualise in compo-
sitional terms. When one has many different processes sending information to each other via channels, it
becomes tricky to keep track of all the connections using one-dimensional syntax; if there are 𝑁 processes,
there may be on the order of 𝒪(𝑁2) connections, which quickly becomes unmanageable to write down in a
line, prompting the development of indices in notation to match inputs and outputs. In time, probably by
doodling a helpful line during calculation to match indices, link-ed indices become link-ing wires, and string-
diagrammatisation is complete.
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A B

⋯

N

Figure 1.7: Nouns are represented by wires, each
‘distinct’ noun having its own wire.

ADJ IV TV

Figure 1.8: We represent adjectives, intransitive
verbs, and transitive verbs by gates acting on noun-
wires. Since a transitive verb has both a subject and
an object noun, that will then be two noun-wires,
while adjectives and intransitive verbs only have
one.

ADV(IV) ADV(TV)

Figure 1.9: Adverbs, which modify verbs, we repre-
sent as boxes with holes in them, with a number of
dangling wires in the hole indicating the shape of
gate expected, and these should match the input-
and output-wires of the box with the whole.

1.2 Question: What is the practical value of studying language when Large Language Models exist?

This is the devastating question. Although this thesis is pure theory, I wish to address the question of prac-
tical value early because I imagine practical people are impatient. I will summarise the stakes: LLMs raise
questions of existential concern for the field of linguistics. More narrowly, they demand justification as to
why I am writing a thesis about theoretical approaches to basic linguistics as a computer scientist in current
year. I will note in passing that I have an ugly duckling problem, in that I am not strictly aligned with ma-
chine learning, nor linguists broadly construed, nor mathematical linguists. I feel enough affinity to have
defensive instincts for each camp, but I am distanced enough from each that I fear attacks from all sides. Per-
haps a more constructive metaphor than war is that I am writing in a cooperative spirit between domains, or
that I am an arbitrageur of ideas between them. With that in mind, I am for the moment advocating on behalf
of pen-and-paper-and-principles linguists in formulating a two-part reply to the devastating question, and
I will switch sides later for balance. First a response that answers with practical values in mind, and then a
response that asserts and rests upon the distinct values of linguists.

Point of information: What are Large language models? Assume that everything about LLMs is
prefaced with "at the time of writing", because the field is developing so quickly. Large Language Models
are programs trained using a lot of data and a lot of compute time to predict the next word in text, a task for
which computational techniques have evolved from Markov n-grams to transformers [VSP+17]. This sounds
unimpressive, but in tandem with methods such as fine-tuning from human feedback in the case of chatGPT
[Ope22] it is enough to tell and explain jokes [Bas22], pass the SAT [ted22] and score within human ranges
on IQ tests [Tho22]. There is an aspect of genuine scientific and historical surprise that text-prediction can
do this kind of magic. On the account of [MN21], computational linguistics began in a time when compute
was too scarce to properly attempt rationalist, knowledge-based and theoretically-principled approaches
to modelling language. Text-prediction as a task arose from a deliberate pursuit of "low-hanging fruit" as a
productive and knowledge-lean alternative to doing nothing in an increasingly data-rich environment. Some
observers [Chu11] expressed concern that the fruit would be quickly picked bare but those concerns are now
evidently unfounded.

I’m sure there will be many further notable developments, and to be safe I won’t make any claims about
what machines can’t do if we keep making them bigger and feed them more data or have them interact with
one another in clever ways. Nonetheless there remain limitations that seem persistent for the foreseeable
future, not in terms of capabilities, but in terms of interpretability, explainability and safety. These models have a
tendency to hallucinate facts and are (ironically, for a computer) bad at arithmetic [HBK+21]. I imagine that
the cycle of discovering limitations and overcoming them will continue. Despite whatever limitations exist in
the state-of-the-art, it is evident to all sane observers that this is an important technology, for several reasons.
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ADP(IV)

Figure 1.10: Similarly, adpositions also modify
verbs, by moreover adding another noun-wire to
the right.

⋯

⋯

SC.V

⋯

⋯

Figure 1.11: For verbs that take sentential comple-
ments and conjunctions, we have families of boxes
to accommodate input circuits of all sizes. They
add another noun-wire to the left of a circuit.

1. LLMs are a civilisational milestone technology. A force-multiplication tool for natural language – the
universal interface – built from abundant data and compute in the information age may have comparably
broad, deep, and lasting impact to the conversion of abundant chemical fuel to physical energy by steam
engines in the industrial revolution.

2. LLMs represent a paradigm shift for humanity because they threaten our collective self-esteem, in a more
pointed manner than losing at chess or Go to a computer; modifying a line of thinking from [Flo14], LLMs
demonstrate that language and (the appearance of) complex thought that language facilitates is not a
species-property for humans, and this stings on par with Darwin telling us we are ordinary animals like
the rest, or Galileo telling us our place in the universe is unremarkable.

3. LLMs embody the latest and greatest case study of the bitter lesson [Sut19]. The tragedy goes like this:
there’s a group of people who investigate language – from syntax and semantics to pragmatics and analo-
gies and storytelling and slang – who treat their subject with formal rigour and have been at it for many
centuries. Their role in the story of LLMs is remarkable because it doesn’t exist. They were the only qual-
ified contestants in a "let’s build a general-purpose language machine" competition, and they were a no-
show. Now the farce: despite the fact that all of their accumulated understanding and theories of language
were left out of the process, the machine is not only built but also far exceeds anything we know how to
build in a principled way out of all their hard-earned insight. That is the bitter lesson: dumb methods that
use a lot of data and compute outperform clever design and principled understanding.

1.3 First Reply: Interpretability, maybe.

Expressing grammar as composition of processes might yield practical benefits. Moreover, we want econ-
omy, generality, and safety for language models, and we can potentially do that with few tradeoffs if we use
the right framework. Simplified, half of the problem of learning language is learning the meaning of words.
The meanings change over time and are context-dependent, and the words are always increasing in number.
Encoding these meanings by hand is a sisyphean task. Data-driven learning methods are a good fit: the pat-
terns to be learnt are complex and nebulous, and there is a lot of data. However, data-driven methods may
be weaker at the second half of the problem: learning and executing the composition of meanings according
to syntax. We can see just how much weaker when we consider the figures involved in ’the poverty of the
stimulus’.

Point of information: What is the poverty of the stimulus? In short, this famous problem is the
observation that humans learn language despite having very little training data, in comparison to the com-
plexity of the learned structure. It is on the basis of this observation – alongside many others surrounding
language acquisition and use – that Chomsky posits [Cho00] that language is an innate human faculty, the
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Figure 1.12: Conjunctions are boxes that take two
circuits which might share labels on some wires.
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Figure 1.13: Of course filled up boxes are just gates.

development of which is less like effortfully going to the gym and more like effortlessly growing arms you
were meant to have. The explanation goes like this: we can explain how a complex structure like grammar
gets learnt from a small amount of data if everyone shares an innate Universal Grammar with a small num-
ber of free parameters to be learned. Whether or not the intermediate mechanism is a species-property of
humans, the point is that we humans get a very small amount of input data, that data interacts with the
mechanism in some way, and then we know a language. So, now that there are language-entities that are
human-comparable in competence, we can make a back-of-the-envelope approximation of how much work
the intermediate mechanism is doing or saving by comparing the difference in how much data and compute
is required for both the human and for the machine to achieve language-competence. Humans get about 1.5
megabytes of data [MP19], 90 billion neurons [Her12], and an adult human consumes around 500 calories
per day for thinking, for let’s say 20 years of language learning. Rounding all values up to the closest order of
magnitude, this comes to a cost metric of 1029 bits × joules × neurons. PaLM – an old model which is by its
creators’ account the first language model to be able to reason and joke purely on the basis of linguistic abil-
ity and without special training [CND+22, NC22] – required 780 billion training tokens of natural language
(let’s discount the 198 gigabytes of source code training data), which we generously evaluate at a rate of 4
characters per token [Kha23] and 5 bits per character. The architecture has 540 billion neurons, and required
3.2 million kilowatt hours of energy for training [Tom22]. Rounding values for the three units down down to
the nearest order of magnitude comes to a cost metric of 1041 bit-joule-neurons. Whatever the human mech-
anism is, it is responsible for an order of magnitude in efficiency give or take an order of magnitude of orders of

magnitude. It’s possible that over time we can explain this difference away by various factors such as the effi-
ciency of meat over minerals, separating knowledge of the world from knowledge of language, more efficient
model architectures, or the development of efficient techniques to train new language models using old ones
[TGZ+23]. One thing is clear: if it is worth hunting a fraction of a percent of improvement on a benchmark,
forget your hares, a 1010 factor is a stag worth cooperating for.

Point of information: What progress have linguists made on this problem? The linguistic strategy
for hunting the stag starts with what we know about how the mechanism between our ears works with lan-
guage. The good news is that the chief methodology of armchair introspection is egalitarian and democratic.
The bad news is that it is also anarchistic and hard-by-proximity; we are like fish in water, and it is hard for
fish to characterise the nature of water. So the happy observations are difficult to produce and easily verified,
and that means there are just a few that we know of that are are unobjectionably worth taking into account.
One, or the such observation is systematicity. The intuition is best summarised by a quote. "Just as you don’t
find linguistic capacities that consist of the ability to understand sixty-seven unrelated sentences, so too you
don’t find cognitive capacities that consist of the ability to think seventy-four unrelated thoughts." (Fodor and
Pylyshyn [FP88]).



string diagrams for text 15

PICKS

LIKESHATES

A B C D E

Figure 1.14: Gates compose sequentially by match-
ing labels on some of their noun-wires and in
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Point of information: Systematicity? Systematicity refers to when a system can (generate/process)
infinitely many (inputs/outputs/expressions) using finite (means/rules/pieces) in a "consistent" (or "system-
atic") manner. In short, how systems (like our capacity for language) achieve infinite ends by finite means.
Like pornography, examples are easier than definitions. For example(s); we observe that anyone capable of
understanding Alice likes Bob seems also to be capable of understanding Bob likes Alice; we know
finitely many words but we can produce and understand potentially infinitely many texts; we can make in-
finitely many lego sculptures out of finitely many types of pieces; we can describe infinite groups and other
mathematical structures using finitely many generators and relations; in the practical domain of computers,
systematicity is synonymous with programmability and expressibility.

Point of information: Do we have maths for systematicity? Yes, and I will consider it to be what-
ever it is that applied category theorists study. The concepts of systematicity and compositionality are deeply
linked, because the only way we know how to achieve systematicity in practice is by a compositional systems,
which can achieve infinite ends by finite means. Frege’s initial conception of compositionality [Fre84] was
borne of meditations on language, and states that a whole is the sum of its parts. Later conceptions of com-
positionality, the most notable deviation arising from meditations on quantum theory, generalises Frege’s
set-function conception of compositionality by varying the formal definitions of parts and the method of
summation, and weakening the identification of the wholes with its parts to methods of keeping track of the
relationships between wholes and parts [Coe21].

Returning to the stag: So our starting point is that language is systematic and systematicity is the em-
pirical surface of compositionality as far as we know, so compositionality is probably part of the solution to
the poverty of the stimulus, if not most of it. The reasoning above should clarify why some folks don’t think
LLMs have anything to do with language as we humans do it. Their issue with purely data-driven architec-
tures is either that we know immediately that they cannot be operating upon their inputs in a compositional
way, or perhaps they appear to but their innards are too large and their workings too opaque to tell with
confidence. Insofar as the task of learning language splits between learning meanings and learning the com-
positional rules of syntax that give rise to systematicity, the framework I present in this thesis is a proposal to
split the cake sensibly between the two halves of the problem: meanings for the machines, and we’ll supply
the compositional rules. Syntax is still difficult and vast, but the rules are finite and relatively static. We can
crack the black-box by treating syntax as directions for composition of smaller black-boxes that handle seman-
tics. We all stand to benefit: we may give machines an easier time – now they only have to learn the meanings
of words well – and we might gain confidence that the internal representations of the machine – their "mind’s
eye" – contains something we can probe and understand.
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Figure 1.15: To summarise: composition by nesting
corresponds to grammatical structure within sen-
tences. Sentences correspond to filled gates, boxes
with fixed arity correspond to first-order modifiers
such as adverbs and adpositions, and boxes with
variable arity correspond to sentential-level modi-
fiers such as conjunctions and verbs with sentential
complements.

1.3.1 Objection: You’re forgetting the bitter lesson.

The bitter lesson is so harsh and often-enough repeated that this viewpoint is worth addressing proactively.
The caveat that saves us is that the curse of expertise applies only to the object-language of the problem to be
solved, not model architectures. We agree that qualitative improvements in problem-solving ability rarely if
ever arise from encoding expert knowledge of the problem domain. Instead, these improvements come from
architectural innovations, which means altering the parts and internal interactions of a model: changing how

it thinks rather than what it thinks, to paraphrase Sutton’s original prescription. We have good historical ev-
idence that this prescription works, which we see by tracing the evolutionary path for data-driven language
models from markov chains to deep learning [LBH15], RNNs [RM87], LSTMs [HS97], and now transformers
[VSP+17]. Such structural changes are motivated by understandings (at varying degrees of formality) of the
"geometry of the problem" [BBCV21]. The value proposition here is that with an appropriate mathematical
lingua franca for structure, composition, and interaction, we can mindfully design rather than stumble upon
the "meta-methods" Sutton calls for, allowing experts to encode how machines think and discover rather than
what. Importing compositional and structural understanding from linguistics to machine learning via string
diagrams might allow us to cheat the bitter lesson in spirit while adhering to the letter, and there is some
preliminary empirical evidence for this, which I report on in Section 3.3.

1.3.2 Objection: GOFAI? GO-F-yourself!

Hostility (or at least indifference) to symbolic approaches is a stance espoused by virtually all of modern
machine learning, and for good reasons. This stance is worth elaborating and steelmanning for pen-and-
paper-people in the context of engineering language applications.

First, many linguistic phenomena are nebulous [Chapm]: the boundary of a simile is like that of a cloud,
not sharp like the boundary of a billiard ball. Second, linguistic phenomena are complex, dynamic, and mul-
tifactorial: there are so many interacting mechanisms and forces in the production and comprehension of
language that it is plausibly "computationally irreducible" [Wol02], or a "type 2" problem [Mar77], both terms
referring to a kind of computational difficulty where the only explanation of a system amounts to a total
computational simulation of it. Third, nebulousity and irreducibility together weakly characterise the kinds
of problem domains where machine learning shines, so add to all this that we can achieve better results by
caring less, c.f. Jelinek on speech-recognition: "Every time I fire a linguist, the performance of the speech
recognizer goes up". So for the practical person, these are very good reasons to not bother with trying to
understand or "break down" the phenomenon in a principled way as part of the process of engineering an
application.

So what good are pen-and-paper theories as far as practical applications are concerned? To borrow terms
from concurrency, there is already plenty of liveness, what is needed is more safety; liveness is when the
program does something good, and safety is a guarantee it won’t do something bad. For example, there is
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ongoing work in integrating LLMs with stuctured databases for uses where facts and figures and ontologies
matter; there is still a need for safeguards to prevent harmful outputs and adversarial attacks like prompt
injection; while LLMs give a very convincing impression of reasoned thought, we would like to be sure if ever
we decide to use such a machine for anything more than entertainment, such as assisting a caregiver in the
course of healthcare decisions.

The good news is that symbolic-compositional theories are the right shape for safety concerns, because
they can be picked apart and reasoned about. It is clear however that symbolic-compositional approaches by
themselves are nowhere near achieving the kind of liveness LLMs have. Therefore, the direction of progress
is synthesis.

1.3.3 Objection: How does any of this improve capabilities?

It’s not meant to. The core value proposition for synthesis is interpretable AI, which operates in a manner
we can analyse, and if appropriate, constrain. When lives are on the line (or more gravely, when capital is at
risk), we would like to be certain that outputs are backed by guarantees. For this purpose, merely knowing
what a deep-learning model is thinking is not enough: i.e. solving something like symbol-grounding alone is
a necessary but insufficient component. For instance, merely knowing what the weights of subnetworks of an
image classification model represent does not meet our requirement of an understanding of the computations
that manipulate those representations. It would be nice to simply tell the AI how to behave in such-and-such a
way according to common sense, but having it do as you mean and not as you say is such a difficult problem
that it has a name: alignment, and it’s worth noting that category theory underpins some of the most promis-
ing approaches to this problem [dav]. This isn’t to say that techniques such as reinforcement learning from
human feedback cannot in principle succeed at doing precisely what we want for alignment, it’s just that
a constructive methodology of verifying or guaranteeing success to the bulletproof epistemic standards of
mathematics remains wanting. Our best bet is some kind of symbolic-compositional structure for us to begin
reasoning about the innards of the machines.

To distinguish the difference in approach here, I have to draw a distinction in neurosymbolic approaches
that does not seem well-supported in the literature. There are many approaches concerned with using con-
nectionist architectures to simulate or aid or be-aided-by symbolic composition, which we can see the be-
ginnings of in LLMs by examples such as chain-of-thought reasoning [WWS+23], and by probing their be-
haviour with respect to understood symbolic models [KW23]. The second kind of approach I would like to
articulate is the inverse, where connectionist architectures are organised and reasoned with by symbolic-
compositional means. Some examples of the first kind include implementing data structures as operations
on high-dimensional vectors, taking advantage of the idiosyncrasies of linear algebra in very high dimension
[Kan19], or work that explores how the structure of word-embeddings in latent space encode semantic rela-
tionships between tokens. Some examples of the second kind include reasoning about the capability of graph
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I recount the following from [Søg23], which argues
that symbol-grounding is solvable from data alone,
and in the process surveys the front of the symbol-
grounding problem in AI: the issue of whether LLMs
encode what words refer to and mean. On the account
of [BK20], the performance of current LLMs is a form
of Chinese Room [Sea80] phenomenon, so no amount
of linguistic competence can be evidence that LLMs
solve the symbol-grounding problem. However, the
available evidence appears to suggest otherwise. For
example, large models converge on word embeddings
for geographical place names that are isomorphic to their
physical locations [LAS21]. Since we know that brain
activity patterns encode abstract conceptual space with
the same mechanisms as they do physical spaces [KS16],
extrapolating the ability of LLMs to encode spatially-
analogical representations would in the limit suggest
that LLMs encode meanings in a way isomorphic to how
we do, modulo the token-word distinction and so long
as we take seriously some version of Gärdenfors’ [Gär14]
thesis that meaning is encoded geometrically.

neural networks by identifying or isolating their underlying compositional structure [LGT23], or architectures
whose behaviour arises from compositional structure using neural nets as constituent parts, such as GANs
[GPM+14] and gradient boosted decision trees [CG16]. The work in this thesis builds upon a research pro-
gramme – DisCoCat [CSC10], elaborated in Section 1.7 – which lies somewhere in the middle of a duality of
approaches to merging connectionism and symbolic-composition. It is, to the best of my knowledge, the only
approach that explicitly incorporates mathematically rigourous compositional structures from the top-down
alongside data-driven learning methods from the bottom-up. Fortifying this bridge across the aisle requires a
little give from both sides; I ask only that reader entertain some pretty string diagrams.

1.4 Second Reply: LLMs don’t help us understand language; how might string diagrams help?

Another way to deal with the devastating question of LLMs is to reject it, on the basis that using or under-
standing LLMs is completely different from understanding language, and language is worth understanding
in its own right. To illustrate this point by a thought experiment, what would linguistics look like if it began
today? LLMs would appear to us as oracles; wise, superhumanly capable at language, but inscrutable. Sim-
ilarly, most people effortlessly use language without a formal understanding which they can express. So the
fundamental mystery would remain unchanged. Understanding how an LLM works at the algorithmic level
cannot help. Borrowing and bastardising a thought from Marr, suppose you knew the insides of a mechani-
cal calculator by heart. Does that mean you understand arithmetic? At best, obliquely, and maybe not at all:
the calculator is full of inessentialities and tricks to fit platonic arithmetic against the constraints of physics,
and you would not know where the tricks begin and the essence ends. Similarly, suppose you knew every
line of code within and every piece of data used to train an LLM; does that mean you understand how lan-
guage works? How does one delineate what is essential to language, and what is accidental? So let’s forget
about LLMs. The value proposition to establish now is how string diagrams and some category theory comes
into the picture for the formal linguist who is concerned with understanding how language works, and that’s
the whole rest of the thesis. I sense one more objection from the practical reader, and one from the theoretical
reader, so I’ll address them in that order before moving on.

1.4.1 Objection: Isn’t the better theory the one with better predictions?

LLMs are a theory of language in the same way a particular human brain is a theory of cognition; at best,
debatablely. There are various criteria – not all independent – that are arguably necessary for something to
qualify as an explanatory theory, and while LLMs satisfice (or even excel) at some, they fail at others. Empir-
ical adequacy – the ability of theory to account for the available empirical data and make good predictions
about future observations – is one such criterion, and here LLMs excel. In constast to the idealised and par-
tial nature of formal theories, the nature of LLMs is that they are trained on empirical data about language
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But there is a worthwhile observation we can make
from an understanding of the computational aims of
LLMs. Insofar as the computational aim of a finished
LLM is purely to predict the most plausible next token
(modulo RLHF and with respect to a massive corpus),
it is now an empirical fact that the artefact of language
as it exists outside of human users carries sufficient
structure to reconstruct the appearance of novel complex
thought processes. I cannot understand why linguists
are not all deeply excited at the possibilities. If it is the
case that we learn such complex thought processes in
the first place from language, we might elevate our
consideration of language from a technology or tool to
an equal and symbiotic partnership with its users as a
living repository of disembodied cognition; linguists
stand to be promoted from archaeologists to keybearers
of thinking. The existence of competent non-human
language users tantalises the exploration of language as
a phenomenon in its own right, outside of the cognitive
turn and the human perspective – consider that if aliens
were discovered tomorrow, xenobiologists would simply
be called biologists; why should the study of language
remain parochial when the aliens landed yesterday?
Plus our aliens don’t mind vivisection! However, such
radical reconceptions of language have not yet been
articulated, so it remains that LLMs do not help linguists
do linguistics in its current conception.

that captures the friction of the real world. So, in terms of raw predictive power, we should naturally expect
the LLMs to have an advantage over principled theories. They are so good at empirical capture that to some
degree they automatically satisfy the related criteria of coherence – consistency with other established lin-
guistic theories – and scope – the ability to capture a wide range of phenomena. But while empirical capture
is necessary for explanatory theories, it is insufficient.

There are several criteria where the adequacy of LLMs is unclear or debatable. Fruitfulness is a sociolog-
ical criterion for goodness of explanatory theories, in that they should generate new predictions and lead to
further discoveries and research. While they are certainly a potent catalyst for research in many fields even
beyond machine learning, it is unclear for now how they relate to the subject matter of linguistics. Whether
they satisfy Popper’s criterion of falsifiability is as of yet not determined, because it is not settled how to go
about falsifying the linguistic predictions of LLMs, or even express what the content of a theory embodied
by an LLM is. The closest examples to falsifiability that come to mind are tests of LLM fallibility for reason-
ing and compositional phenomena [DLS+23], or their weakness to adversarial prompt-injections [Ril22], but
these weaknesses do not shed light on their linguistic competence and "understanding" directly.

Now the disappointments. As far as we can tell; LLMs are far from simple, and simplicity (Occam’s Razor)
is an ancient criterion for the goodness of explanation; while they exhibit, they do not explain the structure,
use, and acquisition of language; they do not unify or subsume our prior understanding of linguistics. The
first two points are basically unobjectionable, so I will briefly elaborate on the criterion of unification and
subsumption of prior understandings, borrowing a framework from cognitive neuroscience. A common
methodology for investigating cognitive systems is Marr’s 3 levels [Mar10] (poorly named, since they are not
hierarchical, but more like interacting domains.) Level 1 is the computational theory, an extensional perspec-
tive that concerns tasks and functions: at this level on asks what the contents and aims of a system are, to
evaluate what the system is computing and why, respectively. Level 2 is representation and algorithm, an
intensional perspective that concerns the representational format of the contents within the system, and the
procedures by which they are manipulated to arrive at outcomes and outputs. Level 3 is hardware, which
concerns the mechanical execution of the system, as gears in a mechanical calculutor or as values, reads, and
writes in computer memory. In the case of LLMs, we understand well the nature of the computational theory
level, at least in their current incarnation as next-token-predictors, which is a narrow and clear task. Further-
more, we understand the hardware level well, from the silicon going up through the ladder of abstraction
to software libraries and the componentwise activity of neural nets. Yet somehow, we know everything and
nothing at once about the representation and algorithm level; we can explain how transformer models work
in terms of attention mechanisms and lookback, and how it is that these models are trained using data to
produce the outputs they do. In spite of understandings which should jointly cover all of level 2, we cannot
relate their operations on language to our own.
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To illustrate the insufficiency of empirical capture to
make a theory, consider the historical case study of mod-
els of what we now call the solar system. The Ptolemaic
geocentric model of the solar system was more empir-
ically precise than the heliocentric Copernican, even
though the latter was empirically "more correct". This
should not be surprising, because Ptolemaic epicycles
can overfit to approximate any observed trajectory of
planets. It took until Einstein’s relativity to explain the
precession of perihelion of mercury, which at last aligned
theoretical understanding with empirical observation.
But Newton’s theory of gravity was undeniably worth-
while science, even if it was empirically outperformed
by its contemporaries. Consider just how divorced from
reality Newton was: Aristotelian physics is actually
correct on earth, where objects don’t continue moving
unless force is continually supplied, because friction
exists. It took a radical departure from empirical con-
cerns to the frictionless environment of space in order
obtain the simplified and idealised model of gravity
that is the foundation of our understanding of the solar
system and beyond. The lessons as I see them are as fol-
lows. First, aimed towards some advocates of theory-free
approaches, we should belay the order to evacuate lin-
guistics departments because performance is to some de-
gree orthogonal to understanding. In fact, the scientific
route of understanding involves simplified and idealised
models that ignore friction, and will necessarily suffer
in performance while maturing, so one must be patient.
Second, aimed towards some theoreticians, haphazard
gluing together of different theories and decorating them
with bells-and-whistles for the sake of fitting empirical
observation is no different than adding epicycles; one
must either declare a foundational or philosophical jus-
tification apart from empirical capture (which machines
are better at anyway), or state outright that it’s just a
fun and meaningful hobby, like painting. Third, inter-
pretability done well requires a suitable representation
and level of abstraction; imagine an epicyclist explain-
ing the precession of mercury’s perihelion by pointing
at a collection of epicycles and calling it a "distributed
representation", and compare to prodding subnetworks.

1.4.2 Why Category Theory?

The short answer: no reason. Implicitly, what’s wrong with 𝜆-calculus and whatever else? The short
answer is that there’s no reason to use category theory if you don’t feel like it’s worth the effort. It’s definitely
not an issue of expressivity: after all, whatever we can do with a modern programming language we can also
do with punchcards in principle, and one can think of category theory as just a high-level math language that
abstracts away a lot of details some may consider unimportant.

The longer answer: why not? The modeller mediates the gap between mathematics and reality by a nec-
essarily subjective process. If formal linguistics is a hobby, then the choice of mathematics used is merely a
matter of taste, and there is no need for further discussion. If however formal – explicitly mathematical – lin-
guistics aspires to something universal and canonical, then it may be a good idea to start with a mathematical
metalanguage where structural similarities, compositionality, and modularity are primitives. Now let me
sketch why using some more complicated mathematics might in this case be a good idea.

Our capacity for language is one of the oldest and sophisticated pieces of compositional technology, maybe
even the foundation of compositional thought. So, linguists are veteran students of compositionality and
modularity. How does syntax compose meaning? How do the constraints and affordances of language in-
teract? Concern number one for the formal study of language is having a metalanguage in which to build
models and theories, and here for the moment we find our 𝜆s and sequents and whatever else.

Linguistics embodies a encyclopaedic record of how compositionality works "in the field", just as botanists
record flowers, early astronomers the planetary motions, or stamp-collectors stamps. But a disparate collec-
tion of observations encoded in different formats does not a theory make; we will inevitably wish to bring
it all together. Accordingly, concern number two for the formal study of language is having a metametalan-
guage with which to relate the various metalanguages. Obviously, the metametalanguage is set theory, which
is the gold standard that backs everything else.

The set theoretic standard was forced by a historical lack of alternatives, and as a result, serious formal
linguists are applied set theorists. However, set theory is not well-suited for complex and interacting moving
parts, because it demands bottom-up specifications. So for instance if one wishes to specify a function, one
has to spell out how it behaves on the domain and codomain, which means spelling out what the innards
of the domain and codomain are; to specify a set theoretic model necessitates providing complete detail of
how every part looks on the inside. This is an innate feature of set theory. Consider the case of the cartesian
product of sets, one of the basic constructions. 𝐴 × 𝐵 is the "set of ordered pairs" (𝑎, 𝑏) of elements from the
respective sets, but there are many ways of encoding ordered pairs that are equivalent in spirit but not in
syntax; a sign that the syntax is a hindrance, or obfuscating something important. Here is a small sampling of
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If you are a formal linguist doing serious work with
set-theoretic foundations, take this quick test to see if
categories and diagrams might be right for you. For
each of the statements below, note whether you agree or
disagree.

• It is not fun to read, write, or think with set-builder
notation.

• It is difficult to relate my work to what other people
are interested in.

• It is costly to tinker with and modify my framework.

• It is hard to communicate my framework to others.

• It would be nice to integrate my work with methods
used in other fields, like computer science.

If you agreed with any of the above, consult your
nearest category theorist to see if string diagrams are
right for you. If not, have a nice day.

different ways to encode an ordered pair. Kuratowski’s definition is

𝐴 × 𝐵 ∶= {{{𝑎}, {𝑎, 𝑏}} | 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵}

Which could have just as easily been:

𝐴 × 𝐵 ∶= {{{𝑎, 𝑏}, 𝑏} | 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵}

And here is Wiener’s definition:
𝐴 × 𝐵 ∶= {{{𝑎,∅}, 𝑏} | 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵}

But we don’t care what the precise implementation is so long as the property that (𝑎, 𝑏) = (𝑐, 𝑑) just when 𝑎 =
𝑐 and 𝑏 = 𝑑 holds. The same kind of problem keeps occurring at all levels of complexity: suppose you have a
set-indexed set of things {𝑇𝑖 | 𝑖 ∈ 𝐼}, which you can choose to implement as a function 𝐼 → 𝐓. Then somebody
else wants to make the indexing set dynamically updatable with novel elements, so they have to rephrase
the indexing mechanism as a set of tuples {(𝑇𝑖1 , 𝑖1), (𝑇𝑖2 , 𝑖2),⋯} so that they can add or remove elements, and
then someone else comes along and decides that the indexes have structure that disallow certain things to
be indexed... All this means that if one wants to use set theory to relate different theories at a "structural"
level, one must first analyse both in terms of their constituent sets and functions in order to construct more
functions between sets and functions. As you may already know if you’re in the business of articulating
formal systems, representation-dependency makes this process a bureaucratic nightmare.

1.4.3 Objection: Aren’t string diagrams just graphs?

Yes and no! This point is best communicated by a mathematical koan. Consider the following game between
two players, you and me. There are 9 cards labelled 1 through 9 face up on the table. We take turns taking
one of the cards. The winner is whoever first has three cards in hand that sum to 15, and the game is a draw
if we have taken all the cards on the table and neither of us have three cards in hand that sum to 15. I will let
you go first. Can you guarantee that you won’t lose? Can you spell out a winning strategy? If you have never
heard this story, give it an honest minute’s thought before reading on.

The usual response is that you don’t know a winning strategy. I claim that you probably do. I claim that
even a child knows how to play adeptly. I’ll even wager that you have played this game before. The game
is Tic-Tac-Toe, also known as Naughts-and-Crosses: it is possible to arrange the numbers 1 to 9 in a 3-by-3
magic square, such that every column, row, and diagonal sums to 15.

The lesson here is that choice of representations matter. In the mathematical context, representations mat-
ter because they generalise differently. On the surface, here is an example of two representations of the same
platonic mathematical object. However, Tic-Tac-Toe is in the same family as Connect-4 or 5-in-a-row on an
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The deeper objection here is that diagrams do not look
like serious mathematics. The reasons behind this rather
common prejudice are worth elaborating. This is the
wound Bourbaki has inflicted. Nicolas Bourbaki is a
pseudonym for a group of French mathematicians, who
wrote a highly influential series of textbooks. It is diffi-
cult to overstate their influence. The group was founded
in the aftermath of the First World War, around the task
of writing a comprehensive and rigourous foundations
of mathematics from the ground up. The immediate
raison-d’être for this project was that extant texts at the
time were outdated, because the oral tradition and liv-
ing history of mathematics in institutions of learning in
France were decimated by the deaths of mathematicians
at war. In a broader historical context, Bourbaki was a
reactionary response to the crisis in the foundations of
mathematics at the beginning of the century, elicited
by Russell’s paradox. Accordingly, their aims were ra-
tionalist, totalitarian, and high-modernist, in line with
their contemporary artistic and musical fashions; they
wanted to write timelessly, to settle the issues once and
for all. Consequently, Bourbaki’s Definition-Proposition-
Theorem style of mathematical exposition is a historical
aberration: a bastardisation of Euclid that eschews intu-
ition via illustration and specific examples in favour of
abstraction and generality, requiring years of initiation
to effectively read and write, and remaining de rigeur

for rigour today in dry mathematics textbooks. The
deeper objection arises from the supposition that serious
mathematics ought to be arcane and difficult, as most
mathematics exposition after Bourbaki is. The reply is
that it need not be so, and that it was not always so! The
Bourbaki format places emphasis and prestige upon
the deductive activity that goes into proving a theorem,
displacing other aspects of mathematical activity such
as constructions, algorithms, and taxonomisation. These
latter aspects are better suited for the nebulous subject
matter of natural language, which doesn’t lend itself well
to theorems, but is a happy muse for mathematical play.

unbounded grid, while the game with numbered cards generalises to different variants of Nim. That they
coincide in one instance is a fork in the path. In the same way, viewing string diagrams as "just graphs" is tak-
ing the wrong path, just as it would be true but unhelpful to consider graphs "just sets of vertices and edges".
String diagrams are indeed "just" a special family of graphs, just as much as prime numbers are special inte-
gers and analytic functions are special functions.

In a broader context, representations matter for the sake of improved human-machine relations. These two
representations are the same as far as a computer or a formal symbol-pusher is concerned, but they make
world of difference to a human native of meatspace. We ought to swing the pendulum towards incorporating
human-friendly representations in language models, so that we may audit those representations for explain-
ability concerns. As it stands, there is something fundamentally inhuman and behavioural about treating the
production of language as a string of words drawn from a probability distribution. I don’t know about you,
but I tend to use language to express pre-existing thoughts in my head that aren’t by nature linguistic. Even if
we grant that the latent space of a data-driven architecture is an analog for the space of internal mental states
of a human user of language, how can we know whether the spaces are structurally analogous to the extent
that human-machine partnership through the interface of natural language is safe? So here again is a possible
solution: by composing architectures in the shape of language from the start, we may begin to attempt guar-
antees that the latent-space representations of the machine are built up in the same way we build up a mental
representation when we read a book or watch a film.

1.5 Synopsis of the thesis

I’m going to try computing the semantics of some metaphors, via syntax, using string diagrams. It doesn’t
interest me whether it’s been done before by other formal means, I only care to demonstrate the breadth and
reach of string diagrams. All of the rest of the thesis until then is in some way preparation for that exercise,
and the remainder of this chapter after this section will deal with mathematical and scientific background.

I will develop some diagrammatic technology in Chapter 2, where I introduce monoidal cofunctors for
dealing with the kind of systematic relationships we see in language. In the process, I introduce and explain
internal wirings, and I also explore how productive and parsing grammars ought to relate to each other in
light of the fact that communication is possible.

It will then be necessary to justify some kind of systematic relationship between text circuits and some-
thing resembling text in natural language, which will be the purpose of Chapter 3. Here I introduce weak
𝑛-categorical signatures as generalisations of string rewrite systems to higher dimensions. I demonstrate that
context-free, context-sensitive, and tree-adjoining grammars are all formalisable in this one setting, in which
I then construct a generative grammar that simultaneously produces grammatical text as strings of words,
and the requisite structure to obtain text circuits. This relationship between text circuits and text will be en-
capsulated in the Text Circuit Theorem. I close this section with some discussion of ongoing practical and
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theoretical developments in text circuits, and point out some avenues of generalisation.
Once we have text circuits, we will need some monoidal category in which to interpret and calculate with

them. In particular, it would be nice to calculate formally with the kinds of iconic cartoon representations
that are typically used typically as informal schematic illustrations of metaphors. For this purpose, in Chap-
ter 4 I introduce ContRel, a symmetric monoidal category of continuous relations. I diagrammatically char-
acterise set-indexed collections of disjoint open subsets of a space – i.e. shapes with labels – as idempotents
that interact with a special frobenius algebra. I will then develop a vocabulary of linguistic topological con-
cepts so that shapes can be connected or touching or inside one another, and I will make them move and
dance as I please. All of that gets done using just equations between string diagrams, and the diagrams un-
derpinning these iconic semantics are a natural basis upon which one can perform truth-conditional analy-
ses.

Then we will have text circuits, a formal setting to reason with and about cartoons, and diagrammatic
techniques to form a structured correspondence between a text and its representation as a cartoon, at which
point I will do a couple of sketches in Chapter 5, and close with the computation of a metaphor.
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There are a lot of definitions to get started, but as with
programming languages, preloading the work makes it
easier to scale. This is the mathematical source code of
string diagrams, which is only necessary if we need to
show that something new is a symmetric monoidal cat-
egory or if we are tinkering deeply, so it can be skipped
for now. The important takeaway is that string diagrams
are syntax, with morphisms in symmetric monoidal
categories as semantics.

Definition 1.6.1 (Category). A category 𝒞 consists of the
following data

• A collection Ob(𝒞) of objects

• For every pair of objects 𝐴, 𝐵 ∈ Ob(𝒞), a set 𝒞(𝐴, 𝐵) of
morphisms from 𝑎 to 𝑏.

• Every object 𝑎 ∈ Ob(𝒞) has a specified morphism 1𝑎

in 𝒞(𝑎, 𝑎) called the identity morphism on 𝑎.

• Every triple of objects 𝐴, 𝐵, 𝐶 ∈ Ob(𝒞), and every
pair of morphisms 𝑓 ∈ 𝒞(𝐴, 𝐵) and 𝑔 ∈ 𝒞(𝑏, 𝑐) has a
specified morphism (𝑓; 𝑔) ∈ 𝒞(𝑎, 𝑐) called the composite

of 𝑓 and 𝑔.
This data has to satisfy two coherence conditions, which
are:

Unitality: For any morphism 𝑓 ∶ 𝑎 → 𝑏, we require
1𝑎;𝑓 = 𝑓 = 𝑓; 1𝑏

Associativity: For any four objects 𝐴, 𝐵, 𝐶, 𝐷 and three
morphisms 𝑓 ∶ 𝐴 → 𝐵, 𝑔 ∶ 𝐵 → 𝐶, ℎ ∶ 𝐶 → 𝐷,
(𝑓; 𝑔);ℎ = 𝑓; (𝑔;ℎ)

1.6 Process Theories

This section seeks to introduce process theories via string diagrams. The margin material will provide the
formal mathematics of string diagrams from the bottum-up. The main body develops process theories via
string diagrams by example, through which we develop towards a model of linguistic spatial relations –
words like "to the left of" and "between" – which are a common ground of competence we all possess. Here
we only focus on geometric relations between points in two dimensional Euclidean space equipped with the
usual notions of metric and distance, providing adequate foundations to follow [WC21], in which I demon-
strate how text circuits can be obtained from sentences and how such text circuits interpreted in the category
of sets and relations Rel provides a semantics for such sentences. This motivates the question of how to ex-
press the (arguably more primitive [Jea67]) linguistic topological concepts – such as "touching" and "inside",
which we provide all the necessary tools for in Section 5.1. We close this section with a brief note on how
process theories relate to mathematical foundations and computer science.

A process is something that transforms some number of input system types to some number of output
system types. We depict systems as wires, labelled with their type, and processes as boxes. Unless otherwise
specified, we read processes from left to right.

Inputs Process Outputs

𝐴

𝐵

𝐶

𝐷

𝐸

Φ

Processes may compose in parallel, depicted as placing boxes next to each other.

𝐴

𝐵

𝐶

𝐷

𝐸

Φ

Ψ

𝐸

𝐶

𝐴

Processes may compose sequentially, depicted as connecting wires of the same type.

𝐴

𝐵

𝐶

𝐷

Φ

Ψ

𝐸

𝐴
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Definition 1.6.2 (Categorical Product). In a category
𝒞, given two objects 𝑎, 𝑏 ∈ Ob(𝒞), the product 𝐴 × 𝐵, if
it exists, is an object with projection morphisms 𝜋0 ∶

𝐴 × 𝐵 → 𝐴 and 𝜋1 ∶ 𝐴 × 𝐵 → 𝐵 such that for any
object 𝑥 ∈ Ob(𝒞) and any pair of morphisms 𝑓 ∶ 𝑋 →

𝐴 and 𝑔 ∶ 𝑥 → 𝑏, there exists a unique morphism
𝑓 × 𝑔 ∶ 𝑋 → 𝐴 × 𝐵 such that 𝑓 = (𝑓 × 𝑔);𝜋0 and 𝑔 =

(𝑓 × 𝑔);𝜋1. This is a mouthful which is easier expressed
as a commuting diagram as below. The dashed arrow
indicates uniqueness. 𝐴 × 𝐵 is a product when every
path through the diagram following the arrows between
two objects is an equality.

𝑥

𝑎 𝑎 × 𝑏 𝑏

⟨𝑓,𝑔⟩𝑓 𝑔

𝜋1𝜋0

The idea behind the definition of product is simple:
instead of explicitly constructing the cartesian product
of sets from within, let’s say a product is as a product does.
For objects, the cartesian product of sets 𝐴 × 𝐵 is a set
of pairs, and we may destruct those pairs by extracting
or projecting out the first and second elements, hence
the projection maps 𝜋0, 𝜋1. Another thing we would like
to do with pairs is construct them; whenever we have
some 𝐴-data and 𝐵-data, we can pair them in such a way
that construction followed by destruction is lossless and
doesn’t add anything. In category-theoretic terms, we
select ‘arbitrary’ 𝐴- and 𝐵-data by arrows 𝑓 ∶ 𝑋 → 𝐴

and 𝑔 ∶ 𝑋 → 𝐵, and we declare that 𝑓 × 𝑔 ∶ 𝑋 → 𝐴 × 𝐵

is the unique way to select corresponding tuples in
𝐴 × 𝐵. This design-pattern of "for all such-and-such
there exists a unique such-and-such" is an instance of a
so-called universal property, the purpose of which is to
establish isomorphism between operationally equivalent
implementations.

In these diagrams only input-output connectivity matters: so we may twist wires and slide boxes along wires
to obtain different diagrams that still refer to the same process. So the diagram below is equal to the diagram
above.

𝐴

𝐵 𝐶

𝐷

Φ

Ψ

𝐸

𝐴

Some processes have no inputs; we call these states.

𝛼 𝑋

Some processes have no outputs; we call these tests.

𝜔𝑋

A process with no inputs and no outputs is a number; the number tells us the outcome of applying tests to a
composite of states modified by processes.

𝐶

𝐷

Φ

Ψ

𝐸

𝐴

𝛽

𝐴

𝐵

𝜉

𝜁

A process theory is given by the following data:

• A collection of systems

• A collection of processes along with their input and output systems

• A methodology to compose systems and processes sequentially and in parallel, and a specification of the
unit of parallel composition.

• A collection of equations between composite processes

Example 1.6.8 (Linear maps with direct sum). Systems are finite-dimensional vector spaces over R. Processes
are linear maps, expressed as matrices with entries in R.

Sequential composition is matrix multiplication. Parallel composition of systems is the direct sum of vector
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To understand what this style of definition gives us, let’s
revisit Kuratowski’s and Wiener’s definitions of cartesian
product, which are, respectively:

𝐴
𝐾
× 𝐵 ∶= {{{𝑎}, {𝑎, 𝑏}} | 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵}

𝐴
𝑊
× 𝐵 ∶= {{{𝑎,∅}, 𝑏} | 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵}

Keeping overset-labels and using maplet notation, the
associated projections are:

𝐾
𝜋0 ∶= {{𝑎}, {𝑎, 𝑏}}↦ 𝑎

𝐾
𝜋1 ∶= {{𝑎}, {𝑎, 𝑏}}↦ 𝑏

𝑊
𝜋0 ∶= {{𝑎,∅}, 𝑏}↦ 𝑎

𝑊
𝜋1 ∶= {{𝑎,∅}, 𝑏}↦ 𝑏

And maps 𝑓, 𝑔 into 𝐴 and 𝐵 are tupled by the following:

𝑓
𝐾
× 𝑔 ∶= 𝑥 ↦ {{𝑓(𝑥)}, {𝑓(𝑥), 𝑔(𝑥)}}

𝑓
𝑊
× 𝑔 ∶= 𝑥 ↦ {{𝑓(𝑥),∅}, 𝑔(𝑥)}

Both satisfy the commutative diagram defining the

product. Something neat happens when we pick 𝐴
𝐾
× 𝐵

to be the arbitrary 𝑋 for the product definition of 𝐴
𝑊
× 𝐵

and vice versa. We get to mash the commuting diagrams
together:

𝐴
𝐾
× 𝐵

𝐴 𝐵

𝐴
𝑊
× 𝐵 𝐴

𝑊
× 𝐵

𝐾

𝜋0
𝐾

𝜋1

𝑊

𝜋1

𝑊

𝜋0

𝑊

𝜋0
𝑊

𝜋1

𝑖𝑑

spaces ⊕. The parallel composition of matrices 𝐀,𝐁 is the block-diagonal matrix

[
𝐀 𝟎

𝟎 𝐁
]

The unit of parallel composition is the singleton 0-dimensional vector space. States are row vectors. Tests
are column vectors. The numbers are R. Usually the monoidal product is written with the symbol ⊗, which
clashes with notation for the hadamard product for linear maps, while the process theory we have just de-
scribed takes the direct sum ⊕ to be the monoidal product.

Example 1.6.9 (Sets and functions with cartesian product). Systems are sets 𝐴, 𝐵. Processes are functions
between sets 𝑓 ∶ 𝐴 → 𝐵. Sequential composition is function composition. Parallel composition of systems is
the cartesian product of sets: the set of ordered pairs of two sets.

𝐴⊗𝐵 = 𝐴 × 𝐵 ∶= {(𝑎, 𝑏) | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}

The parallel composition 𝑓 ⊗ 𝑔 ∶ 𝐴 × 𝐶 → 𝐵 ×𝐷 of functions 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐶 → 𝐷 is defined:

𝑓 ⊗ 𝑔 ∶= (𝑎, 𝑐)↦ (𝑓(𝑎), 𝑔(𝑐))

The unit of parallel composition is the singleton set {⋆}. There are many singletons, but this presents no
problem for the later formal definition because they are all equivalent up to unique isomorphism. States of
a set 𝐴 correspond to elements 𝑎 ∈ 𝐴 – we forgo the usual categorical definition of points from the terminal
object in favour of generalised points from the monoidal perspective. Every system 𝐴 has only one test 𝑎 ↦

⋆; this is since the singleton is terminal in Set. So there is only one number.

Example 1.6.10 (Sets and relations with cartesian product). Systems are sets 𝐴, 𝐵. Processes are relations
between sets Φ ⊆ 𝐴 × 𝐵, which we may write in either direction Φ∗ ∶ 𝐴 ↛ 𝐵 or Φ∗ ∶ 𝐵 ↛ 𝐴. Relations be-
tween sets are equivalently matrices with entries from the boolean semiring. Relation composition is matrix
multiplication with the boolean semiring. Φ∗,Φ∗ are the transposes of one another. Sequential composition is
relation composition:

𝐴
Φ
↛ 𝐵

Ψ
↛ 𝐶 ∶= {(𝑎, 𝑐) | 𝑎 ∈ 𝐴, 𝑐 ∈ 𝐶, ∃𝑏∈𝐵 ∶ (𝑎, 𝑏) ∈ Φ ∧ (𝑏, 𝑐) ∈ Ψ}

Parallel composition of systems is the cartesian product of sets. The parallel composition of relations 𝐴 ⊗

𝐶
Φ⊗Ψ
↛ 𝐵⊗𝐷 of relations 𝐴

Φ
↛ 𝐵 and 𝐶

Ψ
↛ 𝐷 is defined:

Φ⊗Ψ ∶= {
(
(𝑎, 𝑐), (𝑏, 𝑑)

)
| (𝑎, 𝑏) ∈ Φ ∧ (𝑐, 𝑑) ∈ Ψ}

The unit of parallel composition is the singleton. States and tests of a set 𝐴 are subsets of 𝐴.
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The two unique arrows between
𝐾
× and

𝑊
× are format-

conversions, and we know by definition that the unique

arrow that performs format conversion from
𝑊
× to itself

in the bottom face is the identity. In maplet notation, the

conversion from 𝐴
𝐾
×𝐵 → 𝐴

𝑊
× 𝐵 is {{𝑎}, {𝑎, 𝑏}}↦ {{𝑎,∅}, 𝑏},

and similarly for the other direction. Because these con-
versions are uniquely determined arrows, their com-
posite is also uniquely determined, and we know their
composite is equal to the identity. So, the nontrivial

conversions witness an isomorphism between 𝐴
𝐾
× 𝐵 and

𝐴
𝑊
×𝑊; a pair of maps 𝑋 → 𝑌 and 𝑌 → 𝑋 such that their

loop-composites equal identities. This in a nutshell is the
category-theoretic approach to overcoming the bureau-
cracy of syntax: use universal properties (or whatever
else) encode your intents and purposes, establish iso-
morphisms, and then treat isomorphic things as "the
same for all intents and purposes". The idea of treating
isomorphic objects as the same is ingrained in category
theory, so isomorphism notation ≃ is often just written as
equality =; going forward we will use equality notation
unless there are good reasons to remember that we only
have isomorphisms.

Definition 1.6.3 (Product of categories). The product of
categories 𝒞 ×𝒟 has ordered pairs of objects (𝐶,𝐷) and
pairs of morphisms (𝑓, 𝑔) with elementwise composition
and pairs of identities for identity morphisms. It is also,
up to unique isomorphism, the categorical product in
Cat, the category of categories and functors.

1.6.1 What does it mean to copy and delete?

Now we discuss how we might define the properties and behaviour of processes by positing equations be-
tween diagrams. Let’s begin simply with two intuitive processes copy and delete:

Example 1.6.11 (Linear maps). Consider a vector space 𝐕, which we assume includes a choice of basis. The
copy map for a vector space 𝐕 is the rectangular matrix made of two identity matrices:

∆𝐕 ∶ 𝐕 → 𝐕⊕𝐕 ∶=
[
𝟏𝐕 𝟏𝐕

]

The delete map for 𝐕 is an empty column; a matrix of dimensions 𝑑𝑖𝑚(𝑉) × 0:

𝜖𝐕 ∶ 𝐕 → 𝟎

Example 1.6.12 (Sets and functions). Consider a set 𝐴. The copy function is defined:

∆𝐴 ∶ 𝐴 → 𝐴 ×𝐴 ∶= 𝑎 ↦ (𝑎, 𝑎)

The delete function is defined:
𝜖𝐴 ∶ 𝐴 → {⋆} ∶= 𝑎 ↦ ⋆

Example 1.6.13 (Sets and relations). Consider a set 𝐴. The copy relation is defined:

∆𝐴 ∶ 𝐴 ↛ 𝐴 ×𝐴 ∶= {
(
𝑎, (𝑎, 𝑎)

)
| 𝑎 ∈ 𝐴}

The delete relation is defined:
𝜖𝐴 ∶ 𝐴 ↛ {⋆} ∶= {(𝑎,⋆) | 𝑎 ∈ 𝐴}

We may verify that, no matter the concrete interpretation of the diagram in terms of linear maps, functions
or relations, the following equations characterise a cocommutative comonoid internal to a monoidal category.

=

coassociativity

=

cocommutativity

=

counitality

It is worth pausing here to think about how one might characterise the process of copying in words; it is
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Definition 1.6.4 (Functor). A functor 𝐹 ∶ 𝒞 → 𝒟 (read:
with domain a category 𝒞 and codomain a category
𝒟) consists of two suitably related functions. An object
function 𝐹0 ∶ Ob(𝒞) → Ob(𝒟) and a morphism function
(equivalently viewed as a family of functions indexed by
pairs of objects of 𝒞) 𝐹1(𝑋,𝑌) ∶ 𝒞(𝑋,𝑌) → 𝒟(𝐹0𝑋, 𝐹0𝑌).
𝐹1 must map identities to identities – i.e., be such that for
all 𝑋 ∈ 𝒞, 𝐹1(1𝑋) = 1𝐹0𝑋 – and 𝐹1 must map composites
to composites – i.e., for all 𝑋,𝑌, 𝑍 ∈ Ob(𝒞) and all
𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍, 𝐹1(𝑓; 𝑔) = 𝐹1𝑓;𝐹1𝑔.

Functors in short map categories to categories, preserv-
ing the structure of identities and composition. They
are the essence of "structure preserving transformation".
Insofar as semantics is the science of finding structure-
preserving transformations that tell us when syntactic
things are equal, functors are just that. They are incred-
ibly useful and mysterious and worth internalising in a
way I am not adept enough to impress by example in this
margin. For us, for now, they are just stepping stones to
define transformations between functors.

Definition 1.6.5 (Natural Transformation). A natural
transformation 𝜃 ∶ 𝐹 → 𝐺 for (co)domain-aligned
functors 𝐹, 𝐺 ∶ 𝒞 → 𝒟 is a family of morphisms in 𝒟

indexed by objects 𝑋 ∈ 𝒞 such that for all 𝑓 ∶ 𝑋 → 𝑌 in
𝒞, the following commuting diagram holds in 𝒟:

𝐹𝑋 𝐹𝑌

𝐺𝑋 𝐺𝑌

𝜃𝑋

𝐹𝑓

𝜃𝑌

𝐺𝑓

challenging to do so for such an intuitive process. The diagrammatic equations, when translated into prose,
provide an answer.

Coassociativity: says there is no difference between copying copies.

Cocommutativity: says there is no difference between the outputs of a copy process.

Counitality: says that if a copy is made and one of the copies is deleted, the remaining copy is the same as
the original.

Insofar as we think this is an acceptable characterisation of copying, rather than specify concretely what a
copy and delete does for each system 𝑋 we encounter, we can instead posit that so long as we have processes
∆𝑋 ∶ 𝑋 → 𝑋 ⊗𝑋 and 𝜖𝑋 ∶ 𝑋 → 𝐼 that obey all the equational constraints above, ∆𝑋 and 𝜖𝑋 are as good as a
copy and delete.

Example 1.6.14 (Not all states are copyable). Call a state copyable when it satisfies the following diagrammatic
equation:

=

In the process theory of sets and functions, all states are copyable. Not all states are copyable in the process
theories of sets and relations. For example, consider the two element set B ∶= {0, 1}, and let ⊤ ∶ {⋆} ↛ B ∶=

{(⋆, 0), (⋆, 1)} ≃ {0, 1}. Consider the composite of ⊤ with the copy relation:

⊤; ∆B ∶= {
(
⋆, (0, 0)

)
,
(
⋆, (1, 1)

)
} ≃ {(0, 0), (1, 1)}

This is a perfectly correlated bipartite state, and it is not equal to {0, 1} × {0, 1}, so ⊤ is not copyable.

Remark 1.6.15. The copyability of states is a special case of a more general form of interaction with the copy
relation:

=

A cyan map that satisfies this equation is said to be a homomorphism with respect to the commutative
comonoid. In the process theory of relations, those relations that satisfy this equation are precisely the partial
functions; in other words, this diagrammatic equation expresses determinism.
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Definition 1.6.6 (Monoidal Category). A monoidal
category consists of a category 𝒞, a functor ⊗ ∶ 𝒞 × 𝒞 →

𝐶, a monoidal unit object 𝐼 ∈ Ob(𝒞), and the following
natural isomorphisms – i.e. natural transformations with
inverses, where multiple bar notation indicates variable
object argument positions: an associator 𝛼 ∶ ((−⊗ =

)⊗ ≡) ↦ (− ⊗ (= ⊗ ≡)), a right unitor 𝜌 ∶ ⊗𝐼 ↦ −, and
a left unitor 𝜆 ∶ 𝐼 ⊗−↦ −

)
. These natural isomorphisms

must in addition satisfy certain coherence diagrams, to be
displayed shortly.

Theorem 1.6.7 (Coherence for monoidal categories). The
following pentagon and triangle diagrams are conditions
in the definition of a monoidal category. When they
hold, all composites of associators and unitors (and their
inverses) are isomorphisms [Mac63, Ben64].

((𝑊⊗𝑋)⊗ (𝑌 ⊗𝑍))

(𝑊⊗ (𝑋 ⊗ (𝑌 ⊗𝑍)))

(((𝑊⊗𝑋)⊗𝑌)⊗𝑍)

(𝑊⊗ ((𝑋 ⊗𝑌)⊗𝑍))

((𝑊⊗ (𝑋 ⊗𝑌))⊗𝑍)

𝛼

𝛼

𝛼⊗1

𝛼

1⊗𝛼

(𝑋 ⊗ (𝐼 ⊗𝑌))

((𝑋 ⊗ 𝐼)⊗𝑌)

(𝑋 ⊗𝑌)

𝛼

1⊗𝜆

𝜌⊗1

Here is an unexpected consequence. Suppose we insist that to copy in principle also implies the ability
to copy anything – arbitrary states. From Example 1.6.14 and Remark 1.6.15, we know that this demand is
incompatible with certain process theories. In particular, this demand would constrain a process theory of
sets and relations to a subtheory of sets and functions. The moral here is that process theories are flexible
enough to meet ontological needs. A classical computer scientist who works with perfectly copyable data
and processes might demand universal copying along with the commutative comonoid equations, whereas
a quantum physicist who wishes to distinguish between copyable classical data and non-copyable quantum
data might taxonomise copy and delete as a special case of a more generic quasi-copy and quasi-delete that is
only a commutative comonoid. In fact, quantum physicists do do this; see Dodo: [CK17].

1.6.2 What is an update?

In the previous section we have seen how we can start with concrete examples of copying in distinct process
theories, and obtain a generic characterisation of copying by finding diagrammatic equations copying satis-
fies in each concrete case. In this section, we show how to go in the opposite direction: we start by positing
diagrammatic equations that characterise the operational behaviour of a particular process – such as updating

– and it will turn out that any concrete process that satisfies the equational constraints we set out will by our

own definition be an update.
Perhaps the most familiar setting for an update is a database. In a database, an entry often takes the form

of pairs of fields and values. For example, where a database contains information about employees, a typical
entry might look like:

< NAME:Jono Doe, AGE:69, JOB:CONTENT CREATOR, SALARY:$420, ... >

There are all kinds of reasons one might wish to update the value of a field: Jono might legally change their
name, a year might pass and Jono’s age must be incremented, Jono might be promoted or demoted or get a
raise and so on. It was the concern of database theorists to formalise and axiomatise the notion of updating
the value of a field independently of the specific programming language implementation of a database. The
problem is reducible to axiomatising a rewrite: we can think of updating a value as first calculating the new
value, then putting the new value in place of the old. Since often the new value depends in some way on
the old value, we also need a procedure to get the current value. That was a flash-prehistory of bidirectional

transformations [CFH+09], which then met applied category theory in e.g. [Gib12]. Following the monoidal
generalisation of lenses in [WHBW21, HWW20], a rewrite as we have described above is specified by system
diagrammatic equations in the margin, each of which we introduce in prose.
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Definition 1.6.16 (Symmetric Monoidal Category). A
symmetric monoidal category is a monoidal category
with an additional natural isomorphism

𝜃 ∶ −⊗ =↦ = ⊗ −

Which satisfies the following pair of hexagons.

(𝑋 ⊗ (𝑌 ⊗𝑍)) (𝑍 ⊗ (𝑋 ⊗𝑌))

(𝑋 ⊗ (𝑍 ⊗𝑌)) ((𝑍 ⊗𝑋)⊗𝑌)

(𝑋 ⊗ (𝑍 ⊗𝑌)) ((𝑋 ⊗𝑍)⊗𝑌)

𝜃

𝛼

𝜃−1

𝛼−1

1⊗𝜃

𝛼

(𝑋 ⊗ (𝑌 ⊗𝑍)) ((𝑌 ⊗𝑍)⊗𝑋)

((𝑋 ⊗𝑌)⊗𝑍) (𝑌 ⊗ (𝑍 ⊗𝑋))

((𝑌 ⊗𝑋)⊗𝑍) (𝑍 ⊗ (𝑋 ⊗𝑌))

𝜃

𝛼−1

1⊗𝜃

𝛼−1

𝜃−1

𝛼

PutPut: Putting in one value and then a second is the same as deleting the first value and just putting in the
second.

=

GetPut: Getting a value from a field and putting it back in is the same as not doing anything.

=

PutGet: Putting in a value and getting a value from the field is the same as first copying the value, putting in
one copy and keeping the second.

=

GetGet: Getting a value from a field twice is the same as getting the value once and copying it.

=
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Coherence is about getting rid of syntactic bureaucracy.
Addition for example is a commutative monoid, which
satisfies equations that let us forget about bracketings,
zeroes, and the ordering of summation.

(𝑥 + (𝑦 + 𝑧)) = ((𝑥 + 𝑦) + 𝑧)

𝑥 + 0 = 𝑥 = 0+ 𝑥

𝑥 + 𝑦 = 𝑦 + 𝑥

Now the situation is that we have replaced the associa-
tivity equation with associator natural transformations,
unit equations with unitors (and commutation with nat-
ural isomorphisms 𝜃 that are depicted as twisting wires
in string diagrams for symmetric monoidal categories.)

((𝑋 ⊗𝑌)⊗𝑍)
𝛼𝑋𝑌𝑍
→ (𝑋 ⊗ (𝑌 ⊗𝑍))

(𝑋 ⊗ 𝐼)
𝜌𝑋
→ 𝑋

𝜆𝑋
→ (𝐼 ⊗𝑋)

Recalling that we’re happy with isomorphism in place
of equality, coherence conditions ask that every pos-
sible composite of these structural operations is an
isomorphism. In terms of the graphical language for
monoidal categories, this means that string diagrams
up-to-(processive)-planar-isotopy (and connectivity of
wires in the case of symmetric monoidal categories) rep-
resent equivalent-up-to-isomorphism morphisms in an
appropriate monoidal category. The reader is referred to
[Sel10, JS91, Joy] for details.

These diagrammatic equations do two things. First, they completely specify what it means to get and put
values in a field in an implementation independent manner; it doesn’t matter whether database entries are
encoded as bitstrings, qubits, slips or paper or anything else, what matters is the interaction of get and put.
Second, the diagrammatic equations give us the right to call our processes get and put in the first place: we
define what it means to get and put by outlining the mutual interactions of get, put, copy, and delete. These
two points are worth condensing and rephrasing:

A kind of process is determined by patterns of interaction with other kinds of processes.

Now we can diagrammatically depict the process of updating Jono’s age, by getting Jono’s age value from
their entry, incrementing it by 1, and putting it back in.

GETAGE

+1

PUTAGEJ

But what are the things that the processes operate on?
This is a common objection from philosophers who want their ontologies tidy. The claim roughly goes

that you can’t really reason about processes without knowing the underlying objects that participate, and
since set theory is the only way we know how to spell out objects intensionally in this way, we should stick to
sets. In simpler terms, if we’re drawing (black)-boxes in our diagrams, how will we know what they do to the
elements of the underlying sets?

The short answer is that – perhaps surprisingly – reasoning process-theoretically is mathematically equiva-
lent to reasoning about sets and elements for all practical purposes; it is as if whatever is going on out there is
indifferent to whether we describe using a language of only nouns or only verbs.

In the case of set theory (the practical kind, not the one with crazy infinities), let’s suppose that instead
of encoding functions as sets, we treat functions as primitive, so that we have a process theory where wires
are labelled with sets, and functions are process boxes that we draw. The problem we face now is that it is
not immediately clear how we would access the elements of any set using only the diagrammatic language.
The solution is the observation that the elements {𝑥 | 𝑋} of a set 𝑋 are in bĳective correspondence with the

functions from a singleton into 𝑋: {𝑓(⋆) ↦ 𝑥 | {⋆}
𝑓
→ 𝑋. In prose, for any element 𝑥 in a set 𝑋, we can find

a function that behaves as a pointer to that element {⋆} → 𝑋. So the states we have been drawing, when
interpreted in the category of sets and function, are precisely elements of the sets that label their output
wires.
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But if they’re expressively the same, what’s the point?
The following rebuttal draws on Harold Abelson’s introductory lecture to computer science [har19] (in

which string diagrams appear to introduce programs without being explicitly named as such). There is a dis-
tinction between declarative and imperative knowledge. Declarative knowledge is knowing-that, for example,
6 is the square root of 36, which we might write 6 =

√
36. Imperative knowledge is knowing-how, for example,

to obtain the square root of a positive number, for instance, by Heron’s iterative method: to obtain the square
root of 𝑌, make a guess 𝑋, and take the average of 𝑋 and 𝑌

𝑋
until your guess is good enough.

Computer science concerns imperative knowledge. An obstacle to the study of imperative knowledge is
complexity, which computer scientists manage by black-box abstraction – suppressing irrelevant details, so
that for instance once a square root procedure is defined, the reasoner outside the system does not need to
know whether the procedure inside is an iterative method by Heron or Newton, only that it works and has
certain properties. These black-boxes can be then composed into larger processes and procedures within
human cognitive load.

Abstraction also yields generality. For example, in the case of addition, it is not only numbers we may care
to add, but perhaps vectors, or the waveforms of signals. So there is an abstract notion of addition which we
concretely instantiate for different domains that share a common interface; we may decide for example that
all binary operations that are commutative monoids are valid candidates for what it means to be an addition
operation.

In this light, string diagrams are a natural metalanguage for the study of imperative knowledge; string
diagrams in fact independently evolved within computer science from flowcharts describing processes. Pro-
cess theories, which are equations or logical sentences about processes, allow us to reason declaratively about
imperative knowledge. Moreover, string diagrams as syntactic objects can be interpreted in various concrete
settings, so that the same diagram serves as the common interface for a process like addition, with compliant
implementation details for each particular domain spelled out separately.

Now we define a very useful structure. Spiders – or special frobenius algebras (introduced in [Paq08]) –
will be important throughout this thesis.
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Definition 1.6.17 (Spiders). I will describe the behaviour of a spider as a PROP [nLac], which as far as we care is just a way to list out processes and equations
that their composites satisfy in a symmetric monoidal category. We say that an object is equipped with a spider when it has the following processes:

That satisfy the following equations:

=

coassociativity

=

cocommutativity

=

counitality

=

associativity

=

commutativity

=

unitality

= =

Frobenius

=

special

Spiders imply strong compact closure; self-dual cups and caps may be viewed as composite spiders. These are the cups which we use in pregroup diagrams to
come. The equations for cups and caps are derived from spider rules, taking advantage of equality up to connectivity of wires.

=

(Unit)

= = =

(Commutativity) (Frobenius)(Connectivity)

=

(Counit)
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Terminology 1.6.18. A hypergraph category [FS18] is a symmetric monoidal category in which every object is equipped with a choice of spider, and spiders of
tensors are tensors of spiders, as illustrated below:

(𝑋 ⊗𝑌)

(𝑋 ⊗𝑌)

(𝑋 ⊗𝑌)

=

𝑋

𝑌

𝑌

𝑌

𝑋

𝑋

(𝑋 ⊗𝑌)

𝑋

𝑌

=

Example 1.6.19. The category of sets and relations with cartesian product as ⊗ is a hypergraph category, as is the category FdVect
⊗, the category of finite

dimensional vector spaces and linear maps with the Kronecker product as ⊗.

Remark 1.6.20 (Spiders are easy). All connected configurations of spiders with the same number of inputs and outputs are equal. Intuitively, whereas wires
connect end-to-end in string diagrams, spiders give us multiwires that we may freely split and connect.

⋮

⋮

𝑗 𝑘

⋮

⋮

⋮ = 𝑗 𝑘
⋮ ⋮

Remark 1.6.21 (Only connectivity matters). In hypergraph categories, by recovery of strong compact closure, we may freely reason without a convention for
reading direction of processes. By the multiwire property, all diagrams with the same connectivity are equal. Hence, only connectivity matters.
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1.7 Previously, on DisCoCat

DisCoCat is a research programme in applied mathematical linguistics that is Distributional, Compositional
and Categorical. In this section I will recount a selective development of DisCoCat as relevant for this thesis.

1.7.1 Lambek’s Linguistics

Jim Lambek was a jovial man who always carried a wad of twenties. I can’t do better than Moortgat’s his-
tory and exposition of typelogical grammar in [Moo14], so I will borrow Moortgat’s phrasing and sum-
marise Lambek’s role in the story. Typelogical grammar originated in two seminal papers by Lambek in
1958 [Lam58] and 1961 [Lam61], where Lambek sought “to obtain an effective rule (or algorithm) for dis-
tinguishing sentences from non-sentences, which works not only for the formal languages of interest to the
mathematical logician, but also for natural languages [. . . ]”. The method is to assign grammatical categories
– parts of speech such as nouns and verbs – logical formulae. Whether a sentence is grammatical or not is
obtained from deduction using these logical formulae in a Gentzen-style sequent proof.

Figure 1.17: In English, we may consider a noun
to have type 𝑛, and a transitive verb (𝑛∕𝑠) ⧵ 𝑛, to
yield a well-formedness proof of Bob drinks beer.
The type formation rules for such a grammar are
intuitive. Apart from a stock of basic types B that
contains special final types to indicate sentences,
we have two type formation operators (− ∕ =)

and (− ⧵ =), which along with their elimination
rules establish a requirement that grammatical
categories require other grammatical categories to
their left or right. This is the essence of Lambek’s
calculi NL and L. CCGs keep the same minimal
type-formations, but include extra sequent rules
such as type-raising and cross-composition.
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Figure 1.18: We can notice an asymmetry in the
above formulation when we examine the transitive
verb type (𝑛∕𝑠) ⧵ 𝑛 again; it asks first for a noun to
the right, and then a noun to the left. We could just
as well have asked for the nouns in the other order
with the typing (𝑛∕𝑠) ⧵ 𝑛 and obtained all of the
same proofs.
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𝑛 ⋅ (−1𝑛 ⋅ 𝑠 ⋅ 𝑛−1) ⋅ 𝑛 → (𝑛 ⋅ −1𝑛) ⋅ 𝑠 ⋅ (𝑛−1 ⋅ 𝑛) (1.1)
→ 1 ⋅ 𝑠 ⋅ 1 (1.2)
→ 𝑠 (1.3)

Figure 1.19: To eliminate this asymmetry, Lam-
bek devised pregroup grammars. Whereas a
group is a monoid with inverses up to left- and
right-multiplication, a pregroup weakens the re-
quirement for inverses so that all elements have
distinct left- and right- inverses, denoted 𝑥−1 and
−1𝑥 respectively. Eliminating or introducing in-
verses is a non-identity relation on elements of
the pregroup, so we have axioms of the form e.g.
𝑥 ⋅−1 𝑥 → 1 → −1𝑥 ⋅ 𝑥. In this formulation, de-
noting the multiplication with a dot, both (𝑛∕𝑠) ⧵ 𝑛

and (𝑛∕𝑠) ⧵ 𝑛 become −1𝑛 ⋅ 𝑠 ⋅ 𝑛−1, which just wants
a noun to the left and a noun to the right in what-
ever order to eliminate the flanking inverses to
reveal the embedded sentence type. Now we can
obtain the same proof of correctness as a series of
algebraic reductions.
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1.7.2 Coecke’s Composition

Figure 1.20: Meanwhile, an underground grunge
vagabond moonlighting as a quantum physicist
moonlighting as a computer scientist was causing
a shortage of cigars and whiskey in a small English
town. He noticed a funny thing about the compo-
sition of multiple non-destructive measurements
of a quantum system, which was that information
could be carried, or flow, between them. So he
wrote a paper [Coe04], which contained informal
diagrams that looked like this.
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Figure 1.21: There were two impressive things
about these diagrams. First, the effects such as
transparencies for text boxes and curved serifs for
angled arrows give a modern feel, but they were
done manually in MacDraw, the diagrammatic
equivalent of sticks and stones. Second, though
the diagrams were informal, they provided a way
to visualise and reason about entanglement that
was impossible by staring at the equivalent matrix
formulation of the same composite operator. The
most important diagram for our story was this one,
which captures the information flow of quantum
teleportation.
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1.7.3 Categorical quantum mechanics

Figure 1.22: Category theorists and physicists such
as Abramsky and Baez were excited about these di-
agrams, which looked like string diagrams waiting
to be made formal. The graphical cups and caps
in the important diagram were determined to cor-
respond to a special form of symmetric monoidal
closed category called strong compact closed
[Abr09].

Figure 1.23: Diagrammatically, reasoning in a
strongly compact closed category amounts to ig-
noring the usual requirement of processiveness
and forgetting the distinction between inputs and
outputs, so that "future" outputs could curl back
and be "past" inputs. This formulation also gave in-
sight into the structure of quantum mechanics. For
example, the process-state duality of strong com-
pact closure manifested as the Choi–Jamiołkowski
isomorphism [Cho75, Jam72].
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Figure 1.24: However, dealing with superpositions
necessitated using summation operators within
diagrams, which is cumbersome to write especially
when dealing with even theoretically simple Bell
states. An elegant diagrammatic simplification
arose with the observation that special-†-frobenius
algebras [CPP09], or spiders, correspond to choices
of orthonormal bases [CPV13] in FdHilb, the ambi-
ent setting of finite-dimensional hilbert spaces. Not
only did this remove the need for summation oper-
ators, it also revealed that strong compact closure
was a derived, rather than fundamental structure,
since spiders induce compact closed structure.

Figure 1.25: And so the stage was set for a purely
diagrammatic treatment of ZX quantum mechanics
via interacting spiders [CD11]. The story of ZX di-
verges away from our interest, so I will summarise
what happened afterwards. In no particular order,
the development of ZX went on to accommodate
a third axis of measurement [CE11, dZ14] to yield
a ZXW calculus then proven to be complete for
the usual hilbert space formalism for quantum
[Had17, Ng18, PWS+23]. There are at the time of
writing two expository books [CK17, CG23], and
ZX-variants are becoming an industry standard for
quantum circuit specification and rewriting.
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1.7.4 Enter computational linguistics

Figure 1.26: Somewhere in Canada at the turn of
the millenium, Bob met Jim, who saw something
familiar about the diagram for quantum telepor-
tation. The snake equation for compact closure
looked a lot like the categorified version of intro-
ducing and eliminating pregroup types.

Figure 1.27: Bob and Jim’s meeting put the adjec-
tives compositional and categorical on the same table,
but the cake wasn’t ready. Two more actors Steve
and Mehrnoosh were required to introduce distri-

butional, which refers to Firth’s maxim "you shall
know a word by the company it keeps" [Fir57].
In its modern incarnation, this refers generally to
vector-based semantics for words, where it is desir-
able but not necessarily so (as in the case of generic
latent space embeddings by an autoencoder) that
proximity of vectors models semantic closeness.
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Figure 1.28: Steve Clark was a professor in the
computer science department at Oxford, and he
was wondering how to compose vector-based
semantic representations. Steve asked Bob, who
realised suddenly what Jim was talking about.
Mediated by the linguistic expertise of Mehrnoosh
who was a postdoctoral researcher in Oxford at
the time, pregroup diagrams were born. The ba-
sic types 𝑛 and 𝑠 are assigned finite-dimensional
vector spaces, concatenation of types the Kro-
necker product ⊗, and by the isomorphism of
dual spaces in finite dimensions there is no need
to keep track of the left- and right- inverse data.
Words become vectors, and pregroup reductions
become bell-states, or bell-measurements, depend-
ing on whether one reads top-down or bottom-up.
There was simply no other game in town for an ap-
proach to computational linguistics that combined
linguistic compositionality with distributional
representations [CSC10].



44 v.w.

Figure 1.29: In [SCC13, SCC16], the trio realised
that spiders could play the role of relative pro-
nouns, which was genuinely novel linguistics. If
one follows the noun-wire of "movies", one sees
that by declaring the relative pronoun to be a
vector made up of a particular bunch of spiders-
as-multiwires, "movies" is copied to be related to
the "liked" word, copied again by "which" to be
related to the "is-famous" word, and a third time to
act as the noun in the whole noun-phrase. This dis-
covery clarified a value proposition: insights from
quantum theory could be applied in the linguistic
setting: for example, density matrices were used to
model semantic ambiguity [ML20].
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Figure 1.30: Keeping the structure of the diagrams
but seeking set-relational rather than vector-based
semantics, a bridge was made between linguis-
tics and cognitive science in Interacting Concep-

tual Spaces I [BCG+17]. Briefly, Gärdenfors posits
[Gär14] that spatial representations of concepts me-
diate raw sense data and symbolic representations
– e.g. red is a region in colourspace – and more-
over that concepts ought to be spatially convex –
e.g. mixing any two shades of red still gives red.
A new point in the value proposition arose: that
new mathematics would arise from investigating
the linguistic-quantum bridge, e.g. generalised
relations [MG17]. Although labelled as if it is the
first in a series, the paper never saw a sequel by
the same title, blocked by an apparently simple
but actually tricky theoretical problem: while this
convex-relational story worked for conceptual
adjectives modifying a single noun (such as for
"sweet yellow bananas"), there was difficulty in
extending the story to work for multiple objects
interacting in the same space, as in "cup on table in
room". It couldn’t be worked out what structure a
sentence-wire in ConvexRel ought to have in order
to accommodate (in principle) arbitrarily many
objects and spatial relations between them.
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1.7.5 I killed DisCoCat, and I would do it again.

DisCoCat then diverges from the story I want to tell. In no particular order, QNLP was done on an actual
quantum computer [LPM+23], some software packages were written [kar23], and some art happened [A q].
It is a common evolutionary step in linguistics that theories "break the sentential barrier", moving from
sentence-restricted to text- or discourse-level analysis. The same thing happened with DisCoCirc, due to a
combination of practical constraints and theoretical ambition.

Figure 1.31: On the practical side, wide tensors
were (and remain) prohibitively expensive to sim-
ulate classically and actual quantum computers
did not (and still do not) have many qubits, hence
in practice pregroup diagrams were reduced to
thinner and deeper circuits, often with the help of
an additional simplifying assumption that sentence
wires were pairs of noun wires in the illustrated
form on the left. Theoretically, seeking dynamic
epistemic logic, Bob had an epiphanous hangover
(really) where he envisioned that these "Cartesian
verbs" could be used in service of compositional
text meanings, and he called this idea DisCoCirc
[Coe20].
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Figure 1.32: I met Bob in my master’s in 2019,
where he taught the picturing quantum processes
course. When quantum teleportation was ex-
plained in half a minute by a diagram, I decided to
pursue a DPhil in diagrammatic mathematics. In
the last lecture, I threw Bob a cider, after which he
seemed to like me.

I was shanghaied into thinking about diagrams for language. I was deeply dissatisfied with the content
from the standpoint my own intellectual integrity. Firstly, there seemed to me an unspoken claim that the
presence of cups in pregroup diagrams (which implied a noncartesian and hence large tensor product) made
it necessary to use quantum computers to effectively compute pregroup diagrams. I just could not believe
that my brain required quantum computation to understand language. This implicit claim of kinship be-
tween quantum and linguistics was further entrenched by the analysis of the relative pronoun in terms of
frobenius algebras, since spiders in 𝐕𝐞𝐜𝐭

⊗ were the sine qua non of categorical quantum mechanics. The best
steelman for spiders I have is that frobenius algebras (which are central to ubiquitous bicategories of relations
[CW87, CKWW07]) just happen to be a ubiquitous mathematical structure that are well-suited to express the
mathematics of connections, both in language and in quantum.

Second, representing the content of a sentence as a vector in a sentence-vector-space did not sit well with
me, since this move meant that the only meaningful thing one could do with two sentences was take their
inner-product as a measure of similarity. Moreover, I had the theoretical concern that language is in princi-
ple indefinitely productive, so one could construct a sentence that marshalled indefinitely many nouns, and
at some point for any finite vector space 𝑠 one would run out of room to encode relationships, or else they
would be cramped together in a way that did not suit intuitions about the freedom of constructing meanings
using language. I always believed in the existence of a simple, practical, and intuitive categorical, compo-
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sitional, and distributional semantics; I just didn’t believe that the role of quantum – however helpful or
interesting – was necessary.

My first unsatisfactory attempt to extricate quantum from language was in my Master’s thesis [Wan19]. It
had been known for a while that a free autonomous category construction by Delpeuch [Del20] could poten-
tially eliminate some of the cups in pregroup diagrams, yielding what amounted to a method to transform
a pregroup diagram into a monoidal string diagram in the shape of a context-free grammar tree. This trick
had the limitation that freely adding directed cups and caps to a string diagrammatic signature did not turn a
symmetric monoidal category into a (weakly) compact closed one, rather just into a monoidal category where
the original wires had braidings, but all the new left and right dual wires did not; this presented difficulties
in accounting for iterated duals for higher-order modifiers such as adverbs in grammatical types, and had
nothing to say about spiders. I tried to generalise this trick to freely adding arbitrary diagrammatic gadgets
to string diagrams, but my assessor Samson pointed out that it was nontrivial to determine whether such
constructions were faithful. Nowadays there is a lot of categorical machinery lying around, and there are
many different ways one could come up with ways to remove cups and caps. But I didn’t learn about these
techniques until later, and these approaches still wouldn’t have addressed the issues that come with only
having a sentence-wire.

Figure 1.33: Then COVID happened. During the
first lockdown, I visited Bob’s garden under tech-
nically legal circumstances, and I suggested a
solution to the longstanding problem of represent-
ing linguistic spatial relationships. My theoretical
concern was the culprit: the initial attempts at the
problem failed because the approach was to find a
single sentence object 𝑠 in which one could paste
the data of arbitrarily many distinct spatial entities.
The simple solution was a change in perspective.
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Figure 1.34: That this move of splitting up the
sentence-wire into a sentence-dependent col-
lection of wires was sufficient to solve what had
appeared to be a difficult problem prompted some
re-examination of foundations. The free autonomi-
sation trick in conjunction with sentence-wire-as-
tensored-nouns seemed promising, but it became
clear that right way to drown a DisCoCat thor-
oughly was to explain and eliminate the spiders.

Figure 1.35: I then discovered that by interpreting
spiders as the well-known "pair of pants" algebra
in a compact closed monoidal setting allowed for
a procedure in which the final form was purely
symmetric monoidal – the absence of cups and
caps meant that there was no practical necessity
to interpret diagrams on quantum computers: any

computer would suffice. The role of spiders for
relative pronouns was illuminated in the presence
of splitting the sentence wire: the pair-of-pants are
the algebra of morphism composition, and split-
ting the sentence wire into a collection of nouns
allowed relative-pronoun-spiders to pick out the
participating nouns to compose relationships onto.
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Figure 1.36: A coherent conservative generalisation
of DisCoCat with less baggage had emerged, or
rather, DisCoCirc was placed to formally subsume
DisCoCat. It was now understood that the sen-
tence type was a formal syntactic ansatz for the
sake of grammar, which was to be interpreted in
the semantic domain not as a single wire, but as
a sentence-dependent collection of wires. It was
further realised that the complexity of pregroup
diagrams was due to grammar – the topological
deformation of semantic connections to fit the
one-dimensional line of language – whereas the
essential connective content of language could be
expressed in a simple form that distilled away the
bureaucracy of syntax.
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Figure 1.37: We wrote up the story about spaces
in [WC21], the spiritual successor to interacting

conceptual spaces I. We could formally calculate the
meanings of sentences that used linguistic spatial
relations, all using a simple and tactile diagram-
matic calculus.
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Figure 1.38: The paper on spatial relations actu-
ally came very late, because I was busy with Bob’s
ludicrous request to go turn "all of language" into
circuits. I bitched and moaned about how I wasn’t
a linguist and how it was an impossible task, but I
was in too deep to back out.
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Figure 1.39: I suppose the nice thing about aiming
for the moon is that even failure might mean you
leave orbit. So I settled for what I thought was a
sensible fragment of English, for which I devised
internal wirings and an algorithm that transformed
pregroup diagrams with the internal wirings into
circuit form. Many tiring diagrams later, I pre-
sented my results in the first draft of "distilling text
into circuits". It was exhausting.
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Figure 1.40: Bob had a good point. Everything
worked, but we had no understanding as to why,
and accordingly, whether or not it would all break.
At this point in time, Jonathon Liu, a masters’ stu-
dent I tutored during COVID, had committed the
grave error of thinking diagrams were cool, and
was now hanging out with me and Bob. After un-
derstanding the procedure, Jono independently
devised the same arcane internal wirings as I had,
but neither of us could explain how we did it.
So we had evidence of an underlying governing
structure that was coherent but inarticulable.
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Figure 1.41: I realised that our intuitions were com-
ing from an implicit productive grammar, rather
than a parsing one, and that the path of least re-
sistance for obtaining formal guarantees for the
language-to-circuit procedure was to just handcraft
a generative grammar for the fragment of language
we were interested in. This meant scrapping ev-
erything in the first draft and starting again from
scratch. Bob always had a word of gentle encour-
agement, giving me the motivation to persevere.
So now we had two ways to obtain text circuits.
One from pregroups (which Jono had extended the
technique for to CCGs and dependency grammars
in his master’s thesis [Liu21]), and one from hand-
crafted productive grammars. Then came time for
me to write my thesis, and there were three salient
questions I wanted to address.
What are internal wirings?
Are text circuits a generative grammar?
What are text circuits good for?
These questions are what the rest of this thesis
seeks to answer, one chapter at a time.





Dear Reader,
How are you? I am well, thank you.
Forgive me for writing in this informal register; it is

easier for me than the academic style (which I am no
good at), and I would like to get these corrections done
as painlessly as possible. You see, in the year or so it
has taken for me to get around to these corrections, a lot
has happened. I have gotten married, and (thankfully
relatedly) I am soon to be a father. So I’ve learnt that
there are more important things in life than a thesis,
and I have otherwise been busy drawing diagrams
about other things. While we are on apologies, please
forgive me also for the overall tone of this work, which
editorialises, and vacillates between serious and light; in
my defense, I am constitutionally a trifler [SH05] (or else
I wouldn’t have gotten into formal linguistics), and I am
still in the process of finding my voice as a writer.

I should preface by reminding you that all of this is
written long after the rest of the work, and also that any
opinions expressed here are strictly my own. I will also
try my best to keep personal opinions tucked away in the
margins so that they may be safely ignored.

1
1

2

Corrections

There are several things I would like to get through in this long postscript, which has several purposes. In no
particular order, the first is to settle most of the substantive corrections (recommended to me by my exam-
iners Stefano Gogioso and Jules Hedges) in one go. The second is to situate this work with respect to formal
linguistics as done by formal linguists. The third is to vent and find closure for myself.

1
1

2

.1 Does it work?

In the most important sense, no.
I will elaborate what I mean. There is a classical conception of structured approaches to AI/ML that per-

mits capacities that go beyond what connectionist approaches are capable of, grounded in a kind of quasi-
magical conception of mathematics as the ultimate form of understanding of — and hence control over — a
phenomenon. It appears that part of the intellectual shock of generative AI is that one does not need to un-
derstand the mechanics of complicated phenomena in order to reliably induce them, given sufficient data and
compute. This is obviously disappointing to many, and the highest sort of achievement that this thesis could
have attained is to have been a source of hope. Even a year ago the prospects seemed grim, and part of what
took me so long to write the introduction was to compromise the positive vision from some demonstration of
the complete superiority of structured approaches (basically no longer tenable after the advent of ChatGPT
with RLHF) to something weaker, such as a performant way to synthesise structural/symbolic and connec-
tionist approaches that has some other kind of benefit, such as "interpretability" (whatever that means.)

So taking "does it work?" to mean "does it justify the activity of mathematically formulating the structure of lan-

guage with respect to non-instrinsic measures of value (such as practical application)?", the answer is no, modulo
most measures of value that people would care about. I say this because we’ve done some experiments.
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Before I go on to do the scholarly work of relating my
stuff to the stuff of others, I just want to say: look, it’s
not in the culture of my people (mathy folk) to read. It’s
either uninteresting so we put the book down, or if it is
interesting, we put the book down and try to rederive
it for ourselves. Accordingly, if armchair introspection
was good enough for Harris and Chomsky and so on, I
figured it was good enough for me too. It’s hard for me
to care about any formal linguistics because I’m just not
sure that telling mathematical stories about language
is a meaningful activity anymore. To be fair, I think
there is a lot of interesting Linguistics out there — in my
mind the kind of distinction between formal versus re-
spectable linguistics is exemplified by the anecdote of
Daniel Everett uncovering the structure of Pirahã in the
field [Eve09], causing the formalist Chomsky to move
the goalposts on what recursion means [FHC05] — but I
have grown increasingly convinced that all of the effort
to cast linguistics in mathematical terms up to now is
best viewed as a kind of devotional or religious activ-
ity, a kind of benign way to kill time. Or perhaps it is a
kind of crucible that refines the sensibilities of mathe-
matical masochists. The only practical problem formal
linguistics solves appears to be the gainful employment
of overeducated fools such as myself.
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.1.1 Have experiments been done?

The approaches sketched out in Section 3.3 have been tried with neural networks in various ways by masters’
students taking the Distributed Models of Meaning course offered in MFoCS here at Oxford, and separately it
has been tried in the quantum setting by talented scientists and engineers at the company at which I am em-
ployed at the time of writing. In the classical case, it works for some bAbI tasks, but at the cost of hardcoding
the structure of the queries, and it doesn’t outperform a transformer. In the quantum case, it works for toy
tasks, as it is generally difficult to get QML off the ground. Compositionality has not enabled any slam dunks
so far.

I could be wrong; it could be that all of the experiments done so far were in compute and data regimes
that are too small to be indicative of how these approaches may scale. It could be that rather than the level of
words and sentences there is some structural benefit to be obtained at the textual level, and so on, but I am
not personally holding out hope any more. I do maintain that the symmetric monoidal (and hence string-
diagrammatic) approach to formalising the structure of language is the best and most natural way to synthe-
sise the mathematics with modern (practical) machine learning, so the fact that it doesn’t work all that well
leaves me with a very dim view of everything else. As a result of these experiments and other experiences,
my own view of the role of structure has been further demoted. As far as natural language is concerned, at
worst such structure appears to be some crutch for us humans: inductive biases that constrain and unneces-
sarily burden more sophisticated algorithms that can deal with the complexity of "the real world". At best, it
appears to be tradeoff: computationally cheaper but worse answers.

1
1
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.2 Can you situate this work with respect to the literature in formal linguistics?

One way to summarise things is that the technical contents of this thesis point towards a nearby counter-
factual history where all the linguists in the "Garden of Eden period" [Par14] knew some of the modern
structuralist mathematics that their programme obviously would have profited from. The fractiousness of
linguists notwithstanding, it is my opinion that the interdisciplinarity of this thesis is accidental: from the
perspective of the counterfactual history, the division of formal approaches to syntax and semantics (and
some of the subdivisions thereof) would appear contrived. I am aware that this could come across as pretty
arrogant and patronising talk, which is not my intention this time, because the point I am ultimately trying to
make is that nothing in this thesis is particularly special, and could have been reinvented by anyone. Because
I thought things through for myself for the most part, and since the relevant developments were due to col-
laborations with the similarly ignorant, text circuits and the other contents of this thesis owe no substantial
intellectual debt to linguistics outside of perhaps Lambek and Firth, themselves far from the mainstream.
Consequently, all of the parallels I am about to point out between the current stream of development and
the main body of literature are not causally related. I take these parallels as indications of the "naturalness"
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This subsection about counterfactuals will also serve as
an addendum to the cartoon literature review, which
is folkloric, autochtonal, and maybe a little jingoistic:
it is a caricature or myth of the field that we in it tell
ourselves. I think that is sufficient for most readers, but
if you are here, I owe you a critical and comparative
retelling. In my view, the development of DisCoCat
is only two minor counterfactuals removed from the
lineage of mainstream formal semantics from Montague
onto Heim & Kratzer and onwards. Moreover, both of
these counterfactuals seem to rest only on the difference
of when they began relative to the ambient development
of mathematical formalisms and available computing.

of ideas that could have come about anytime and independently of specific individuals, and accordingly as
evidence for the "nearbyness" of the counterfactual history I am trying to gesture at.

1
1

2

.2.1 On Pregroups to Text Circuits vs. Transformational Grammar to Formal Semantics

First counterfactual: Truth-conditional vs. Vectorial Semantics
Montague semantics may be essentially characterised as the meeting of two ideas [PH97]: structure-

preserving maps from syntax, and taking truth-conditions to be the essential data of semantics. On some
accounts, only the former aspect of compositionality of semantics according to syntax is essential [Sza00].
Accordingly, the first counterfactual is just the swapping of truth-conditional for vectorial semantics. Today
there are several good reasons to prefer the latter over the former. First, the view that truth-conditions alone
are the sine qua non of natural language meanings has been incompatible with correspondence theories of
truth at least since Barr fixed Putnam’s permutation argument [Put81, Bar], and it’s not clear what other no-
tion of truth would fit the bill. Second, vectors as lists-of-numbers are more expressive and computationally
practical, so much so in its current form that the very need for a formal account of "semantics" is put to ques-
tion. Third, (this one is just a personal opinion) with a rare few exceptions, the truth-conditional programme
and its descendents are bankrupt, and worse, have terrible mathematical taste. A lot of mathematics has been
marshalled to salvage the programme by trying to force intensions and pragmatics and everything-in-the-
world into the propositional mould, and it is unclear what all of this mathematics buys us except for more
of the same. In practical terms, the increasing extent to which statistical language models adequately handle
semantics exactly matches the decreasing extent to which a complicated mathematical account of the same
is warranted, and consequently, in theoretical terms it seems unserious to assert that the study of the math-
ematical models themselves lends insight into the phenomena they are intended to be surrogates for; if that
kind of truth-seeking were truly the aim, wouldn’t modern formal linguists be lining up to pick apart large
language models?

But all this criticism can only be said with the benefit of hindsight, and to give credit, it all must have
seemed like a very good idea at the time. A model-theoretic, truth-conditional account of semantic data
was the natural choice for a concrete target for the structure-preserving map, I speculate, for several reasons:
Montague himself was a logician, and truth-conditions were at once flexible enough to capture (to a logician’s
satisfaction) some semantic phenomena of interest, while being amenable to computation by hand, as was
necessarily the case at the time owing to the lack of computers. Certainly there was adequate sophistication
manipulating vectors by that time as well, but the vectorial view would have been more difficult to calcu-
late with, even restricted to a setting without nonlinearities. It could be argued that, in any case, vectorial
semantics in the form of word-embeddings requires a degree of data-storage and computing faculties that
would not have been available until fairly recently. Moreover, even the theoretical soil was arguably unready:
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This subsection about Montague’s grammar was origi-
nally a postscript titled A modern mathematician’s guide to

Montague’s "Universal Grammar". I’ve moved it here so
that it can live alongside other things formal linguists
might be interested in. I originally wrote this out of
spite, because some category theorist said (flippantly,
in my mind) that Montague semantics was "just a so-
and-so". It is a kind of in-joke and shibboleth among
category theorists to say that "X is just a Y" where X is
quite pedestrian and Y is some scary arcane nonsense.
Anyway, I thought this guy was full of it and didn’t do
his homework, so I thought I would go and show him up
by getting the news at the source and rubbing his face in
it. Though I still don’t believe he did his homework, I did
mine, and embarrassingly it turned out he was more or
less right.

category theory was insufficiently spread and understood, and hence a broadly accessible mathematical un-
derstanding of structure and structure-preservation outside of particular concrete instances was unavailable.

Second counterfactual: Generative vs. Typelogical views of syntax
In the origins of formal language theory taught in undergraduate computer science courses, a formal

language is an acceptable subset of all possible strings from a stock of symbols. Context-free and context-
sensitive grammars as rewrite systems are really generative in the everyday sense of the word, in that they
are combinatoric abstract machines that produce acceptable strings. In the same way that pushdown au-
tomata parse context sensitive languages, typelogical grammars are another template for specifying gram-
mars where parsing rather than production takes precedence; a proof-theoretic counterpart to combinatoric
conceptions of grammar. Today "generative grammar" in some circles is just synonymous with "formal",
which suggests a kind of unwarranted symmetry-breaking from path-dependency that could have also
gone the other way if parsing formalisms such as typelogical grammars were more popular at the start. So
in my personal mental model, there are (inter alia) two different kinds of mathematical formalisms for syn-
tax, which are productive and parsing, and for any formal theory of syntax to gel properly with an analysis
of communication, there’s an onus on the modeller to provide a partnered formalism from the other side:
for example, context free grammars as productive grammars get partnered with finite-state machines or, say,
pregroup grammars that parse.

So the second counterfactual is just deciding to start from the parsing view rather than the productive one;
to consider oneself a listener rather than a speaker. When it comes to natural language, perhaps the parsing
and productive views would have been on more equal footing if computers were more advanced, because
theory would have been held to account by the practical demands of serialising data structures as strings
(production), and recovering them (parsing).

So if history had gone another way, quantum linguistics could have been the natural thing to do from the
start, and it probably would not have required any detour through "quantum".

1
1
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.2.2 On Montague’s conception of grammar

In summary, to do "Montague semantics" means taking structure-respecting homomorphisms from grammar
to meaning [JZ21]. Montague (likely) considered grammars to be coloured operads; Montague’s "algebras"
are (multi-sorted) clones, which are in bĳection with (multi-sorted) Lawvere Theories, which are equiva-
lently coloured operads, which may be viewed as special cases of coloured PROPs. Hence text circuits share a
mathematical lineage with many other mathematical conceptions of grammar, while also enjoying Montague
semantics.

Montague semantics/grammar as Montague envisioned it is largely contained in two papers – Universal

Grammar [Mon70], and The Proper Treatment of Quantifiers in English [Mon73] – both written shortly before
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his mysterious death in 1971, so there were no opportunities for further elaboration. The methods employed
were not mathematically novel – the lambda calculus had been around since the 1930s [Chu33], and Tarski
and Carnap had been developing intensional higher-order logics since the 40s [Car88] – but for linguists
who, by-and-large, only knew first order predicate logic, these methods were a tour-de-force that solved
longstanding problems in formal semantics.

There is a natural division of Montague’s approach into two structural components. According to Partee
— herself a formal semanticist, advocate, and torch-bearer for Montague — the chief interest of Montague’s
approach (as far as his contemporary linguists were concerned) lay in the following ideas [PP08]:

1. Take truth conditions to be the essential data of semantics.

2. (a) Use lambdas to emulate the structure of syntax...

(b) ...in a typed system of intensional predicate logic, such that composition is function application.

More precisely, Montague devised a higher-order intensional logic for the first point, and the notion of a
structure-preserving map from syntax to semantics for the second. The truth-conditional perspective was
important at the time for enabling semantic computation, but within formal semantics there arose other
perspectives on the nature of formal semantics, such as inquisitive [Inq] and update semantics [NBvV22].
Today, the empirical evidence we have from vector-based methods in computational linguistics is that none
of those conceptions of semantics are intrinsically interesting or canonical: certainly none are procedurally
necessary for a broad conception of practicality. So let’s nevermind points 1 and 2b.

I have split the second point to highlight the role of lambdas. This element was the crux of the Montago-
vian revolution: according to Janssen in a personal communication with Partee from 1994, lambdas were
"...the feature that made compositionality possible at all." Using lambdas to make the semantic domain com-
positional then gave a target for the structure-preserving homomorphism from the syntactic domain. Today,
we have more refined ways to grant structure to semantic domains using category-theoretic tools. So let’s
redact "lambdas" from 2a.

What remains that is of interest is the question of what Montague considered the structure of syntax to
be. This is worth understanding, since we claim text circuits are a "structure of syntax", and that functorial
interpretation of text circuits in symmetric monoidal categories is Montagovian semantics in spirit if not
in letter. So let’s begin. In Section 1 of Universal Grammar, Montague’s first paragraph establishes common
notions of relation and function – the latter he calls operation, to distinguish the 𝑛-ary case from the unary
case which he calls function. This is all done with ordinals indexing lists of elements of an arbitrary but fixed
set 𝐴, which leads later on to nested indices and redundancy by repeated mention of 𝐴. We will try to avoid
these issues going forward by eliding some data where there is no confusion, following common modern
practice. Next, Montague introduces his notion of algebra and homomorphism. I will shunt the reproductions
of the definitions to the margin. First he separates the data of the carrier set and the generators from the
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Definition 1

1

2

.2.1 (Generating data of an Algebra). Let 𝐴
be the carrier set, and 𝐹𝛾 be a set of functions 𝐴𝑘 → 𝐴 for
some 𝑘 ∈ N, indexed by 𝛾 ∈ Γ. Denoted ⟨𝐴, 𝐹𝛾⟩𝛾∈Γ

Definition 1

1

2

.2.2 (Identities). A family of operations
populated, for all 𝑛,𝑚 ∈ N, 𝑛 ≤ 𝑚, by an 𝑚-ary opera-
tion 𝐼𝑛,𝑚, defined on all 𝑚-tuples as

𝐼𝑛,𝑚(𝑎) = 𝑎𝑛

where 𝑎𝑛 is the 𝑛th entry of the 𝑚-tuple 𝑎.

Definition 1

1

2

.2.3 (Constants). For all elements of the
carrier 𝑥 ∈ 𝐴, and all 𝑚 ∈ N, a constant operation 𝐶𝑥,𝑚
defined on all 𝑚-tuples 𝑎 as:

𝐶𝑥,𝑚(𝑎) = 𝑥

Definition 1

1

2

.2.4 (Composition). Given an 𝑛-ary op-
eration 𝐺, and 𝑛 instances of 𝑚-ary operations 𝐻1≤𝑖≤𝑛,
define the composite 𝐺(𝐻𝑖)1≤𝑖≤𝑛 to act on 𝑚-tuples 𝑎 by:

𝐺(𝐻𝑖)1≤𝑖≤𝑛(𝑎) = 𝐺(𝐻𝑖(𝑎))1≤𝑖≤𝑛

N.B. the 𝑚-tuple 𝑎 is copied 𝑛 times by the composi-
tion. Writing out the right hand side more explicitly:

𝐺(
(
𝐻1(𝑎) , 𝐻2(𝑎) , … , 𝐻𝑛(𝑎)

)
)

Definition 1

1

2

.2.5 (Polynomial Operations). The polyno-
mial operations over an algebra ⟨𝐴, 𝐹𝛾⟩𝛾∈Γ are defined
to be smallest class 𝐾 containing all 𝐹𝛾∈Γ, identities,
constants, closed under composition.

Definition 1

1

2

.2.6 (Homomorphism of Algebras). ℎ is a
homomorphism from ⟨𝐴, 𝐹𝛾⟩𝛾∈Γ into ⟨𝐵, 𝐺𝛾⟩𝛾∈∆ when

1. Γ = ∆ and for all 𝛾, 𝐹𝛾 and 𝐺𝛾 agree in arity

2. ℎ ∶ 𝐴 → 𝐵

3. For all 𝛾 and lists of arguments ⟨𝐀⟩, ℎ(𝐹𝛾(⟨𝐀⟩)) =
𝐺𝛾(ℎ(⟨𝐀⟩))

polynomial operations that generate the term algebra. All of Montague’s algebras also come equipped with the
data of identities, constants, and composition.

Section 2 seeks to define a broad conception of syntax, which he terms a disambiguated language. This is a
free clone with carrier set 𝐴, generating operations 𝐹𝛾 indexed by 𝛾 ∈ Γ, along with extra decorating data:

1. (𝛿 ∈)∆ is an (indexing) set of syntactic categories (e.g. NP, V, etc.). Montague calls this the set of category

indices. 𝑋𝛿 ⊆ 𝐴 form the basic expressions of type 𝛿 in the language.

2. a set 𝑆 assigns types among 𝛿 ∈ ∆ to the inputs and output of – not necessarily all – 𝐹𝛾.

3. a special 𝛿0 ∈ ∆ is taken to be the type of declarative sentences.

This definition is already considerably progressive. Here are several observations:

(⋆) Because there is no condition of disjointness upon the 𝑋𝛿 — a view that permits the same word to play
different syntactic roles — (1) permits the same basic expression 𝑥 ∈ 𝐴 to participate in multiple types
𝑋𝛿 ⊆ 𝐴.

Condition (2) misses being a normal typing system on several counts. There is no condition requiring all
𝐹𝛾 to be typed by 𝑆, and no condition restricting each 𝐹𝛾 to appear at most once. This raises the possibilities
that:

(†) some operations 𝐹 go untyped.

(‡) some are typed multiply.

Taking a disambiguated language 𝔘 on a carrier set 𝐴, Montague defines a language to be a pair 𝐿 ∶=

⟨𝔘, 𝑅⟩, where 𝑅 is a relation from a subset of the carrier 𝐴 to a set PE𝐿, the set of proper expressions of the lan-
guage 𝐿. It appears that a purpose of 𝑅 defined in this way is to permit the modelling of syntactic ambiguity,
where multiple elements of the term algebra 𝔘 (corresponding to syntactic derivations) are related to the
same "proper language expression".

It appears that Montague’s intent was to impose a system of types to constrain composition of operations,
but the tools were not available for him. Montague addresses (†) obliquely, by defining ME𝐿 to be the image
in PE𝐿 of 𝑅 of just those expressions among 𝐴 that are typed. Nothing appears to guard against (‡), which
causes problems as Montague expresses structural constraints (in the modern view) in terms of constraints
on the codomain of an interpreting functor (cf. Montague’s notion of syntactic categories that "generate").
One consquence, in conjunction with (⋆), is that every multiply typed operation 𝐹 induces a boolean algebra
where the typings are the generators and the operations are elementwise in the inputs and output. Worse
problems occur, as Montague’s clone definition include all projectors, and when defined separately from the
typing structure, these projectors may be typed in a way that permits operations that arbitrarily change types,
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which appears to defeat the purpose. I doubt these artefacts are intentional, so I will excerise my hermeneu-
tical rights and assume his intent was a type-system with categorical semantics as we would use today. In so
doing, we can summarise things fairly succinctly.

Proposition 1

1

2

.2.7. Montague’s grammars are coloured operads.

Proof. Definition 1 1
2
.2.2 is equivalent to asking for all projections. Definitions 1 1

2
.2.2 and 1 1

2
.2.4 together char-

acterise Montagovian algebras as (concrete) clones, which then generalised to (abstract) clones, which were
then discovered to be in bĳection with Lawvere theories [KPS14]; by an evident extension of [Prop 3.51] in
that same paper to the typed case, a disambiguated language is a multi-sorted Lawvere theory without rela-
tions, where the sorts are generated from products of a pointed set (∆ , 𝛿0 ∶ 1 → ∆). Lawvere theories are
themselves a special case of operadic composition [Yau16]. Operadic composition naturally viewed as that
of coloured trees, which is equivalently depicted as nesting expressions according to the tree-structure. In-
terpreting colours as types, operadic composition subsumes whatever one might wish to do with a typed
gentzen-style sequent system where rules are multi-input single-output.

While typelogical grammars stop there, PROPs generalise operadic composition to multi-input multi-
output, and as combinatorial specifications for string diagrams, weak 𝑛-categories generalise PROPs, and
so we have shown weak 𝑛-categories to subsume a distinct evolutionary line of formal syntax from CFGs to
TAGs.

1
1

2

.2.3 On Deep Structure, the Universal Base Hypothesis, and the "Lexical Objection"

As the story roughly goes [Har93], once upon a time some clever people dreamt up a deep structure that cap-
tured the syntactic relationships between the surface appearance of words in a sentence. Then they realised
that by manipulating the deep structure with a transformational grammar (TG), they could relate sentences
that seemed natural to relate. To be able to express the difference between related sentences as a single math-
ematical move was exciting stuff! Well, how far could one impose order on the jungle of syntax? Here’s a
thought: if language is perhaps something innate for humans (which as far as anyone knew was a reasonable
assumption at the time), how about this for an ambitious idea: let’s all try to find a single, canonical underly-
ing mathematical structure that could be specialised to obtain a model for the syntax of any natural language:
a universal base [PR69]. Of course, to do this, it was necessary to refine the mathematical models to more
closely match the empirical data of English, so these clever people (who were now called formal linguists) got
to work together, and that was exciting and fun. In those halcyon days, it was also believed that this could be
done without a consideration of the meanings of words, because the assumption that grammar was somehow
upstream of meanings, called the autonomy of syntax [Cro95], which is also a soft prerequisite assumption,
if one holds that semantics is compositional according to syntax. But as TG got better at capturing English,
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this belief about the autonomy of syntax started running into trouble because the line between meanings
and grammar was blurry. So, some of the formal linguists decided to take semantics more seriously. But that
meant that syntax alone wasn’t going to cut it, and that meant throwing away some really nice ideas, like the
autonomy of syntax, or (heaven forbid) the existence of a universal base that everyone was working hard to
find. Some of the other formal linguists who really liked syntax didn’t like the suggestion that syntax isn’t
special, and so they thought that taking semantics seriously was a silly idea and a bad move. And then ev-
eryone started saying mean things to each other, and then there was a big fight, and that was exciting and
sad.

The fight is long settled, but I’m not sure that it’s bedtime yet. My opinion is that the fight didn’t really
have to happen if they all just waited a while for computers to get better. I’m going to focus now on a particu-
lar example of how text circuits instantiated with vectorial semantics obtained from data might have patched
things over, by sketching how one might address one of (in my opinion), the more deadly counterexamples
to the autonomy of syntax, called the "lexical objection", which I’ll explain now in grownup terms. One of
the successes of TG was to demonstrate the essential sameness of sentences that look different on the surface.
This can also be done by diagrammatic means: for example, a passive voice relationship like Alice is bored

by the class and The class bores Alice is analysable as a topological equivalence of information flows
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[CW21]

<copula> <TV>-ed <adpos.>

Obj. Subj.

*TV*

Obj. Subj.

*TV*
*TV*

Subj. Obj.

(unfolding)
(rearranging wires)

Alice is bored by (the) class

(the) class bores Alice

↦ =

Whether it is TG or some other formal machinery that expresses it, if there is a universal base, then it proba-
bly ought to tell us about whether pairs of sentences of the kind above are really the same thing said differ-
ently, or else it wouldn’t deserve such an important adjective like "universal". Now, if autonomy of syntax is
true, then all of these grammar equations ought to be only concerned with the form or shape of the sentences
involved, not on the particular words from your lexicon that are put in the place of subjects and verbs and ob-
jects and what-have-you. If there were such a lexical dependency, then one would have to posit special rules
for grammar that are dependent on the meanings of particular words, so syntax wouldn’t be autonomous.
The kicker is that there seem to be examples of such lexical dependencies, and that is the lexical objection.
Here is one example now, in the form of two sentences about Seymour making lunch [Lak68] along with their
dependency grammar parses taken from [Dis]:
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Seymour sliced the salami with a knife

PropN Verb Noun Adp Noun

nsubj

prep

dobj pobj

Seymour used the salamitoa knife

PropN Verb Noun Part Noun

nsubj

xcomp

dobj pobj

slice

Verb

aux

These are two sentences that seem to mean the same thing, and if there is a universal base and autonomy
of syntax is true and semantics is compositional, then it had better be that there’s a purely syntactic expla-
nation for the equivalence, just like the cases of passive voices and relative pronouns and so on. Before we
continue I want to head off a class of objections to this line of argument that says that there are differences
in the meaning of these two ways of talking about Seymour, because by construing "meaning" to be suitably
encompassing, there are for instance emotive or topical differences in the two sentences in the context of,
say, a story or a poem. So let’s call this the poetic objection. Taken to its logical conclusion, the poetic objec-
tion concludes that any two sentences that aren’t exactly equal are meaningfully distinct, modulo a suitably
generous interpretation of what meaning is. This trivialises semantics, insofar as semantics is about con-
structing equivalence classes on syntax, so we can be done asking questions right away. Just on the basis of
what is more difficult and interesting and potentially informative, the current line of argument is preferable
because seeks to distinguish differences in ways meanings can be "the same", even if this notion of sameness
is grounded in essentially nebulous and intuitive judgements, because we might at least flesh out what the
boundaries of those judgements are and learn something in the process. So let’s agree to carry on, unfolding
the syntactic structures of the sentences into something familiar and treelike:

Seymour

sliced

the salamiwith

a knife

Seymour

used

the salami

slice a knife

to

Now we have a problem: the root verbs are different, the shapes of the trees are completely different, and the
leaf labels are juggled around. How would we transform one tree into the other? Whatever the method, it
had better have something to do with the word used, because replacing use with some other word would
change the meaning entirely. Fine, then let’s try to save the autonomy of syntax by recategorising use to be
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a grammatical function word, in the same league as copulas and pronouns and adpositions. Then we would
be able to have rewrites relating the two trees above by fiat, but what would the general rule look like? It
seems like the necessary and sufficient conditions to permit such an equivalence would have to boil down to
something to something akin to a frame [FB01], that tells us when we have an agent performing an action on
a patient with a tool, that the same as an agent using a tool to perform an action on a patient:

⎧

⎨

⎩

Agent Action Patient [with/using] Tool

Agent [uses] Tool [to/for] Action Patient

Wait a minute, isn’t that fundamentally about meanings as we humans experience it in the world? How
could the notion of tools be part of syntax? If we were to take this observation seriously, as in try to formalise
these kinds of equivalences founded on such frames, then we would be retreading the path of generative
semantics, cognitive linguistics, all the way to expert systems in GOFAI. But all of that would require po-
tentially abandoning universal bases (who’s to say that such frames are not culturally dependent) and the
autonomy of syntax (if meanings can affect grammar, then that’s akin to breaking the central dogma of biol-
ogy: suddenly there’s very little hope to untangle the phenomena because it’s a mess of everything affecting
everything). So you can probably appreciate why some die-hard formal grammarians didn’t like this whole
idea and why there was a big fight. Ok, now here is a sketch proposal to resolve the problem. Let’s first turn
everything both sentences into text circuits, like so, where boxes in grey indicate variable arguments:

ACT.

AGT. PAT. TOOL

with = use to ACT.

AGT. PAT. TOOL

Now let’s interpret the nesting-boxes explicitly as parameterised operations, such that verb gates are fac-
torised as verb-states on a verb type (green wire), and there is a separate wire (black) representing a noun
type. The five coloured boxes represent five processes with representations we need to learn. More details of
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this approach are given in Section 3.3, and separately elaborated in [RFL+24].

TV

AGT. PAT. TOOL

with

ACT.

TV

use ACT.

to

AGT. PAT. TOOL

IV

=

Now we can interpret the frame as an equality condition on these two circuits. If we instantiate all of the
coloured boxes with neural networks, we can express the frame equality condition as a loss function to be
minimised. In prose, we are asking that for all observed tuples of (agent,patient,tool) (as vector represen-
tations of nouns) and for all observed actions (as vector representations of verbs), the two composites of
neural networks are equal. Concretely, let’s say we have; a (assume metric) space of noun-representations
𝑁, where 𝑁role indicates a subspace of representations corresponding to particular grammatical roles; a
space for verb representations 𝑉 with similar subspaces; an observed distribution from some text corpus
𝒳 ∼ 𝑁AGT ×𝑁PAT ×𝑁TOOL ×𝑉ACT; a divergence 𝐃 on 𝑁 ×𝑁 ×𝑁; four parameter spaces 𝑃 corresponding to the
parameters of the four neural nets TV, IV, with, to, and use; and projection maps 𝜋𝑖 to isolate outputs. The
learning objective that corresponds to finding representations that satisfy the frame condition is then:

inf
𝑝∈𝑃TV×𝑃IV×𝑃with×𝑃use×𝑃to

⎛

⎜
⎜

⎝

E
(𝑎,𝑝,𝑡,𝑣)∼𝒳

⎡
⎢
⎢
⎢

⎣

𝐃

⎛

⎜
⎜

⎝

⎛

⎜
⎜

⎝

𝜋0(TV(𝑎, 𝑝, 𝜋0(with(𝑣, 𝑡))))

𝜋1(TV(𝑎, 𝑝, 𝜋0(with(𝑣, 𝑡))))

𝜋1(with(𝑣, 𝑡))

⎞

⎟
⎟

⎠

,

⎛

⎜
⎜

⎝

𝜋0(TV(𝑎, 𝑡, 𝜋0(to(use, 𝑣)))))

𝜋1(TV(𝑎, 𝑡, 𝜋0(to(use, 𝑣)))))

IV(𝜋1(to(use, 𝑣)), 𝑝)

⎞

⎟
⎟

⎠

⎞

⎟
⎟

⎠

⎤
⎥
⎥
⎥

⎦

⎞

⎟
⎟

⎠

We would still have to go find all the frames or somehow farm them from data, and if we wanted to not only
be able to verify equalities of meaning but also be able to efficiently produce paraphrases we would have to
solve the problem of circuit tomography in terms of known building blocks, and we would probably need
a lot of compute to learn these representations well. But all these are technical rather than conceptual prob-
lems: this is a way to incorporate both kinds of paraphrase equalities, syntactic and semantic, in the same
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mathematical framework. Taken in conjunction with vectorial semantics for lexicons which are a scalable so-
lution for word-meanings, we have a compromise: here is something that works with modern technologies,
and you import all of your formal grammar and formal semantics. There will remain autonomy of syntax
to an extent, in that semantics is still compositional and syntax-directed but in such a way that learnt repre-
sentations will also correspond to other syntactic representations in a meaning-sensitive way. Perhaps most
importantly for those who care, this way of doing things lets us take both semantics and syntax seriously, and
it leaves open the possibility that there does exist a universal base; by essentially outsourcing the additional
complications of meaning to vectorial semantics informed by big data, we have — albeit in a different way —
once again isolated the question of syntactic form on its own terms.

1
1

2

.2.4 On communication, and the mathematical infeasibility of the Autonomy of Syntax

Unless it is somehow unreasonable to analyse communication in terms of a producer and a parser, a form of
the autonomy of syntax assumption is at odds with a form of compositionality of semantics: one of the two
has to give. The thrust of Section 2.1 is that, even outside of the lexical objection, syntax must be constrained
by a purely compositional semantics because of the constraints imposed by communication. I think this may
be a genuinely new contribution to formal linguistics of a particularly nice sort, because it only really uses
ideas that were already lying around. There are two branches of the development of Formal Linguistics writ
large that I will attempt to relate this insight to here. The first is formal language theory and the relationship
between formal languages and the abstract machines that generate them. The second is semantics in genera-
tive grammar.

The idea of tying together production- and parsing- machines for formal languages is well known, and
is the conceptual basis of the Chomsky hierarchy: more complicated languages require more complicated
parsing machines. See Figures 1 1

2
.1 and 1 1

2
.2.

S VP

VPN TV N

VP

IV

Figure 1 1
2
.1: Here for example is a context free

grammar for simple sentences that involve either a
single transitive or intransitive verb. I’ve gathered
together terminals, depicted as feet, into the basic
generators.
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Figure 1 1
2
.2: And here is its corresponding finite

state machine. States are depicted as nodes, and
transitions are depicted as labelled directed edges.
This machine operates over the alphabet {N, IV, TV,
and it only accepts those strings that are producible
by its paired CFG. sbj vb. obj ok!

no!

N

IV

NTV

IV,TVN

IV,TV

But there is something missing in this picture, and that is semantics. The finite state machine in this exam-
ple only does a weak form of parsing, indicating whether a string is acceptable or not. One obvious way to
incorporate semantics on the parsing side here is to upgrade the finite state machine into a variant pushdown
automaton that simultaneously handles the transcription of the truth-conditional semantics in the 𝜆-calculus.
See Figure 1 1

2
.3.
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sbj

vb.

obj

ok!

no!

N

IV

N

TV

IV,TV

N

IV,TV

(𝜆𝑥.(𝜆𝑦.TV(𝑥, 𝑦)))⋆ ␣

⋆␣N

⋆N

(𝜆𝑥.IV(𝑥))⋆ ␣

Figure 1 1
2
.3: The blue arrows branching off of the

transitions indicate what rewrites to perform on a
side-buffer, where ⋆ denotes whatever was previ-
ously in the buffer, and ␣ indicates the placement
of a cursor position where future rewrites are to
take place. We’re overloading notation here so that
terminal symbols N, IV, TV in the buffer correspond
to typed elements and functions N ∈ 𝐷𝑒, IV ∈ 𝐷⟨𝑒,𝑡⟩

and TV ∈ 𝐷⟨𝑒,⟨𝑒,𝑡⟩⟩ respectively, with respect to some
bestiary of individuals/entities 𝐷𝑒 and truth values
𝐷𝑡 and their type closures in Set under exponentia-
tion.

Example 1

1

2

.2.8. An example stack-trace of the operation of the machine of Figure 1 1
2
.3 on the input Ann

loves Jan is:

𝜀
Ann
→ ␣ Ann

loves
→ (𝜆𝑥.(𝜆𝑦.loves(𝑥, 𝑦))) Ann ␣

Jan
→ (𝜆𝑥.(𝜆𝑦.loves(𝑥, 𝑦))) Ann Jan

Afterwards and separately, the application rule of the 𝜆-calculus yields the desired expression to be evaluated
with respect to a model, namely: loves(Ann, Jan).

Now wait a minute, we also want semantics to be compositional, guided by the structure of syntax. But all
of that structure is in the CFG. It’s well understood how to do semantics for generative grammar on that end
[HK98], but now we’re left with a technical problem: how do we know whether the pushdown construction
gives us the same semantics as the one we would usually want for the CFG? If we had that, then we would
have rolled together a parser and a producer sharing the same semantics, which would be a particular mathe-
matical model for communication. We could perform a case analysis on this example to achieve this, but that
approach won’t scale, and it seems pretty thorny to generalise because the whole pushdown idea operates on
𝜆-expressions in linear form, which forgets all of the nice syntactic structure given by the CFG. If we wanted
to do this systematically while respecting compositionality of semantics, it seems that the conceptually clean-
est way go about it is to look for a kind of strong equivalence: we can try to make it so that every generator
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on the productive side corresponds precisely to an appropriate bit of partially composed semantics on the
parsing side. But in this example, what are we to do with the ansatz types S and VP that live in the CFG but
don’t occur on the parsing side? The fundamental conceptual obstacle here is that deep structure (should it
exist) potentially has access to all kinds of extra labels and structural information that the parsing side doesn’t
have access to; the latter can only see a string of terminals. Let’s take a step back here and start over.

Maybe starting with a finite state automaton on the parsing side is not the best beginning, because it only
cares about whether a string is acceptable or not. If instead we used a typelogical grammar that witnesses
judgements of grammaticality along with proofs as witnesses, we could exploit the fact that the proofs them-
selves reflect grammatical structure. Now Section 2.1 is well-motivated with respect to the literature, so you
can go see how this line of investigation plays out over there.

1
1

2

.2.5 On frameworks for rewriting systems

I think that Section 3.2 is pretty much well-motivated with respect to the literature already, so there’s just one
conceptual issue I want to address here. One of my examiners noted that it seems like bad mathematical taste
to use free infinity-categories for what basically amounts to graph rewrites, which raises the obvious ques-
tion: why not just use graph rewrites instead? First, I agree with his comment about taste, but I felt in this
case it could not be avoided, because second, the answer lies in Figure 3.24, and it has to do with locality and
long-range dependencies. I’ll try to elaborate the issue in prose here. Tree-structures represent context-free
symbol-rewrite systems, and transformational grammar and tree-adjoining grammars are about rewriting
trees. Of course, symbol-rewrite systems can be context-sensitive, and in the same vein, we might expect that
tree- or graph-rewrite systems can also be context-sensitive. Now here is where things stop being pedestrian:
suppose we have a long-range dependency of some kind between A and B, where it doesn’t really matter what
happens in between. An example is coreference in text. This is a kind of context-insensitivity, where rather
than a rewrite requiring a context of a particular form, the surrounding and intervening context may freely
vary to a degree. Designing an abstract machine that obeys these constraints is tricky because rewrites could
in principle require evaluating whether some predicate holds for the contents of memory before executing
a rewrite, as opposed to a simple lookup. Concretely, in the case of strings, context-insensitivity already re-
quires more than just a stack-memory; it would require a Turing machine that could also operate on that
memory to determine whether the context is of the right form. There’s a whole host of issues here: techni-
cally it’s not clear what such a machine would look like if we go from strings to graphs, and conceptually if
we had such a machine we would have to craft custom limitations on the kinds of well-formedness predicates
that permit rewrites so that we could stay in an efficiently parseable class of languages, on pain of our ma-
chinery overshooting the human capacity for natural language. The solution to these problems that I have
opted for here is to keep all rewrites local and properly context-free for graphs, but I let the machinery of in-
finity categories handle bookkeeping for handling spatial rearrangements of the deep structure so that it is
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I will confess that what truly motivated all of the effort in
this thesis was the attempt to put metaphors on formal
footing, in pictures. There is an attitude that the real
mensch logic and graphs that formal linguists are fond
of is somehow better by virtue of mathematical rigour
than the fluffy stuff cognitive semanticists are interested
in, and that didn’t sit right with me. I think I’ve achieved
what I set out to do, but in such a way that my zeal for
formal linguistics annihilated itself: I was moving little
blobs and stickmen around with words in a composi-
tional fashion to create cartoon vignettes, which was
really no different than programmatic animation with
pen and paper under doctrinal constraints that no longer
in my mind usefully restricted the nature of the kind of
inquiry into language that was intended. What started as
mathematical modelling in search of something essential
became in myself a dawning awe of the vastness of lan-
guage, and the recognition that I had both the logician’s
and the algebraist’s sicknesses in my spirit. How I would
attempt to describe them is that the logician’s sickness
is the desire to subjugate and quarantine the terror of
reality within logos, and the algebraist’s sickness is the
desire to construct abstract machines that will solve the
problem in a way that absolves one of having to make
choices. These are, I believe, the fear of life and of living,
respectively. If I went back in time, I don’t think I would
have been able to talk myself out of it. From discussions
with other postrationalists, it seems that the sickness
doubles as the sole cure: one just has to really take ra-
tionalism seriously and come out the other side with the
sensibility of an artist, burdened and blessed with the
responsibility to choose what is meaningful for them-
selves. Before, from pride, I looked upon mathematical
linguistics with disdain; now, from humility, pity.

possible to redefine what locality means. The price to pay here is that one must explicitly keep track of not
just the connectivity of the graph at any given time but also its spatial arrangement, but this is also potentially
a feature: the difficulty of finding the right arrangement to go to next conceptually maps onto the computa-
tional difficulty of understanding natural language (but I won’t commit to any sort of mathematical realism
about it). I’ll also remark that the machinery of Section 3.2 can be reversed to go from circuits to text, which
can be piped together with the machinery of Section 2.1 to go from text to circuits to also give a satisfactory
model of communication, though what I have not done in this case is demonstrate strong equivalence, which
I will leave as an open question for now.

1
1

2

.2.6 On formality in cognitive semantics

There are two conceptual contributions here to formal linguistics. First is the demonstration that, in principle,
we may interpret the meanings of words to be instructions about how to set up and move shapes around
in cartoon sketches of conceptual schema, without sacrificing rigour. I do this by defining the symmetric
monoidal category ContRel of topologically continuous relations, which serves as a mathematically formal
and compositional setting for cartoons. I’ve gone to some length to convince the reader that, modulo a little
elbow-grease, anything one can linguistically describe happening to assemblages of shapes can be modelled
in ContRel, so we may conservatively generalise Montague semantics — construed as a symmetric monoidal
functor from text circuits as an underlying deep structure to some other symmetric monoidal category as
semantics — from truth-conditions to shapes.

Second is a computable (by hand) mathematical model of metaphor. The core idea is simple: if we con-
sider a metaphor to be a pair of structure-preserving maps from the data of a conceptual schema 𝐶 to two
different semantic settings 𝑋 and 𝑌, so long as the maps satisfy certain algebraic properties, we may start
from an expression in 𝑋, go backwards along one of the maps to 𝐶, and then travel forwards along the other
map to 𝑌 to obtain another expression. The nature of the algebraic properties makes it so that travelling
backwards along a map is not only well-defined, but the resolution of where we end up in the preimage also
doubles as bookkeeping for different choices about how to interpret the metaphor. By starting with 𝑋 as text
circuits as a model of deep structure, encoding the data of a conceptual schema 𝐶 as freely generated by the
signature of a text circuit with equational relations, and taking 𝑌 to be the setting ContRel, we may compute
the meaning of Vincent spends his morning writing, via the metaphor TIME is MONEY, as a vignette of
pictures that represents the conceptual situation in much the same way that moving meeples around differ-
ent zones in a boardgame encodes the state of the game. This sort of boardgame-semantics is then a model
that serves as a further basis upon which one can do truth-conditional semantics. What is quite cute about all
of this is that it is the interpretation of metaphors as pictures, using picture-maths.

These two contributions address — to my knowledge — several conceptual lacunae in both truth-conditional
and vectorial semantics. The first such gap is that we use language in the first place to construct the underly-
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ing models with respect to which we might eventually apply the truth-conditional view, for instance when
we tell a story, or when we present a reasoning problem in mathematics. This appears to require a discourse-
theoretic approach where composition of the underlying models that truth-conditions are evaluated against,
and the machinery in this thesis appears to suffice in principle. I don’t doubt that there are frameworks that
meld together truth-conditions discourse-theoretically; the conceptual distinction of this approach is that
the composition of the underlying models (as states), meanings of words in text (as updates), and of truth-
conditions (as tests) all all on equal footing, and all moreover in a fashion that generalises beyond truth-
conditions to admit broader conceptions of what the essential data of semantics might be, as the modeller
wishes.

A second gap, particularly a challenge for the vectorial view but more generally pressing, is a composi-
tional semantics for topological linguistic relationships, such as containment, which motivated and justified
introducing the machinery of topologically continuous relations. Evaluating/interpreting the meanings
of such topological words required concrete models to evaluate against, which necessitated a construction
of a compositional setting in which one could hold onto and label "non-pathological" shapes, and a bit of
mathematical effort was expended to show that such collections of shapes corresponded to conservative gen-
eralisations of special frobenius algebras, which end up behaving graphically simply as wires that permit
splitting and merging. That effort in my view distinguishes this approach from others in that it also sought to
demonstrate an ideological point: that pictures are all you need.

The third, which is a gap for any compositional account of natural language semantics guided by syntax,
is that one needs something else around in order to make sense of metaphors. For this, I argue that spans of
functors — of essentially the same kind used in my analysis of communication — appear to be a promising
foothold, and I do believe I am the only person thus far to have computed a pictorial semantics of a metaphor
by formal means "all the way", starting from the basic syntactic structure. There are many things I am un-
happy about with this thesis, but I am at least happy about that.
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On communication

Speakers produce, and listeners parse sentences. If we believe that semantics is compositional according to
syntax, because communication is possible, these two ways of conceiving of grammar (e.g. string-rewrite
systems and typelogical grammars, respectively) must be mathematically related: the semantics of a sentence
ought to be "the same" in either grammar. Using string diagrams as semantics allows us to formalise "same-
ness" as "up to topological deformation", where internal wirings constitute a shared representation strategy
on words between speaker and listener that witnesses this topological equivalence for any sentence that both
grammars can produce. However, internal wirings are not functorially determined by syntax: the same word
may have different internal wirings in a way that depends systematically on context. We can capture this
systematicity as a span of functors closely related to cofunctors, for which we develop a string-diagrammatic
reasoning technique that works like functor boxes, along with the attendant mathematics.
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2.1 How do we communicate using language?

Speakers and listeners understand one another. Obviously, natural language involves communication,
which involves at minimum a speaker and a listener, or a producer and a parser. The fact that communica-
tion happens at all is an everyday miracle that any formal understanding of language must account for. The
miracle remains so even if we cautiously hedge to exclude pragmatics and context and only encompass small
and boring fragments of factual language. At minimum, we should be able to model a single conversational
turn, where a speaker produces a sentence, the listener parses it, and both agree on the semantics. Here is a
sneak peek of what’s to come: a sequence of diagram equations that demonstrates mathematically how the
miracle works for two toy grammars, for the sentence Alice sees Bob quickly run to school. On the left
we have a grammatical structure obtained from a context-free grammar, and we have equations from a dis-
crete monoidal opfibration all the way to the right, where we obtain a pregroup representation of the same
sentence. Going from right to left recovers the correspondence in the other direction.
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Here are some naïve observations on the nature of speaking and listening. Let’s suppose that a
speaker, Charlie, wants to communicate a thought to Dennis. Charlie and Dennis cooperate to achieve the
miracle; Charlie encodes his thoughts – a structure that isn’t a one-dimensional string of symbols – into a
one-dimensional string of symbols. And then Dennis does the reverse, turning a one-dimensional string of
symbols into a thought-structure like that of Charlie’s. It may still be that Charlie and Dennis have radically
different internal conceptions of what FLOWERS or GIVING or BEETLES IN BOXES are, but that is alright: we
only care that the relational structure of the thought-representations in each person’s head are the same, not
their specific representations.

The nature of their challenge can be summarised as an asymmetry of information. The speaker
knows the structure of a thought and has to supply information or computation in the form of choices to
turn that thought into text. The listener knows only the text, and must supply information or computation to
deduce the thought behind it. By this perspective, language is a shared and cooperative strategy to solve this
(de/en)coding interaction.
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Speakers choose. The speaker Charlie must supply decisions about phrasing a thought in the process of
speaking it. At some point at the beginning of an utterance, Charlie has a thought but has not yet decided
how to say it. Finding a particular phrasing requires choices to be made, because there are many ways to
express even simple relational thoughts. For example, the relational content of our running example might be
expressed in at least two ways (glossing over determiners):

Alice likes flowers that Bob gives Claire.

Bob gives Claire flowers. Alice likes (those) flowers.

Whether those decisions are made by committee or coinflips, they represent information that must be sup-
plied to Charlie in the process of producing language. For this reason, we consider context-free-grammars
(and more generally, other string-rewrite systems) to be grammars of the speaker, or productive grammars.
The start symbol 𝑆 is incrementally expanded and determined by rule-applications that are selected by the
speaker. The important aspect here is that the speaker has an initial state of information 𝑆 that requires more
information as input in order to arrive at the final sentence. Note that the concept of productive grammars
are not exhausted by string-rewrite systems, merely that string-rewrite systems are a prototype that illustrate
the concept well.

Listeners deduce. The listener Dennis must supply decisions about which words are grammatically related,
and how. Like right-of-way in driving, sometimes these decisions are settled by convention, for example,
subject-verb-object order in English. Sometimes sophisticated decisions need to be made that override or
are orthogonal to conventions, as will be illustrated in the closing discussions and limitations section of this
chapter. Since Dennis has to supply information in the form of choices in the process of converting text into
meaning, we consider parsing grammars – such as all typelogical grammars, including pregroups and CCGs –
to be grammars of the listener.

The speaker’s choices and the listener’s deductions must be related. The way the speaker decom-
poses the thought into words in text in the speaker’s grammar must allow the listener to reconstruct the
thought in the listener’s grammar. Even in simple cases where both parties are aiming for unambiguous com-
munication, the listener still must make choices. This is best illustrated by introducing two toy grammars –
we pick a context-free grammar for the speaker and a pregroup grammar for the listener, because they are
simple, planar, and known to be weakly equivalent.

We assume Charlie and Dennis speak the same language, so both know how words in their language cor-
respond to putative building blocks of thoughts, and how the order of words in sentences and special gram-
matical words affect the (de-/re-)construction procedures. Now we have to explain how it is that the two can
do this for infinitely many thoughts, and new thoughts never encountered before. Using string diagrams,
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𝐴

𝐵
𝐹

𝐿

𝐺
𝐶

=

𝐴

𝐵

𝐹

𝐿

𝐺

𝐶

Figure 2.1: Charlie and Dennis agree on the con-
ceptual organisation entities and relations up to
the words for those entities and relations. Just as
a running example that does not affect the point,
let’s say we can gloss a thought in first order logic
as ∃𝑎∃𝑏∃𝑐∃𝑓 ∶ 𝐴(𝑎) ∧ 𝐵(𝑏) ∧ 𝐶(𝑐) ∧ 𝐹(𝑓) ∧ 𝐿(𝑎, 𝑓) ∧

𝐺(𝑏, 𝑐, 𝑓). In diagrammatic first order logic [HS20],
this is equivalently presented as the following
diagrams (and any other diagram that agrees up
to connectivity.) For example, Charlie could ask
Dennis comprehension questions such as WHO
GAVE WHAT? TO WHOM?, and if Dennis can always
correctly answer – e.g. BOB GAVE FLOWERS. TO

CLAIRE. – then both Charlie and Dennis agree
on the relational structure of the communicated
thought to the extent permitted by language.

this is surprisingly easy, because string diagrams are algebraic expressions that are invariant under certain
topological manipulations that make it easy to convert between different shapes of language.

Example 2.1.1 (Alice likes flowers that Bob gives Claire.). Let’s say Charlie is using a context-free
grammar to produce sentences, and Dennis a pregroup grammar.
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Figure 2.2: The rule of the game is that Charlie
and Dennis can agree on a string-diagrammatic
encoding strategy before having to communicate
with each other. Here is one such strategy. Charlie
might generate the example sentence as depicted.

S AliceNP

VP likesTV

NP flowers

that

VP−1 DV−1

gives

Bob

Claire

Figure 2.3: Mathematically, it makes no difference
if we take the Poincaré dual of the tree, so that
zero-dimensional nodes become one-dimensional
wires, and branchings become zero-dimensional
points linking wires – but we can just as well depict
those points as boxes to label them more clearly.

S

NP

VP

NP

VP

TV

Alice

likes

NP

N

rp

VP−1

that

flowers

N

VP−1 DV−1

N Bob

gives

Claire
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Figure 2.4: Now that Charlie can express their
grammatical structure string-diagrammatically,
they can try to deform their first-order-logic dia-
gram – representing what they mean to commu-
nicate – subject to the constraint that every one
of their branchings (the structure of the CFG) is
something recoverable by Dennis using just pre-
group reductions. To do so, Charlie introduces
a formal blue wire to mimic Dennis’s sentence-
type, and stuffs some complexity inside the labels
in the form of internal wirings: a multiwire con-
figuration for that, and a twist for gives. Those
internal wirings are the content of Charlie and
Dennis’s shared strategy. In passing, I’ll remark
that by the outside-in convention for functor boxes
2.10, this diagram constitutes a monoidal functor
from this particular CFG to pregroup diagrams,
where nonlabel tree-nodes are partial monoidal
closure evaluators. Replacing rigid autonomous
closure with cartesian closure and 𝑛, 𝑠 with 𝑒, 𝑡
recovers montague semantics for CFGs (c.f. Curry-
Howard-Lambek correspondence for the case of
typed lambda-calculus and cartesian closed cate-
gories, and all of Heim and Kratzer [HK98]), and
interpreting the closure in a compact closed setting
recovers montague semantics for CCGs [YK21].

𝐴

𝐹

𝐵

𝐶

𝐿

𝐺
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𝐴 𝐿 𝐹 𝐵 𝐶𝐺that

Figure 2.5: So, when Dennis receives the sentence,
Dennis’s pregroup derivation yields a pregroup
diagram that is connectively equivalent to what
Charlie stuffed inside the context-free grammar
structure. So now the two have strong equivalence
between their grammars in the sense that every
one of Charlie’s branches is resolved by one of
Dennis’s reductions. As is convention for pregroup
diagrams, we only use types 𝑛 and 𝑠 – the latter
denoted by a blue wire here – and we’ll leave the
directionality (rigid autonomous turning number)
of wires implicit, so you can either trust me that
everything typechecks or do it yourself.

𝐴 𝐵𝐹

𝐿
𝐺

𝐶

Figure 2.6: Now to fully recover Charlie’s intended
FOL-diagram, Dennis refers to the internal wirings
from their shared strategy, and fills those in.
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Example 2.1.2 (Alice likes flowers. Bob gives Claire (those) flowers.). Now we try the same
content as the previous example but presented as a text with two sentences.

Figure 2.7: Charlie’s diagram morphed to fit a text
circuit. The dotted blue line is a formal mark to
indicate a sentential boundary. Observe how new
discourse elements are introduced as states, and
how open wires correspond to ongoing discourse
and deletions mark completed discourse. This di-
agram also indicates that text circuits can be given
semantics in FOL.

𝐴

𝐵

𝐹

𝐿

𝐺
𝐶

Figure 2.8: Dennis already knows how to parse
individual sentences to extract the FOL using
internal wirings. Observe there is a mathemati-
cal complication that arises in determining how
many noun-wires should go into the sentence
wire-bundle; we need to account for this later.

𝐴

𝐹

𝐿 𝐴 𝐹

𝐿

≃
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Figure 2.9: To deal with text, Dennis can pass a
growing bundle of sentence wires along horizon-
tally.

𝐴 𝐵 𝐹

𝐿
𝐺

𝐶𝐹

[𝐴, 𝐹][ ] [𝐴, 𝐹] [𝐴, 𝐹, 𝐵, 𝐶, 𝐹] [𝐴, 𝐹, 𝐵, 𝐶][ ]

The essence of internal wirings: The relational content that is communicated by language is not inher-
ently one-dimensional, but must be encoded in and decoded from the one-dimensional strings of language.
Internal wirings [WC] provide a way to approach this coding problem topologically: while productive and
parsing grammars have different topologies, by choosing internal wirings for individual words, the speaker
and listener can obtain topologically equivalent representations.
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2.1.1 An issue with functorial semantics of internal wirings

There is a mathematical issue: the "filling in" of internal wirings is not in general functorial, for either
speaker or listener. The exemplified issue is that sometimes the particular internal wiring depends on what
words are around it.

Example 2.1.3 (Nonfunctoriality of internal wirings for productive grammars). Let’s consider an easy context-
free grammar as in Figure 2.1.3, with just four types and three rules apart from labels. The types are: S for
sentences, N for nouns, ADV for adverbs, and V for verbs. There is a single adverb introduction rule, and two
verb introduction rules for intransitive and transitive verbs.

IV V

S

ADV

N

Bob quickly runs

TV

S

Bob quickly drinks Duvel

V

Now suppose we want to describe a functor from this context free grammar to a pregroup grammar with just
types 𝑛 and 𝑠. We know how verb states ought to look, and we know that adverbs ought to modify a verb.
We can get pretty close with a first sketch, depicting the desired action of the functor using the outside-in
convention for functor boxes, and we can slim them down to tubes. Now the simplicity of the CFG reveals
a complication. Since there are two possible kinds of verbs, there are two possible kinds of adverbs, and
accordingly two possible kinds of adverb introduction rules. A functor from the CFG to a pregroup diagram
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can’t send the single adverb introduction rule to two different things at the same time.

B rq q dB D

Example 2.1.4 (Nonfunctoriality of internal wirings for parsing grammars). Compare Alice likes flowers

that Bob hates to the sentence in Figure 2.6; here the object relative pronoun that is connected to a transi-
tive verb hates rather than a ditransitive gives. The internal wirings work fine in this example, but now that

deletes two wires instead of three; a functor can’t map the same word-state to two possible instantiations.

A F B

l h
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2.2 Discrete Monoidal Opfibrations

To capture the kinds of diagrammatic correspondences we have just sketched, we will develop monoidal co-
functors diagrammatically. The first step is introducing the concept of a discrete monoidal opfibration: a math-
ematical bookkeeping tool that relates kinds of choices speakers and listeners make when generating and
parsing text respectively. This in turn will require introducing monoidal functor boxes.

Scholium 2.2.1. Expressing the coherence conditions of monoidal functors using equations involving functor
boxes as below is not new [Mel06]. The idea of a functor being simultaneously monoidal and a opfibration
is also not new. What is new is minor: the express requirement that the lifts of the opfibration satisfy inter-
change, which is in general not implied when a functor is both monoidal and a discrete opfibration.

Figure 2.10: There are two conventions for depict-
ing the action of a monoidal functor on parts of a
string diagram. The first follows source-to-target
outside-in. This convention is used for other work
in internal wirings, since it is well-suited for de-
scribing functors that send atomic generators in
their domain to more complex diagrams in their
codomain.

↦
S

T

depicted as:

T

Figure 2.11: The other convention is inside-out. For
the following section, we will define the coherence
conditions of discrete monoidal opfibrations using
this convention.

↦
T

S

depicted as:

S
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Figure 2.12: Suppose we have a functor between
monoidal categories 𝐅 ∶ 𝒞 → 𝒟. Then we have
this diagrammatic representation of a morphism

𝐅𝐴
𝐅𝑓
→ 𝐅𝐵 in 𝒟.

𝐅

𝑓

𝐴

𝐵

𝐅𝐴

𝐅𝐵

∶=∶𝐅𝑓

𝐅𝐴

𝐅𝐵

Figure 2.13: The use of a functor box is like a win-
dow from the target category 𝒟 into the source
category 𝒞; when we know that a morphism in 𝒟

is the image under 𝐅 of some morphism in 𝒞, the
functor box notation is just a way of presenting all
of that data at once. Since 𝐅 is a functor, we must
have that 𝐅𝑓;𝐅𝑔 = 𝐅(𝑓; 𝑔). Diagrammatically
this equation is represented by freely splitting and
merging functor boxes vertically. N.B. sequential
merging of two boxes requires that the two wires
to-be-connected within the boxes – in this case
labelled 𝐵 – need to be the same; a case where
merging is disallowed is when 𝐹𝑓;𝐹𝑔 typechecks
in the outside/target category, but 𝑓; 𝑔 does not
in the inside/source category because the functor
identifies nonequal wires.

𝐅

𝑓

𝑔

C

𝐴

𝐅𝐴

𝐅𝐶

=

𝐅

𝑓

𝐴

𝐵

𝐅𝐴

𝐅𝐵

𝐅

𝑔

𝐵

𝐶

𝐅𝐶

𝐵
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Figure 2.14: Assume that 𝐅 is strict monoidal;
without loss of generality by the strictification the-
orem, this lets us gloss over the associators and
unitors and treat them as equalities. For 𝐅 to be
strict monoidal, it has to preserve monoidal units
and tensor products on the nose: i.e. 𝐅𝐼𝒞 = 𝐼𝒟 and
𝐅𝐴 ⊗𝒟 𝐅𝐵 = 𝐅(𝐴 ⊗𝒞 𝐵). Diagrammatically these
structural constraints amount to these equations.

𝐅

=

𝐅

𝐴 𝐵

𝐅𝐴

𝐅𝐴

𝐅𝐵

𝐅𝐵

∶=∶
𝐅

𝐴 𝐵

𝐅(𝐴⊗𝐵)

𝐅(𝐴⊗𝐵)

Figure 2.15: What remains is the monoidality of
𝐅, which is the requirement 𝐅𝑓 ⊗ 𝐅𝑔 = 𝐅(𝑓 ⊗ 𝑔).
Diagrammatically, this equation is represented by
freely splitting and merging functor boxes horizon-
tally; analogously to how splitting vertically is the
functor-boxes’ way of respecting sequential com-
position, splitting horizontally is how they respect
parallel composition.

𝐅

𝑓 𝑔

𝐵 D

𝐴 𝐶

𝐅𝐴 𝐅𝐶

𝐅𝐵 𝐅𝐷

=

𝐅

𝑓

𝐴

𝐵

𝐅𝐴

𝐅𝐵

𝐅

𝑔

𝐶

𝐷

𝐅𝐶

𝐅𝐷

Figure 2.16: And for when we want 𝐅 to be a
(strict) symmetric monoidal functor, we are just
asking that boxes and twists do not get stuck on
one another.

𝐅

𝐴 𝐵

𝐅𝐴 𝐅𝐵

𝐅𝐵𝐅𝐴

=

𝐅

𝐵 𝐴

𝐴 𝐵

𝐅𝐴 𝐅𝐵

𝐅𝐵 𝐅𝐴

=

𝐅

𝐴 𝐵

𝐅𝐴 𝐅𝐵

𝐅𝐵𝐅𝐴
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Figure 2.17: To motivate opfibrations, first observe
that by the diagrammatic equations of monoidal
categories and functor boxes we have so far, we
can always "slide out" the contents of a functor box
out of the bottom. When can we do the reverse?
That is, take a morphism in 𝒟 and slide it into a
functor box? We know that in general this is not
possible, because not all morphisms in 𝒟 may be
in the image of 𝐅. So instead we ask "under what
circumstances" can we do this for a functor 𝐅? The
answer is when 𝐅 is a discrete opfibration.

𝐅

𝑓

𝐴

𝐵

𝐅𝐴

𝐅𝐵 𝐅

𝑓

𝐴

𝐵

𝐅𝐴

𝐅𝐵

𝐅

𝐴

𝐅𝐴

𝐅

𝐴

𝐅𝐴

𝐅𝐴

=

𝐅𝑓

𝐅𝐵

=
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Definition 2.2.2 (Discrete opfibration). 𝐅 ∶ 𝒞 → 𝒟 is a discrete opfibration when: for all morphisms 𝑓 ∶

𝐅𝐴 → 𝐵 in 𝒟 with domain in the image of 𝐅, there exists a unique object Φ𝐴
𝑓

such that 𝐅Φ𝐴
𝑓
= 𝐵 and a unique

morphism 𝜙𝑓 ∶ 𝐴 → Φ𝐴
𝑓

in 𝒞, such that 𝑓 = 𝐅𝜙𝑓 . Diagrammatically, we can present all of the above as
an equation reminiscent of sliding a morphism into a functor box from below. The process inside the box is
called the lift of the process that was slid in. The collection of all lifts over a wire or box is called the fibre over

that wire or box.

𝐅

𝐴

Φ𝐴
𝑓

𝐅𝐴

𝐵

=

𝑓

𝐅𝐴

𝐵

𝐅

𝐴

𝐅𝐴

𝜑𝑓

∀𝑓 ∶ 𝐅𝐴 → 𝐵 ∈ 𝒟

∃!𝜑𝑓 ∶ 𝐴 → Φ𝐴
𝑓
∈ 𝒞
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Definition 2.2.3 (Monoidal discrete opfibration). We consider 𝐅 to be a (strict, symmetric) monoidal discrete

opfibration when it is a (strict, symmetric) monoidal functor, a discrete opfibration, and the depicted equations
relating lifts to interchange hold. The diagrammatic motivation for the additional coherence equations is
that – if we view the lifts of opfibrations as sliding morphisms into functor boxes – we do not want the order
in which sliding occurs to affect the final result. In this way, lifts behave as graphical primitives in the same
manner as interchange isotopies and symmetry twists.

𝐅

𝐴

Φ𝐴
𝑓

𝐅𝐴

𝐵

=

𝑓

𝐅𝐴

𝐵

𝐅

𝐴

𝐅𝐴

𝜑𝑓

𝑔

𝐷

𝐶

𝐅𝐶

𝐅𝐶

𝐅

𝐴

𝜑𝐴
𝑓

𝐅𝐴

𝐵

𝜑𝑓

𝐶

Φ𝐶𝑔

𝜑𝑔

𝐅𝐶

𝐷

𝐅𝐶

𝐶

𝐅𝐶

𝑔

𝐷

𝐅

𝐶

Φ𝐶𝑔

𝐅𝐴

𝐵

=

𝜑𝑔

𝐅𝐶

𝐴

𝐅𝐴

𝑓

𝐷

=

Postscript: Stefano Gogioso observes that this property may be simplified to asking that for all 𝑓 ∶ 𝐅𝐴 → 𝐵,
there exists a unique 𝜑𝑓 ∶ 𝐴 → Φ𝑓 such that for all objects 𝐶, 𝐅(𝜑𝑓 ⊗ 1𝐶) = 𝑓 ⊗ 1𝐅𝐶 , which is potentially easier
to verify, and moreover related to "complete" variants of properties (c.f. complete positivity in categorical
quantum mechanics) where a property is stable under tensors with the identity. After helpful discussions
with Joe Moeller, in joint and ongoing work with Caterina Puca analysing functor boxes we show that these
equations are equivalent to asking that the cartesian lift of tensors is equal to the tensor of cartesian lifts. This
condition in conjunction with asking for the underlying functor to be strict monoidal and a opfibration then
agrees with the "canon" definition of monoidal opfibrations given by Mike Shulman, for the discrete case.
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2.2.1 What are they good for?

Figure 2.18: Now we try to use monoidal discrete
opfibrations to help us solve the speaker’s non-
functoriality problem (Example 2.1.3). First we flip
over the labels and introduction rules for adverbs.
Call this a dependent CFG, or dCFG. There are sev-
eral ways to do this formally, by e.g. specifying a
new string-diagram signature from the old one
or assuming rigid autonomous completion, and it
doesn’t matter which we use.

B q d D

↔

B

q

d DB q r

↔

B

q

r

Figure 2.19: Treating the label as a test rather than
a state will allow the opfibration-box to choose
the right version based on the domain wires as it
expands top-down. In this case, since CFGs are
planar, flipping causes no confusion, since we can
always flip the labels back over. Recall that opfibra-
tions can decide which lift to depict given a choice
of codomain wires. We would like to encode the
dependency of the upside-down adverb labels and
introduction rules as lifts that depend on the lift of
the verb wire, which may be either an intransitive
or transitive verb.

=

w w

w1
w2

= = =
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Figure 2.20: Instead of us making the choice, we
can force the choice using the information of the
CFG structure. Starting from a dCFG diagram, the
state-labels have unique lifts: noun labels in CFGs
correspond uniquely to noun-states in pregroup
diagrams, and verb labels to verb-states which may
be either intransitive or transitive. This obtains the
first equation. The second equation is obtained by
monoidality. The third "eating downwards" equa-
tion is obtained by the opfibration property; note
that because the codomain wires before the lift are
already decided to be those of an intransitive verb’s
pregroup type, the correct adverb introduction rule
can be selected for the lift.

B

q

r

=

q

B
r

=

q

B
r

q

B
r

=

Figure 2.21: But there’s a technical problem. We
have been assigning wires from the codomain of
the lift to the dCFG implicitly, by grouping wires
together visually to indicate which wires inside the
functor box correspond to wires outside. However,
when we consider the algebraic data available, all
we know is depicted in the figure: we need some
way to assign the wires. Solving the wire assign-
ment probem will be the focus of the next section.

q

B

r
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Postscript: it was overkill to use nonstrict diagram ma-
chinery for this, and everything could have also been
done directly with lists of objects, but I am too lazy to
redo it all.

Definition 2.3.1 (Strictified string diagrams). (Pre-
sentation from [WGZ22]) Fix an arbitrary (non-strict)
monoidal category 𝒞. The strictification (𝒞, ∙) is defined
as follows (where strictness of 𝒞 entitles use of string-
diagrammatic notation):

(1) Objects 𝐴 for each 𝐴 ∈ 𝒞

(2) The following generators, with 𝑓 ∶ 𝐴 → 𝐵 for
each 𝑓 ∈ 𝒞(𝐴, 𝐵), where we adopt the convention of
notating the monoidal unit with a dashed line:

𝜑

Φ
𝐴

𝐵
𝐴⊗𝐵 Φ∗

𝐴

𝐵
𝐴⊗𝐵

𝐼𝒞 𝜑∗𝐼𝒞𝑓𝐴 𝐵

(3) The following functoriality equations:

1𝐴𝐴 𝐴 = 𝐴 𝐴

𝑓 𝑔 = 𝑓; 𝑔

2.3 Strictified diagrams for monoidal categories

The crux of the issue sketched in Figure 2.21 is that while pregroup proofs – viewed as sequent trees – syntac-
tically distinguish the roots of subtrees, interpretation as pregroup diagrams in a monoidal category forgets
the subtree structure of the specific proof the diagram arises from. But it is precisely this forgotten structure
that contains the algebraic data we require to keep track of (co)domain data diagrammatically. So a solution
would be to force the diagrams in the blue domain recording pregroup data to hold onto this proof structure.
For this purpose we use strictified diagrams for monoidal categories, defined in the margins.

We are seeking some way to algebraically group or bracket together pregroup types that arise from a sin-
gle word, in a distinguished way from concatenation-as-tensor. In this way we can preserve the structure of
pregroup-sequent proofs: grouping indicates a node in the proof-tree, while tensor indicates parallel com-
position of proof trees. With strictified diagrams, we can model bracketing with biased tensor structure,
e.g. treating for instance the left-nested tensoring (⋯ ((𝐴 ⊗ 𝐵)⊗ 𝐶)⋯⊗⋯𝑍) as a bracketed expression
[𝐴⊗𝐵⋯⊗𝑍].

Construction 2.3.3 (Pregroups with bracketing). Let 𝐏𝐆𝐃 be the rigid monoidal category generated by pre-
group states and (directed) cups. We define pregroups-with-bracketing as a category denoted 𝐏𝐆𝐃

∗

, which
is obtained as follows. Throughout, denote the rigid monoidal tensor product as ⊗ and the strictified tensor
as ∙. For each pregroup state w ∶ 𝐼⊗ → 𝑥1 ⊗ ⋅⊗𝑥𝑛 that generates 𝐏𝐆𝐃, we create two corresponding gener-
ators w∗ ∶ 𝐼∙ → 𝑥1 ∙ ⋅ ∙ 𝑥𝑛 and [w] ∶ 𝐼∙ → (⋯ (𝑥1 ∙ 𝑥2) ∙ 𝑥3)⋯ ∙ 𝑥𝑛). [w] is a left-bracketed tensoring, and w∗

is fully detensored. Note that [w] and w∗ coincide for words typed with singletons. We ask for the following
family of relations: either the left or the right implies the other in the presence of equations governing the
structural isomorphisms.

w∗
[w]

w∗= ⇔ [w] =

The w∗ and [w] generate a freely strictified rigid autonomous category 𝐏𝐆𝐃
†

, from which we obtain the de-
sired 𝐏𝐆𝐃

∗

as a subcategory generated by:

1. All [w]

2. Let [𝐴 ⋅𝐵⋯𝑍] denote the left-nested tensoring ((𝐴⊗𝐵)⋯⊗𝑍), and let 𝐗 denote (
⨂

𝑖

𝑋𝑖). For each directed

cap 𝐗⊗𝐗−1 → 𝐼 (and symmetrically for caps of the other direction and cups), and for each pair of brack-
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(4) The following adapter equations:

𝑓

𝑔

Φ∗ Φ = 𝑓 ⊗ 𝑔

Φ Φ∗𝑓 ⊗ 𝑔 =

𝑓

𝑔

𝜑 𝜑∗ =

𝜑𝜑∗ =

(3) The following representations of the natural isomor-
phisms in the definition of a monoidal category:

Φ∗

Φ∗ Φ

Φ
𝛼 :=

Φ∗

Φ∗ Φ

Φ
𝛼−1 :=

𝜆 ∶= Φ∗
𝜑∗

𝜆−1 ∶= Φ

𝜑

𝜌 ∶= Φ∗

𝜑∗

𝜌−1 ∶=
Φ

𝜑

eted types [𝐀 ⋅ 𝐗] and [𝐗−1 ⋅ 𝐁], we ask for a generator that detensors, applies the directed cup on S, and
then retensors while respecting the bracketing structure of A and B to obtain [𝐀 ⋅ 𝐁]. Diagrammatically
this amounts to asking for generators that look like the following, that mimick a single proof step.

Example 2.3.4 (Pregroups with bracketing recover proof trees). The essence of the construction is to maintain
a correspondence with proof-tree structure: a left-bracketed collection of types corresponds to a pregroup
typing that is stuck together as the outcome of a sequent rule and must thereafter travel together. Starting
from bracketed word states [w], point 2 of the construction maintains an invariant correspondence that brack-
eted collections of types are the roots of proof steps.

A

B

l

Alice ∶ 𝑛 likes ∶ −𝑛 ⋅ 𝑠 ⋅ 𝑛−

Alice␣likes ∶ 𝑠 ⋅ 𝑛− Bob ∶ 𝑛
Alice␣likes␣Bob ∶ 𝑠
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Construction 2.3.5 (Discrete monoidal opfibration from pregroups with bracketing into dependent CFGs). We aim to elucidate the pregroup with bracketing
in sufficient detail to describe the functor into dCFGs; in particular, we need to know what the generators of the pregroup are. The fibre over a noun state in
the dCFG is the corresponding noun-state in the bracketed pregroup. The fibre over a verb state in the dCFG is either an intransitive or transitive word-state,
depending on the word w. Note that only the [w] are available as generators, through we may reason about them as if they are tensor-bracketings of w∗.

w [w]
= =

w∗

=

=

N N V

[w]

[w]

w∗

w

if w is IV

if w is TV

V V

V V

We depict the case of adverbs explicitly. Here are two lifts of the adverb label in the fibre of the opfibration corresponding to the intransitive and transitive
case, and the corresponding lifts for the introduction rule for adverbs.

ADV

=

w

w∗
[w]

ADVIV

ADVTV

[w]

ADVADV

=

w∗

ADVADV

=

ADV

V

V

=

V

VADV

ADVIV

IV

IV

ADVTV

TV

TV

VADV

V
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The correspondence of introduction rules in the dCFG to proof steps in the sequent formulation of pregroup proofs (c.f. Example 2.3.4) is obtained obliquely,
because labels are facing the wrong way; hence the cups for the lifts of labels. We can observe the correspondence by the following diagrams. The second
equation is a supplied choice of lift on the V wire, so that the third monoidality equation allows the top and bottom boxes to typematch.

w
w∗

V

V

ADVIV

IV

IV

= =

w∗

ADVIV

IV

IV

IV

ADVIV ADVIV

w∗

ADVIV

IV

IV

ADVIV

IV

=

When (and only when) the types are matched, the boxes may be sequentially (vertically) merged. Now within the box, we may apply the equations available
to us in the strictified setting to eliminate the (de)tensors. Observe that resolving snaking wires causes the second diagram to behave as though we defined lifts
for "right-side-up" labels and introduction rules; we could not have done so directly, or else the opfibration would have no diagrammatic way to determine the
correct lift.

w∗

ADVIV

IV

IV

= w∗

IV

IV

≈

w∗

≈

w

V

V
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The other lifts for other types are obtained similarly, by the solutions of a system of pregroup equations with boundary conditions that treat dCFG types as
variable pregroup types in 𝑛 and 𝑠. The dCFG types are:

S, N, V, ADV, ADP

The determined equations of the system are the assignments of the types N and S.

S = 𝑠

N = 𝑛

The boundary conditions are given by the particular verbs in the sentence, which may come in three kinds: intransitive, transitive, or verbs that take a senten-
tial complement, such as sees.

V = (−𝑛 ⋅ 𝑠) or (−𝑛 ⋅ 𝑠 ⋅ 𝑛−) or (−𝑛 ⋅ 𝑠 ⋅ 𝑠−)

Which we rewrite using the following index system to indicate noun structure. Intransitive verbs are assigned an index 1, and transitive verbs an index 2.

V1 = (−𝑛 ⋅ 𝑠)

V2 = (−𝑛 ⋅ 𝑠 ⋅ 𝑛−)

The three dependent types are:

V𝑥↦1(𝑥) = (−𝑛 ⋅ 𝑠)

ADV𝑥 = V𝑥 ⋅ V
−
𝑥

ADP𝑥 =
−V𝑥 ⋅ V(𝑥)1 ⋅ 𝑛

−

The types V, ADV, ADP are hence indexed over a string language 𝑥 ∶= 1 | 2 | 1(𝑥) | (𝑥)1. We have depicted the solutions for ADV1 and ADV2. The rest are obtainable
inductively, where the bracketing structure is handled by the tensors and detensors of the strictified pregroup diagrams. The pregroup typing solutions for V,
ADV, ADP across indices are unique, as the latter two generators of the string language correspond to verbs with sentential complement and adpositions respec-
tively, so by the bracketing structure, indices correspond uniquely to dCFG diagrams up to labels. The family of pregroup typing solutions yield the required
generators, which we use to populate the fibres over the three dependent type labels and their introduction rules.
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Proposition 2.3.2 (ℳ̄ and ℳ are monoidally equivalent).
[WGZ22]

These definitions and conventions follow [Cla23]. Given
a (small) category 𝒞 we notate the objects 𝒞0 and the
morphisms 𝒞1, hence a functor 𝐹 ∶ 𝒞 → 𝒟 consists of
an object assignment 𝐹0 ∶ 𝒞0 → 𝒟0 and a morphism
assignment 𝐹1 ∶ 𝒞1 → 𝒟1.

Definition 2.4.1 (Cofunctors). [Defn 2.2]. A cofunctor

(𝑓, 𝜑) ∶ 𝒞 ↛ 𝒟 consists of a function 𝑓 ∶ 𝒞0 → 𝒟0

which I’ll call lowering, together with a lifting operation

𝜑, a function that maps pairs of objects of 𝒞 and certain
morphisms in 𝒟 to morphisms of 𝒞:

(𝑐 ∈ 𝒞0, 𝑓(𝑐)
𝑢
⟶ 𝑏 ∈ 𝒟1) ↦ 𝑐

𝜑(𝑐,𝑢)
⟶ cod(𝜑(𝑐, 𝑢))

The following conditions are required:

1. Lowering the tip of a lifted arrow gets you back
where you started.

𝑓(cod(𝜑(𝑐, 𝑢))) = 𝑏

2. The lifts of identities are identities.

𝜑(𝑐, 1𝑓(𝑐)) = 1𝑐

3. The lift of composites is the composite of lifts-with-
respect-to the tips of lifted arrows.

𝜑(𝑐, 𝑣◦𝑢) = 𝜑(cod(𝜑(𝑐, 𝑢)), 𝑣)◦𝜑(𝑐, 𝑢)

Remark 2.4.2. Conditions 2 and 3 of the definition of
cofunctor are reminiscent of functors. It is instructive but
tedious to calculate with the base definition. We use the
slick alternative formulation by Bryce Clarke.

Proposition 2.3.6 (Construction 2.3.5 is a discrete monoidal opfibration). Proof. Monoidality is evident. For
unique lifts, we observe that for each bracketing of wires, construction 2.3.3 guarantees a unique lift for each
introduction rule in the dCFG, and Construction 2.3.5 guarantees a unique lift for each label. For the addi-
tional interchange condition of Definition 2.2.3, it suffices to observe that the introduction rules of dependent
labels uniquely determine the codomain of the lift given the domain, and that by design in Construction
2.3.5, independent labels as states have predetermined lifts.

2.4 Monoidal cofunctor boxes

Now that we know how to solve the wire-assignment problem with the help of monoidal discrete opfibra-
tions from strictified diagrams that do bracketing, we can at last see what monoidal cofunctor boxes are.

Definition 2.4.3 (Bĳective-on-objects functor). [Defn 2.8]. A functor 𝐹 ∶ 𝒞 → 𝒟 is bĳective-on-objects if for all
𝑑 ∈ 𝒟, there exists a unique 𝑐 ∈ 𝒞 such that 𝐹𝑐 = 𝑑.

Proposition 2.4.4 (Cofunctors as spans of functors). [Prop 2.10] all cofunctors (𝑓, 𝜑) ∶ 𝒞 ↛ 𝒟 correspond to
spans of functors where the left leg 𝐿 is bĳective on objects and the right leg 𝑅 is a discrete opfibration:

Λ(𝑓, 𝜑)

𝒞 𝒟

𝐿 𝑅

Conversely, for every span of functors where the left leg is bĳective on objects and the right leg is a discrete
opfibration,

𝒳

𝒞 𝒟

𝐹 𝐺

there exists a cofunctor (𝑓, 𝜑) ∶ 𝒞↛ 𝒟 and an isomorphism 𝐽 ∶ Λ(𝑓, 𝜑)→ 𝒳 such that 𝐹𝐽 = 𝐿 and 𝐺𝐽 = 𝑅.

Definition 2.4.5 (Monoidal cofunctor). A monoidal cofunctor, following Proposition 2.4.4, is a span of func-
tors such that the left leg is monoidal and bĳective-on-objects, and the right is a monoidal discrete opfibration
by Definition 2.2.3.

Construction 2.4.6 (Monoidal cofunctor box). A monoidal cofunctor box first uses the inside-out convention
for functor boxes for the right leg, and then the outside-in convention for the left leg.
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Example 2.4.7 (Turning dCFGs into pregroup diagrams with a monoidal cofunctor). Here is a more involved example, which uses a CFG and running example
from the next chapter: Alice sees Bob quickly run to school. The apex is given by Construction 2.3.3. The right leg is the monoidal discrete opfibration
from Construction 2.3.5 into the dCFG. In the first diagram below, we apply the opfibration to the word states, which have unique lifts. The second diagram
follows by monoidality. In the third, we apply the left leg of the cofunctor using the outside-in convention, which is the evidently bĳective-on-objects monoidal
functor to the ambient rigid autonomous category of pregroup diagrams from the free strictification. In the fourth, we apply the monoidality of the inner
functor.

q

t

s

A

B

r

S

[−𝑛 ⋅ 𝑠]

q

t

s

r

S

=

A

B

q

t

s

=

S

r

A

B

[−𝑛 ⋅ 𝑠]

q

t

s

A

B

[−𝑛 ⋅ 𝑠]

=

r

S

Continuing, for the first equation below, the magenta opfibration box now has already chosen a codomain for the lift, so it can eat the next morphism high-
lighted in a dashed box. For the second equation, note that eating-rules swap over for the different conventions of functor boxes: while inside-out functor boxes
need extra data to eat, outside-in boxes need extra data to spit out, but can eat for free.

q

t

s

A

B

r

S

q

t

s

A

B

r

S

=

q

t

s

A

B

r

S

=

[−𝑛 ⋅ 𝑠]

[−𝑛 ⋅ 𝑠 ⋅ 𝑠− ⋅ 𝑛]

So both functor boxes can eat their way through the outside string diagram, and wire-assignment is resolved by the outer functor box keeping track of the
current choice of codomain.
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And so we can continue all the way, occasionally straightening out some wires on the inside.

q

t

s

A B r S

q

t

s

A B r S
=

q

t

s

A B

r

S

=

t

s

A B

r

S

q

= =

s

A B

r

S

q

t

=

s

A B r S
q t

s

A B r S
q t

= =

s

A B r S
q t

A B r S
q t

s

= =

A B r S
q ts
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2.5 Monoidal kinda-cofunctor boxes

Now we’d like to use the cofunctor technology we have developed to tackle the other problem, the nonfunc-
toriality of internal wirings for the listener (Example 2.1.4.) We run into a problem again: the right leg cannot
be a discrete opfibration into pregroup diagrams.

Figure 2.22: Starting from the leftmost diagram, in
order to let the functor box eat the whole diagram,
we need to first choose a lift for the left-sentence
wire for the cup. Recalling Figures 2.6 and 2.1.4,
there are at least two lifts for the sentence-wire in
pregroup diagrams, for the case of two or three
noun-wires. Everything works smoothly when
the lifts on the two sentence wires of a cup match.
When if we make the wrong choice and they don’t,
there is no lift, because there is no such thing as
a cup that has two wires on one end and three
on the other. Recall from Definition 2.5.1 that a
unique lift is required for every possible codomain
inside the functor box; so we do not have a discrete
opfibration, and so we cannot have a cofunctor.

= =

= !

No lift exists!

=

=

But hold on, if we know that cups need pairs of matching identity-lifts, in the above example it would have
been obvious from the connectivity of the diagram what the correct choice of lift ought to have been. In order to
reason diagrammatically with hungry functor boxes in the way we’d like, we can weaken the requirement
that the right leg of the cofunctor be a discrete opfibration; the job we want the right leg to do is just to book-
keep choices of lift in its fibres. Discrete opfibrations do too much by enacting safety standards and curtailing
our choice. We don’t need lifts to always exist uniquely for all codomains; that they always exist for some
codomains is enough for our functor boxes to eat and merge the way they do. However, now instead of just
looking up the lift, we’ll get to make decisions in order to help the functor box grow, but as we’ve seen from
our example, we’ll be guided by the connectivity of the diagrams.

Definition 2.5.1 (Kinda-opfibration). 𝐅 ∶ 𝒞 → 𝒟 is a kinda-opfibration when for all morphisms 𝑓 ∶ 𝐅𝐴 → 𝐵 in
𝒟 with domain in the image of 𝐅, there exists some object Φ𝐴

𝑓
and some 𝜙𝑓 ∶ 𝐴 → Φ𝐴

𝑓
in 𝒞, such that 𝑓 = 𝐅𝜙𝑓 .

Definition 2.5.2 (Monoidal kinda-opfibration and kinda-cofunctor). Mentally search and replace discrete for
kinda- in Definition 2.2.3 and Proposition 2.4.4.
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Example 2.5.3 (A monoidal kinda-opfibration into pregroup diagrams from a subcategory of bracketed pregroups with spiders).

Source category is the free strictification of a single wire equipped with a spider, with generator-states implied by the following equations. Target is pregroup
diagrams in 𝑛, 𝑠. Sentence type is bracketings of nouns: alternate bracketing notation is introduced for brevity. Strictified unit is used to distinguish the brack-
eted single noun wire from the plain noun wire, which is its own lift. Bracketing monoidal units gives the Dyck language, which may be in principle used to
distinguish turning numbers in the rigid autonomous setting, omitted for brevity. For more internal wirings for other grammatical categories, see [WC]. This
data suffices to model how the listener recovers the data conveyed by the speaker, c.f. Example 2.1.4. Solution to Example 2.1.4 on next page.

= = = = ⋯

TV

=

[TV]IV

=

[IV] DV

=

[DV]

=

that
= = =

= ⋯ == = =

N

=

[N]
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that

[A] [F] [B] [C]

[l] [g]

𝐴 𝐿 𝐹 𝐵 𝐶𝐺that

that

[A] [F] [B] [C]

[l] [g]

Some lifts are determined.

Merge.



string diagrams for text 105

that

[A] [F] [B] [C]

[l] [g]

Noun-cups have determined lifts. Typematching lifts inferred from connectivity.

that[A]

[F]
[B]

[C]

[l]

[g]

Merge.
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[A]

[F] [B]
[C]

[l]
[g]

Typematching lifts inferred from connectivity, and type-restriction of cups.

Merge. Cancel brackets. Simplify spiders.

[g][A] [F][l] [B] [C]
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Example 2.5.4 (...and from there to text circuits). Recall from Example 2.7 that pregroup diagrams can be daisy-chained for text. We’ll assume that a finished
text is one where the sentence-wire is deleted (i.e. no more sentences to chain.)

[g][A] [F][l] [B] [C] [g][A] [F][l] [B] [C]

=

Delete sentence wire and lift

And we’ll specify the following monoidal functor from the category we just lifted to in Example 2.5.3 into a strongly compact closed category; preferably one
that is a variant of Prof, in which one can reason with open string diagrams [Hu, Rom21]. The functor interprets spiders as pairs of pants, and word-states as
interesting-looking things. We’ll show just the lifts of the monoid part of the spider; the comonoid part is the same thing upside down. A technicality we gloss
over is the loss of commutativity of pants, which can be handled by dropping commutativity syntactically from the spiders in the source.

= = =

tv

tv

=

n

n n

=

dv

dv

Applying this functor establishes that the same kind of span of functors that gets us from productive to parsing grammars is also sufficient to get us from pars-
ing grammars to text circuits. By mathematically analysing and taking away the bureaucracy of syntax, it becomes evident that the natural habitat of language
is not a line, but something else.
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l

A A

g

B B C CF F

Inner functor.

Merge.

lA

A

g
B

B

C

C

F

F

...and simplify:
l

g

A F B C

A F B C
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2.6 Discussion and Limitations

Objection: A handful of gadgets and examples isn’t a theory.
I wanted to understand the nature of communication from first principles. I could not find a satisfying

account that reflected the computational constraints of speaking and listening, so I used what mathematics I
knew to build a model myself. So even if it is not a theory, I consider it better than nothing at all.

The gadgets may be worthwhile beyond the story I’ve told here. I’ll remark that the monoidal cofunctor
technology seems to be just the kind of diagrammatic mathematics required by the "merge"-operation in
minimalist syntax. They are probably better off named "merge-boxes".

The examples were necessary to display the mathematics, but this specificity was also necessary in a
broader sense. A systematic analysis of communication requires intimacy with specific grammars and a
specific semantics, not formats of grammar like "All CFGs". Specific grammars that model natural languages,
even poorly, are the only relevant objects of study for any form of language intended to communicate in-
formation. Once one has a specific grammar that produces sentences in natural language, then to explain
communication, one must supply a specific partnered parsing grammar such that on the produced sentences,
both grammars yield the same semantic objects by a Montagovian approach, broadly construed as a homo-
morphism from syntax to semantics. On this account, syntax does not hold a dictatorship over semantics;
there are duarchies, and in these duumvirates the two syntaxes and the semantics mutually constrain one
another.

How far does this approach generalise? Where does it apply?
Internal wirings are a way to encode relationships between two different kinds of grammar, and a string-

diagrammatic semantics. They arise as part of cofunctor boxes that witness a systematic correspondence
between two grammars. While we have encoded a specific kind of grammatical resolution choice in the fibres
of our lifting-functor, there are easy examples of other kinds of choices a listener has to make in order to
parse a sentence that the current theory is not yet elaborated enough to accommodate.

Example 2.6.1 (Garden path sentences). Whereas we assume that grammatical types have already been cho-
sen, garden-path sentences illustrate that listeners must make choices about what grammatical roles to assign
words. We make these kinds of contextual decisions all the time with lexically ambiguous words or highly
homophonic languages like Mandarin; garden-path sentences are special in that they trick the default strat-
egy badly enough that the mental effort for correction is noticeable. One such garden-path sentence is The
old man the boat, where typically readers take The old man as a noun-phrase and the boat as another
noun-phrase. We can sketch how the readers might think with a (failed) pregroup grammar derivation:
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the ∶ 𝑛 ⋅ 𝑛−1 old ∶ 𝑛 ⋅ 𝑛−1

the␣old ∶ 𝑛 ⋅ 𝑛−1 man ∶ 𝑛
the␣old␣man ∶ 𝑛

the ∶ 𝑛 ⋅ 𝑛−1 boat ∶ 𝑛
the␣boat ∶ 𝑛

Not a sentence!
So the reader has to backtrack, taking The old as a noun-phrase and man as the transitive verb. This yields

a sentence as follows:

the ∶ 𝑛 ⋅ 𝑛−1 old ∶ 𝑛
the␣old ∶ 𝑛 man ∶−1 𝑛 ⋅ 𝑠 ⋅ 𝑛−1

the␣old␣man ∶ 𝑠 ⋅ 𝑛−1
the ∶ 𝑛 ⋅ 𝑛−1 boat ∶ 𝑛

the␣old ∶ 𝑛
the␣old␣man␣the␣boat␣ ∶ 𝑠

Example 2.6.2 (Ambiguous scoping). The uniqueness condition of lifts is too stringent. Consider the follow-
ing sentence:

Everyone loves someone

The sentence is secretly (at least) two, corresponding to two possible parses. The usual reading is (glossed)
∀𝑥∃𝑦 ∶ loves(𝑥, 𝑦). The odd reading is ∃𝑦∀𝑥 ∶ loves(𝑥, 𝑦): a situation where there is a single person loved by
everyone.

What are your assumptions? What are their limitations? In my view, the preceding analysis is fair if
one entertains the following three commitments.

1. At some level, semantics is compositional, and syntax directs this composition.

2. Speakers produce sentences, and listeners parse sentences.

3. Speakers and listeners understand each other, insofar as the compositional structure of their semantic
representations are isomorphic.

Insofar as compositionality entails that infinite ends can be achieved by finite combinatorial means, spans
of monoidal functors are bookkeeping for an idealised structural correspondence between the components of
productive and parsing grammars, and internal wirings arise as balancing terms in the bookkeeping.

Limitations of the first assumption:
The first assumption establishes an idealised view of communication and compositionality where there are

no extraneous rules in the language, i.e. that a particular phrase of five or sixty-seven words is to be parsed
exceptionally. This is not the case in natural languages, where everyday idioms may be considered seman-
tically atomic despite being compositionally decomposable. For example, in Mandarin,马上 is the concate-
nation of "horse" and "up", and would be "on horseback" if interpreted literally, but is treated as an adverbial
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"as soon as possible" in imperative contexts. I use the hedging phrase "at some level" in the first assumption
to describe the compositionality of semantics just to indicate an assumption that we are not dealing with
exceptional rules all the way up.

There is another implicit assumption here that syntax determines semantics. It is worth noting that in
practice, neither grammar nor meaning strictly determines the other. Clearly there are cases where grammar
supercedes: when Dennis hears man bites dog, despite his prior prejudices and associations about which
animal is more likely to be biting, he knows that the man is doing the biting and the dog is getting bitten.
Going the other way, there are many cases in which the meaning of a subphrase affects grammatical accept-
ability and structure.

Example 2.6.3 (Exclamations: how meaning affects grammar). The following examples from [lin18] illustrate
how whether a phrase is an exclamation affects what kinds of grammatical constructions are acceptable. By
this argument, to know whether something is an exclamation in context is an aspect of meaning, so we have
cases where meaning determines grammar. Observe first that the following three phrases are all grammati-
cally acceptable and appear to mean similar things.

nobody knows how many beers Bob drinks

who knows how many beers Bob drinks?

God knows how many beers Bob drinks

The latter two are distinguished when God knows and who knows are exclamations. First, the modularity of
grammar and meaning may not match when an exclamation is involved. For example, negating the blue text,
we obtain:

somebody knows how many beers Bob drinks

who doesn’t know how many beers Bob drinks?

God doesn’t know how many beers Bob drinks

The first two are acceptable, but mean different things; the latter means to say that everyone knows how
many beers Bob drinks, which is stronger than the former. The last sentence is awkward: unlike in the first
two cases, the quantified variable in the (gloss) ⋯¬∃𝑥𝑃𝑒𝑟𝑠𝑜𝑛⋯ of God knows is lost, and what is left is a lit-
eral reading ⋯¬knows(God,⋯)⋯. Second, whether a sentence is grammatically acceptable may depend on
whether an exclamation is involved. God knows and who knows can be shuffled into the sentence to behave as
an intensifier as in:

Bob drinks God knows how many beers

Bob drinks who knows how many beers
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But it is awkward to have:
Bob drank nobody knows how many beers

And it is not acceptable to have:

Bob drank Alice knows how many beers

Limitations of the second assumption:
The second assumption commits to an idealisation that speakers and listeners communicate for the pur-

poses of exchanging propositional information as well-formed and disambiguated sentences, which is clearly
not all that language is for. I can promise nothing yet regarding questions, imperatives, speech acts, and so
on.

Limitations of the third assumption:
The third assumption asks that one entertain string diagrams as representative of what the content of

language is, and even so, it still requires some elaboration on what is meant by "understanding", as it is ob-
viously untrue that everyone understands one another. I do not mean understanding in the strong sense as a
form of telepathy of mental states – I mean that insofar as the speaker and listener both have their own ideas
about cats, sitting, space, and mats, their respective mental models of the cat sat on the mat are indis-
tinguishable as far as meaningfully equivalent syntactic re-presentations and probings go; for instance, both
speakers ought to agree that the mat is beneath the cat, and both speakers ought to agree despite the
concrete images in their minds that there is insufficient information to know the colour of the cat from the
sentence alone, and so on. This is a shallow form of understanding; consider the case where one communi-
cator is a human with mental models encoded in meat and another is an LLM with tokens encoding who-
knows-what – they may be in perfect agreement about rephrasings of texts for an arbitrary finite amount of
communication, even if the representations of the latter are not compositional. It would be nice to ask that
"mutual understanding" requires structurally equivalent (as opposed to extensionally indistinguishable)
meaning-representation mechanisms between language agents c.f. Chomsky’s universal grammar, but our
means of achieving mutual understanding in practice seems to align with the shallow view: we pose com-
prehension challenges and ask clarifying questions all at the level of language, without taking a scalpel to the
other’s head. Depending on one’s view of what understanding language entails, it may be that humans and
LLMs both understand language in their own way, but mutual understanding between the two kinds is an
illusion.
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So what?
Despite these limitations, I believe that this formal approach to grounding relationships between produc-

tive and parsing grammars in mathematical considerations surrounding communication has some merits,
or at least raises a change in perspective. Theories of grammar by themselves are insufficient to account for
communication: a theory of grammar that merely produces correct sentences or correct parses is a ’theory’
of language waiting to be or already outperformed in every respect by an LLM. Understanding the nature
of syntax as a formal object demands a distinction and reconciliation of speaking and listening grammars.
Moreover, semantics must play a role from the start: in the ideal of communication, both speaker and listener
have the same semantic information by the end of a single turn, whether that be a logical expression or some-
thing else. For these reasons, we may at least conclude that "weak" and "strong" equivalence is just not suited
for an adequate account of communication.

Firstly, "weak equivalence" between grammar formalisms in terms of possible sets of generated sentences
is insufficient. Weak equivalence proofs are mathematical busywork that have nothing to do with a unified
account of syntax and semantics. For example, merely demonstrating that, e.g. pregroup grammars and
context-free grammars can generate the same sentences [BM] only admits the possibility that a speaker us-
ing a context-free grammar and a listener using a pregroup grammar could understand each other, without
providing any explanation how. But we already know that users of language do understand one another
(more-or-less), so weak equivalence is (more-or-less) pointless.

Secondly, "strong equivalence" that seeks equivalence at a structural level between theories of syntax of-
ten helps, but is not always necessary. Theories of syntax are like file formats, e.g. .png or .jpeg for images.
A model for a particular language is a particular file or photograph. The task here is to show that two pho-
tographs in different file formats that both purport to model the same language are really photographs of
the same thing from different perspectives. It is overkill – and has nothing to do with the object being pho-
tographed – to demonstrate that all .pngs and .jpegs are structurally bĳectable, just as it is overkill to show
that, say, context-free grammars are strongly equivalent to pregroup grammars, because there are context-
free and pregroup grammars that generate sets of strings that have nothing to do with natural language. It
could just as well be that there is a pair of productive and parsing grammar-formats that are not strongly
equivalent, but happen to coincide for a particular natural language – in this sense, asking for something like
a monoidal cofunctor is a way to check a weaker condition than strong equivalence that achieves the more
specific aim of determining whether a pair of productive and parsing grammars for a language are plausibly
compatible.

And what do you know about formal grammars? More than I wish I did. See next chapter.





3

Text circuits for syntax

We establish a systematic correspondence between text circuits and grammatically acceptable text, which al-
lows us to use text circuits as a generative grammar without further justification. First we show that context-
free grammars, string-rewrite systems, and tree-adjoining grammars are all special cases of higher-dimensional
rewriting systems called weak 𝑛-categories. Then we provide a "circuit-growing" grammar in terms of a
weak 𝑛-categorical signature that simultaneously generates strings of grammatically acceptable text and its
"deep structure" in terms of text circuits, from which we obtain the desired correspondence between text
circuits and text.
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3.1 An introduction to weak n-categories for formal linguists

Geometrically, a set is a collection of labelled zero-dimensional points. A category is a collection of one-
dimensional labelled arrows upon a set of zero-dimensional points (that satisfy certain additional conditions,
such as having identity morphisms and associativity of composition.) Naturally, we might ask what hap-
pens when we generalise to more dimensions, asking for two-dimensional somethings going between one-
dimensional arrows, and three-dimensional somethings going between two-dimensional somethings, and
so on. This is the gist of an 𝑛-category, where 𝑛 is a positive integer denoting dimension. Different choices of
what n-dimensional somethings could be give different conceptions of 𝑛-category, because there are multi-
ple mathematically well-founded choices for filling in the blank of points, lines, ???. Simplices, cubical
sets, and globular sets are three common options; though the names are fancy, they correspond to triangular,
cubical, and circular families of objects indexed by dimension.

In regular or 1-category theory we are interested in objects up to isomorphism rather than equality - be-
cause isomorphic objects are as good as one another. Concretely, two objects 𝑋 and 𝑌 are isomorphic when
there exist morphisms 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑋 such that 𝑔◦𝑓 = 1𝑋 and 𝑓◦𝑔 = 1𝑌 . Lifting this philosophy
to n-categories, we can replace equalities 𝑓 = 𝑔 of 𝑘-morphisms (for 𝑘 < 𝑛) with (𝑘 + 1)-isomorphisms 𝑓 ≃ 𝑔.
This extends also to the equalities in the definition of a (𝑘 + 1)-isomorphism, all the way up to dimension 𝑛 at
which point we are content with ordinary equality again. The idea of replacing equality with isomorphism
can even extend to the associativity, unitality and interchange laws governing the composition operations. If
left to be ordinary equalities, we speak of a strict 𝑛-category. If only witnessed by a coherent system of iso-
morphisms, we have a weak 𝑛-category. Unsurprisingly the weak variant is much harder to formalise, but also
much more expressive once n > 2.

Mathematicians, computer scientists, and physicists may have good reasons to work with 𝑛-categories
[Bae97], but what is the value proposition for formal linguists? A practical draw for the formal syntactician
is that weak 𝑛-categories provide a natural setting to model generic rewriting systems, and that is what we
will focus on here. Here, we work with a semi-strict model in which associativity and unitality remain strict,
while interchange is weak. This fact is hidden behind a convenient graphical notation, and we do not miss
out on any of the expressivity of fully weak higher categories. Additionally, this system has an online proof
assistant homotopy.io. For formal details the reader is referred to [nLaa, Dor23, RV19, HRV22]. In this set-
ting we will demonstrate how weak 𝑛-categories provide a common setting to formalise string-rewrite and
tree-adjoining grammars, setting the stage for us to specify a circuit-adjoining grammar for text circuits later
on.
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𝜀 𝛼

𝛽𝛾

Figure 3.1: The category in question can be visu-
alised as a commutative diagram.

0-cells

∙

1-cells

𝜀 = 1∙ 𝛼 𝛽 𝛾

Figure 3.2: When there are too many generat-
ing morphisms, we can instead present the same
data as a table of 𝑛-cells; there is a single 0-cell
⋆, and three non-identity 1-cells corresponding
to 𝛼, 𝛽, 𝛾, each with source and target 0-cells ⋆.
Typically identity morphisms can be omitted from
tables as they come for free. Observe that com-
position of identities enforces the behaviour of
the empty string, so that for any string 𝑥, we have
𝜖 ⋅ 𝑥 = 𝑥 = 𝜖 ⋅ 𝑥.

3.1.1 String-rewrite systems as 1-object-2-categories

Say we have an alphabet Σ ∶= {𝛼, 𝛽, 𝛾}. Then the Kleene-star Σ∗ consists of all strings (including the empty
string 𝜀) made up of Σ, and we consider formal languages on Σ to be subsets of Σ∗. Another way of viewing
Σ∗ is as the free monoid generated by Σ under the binary concatenation operation (_ ⋅ _) which is associative
and unital with unit 𝜀, the empty string. Associativity and unitality are precisely the conditions of composi-
tion of morphisms in categories, so we have yet another way to express Σ∗ as a finitely presented category;
we consider a category with a single object ⋆, taking 𝜀 to be the identity morphism 1⋆ on the single object,
and we ask for the category obtained when we consider the closure under composition of three non-identity
morphisms 𝛼, 𝛽, 𝛾 ∶ ⋆ → ⋆. In this category, every morphism ⋆ → ⋆ corresponds to a string in Σ∗. We
illustrate this example in the margins. A string-rewrite system additionally consists of a finite number of
string-transformation rules. Building on our example, we might have a named rule 𝑅 ∶ 𝛼 ↦ 𝛽 ⋅ 𝛾, which we
illustrate in Figure 3.1.1.

We consider rewrites to be equivalent, but not equal. In a string-rewrite system, rewrites are applied
one at a time. This means that even for our simple example, there are two possible rewrites from 𝛼 ⋅ 𝛼 to
obtain 𝛽 ⋅ 𝛾 ⋅ 𝛽 ⋅ 𝛾. Here are the two rewrites viewed in two equivalent ways, first on the left informally where
strings are nodes in a graph and rewrites are labelled transitions and secondly on the right as two distinct
commuting 2-diagrams.

𝛼𝛼

𝛼𝛽𝛾

𝛽𝛾𝛼

𝛽𝛾𝛽𝛾

1𝛼 ⋅ 𝑅

1𝛽𝛾 ⋅ 𝑅𝑅 ⋅ 1𝛼

𝑅 ⋅ 1𝛽𝛾

What should we say about how these two different rewrites relate to each other? Let’s say Alice is a formal
linguist who is only interested in what strings are reachable from others by rewrites – this is de rigeur when
we consider formal languages to be subsets of Σ∗. She might be happy to declare that these two rewrites are
simply equal; categorically this is tantamount to her declaring that any two 2-cells in the 1-object-2-category
that share the same source and target are in fact the same; between any such pair of 2-cells there is only one
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𝛼 𝛽𝛾 𝛾

Figure 3.3: For a concrete example, we can depict
the string 𝛼 ⋅ 𝛾 ⋅ 𝛾 ⋅ 𝛽 as a morphism in a commuting
diagram.

𝛼 𝛽𝛾 𝛾

Figure 3.4: The string-diagrammatic view, where
⋆ is treated as a wire and morphisms are treated
as boxes or dots is an expression of the same data
under the Poincaré dual.

Figure 3.5: We can visualise the rule as a com-
mutative diagram where 𝑅 is a 2-cell between the
source and target 1-cells. Just as 1-cells are arrows
between 0-cell points in a commuting diagram, a 2-
cell can also be conceptualised as a directed surface
from a 1-cell to another. Taking the Poincaré dual
of this view gives us a string diagram for the 2-cell
𝑅.

3-cell, which is the identity. In fact, what Alice really cares to have is a category where the objects are strings
from Σ∗, and the morphisms are a reachability relation by rewrites; this category is thin, in that there is at
most one arrow between each pair of objects, which forgets what rewrites are applied.

𝛼𝛼

𝛼𝛽𝛾

𝛽𝛾𝛼

𝛽𝛾𝛽𝛾

Let’s say Bob is a different sort of formal linguist who wants to model the two rewrites as nonequal but
equivalent, with some way to keep track of how different equivalent rewrites relate to one another. Bob might
want this for example because he wants to show that head-first rewrite strategies are the same as tail-first,
so he wants to keep the observation that the two rewrites are equivalent in that they have the same source
and target, while keeping the precise order of rewrites distinct. This order-independence of disjoint or non-
interfering rewrites is reflected in the interchange law for monoidal categories, which in the case of our exam-
ple is depicted as:

≃ ≃

In fact, Bob gets to express a new kind of rewrite in the middle: the kind where two non-conflicting
rewrites happen concurrently. The important aspect of Bob’s view over Alice’s is that equalities have been
replaced by isomorphisms between syntactically inequal rewrites. In this case, the demotion of interchange
equalities to isomorphisms means that Bob is dealing with a weak 1-object-2-category (in general the demo-
tion of equalities to isomorphisms is not synonymous to weakness.) Bob does have 3-cells that relate different
2-cells with the same source and target, but all of Bob’s 𝑛-cells for 𝑛 ≥ 3 are equalities, rather than isomor-
phisms.
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0-cells

1-cells
⋆

S NP VP ADPADV

2-cells

IV𝑖SCV𝑖 ADV𝑖 ADP𝑖

IV𝐿N𝐿 ADP𝐿ADV𝐿

Figure 3.6: We can describe a context-free grammar
with the same combinatorial rewriting data that
specifies planar string diagrams as we have been
illustrating so far. Here is a context-free grammar
for Alice sees Bob quickly run to school.
The essence of a tree-adjoining grammar is as follows:
whereas for a CFG one grows the tree by appending
branches and leaves at the top of the tree (substitution),
in a TAG one can also sprout subtrees from the middle
of a branch (adjoining). Now we show that this gloss
is more formal than it sounds, by the following steps.
First we show that the 2-categorical data of a CFG can be
transformed into 3-categorical data – which we call Leaf-

Ansatz – which presents a rewrite system that obtains
the same sentences as the CFG, by a bĳective correspon-
dence between composition of 2-cells in the CFG and
constructed 3-cells in the leaf-ansatz. These 3-cells in the
leaf ansatz correspond precisely to the permitted substi-

tutions in a TAG. Then we show how to model adjoining

as 3-cells. Throughout we work with a running example,
the CFG grammar introduced earlier. The main body
covers the formal but unenlightening definition of ele-

mentary tree adjoining grammars which we will convert
to diagrams. We will deal with the extensions of links
and local constraints to adjoining shortly.

3.1.2 Tree Adjoining Grammars

Definition 3.1.1 (Elementary Tree Adjoining Grammar: Classic Computer Science style). An elementary TAG

is a tuple
(𝒩,𝒩↓,𝒩∗,Σ, ℐ,𝒜)

The first four elements of the tuple are referred to as non-terminals. They are:

• A set of non-terminal symbols 𝒩 – these stand in for grammatical types such as NP and VP.

• A bĳection ↓∶ 𝒩 → 𝒩↓ which acts as X ↦ X↓. Nonterminals in 𝒩 are sent to marked counterparts in
𝒩↓, and the inverse sends marked nonterminals to their unmarked counterparts. These markings are
substitution markers, which are used to indicate when certain leaf nodes are valid targets for a substitution
operation – discussed later.

• A bĳection ∗∶ 𝒩 → 𝒩∗ – the same idea as above. This time to mark foot nodes on auxiliary trees, which is
structural information used by the adjoining operation – discussed later.

Σ is a set of terminal symbols – these stand in for the words of the natural language being modelled. ℐ and
𝒜 are sets of elementary trees, which are either initial or auxiliary, respectively. Initial trees satisfy the following
constraints:

• The interior nodes of an initial tree must be labelled with nonterminals from 𝒩

• The leaf nodes of an initial tree must be labelled from Σ ∪𝒩↓

Auxiliary trees satisfy the following constraints:

• The interior nodes of an auxiliary tree must be labelled with nonterminals from 𝒩

• Exactly one leaf node of an auxiliary tree must be labelled with a foot node X∗ ∈ 𝒩∗; moreover, this la-
belled foot node must be the marked counterpart of the root node label of the tree.

• All other leaf nodes of an auxiliary tree are labelled from Σ ∪𝒩↓

Further, there are two operations to build what are called derived trees from elementary and auxiliary trees.
Substitution replaces a substitution marked leaf node X↓ in a tree 𝛼 with another tree 𝛼′ that has X as a root
node. Adjoining takes auxiliary tree 𝛽 with root and foot nodes X, X⋆, and a derived tree 𝛾 at an interior node
X of 𝛾. Removing the X node from 𝛾 separates it into a parent tree with an X-shaped hole for one of its leaves,
and possibly multiple child trees with X-shaped holes for roots. The result of adjoining is obtained by iden-
tifying the root of 𝛽 with the X-context of the parent, and making all the child trees children of 𝛽’s foot node
X⋆.
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Construction 3.1.2 (Leaf-Ansatz of a CFG). Given a signature 𝔊 for a CFG, we construct a new signature 𝔊′

which has the same 0- and 1-cells as 𝔊. Now, referring to the dashed magenta arrows in the schematic below:
for each 1-cell wire type X of 𝔊, we introduce a leaf-ansatz 2-cell X↓. For each leaf 2-cell X𝐿 in 𝔊, we introduce a
renamed copy X′𝐿 in 𝔊′. Now refer to the solid magenta: we construct a 3-cell in 𝔊′ for each 2-cell in 𝔊, which
has the effect of systematically replacing open output wires in 𝔊 with leaf-ansatzes in 𝔊′.

Proposition 3.1.3. Leaf-ansatzes of CFGs are precisely tree adjoining grammars (TAGs) with only initial trees
and substitution.

Proof. By construction. Consider a CFG given by 2-categorical signature 𝔊, with leaf-ansatz signature 𝔊′.
The types X of 𝔊 become substitution marked symbols X↓ in 𝔊′. The trees X𝑖 in 𝔊 become initial trees X0 in
𝔊′. The 3-cells X𝑠 of 𝔊′ are precisely substitution operations corresponding to appending the 2-cells X𝑖 of
𝔊.
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0-cells

1-cells

X

⋆

2-cellsX𝐿

X𝑖

⋯⋯

⋱

⋱

3-cells

Context-Free Grammar Leaf-Ansatz

⋆

X

⋯⋯

X′𝐿

X𝑠

⋱

⋱

X↓

⇒

X𝐿

⇒⋱

⋱

X0

⋱

⋱
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The leaf-ansatz construction just makes formal the following observation: there are multiple equivalent
ways of modelling terminal symbols in a rewrite system considered string-diagrammatically. So for a sen-
tence like Bob drinks, we have the following derivations that match step for step in the two ways we have
considered.

Figure 3.7: Instead of treating non-terminals as
wires and terminals as effects (so that the presence
of an open wire available for composition visually
indicates non-terminality) the leaf-ansatz con-
struction treats all symbols in a rewrite system as
leaves, and the signature bookkeeps the distinction
between nonterminals and terminals.

⇒ S
NP

VP
S S ⇒ S

VP

B
⇒ S

d

B

S S’ ⇒ S
VP↓
NP↓

⇒ S
VP↓

B
⇒ S

d

B

CFG

Leaf-Ansatz

Figure 3.8: Adjoining is sprouting subtrees in the
middle of branches. One way we might obtain the
sentence Bob runs to school is to start from the
simpler sentence Bob runs, and then refine the
verb runs into runs to school. This refinement
on part of an already completed sentence is not
permitted in CFGs, since terminals can no longer
be modified. The adjoining operation of TAGs gets
around this constraint by permitting rewrites in the
middle of trees.
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Figure 3.9: Leaf-ansatz signature of Alice sees

Bob quickly run to school CFG.
1-cells correspond to types. There are three kinds
of 2-cells organised in rows; terminals, substi-
tutable ansätze that convert wires into bulbs; and
the symbolic rewrites of CFGs respectively. There
are two kinds of 3-cells similarly organised in rows;
terminal-rewrites that replace a bulb with a ter-
minal, and rewrites that mimic the CFG rewrites
on ansätze. Note the one-to-one correspondence
between the 2-cells and 3-cells for CFG rewrites
and terminals.
In more detail, one aspect of rewrite systems we
adapt for now is the distinction between terminal
and nonterminal symbols; terminal symbols are
those after which no further rewrites are possible.
We capture this string-diagrammatically by mod-
elling terminal rewrites as 2-cells with target equal
to the 1-cell identity of the 0-cell ⋆, which amounts
to graphically terminating a wire. The genera-
tors subscripted 𝐿 (for label or leaf ) correspond to
terminals of the CFG, and represent a family of
generators indexed by a lexicon for the language.
The generators subscripted 𝑖 (for introducing a
type) correspond to rewrites of the CFG.

0-cells

1-cells
⋆

S NP VP ADPADV

2-cells

IV0SCV0 ADV0 ADP0

VP↓NP↓ ADP↓ADV↓S↓

3-cells

⇒ ⇒

SCV𝑖 IV𝑖

⇒⇒

ADP𝑖ADV𝑖

VP′𝐿NP′𝐿 ADP′𝐿ADV′𝐿

⇒

NP𝐿

⇒

VP𝐿

⇒

ADV𝐿

⇒

ADP𝐿
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Corollary 3.1.4. For every context-free grammar 𝔊 there
exists a tree-adjoining grammar 𝔊′ such that 𝔊 and 𝔊′

are strongly equivalent – both formalisms generate the
same set of strings (weak equivalence) and the same
abstract syntactic structures (in this case, trees) behind
the strings (strong equivalence).

Proof. Proposition 3.1.3 provides one direction of both
equivalences. For the other direction, we have to show
that each auxiliary tree (a 2-cell) and its adjoining oper-
ation (a 3-cell) in 𝔊′ corresponds to a single 2-cell tree
of some CFG signature 𝔊, which we demonstrate by
construction. The highlighted 3-cells of 𝔊′ are obtained
systematically from the auxiliary 2-cells as follows: the
root and foot nodes X, X⋆ indicate which wire-type to
take as the identity in the left of the 3-cell, and the right
of the 3-cell is obtained by replacing all non-X open
wires Y with their leaf-ansatzes Y↓. This establishes a
correspondence between any 2-cells of 𝔊 considered as
auxiliary trees in 𝔊′.

Figure 3.10: TAG signature of Alice sees Bob

quickly run to school. The highlighted 2-cells
are auxiliary trees that replace CFG 2-cells for
verbs with sentential complement, adverbs, and
adpositions. The highlighted 3-cells are the tree
adjoining operations of the auxiliary trees. The
construction yields as a corollary an alternate proof
of Theorem 6.1.1 of [Jos87] that recovers CFGs as
TAGs.

0-cells

1-cells
⋆

S NP VP ADPADV

2-cells

IV0SCV+ ADV+ ADP+

VP↓NP↓ ADP↓ADV↓S↓

3-cells

⇒

IV𝑠 ADP𝑎ADV𝑎

VP′𝐿NP′𝐿 ADP′𝐿ADV′𝐿

⇒

NP𝐿

⇒

VP𝐿

⇒

ADV𝐿

⇒

ADP𝐿

⇒ ⇒⇒

SCV+
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Alice

sees

Bob

school

quickly

to

run

SCV𝑖

NP

VP

S

S

IV𝑖

NP

VP
S

ADP𝑖

VP

VP

ADP

NP

ADV𝑖

VP
VP

ADV

N𝐿

S NP VP VP ADV VP

NP

S NP VP S VP VP ADP NP NP id⋆

Figure 3.11: Reading the central diagram in the
main body from left-to-right, we additionally de-
pict the breakdown of the complete derivation in
terms of the constitituent 2-cells, and the source
and target 1-cells. Evidently, all context-sensitive
grammars may be viewed as finitely presented
1-object-2-categories by considering multi-input-
multi-output rewrites. More broadly, any string
rewriting system is recoverable in the presence
of higher dimensional cells. My source for that is
that I made a Turing machine in homotopy.io and
executed busy-beaver on it as a homework exercise
when Jamie Vicary taught Categorical Quantum
Mechanics at Oxford.
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Definition 3.1.5 (TAG with local constraints: CS-style).
[Joshi] 𝐺 = (𝐼, 𝐴) is a TAG with local constraints if for
each node 𝑛 and each tree 𝑡, exactly one of the following
constraints is specified:

1. Selective adjoining (SA): Only a specified subset
𝛽 ⊆ 𝐴 of all auxiliary trees are adjoinable at 𝑛.

2. Null adjoining (NA): No auxiliary tree is adjoinable at
the node 𝑛.

3. Obligatory Adjoining (OA): At least one out of all the
auxiliary trees adjoinable at 𝑛 must be adjoined at 𝑛.

3.1.3 Tree adjoining grammars with local constraints

The usual conception of TAGs includes two extensions to the basic definition presented above. First, there
may be local constraints on adjoining, which only allows certain trees to be adjoined at certain nodes. Second,
TAGs may have links, which are extra edges between nodes obeying a c-command condition. Here we deal
with local constraints; dealing with links requires the introduction of braiding.

The 𝑛-categorical approach easily accommodates local constraints. For (SA), whereas before we take
the source of adjoining rewrites to be identities, we can instead introduce ansatz endomorphisms that are
rewritable to the desired subsets. For (NA), we assert that identities have no rewrites (NA). For (OA), we can
make a distinction between finished and unfinished derivations, where we require that unfinished deriva-
tions are precisely those that still contain an obligatory-rewrite endomorphism.

Figure 3.12: Selective and null adjoining diagram-
matically: a reproduction of Example 2.5 of [Joshi]
which demonstrates the usage of selective and null
adjoining. The notation from [Joshi] is presented
first, followed by their corresponding representa-
tions in an 𝑛-categorical signature. The initial tree
is presented as a 2-cell where the (SA) rules are
rewritable nodes, that serve as sources of rewrites
in the 3-cell presentations of the auxiliary trees.

𝜙

𝜓

𝜙 𝜓⇒ 𝜙

a

b

S

a

⇒ 𝜓

b

𝒜ℐ

S

S

S

(∅)

(𝜙)

(𝜓)

a

b

S

S

(∅)

(𝜙)
S

S

(∅)

(𝜓)
a

b

𝛼 ∶ 𝜙 ∶ 𝜓 ∶

3.1.4 Braiding, symmetries, and suspension

Before we can model TAGs with links, we must introduce the concepts of braiding and symmetries, which
we have seen in the diagrammatic setting already as wires twisting past one another. In our current setting
of 1-object-3-categories for TAGs, the diagrams we are dealing with are all planar – i.e. wires may not cross –
but this is a restriction we must overcome when we are dealing with links.

First we observe that in a 1-object-2-categorical setting, a morphism from the identity 𝜀 on the base object
⋆ to itself would, in our analogy with string-rewrite systems, be a rewrite from the empty string to itself.
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Figure 3.13: Obligatory adjoining diagrammat-
ically: a reproduction of Example 2.11 of [Joshi]
which demonstrates the usage of obligatory ad-
joining, marked orange. The notation from [Joshi]
is presented first, followed by their corresponding
representations in an 𝑛-categorical signature. The
initial tree is presented as a 2-cell where the (OA)
rule is given its own 2-cell, which is the source
of rewrites in 3-cell presentations of auxiliary
trees. We may capture the obligatory nature of the
rewrite by asking that finished derivations contain
no instance of the orange 2-cell. Such global ac-
ceptance conditions are hacky but common, and in
this case it is efficiently verifiable that diagrams do
not contain certain generators.

eS ⇒ ⇒

a

b

c

f

𝒜ℐ

S e

𝑜(𝜙𝜓)
S

𝑜(𝜙𝜓)

S

(∅) S

(∅)

a
b

c

S

(∅) S

(∅)

f

𝜙 ∶ 𝜓 ∶𝛼 ∶

For example, a rewrite 𝑅 may introduce a symbol from the empty string and then delete it. A rewrite 𝑆 may
create a pair of symbols from nothing and then annihilate them.

𝑅 ∶= 𝜀 ↦ 𝑥 ↦ 𝜀 𝑆 ∶= 𝜀 ↦ 𝑎 ⋅ 𝑏 ↦ 𝜀

𝜀 = 𝜀 ⋅ 𝜀 ↦ 𝑥 ⋅ 𝑎 ⋅ 𝑏 ↦ 𝜀 ⋅ 𝜀 = 𝜀

𝜀 ↦ 𝑥 = 𝑥 ⋅ 𝜖 ↦ 𝜖 ⋅ 𝑎 ⋅ 𝑏 = 𝑎 ⋅ 𝑏 ↦ 𝜖

𝜀 ↦ 𝑥 ↦ 𝜀 ↦ 𝑎 ⋅ 𝑏 ↦ 𝜀

𝜀 ↦ 𝑎 ⋅ 𝑏 = 𝑎 ⋅ 𝑏 ⋅ 𝜀 ↦ 𝜀 ⋅ 𝑥 = 𝑥 ↦ 𝜀

𝜀 = 𝜀 ⋅ 𝜀 ↦ 𝑎 ⋅ 𝑏 ⋅ 𝑥 ↦ 𝜀 ⋅ 𝜀 = 𝜀

Figure 3.14: In our analogy with string rewrite
systems, we might like that the following rewrites
are equivalent, while respecting that they are not
equal, representing 𝑥, 𝑎, 𝑏 as blue, red, and green
wires respectively. Such rewrites from the empty
string to itself are more generally called scalars in
the monoidal setting, viewed 2-categorically.
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≃ ≃ ≃ ≃

Figure 3.15: We may generally represent such
scalars as labelled dots. A fact about scalars in a
1-object-2-category called the Eckmann-Hilton ar-
gument is that dots may circle around one another,
and all of those expressions are equivalent up to
homotopy. The mechanism that enables this in our
setting is that the empty string is equal to copies
of itself, which creates the necessary space for
manoeuvering; translating into the 𝑛-categorical
setting, expressions are equivalent up to introduc-
ing and contracting identities.

Figure 3.16: We may view the homotopies that get
us from one rewrite to another as 3-cells, which
produces a braid in a pair of wires when viewed
as a vignette. Up to processive isotopies, which are
continuous bĳective transformations that don’t let
wires double back on themselves, we can identify
two different braidings that are not continuously
deformable to one another in the 3-dimensional
space of the vignette. We distinguish the braidings
visually by letting wires either go over or under
one another.

∶= ≠
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Now we have a setting in which we can consider wires swapping places. However, having two different
ways to swap wires presents a complication. While useful for knot theory, in symmetric monoidal categories
we don’t want this distinction. Perhaps surprisingly, this distinction is eliminated if we consider swapping
dots in the 3D volume rather than the 2D plane. Now we have to extend our analogy to reach 1-object-4-
categories. Just as symbols on a 1D string were encoded as 1-cells on the 0-cell identity initially, our braidings
are the behaviour of symbols on the 2D plane, encoded as 2-cells on the 1-cell identity of the 0-cell. So, to
obtain symbols in a 3D volume, we want 3-cells on the 2-cell identity of the 1-cell identity of the 0-cell. That
is a mouthful, so we instead clumsily denote the stacked identity as 1

1⋆
. To obtain a dot in a 3-dimensional

volume, we consider a rewrite from 1
1⋆

to itself. These dots also enjoy a version of the Eckmann-Hilton argu-
ment in 3 dimensions (which holds for all dimensions 2 and higher).

≃≃

≃≃

≃

≃

≃

≃

Figure 3.17: We can depict these swaps by move-
ments in a cubic volume where each axis corre-
sponds to a direction of composition. Whereas on
the plane the dots have two ways to swap places –
clockwise and counterclockwise rotation – in the
volume they have two new ways to swap places
– clockwise and counterclockwise in the new di-
mension. Shown below are two ways to swap left-
to-right sequentially composed dots by clockwise
rotations in the forward-backward and up-down
directions of composition:

Considering these changes of dot positions in 3D as a 4D vignette gives us braidings again. But this time,
they are equivalent up to processive isotopy – in other words, any two ways of swapping the dots in the
volume are continuously deformable to one another in the 4-dimensional space of the vignette. The reason is
intuitive: a clockwise and counterclockwise braiding along one composition axis can be mutually deformed
by making use of the extra available axis of composition. So we have eliminated the differences between the
two kinds of braidings.

To recap: We follow the convention that object dimensions start at 0. In a 1-object-2-category we obtain
planar string diagrams for monoidal categories, which are equivalent up to processive isotopies in an am-
bient 2-dimensional space. In a (1× 0-cell)-(1× 1-cell)-3-category, we obtain string diagrams for braided
monoidal categories that are equivalent up to processive isotopy in an ambient 3-dimensional space – the
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page with depth. In a (1 × 0,1 × 1,1 × 2)-4 category, we obtain string diagrams for symmetric monoidal cate-
gories, which are equivalent up to processive isotopies in an ambient 4-dimensional space – while it is diffi-
cult to visualise 4-dimensionally, diagrammatically this simplifies dramatically to just allowing wires to cross
and only caring about whether input-output connectivity from left to right makes sense. Now observe that
for any 1-object-2-category, we can obtain a (1 × 0,1 × 1,1 × 2)-4 category by promoting all 2-cells and higher to
sit on top of 1

1⋆
.

Figure 3.18: For example, taking our CFG signature
from earlier, suspension promotes 1-cells to 3-cells
and 2-cells to 4-cells. The resulting signature gives
us the same diagrams, now with the added ability
to consider diagrams equivalent up to twisting
wires, which models a string-rewrite system with
free swapping of symbol order.

0-cells

1-cells
⋆

S NP VP ADPADV

2-cells

IV𝑖SCV𝑖 ADV𝑖 ADP𝑖

IV𝐿N𝐿 ADP𝐿ADV𝐿

0-cells

3-cells
⋆

S NP VP ADPADV

4-cells

IV𝑖SCV𝑖 ADV𝑖 ADP𝑖

IV𝐿N𝐿 ADP𝐿ADV𝐿

1-cells

1⋆

2-cells

1
1⋆

↦

In general, the process of going from an 𝑛-category to an (𝑛 + 1)-category with just one 0-cell is called sus-

pension. So we have essentially that suspending the combinatorial data of planar string diagrams gives braid-
ings, and suspending again gives symmetric monoidal twists: by appropriately suspending the signature, we
power up planar diagrams to permit twisting wires.

Remark 3.1.6 (THE IMPORTANT TAKEAWAY!). Now have a combinatoric way to specify string diagrams
(that generalises PROPs, modulo weak interchange) for symmetric monoidal categories, which in addi-
tion permits us to reason with directed diagram rewrites. So we have a trinity of presentations of the same
mathematical concept. String diagrams are the syntax. Symmetric monoidal categories are the semantics.
𝑛-categories are the finite combinatoric presentation of theories and rewrite systems upon them. By analogy, 𝑛-
categories provide a vocabulary and rewrites for string-diagram expressions, which are interpreted with respect
to the context of a symmetric monoidal category.
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Definition 3.1.7 (TAGs with links: CS-style). The fol-
lowing is a reproduction of the discussion on nodes with
links from [Joshi]. Linking can be defined for any two
nodes in an elementary tree. However, in the linguistic
context we will require the following conditions to hold
for a link in an elementary tree. If a node 𝑛1 is linked to a
node 𝑛2 then:

1. 𝑛2 c-commands 𝑛1, (i.e., 𝑛2 is not an ancestor of 𝑛1, and
there exists a node 𝑚 which is the immediate parent
node of 𝑛2, and an ancestor of 𝑛1).

2. 𝑛1 and 𝑛2 have the same label.

3. 𝑛1 is the parent only of a null string, or terminal
symbols.

A TAG with links is a TAG in which some of the elemen-
tary trees may have links as defined above.

3.1.5 TAGs with links

Now we have enough to spell out full TAGs with local constraints and links as an 𝑛-categorical signature.
To recap briefly, we have seen that we can model the passage from CFGs to TAGs in the 𝑛-categorical set-
ting, and then how selective and null adjoining rules by specifying endomorphisms on wires as the source
of rewrites, and finally that we can model links in the symmetric monoidal setting. Maintaining planarity
(which is important for a left-to-right order of terminals for spelling out a language) and modelling oblig-
atory rewrites can be done by requiring that finished derivations are precisely those whose only twists are
link-wires, and have no sources for obligatory adjoins.

Example 3.1.8. The following is a reproduction in homotopy.io of Example 2.4 of [Joshi], illustrating TAGs
with links; as a proof assistant for weak 𝑛-categories, homotopy.io automatically performs tree adjunction
after the signature has been properly spelled out.
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I
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⟶
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b

S

a
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b

S

T

S

T

a

b

Figure 3.19: TAG signature and example deriva-
tion. Joshi stresses that adjoining preserves links,
and that elementary trees may become stretched in
the process of derivation, which are fundamentally
topological constraints, akin to the "only (proces-
sive) connectivity matters" criterion identifying
string diagrams up to isomorphism. Moreover,
TAGs evidently have links of two natures: tree
edges intended to be planar, and dashed depen-
dency edges intended to freely cross over tree
edges. It is easy, but a hack, to ask for planar pro-
cessive isomorphisms for tree edges and extrapla-
nar behaviour for dependency edges: these are
evidently two different kinds of structure glued
together, rather than facets of some whole. Weak 𝑛-
categories offer a unified mathematical framework
that natively accommodates the desired topological
constraints while also granting expressive con-
trol over wire-types of differing behaviours. One
method to recover TAGs true to the original con-
ception is to stay in a planar 1-object-2-category
setting while explicitly including wire-crossing
cells for dependency links. The alternative method
we opt for in Section 3.2 is to work in a pure "only
connectivity matters" setting, recovering the lin-
ear ordering of words by generating cells along a
chosen wire.
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𝛽1
→

𝛽1
→

Figure 3.20: With our interpretation of TAGS as
weak 𝑛-categorical signatures, We can recover each
step of the same example derivation automagically
in homotopy.io; just clicking on where we want
rewrites allows the proof assistant to execute a
typematching tree adjunction. In the process of
interpretation, we introduce a link wire-type (in
purple), and include directed link generation and
elimination morphisms for the 𝑇 wire-type (in
blue). A necessary step in the process of interpreta-
tion (which for us involves taking a Poincaré dual
to interpret nodes as wires) is a typing assignment
of the tree-branches connected to terminal nodes,
which we have opted to read as sharing a 𝑇-type
for minimality, though we could just as well have
introduced a separate label-type wire.

𝛽2
→

Figure 3.21: The intended takeaway is that even if
you don’t buy the necessity or formality of weak
𝑛-categories, there is always the fallback epistemic
underpinning of a formal proof assistant for higher
dimensional rewriting theories, which is rather
simple to use if I have succeeded in communicat-
ing higher-dimensional intuitions in this section.
N.B. In practice when using homotopy.io for the
symmetric monoidal setting, it is simpler to sus-
pend symmetric monoidal signatures to begin at
4-cells rather than 3-cells. The reason for this is
that under- and over-braids still exist in the sym-
metric monoidal setting, and while sequentially
composed braids are homotopically equivalent to
the pair of identities, they are not uniquely so, thus
these homotopies must be input manually. By be-
ginning at 4-cells (or higher, due to the stabilisation
hypothesis [nLad]), braid-eliminations are unique
up to homotopy and can be performed more easily
in the proof assistant.
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Definition 3.1.9 (Linguistic Tree Adjoining Grammars). A Linguistic Tree Ad-

joining Grammar is given by the following data:

(𝒩,𝒩↓,𝒩∗,Σ, ℐ,𝒜,𝔖 ⊆ 𝒫(𝒜),□,◊,𝔏 ⊆𝒩)

The initial elements are the same as an elementary tree-adjoining grammar
and obey the same constraints. The modifications are:

• ℐ is a nonempty set of initial constrained-linked-trees.

• 𝒜 is a nonempty set of auxiliary constrained-linked-trees.

• 𝔖 is a set of sets of select auxiliary trees.

• □,◊ are fresh symbols. □ marks obligatory adjoins, and ◊ marks optional

adjoins.

• 𝔏 is a set permissible link types among nonterminals or ⊤.

A constrained-linked-tree, or CL-tree, is a pair consisting of:

• A tree where each internal node is an element of 𝒩 × 𝔖 × {□,◊} × {∗, ∗̄},
and each leaf is an element of 𝒩 ×𝔖 × {□,◊} × {∗, ∗̄} ∪ Σ. In prose, each la-
bel is either a terminal symbol (as a leaf), or otherwise a nonterminal, along
with a subset of auxiliary trees that indicates select adjoins (or null-adjoins
when the subset is ∅), a marker indicating whether those adjoins are oblig-
atory or optional, and a marker indicating whether the node is a foot node
or not. Observe that there is no need to indicate when a node is a valid tar-
get for substitution since that function is subsumed by null adjoining rules.

• A set of ordered pairs of nodes (𝑛1, 𝑛2) of the tree such that:

1. 𝑛2 c-commands 𝑛1, (i.e., 𝑛2 is not an ancestor of 𝑛1, and there exists a node
𝑚 which is the immediate parent node of 𝑛2, and an ancestor of 𝑛1).

2. 𝑛1 and 𝑛2 share the same type 𝐓 ∈ 𝒩 and 𝐓 ∈ 𝔏, or both 𝑛1, 𝑛2 are ter-
minals.

3. 𝑛1 is the parent of terminal symbols, or childless.

3.1.6 Full TAGs in weak 𝑛-categories

I apologise in advance for the sheer ugliness of the following construction. Partly this is inevitable for com-
binatorial data, but the diagrammatic signatures also present combinatorial data and are easier to read, so
what gives? This is what happens when one defines mathematical objects outside of their natural habitat.
The native habitat of TAGs is diagrammatic, to accommodate a natural and spatially-intuitive generalisation
of context-free grammars by allowing trees to be adjoined on nodes other than the leaves. I consider the of-
fensiveness of the translation to follow a direct measure of the wrongness of linear-symbolic foundations, and
an example of the harm that results from the prejudice that pictures cannot be formal.
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Construction 3.1.10 (TAGs in homotopy.io). We spell out how the data of a
TAG becomes an 𝑛-categorical signature by enumerating cell dimensions:

0. A single object ⋆

1. None.

2. None.

3. • For each 𝐓 ∈𝒩, a cell 𝐓 ∶ 𝟏𝟏⋆ → 𝟏𝟏⋆ .

• ⊤ ∶ 𝟏𝟏⋆ → 𝟏𝟏⋆ A wire for terminal symbols.

• For each 𝐋 ∈ 𝔏, a cell 𝐋 ∶ 𝟏𝟏⋆ → 𝟏𝟏⋆ .

4. We distinguish between atomic and composite generators at this level. The
trees themselves are composites of atomic generators. The atomic generators
are:

• For each node 𝑛 that occurs in either ℐ or 𝒜, we populate cells by a case
analysis:

– If 𝑛 is a terminal 𝜎 ∈ Σ, we create a cell 𝜎 ∶ ⊤→ 𝟏𝟏𝟏⋆
.

– Where 𝜙 ∈ 𝔖 denotes a selective adjoining rule where required, if 𝑛 =

(𝐓, 𝐒, †, ∗̄), we create 𝜙𝐒□
𝐓

∶ 𝐓 → 𝐓 if the node is marked obligatory
(† =□), and a cell 𝜙𝐒◊

𝐓
∶ 𝐓→ 𝐓 otherwise.

– If 𝑛 = (𝐓, 𝐒, †, ∗), it is a foot node, for which we create a cell 𝐒□
𝐓
∶ 𝐓 →

𝟏𝟏𝟏⋆
if the node is marked obligatory († = □), and a cell 𝐒◊

𝐓
∶ 𝐓 → 𝟏𝟏𝟏⋆

otherwise.

• For each 𝐋 ∈ 𝔏 (which is also a type 𝐓 ∈ 𝒩) a pair of cells 𝐓𝐋 ∶ 𝐓 →

𝐓⊗ 𝐋 and 𝐓𝐋 ∶ 𝐋⊗𝐓→ 𝐓.

• For each node 𝑝 of type 𝐓𝑝 in either ℐ or 𝒜 with a nonempty left-to-right
list of children 𝐶𝑝 ∶= ⟨𝑐1, 𝑐2,⋯ 𝑐𝑖 , 𝑐… 𝑐𝑛⟩ with types 𝐓𝑖 , a branch cell 𝐶𝑝 ∶

𝐓𝑝 →

𝑛⨂

𝑖=1

𝐓𝑖 .

We represent trees by composite generators, defined recursively. For a
given tree 𝒯 in either ℐ or 𝒜, we define a composite generator beginning at
the root. Where the root node is 𝑝 = (𝐓, 𝐒, †), we begin with the cell 𝐒†

𝐓
. For

branches, we compose the branch cell 𝐶𝑝 to this cell sequentially. If 𝑝 has a
child 𝑐 that has a link, we do a case analysis. If that child c-commands the
other end of the link we generate the first half of the linking wire by com-
posing 𝐓𝐋 for the appropriate type 𝐓 of the child node. Otherwise the child
is c-commanded by a previously generated link, which we braid over and
connect using 𝐓𝐋, again with the appropriate typing for the child. Now we
may recurse the procedure for subtrees. If a node has no children, it is a
leaf 𝑙 = (𝐓, 𝐒, †) or a terminal symbol. We append a terminal cell 𝜎 if 𝑙 is a
terminal symbol (thus killing the wire), and otherwise we leave an open 𝐓

wire after appending 𝐒†
𝐓
. Altogether this obtains a 3-cell which we denote

𝒯, overloading notation; different execution-orders of the above procedure
evidently obtain 3-cells equivalent up to homotopy.

5. For each 𝜙𝐒□
𝐓

, 𝜙𝐒◊
𝐓

, and for each typematching 4-cell tree in the subset of
select adjoins of 𝜙, we create a 5-cell rewrite that performs tree adjoining,
taking the former to be the source and the latter to be the target.

A derivation is finished when there are no obligatory adjoin nodes, all leaves
are terminal symbols, and homotopies are applied such that only dependency
link-wires participate in braidings, which implies that the tree-part is planar.
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Definition 3.2.1 (Lexicon). We define a lim-
ited lexicon ℒ to be a tuple of disjoint finite sets
(𝐍,𝐕1,𝐕2,𝐕S,𝐀N,𝐀V,𝐂)

Where:

• 𝐍 is a set of proper nouns

• 𝐕1 is a set of intransitive verbs

• 𝐕2 is a set of transitive verbs

• 𝐕S is a set of sentential-complement verbs

• 𝐀N is a set of adjectives

• 𝐀V is a set of adverbs

• 𝐂 is a set of conjunctions

→ ⇒ →

Write as:

Figure 3.22: How to read the diagrams in this

section: we will be making heavy use of pink and
purple bubbles as frames to construct circuits.
We will depict the bubbles horizontally, as we are
permitted to by compact closure, or by reading
diagrams with slightly skewed axes.

→

S-intro

Figure 3.23: Every derivation starts with a single
blank sentence bubble, to which we may append
more blank sentences.

3.2 A generative grammar for text circuits

3.2.1 A circuit-growing grammar

There are many different ways to write a weak 𝑛-categorical signature that generates circuits. Mostly as an
illustration of expressivity, I will provide a signature where the terms "surface" and "deep" structure are
taken literally as metaphors; the generative grammar will grow a line of words in syntactic order, and like
mushrooms on soil, the circuits will behave as the mycelium underneath the words. It won’t be the most
efficient way to do it in terms of the number of rules to consider, but it will look nice and we’ll be able to
reason about it easily. As a note to the reader, there are a lot of worked examples in this section, so if you get
confused about why a rule is the way it is, just skip over it and hopefully there will be a clarifying example
later on.

Simplifications and limitations: For now we only consider word types as in Definition 3.2.1, though we
will see how to engineer extensions later. We only deal with propositional statements, without determiners,
in only one tense, with no morphological agreement between nouns and their verbs and referring pronouns,
and we assume that adverbs and adjectives stack indefinitely and without further order requirements: e.g.
Alice happily secretly finds red big toy shiny car that he gives to Bob is a sentence we con-
sider grammatical enough. For now, we consider only the case where adjectives and adverbs appear before
their respective noun or verb. Note that all of these limitations apart from the limited lexicon can principle be
overcome by the techniques we developed in Section 3.1 for restricted tree-adjoining and links. As a historical
remark, generative-transformational grammars fell out of favour linguistically due to the problem of overgen-
eration: the generation of nonsense or unacceptable sentences in actual language use. We’re undergenerating
and overgenerating at the same time, but we’re also not concerned with empirical capture: we only require a
concrete mathematical basis to build interesting things on top of. On a related note, there’s zero chance that
this particular circuit-growing grammar even comes close to how language is actually produced by humans,
and I have no idea whether a generalised graph-rewriting approach is cognitively realistic.

Mathematical assumptions: We work in a dimension where wires behave symmetric monoidally by ho-
motopy, and further assume strong compact closure rewrite rules for all wire-types. Our strategy will be to
generate "bubbles" for sentences, within which we can grow circuit structure piecemeal. We will only ex-
press the rewrite rules; the generators of lower dimension are implicit. We aim to recover the linear ordering
of words in text (essential to any syntax) by traversing the top surface of a chain of bubbles representing
sentence structure in text – this order will be invariant up to compact closed isomorphisms. The diagram-
matic consequence of these assumptions is that we will be working with a conservative generalisation of
graph-rewriting defined by local rewriting rules. The major distinction is that locality can be redefined up
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to homotopy, which allows locally-defined rules to operate in what would be a nonlocal fashion in terms of
graph neighbourhoods, as in Figure 3.24. The minor distinction is that rewrite rules are sensitive to twists in
wires and the radial order in which wires emanate from nodes, though it is easy to see how these distinctions
can be circumvented by additional by imposing the equivalent of commutativity relations as bidirectional
rewrites. It is worth remarking that one can devise weak n-categorical signatures to simulate turing ma-
chines, where output strings are e.g. 0-cells on a selected 1-cell, so rewrite systems of the kind we propose
here are almost certainly expressively sufficient for anything; the real benefit is the interpretable geometric
intuitions of the diagrams.

≃

→ →

≃

→

Figure 3.24: In this toy example, obtaining the
same rewrite that connects the two yellow nodes
with a purple wire using only graph-theoretically-
local rewrites could potentially require an infinite
family of rules for all possible configurations of
pink and cyan nodes that separate the yellow, or
would otherwise require disturbing other nodes in
the rewrite process. In our setting, strong compact
closure homotopies handle navigation between dif-
ferent spatial presentations so that a single rewrite
rule suffices: the source and target notated by
dotted-black circles. Despite the expressive econ-
omy and power of finitely presented signatures,
we cannot "computationally cheat" graph isomor-
phism: formally we must supply the compact-
closure homotopies as part of the rewrite, absorbed
and hidden here by the ≃ notation.

The broad plan: We’ll first display the rules and demonstrate their usage, then we’ll prove the text circuit
theorem by relating our rules to text.

The rules: We start with simple sentences that only contain a single intransitive or transitive verb, which
correspond to gates and typed-boxes. Then we consider more general sentences with nesting sentential
structure, which correspond to untyped-boxes. Then we introduce coreferential structure on nouns, which
corresponds to symmetric monoidal composition of text circuits.

The theorem: We characterise the expressive capacity of our rules for simple and complex sentences in
terms of a context-sensitive grammar that corresponds to the surface structure of the derivations, which
tells us that the generated text is sensible. Then we provide a mathematical characterisation of coreferential
structure and a completeness result of our rules with respect to processive connectivity, which tells us that
all circuit connectivity patterns are achievable. Then we (re)state and prove the text circuit theorem: that the
fragment of language generated by the grammar surjects onto text circuits.
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Rules 3.2.2 (Simple sentences). Simple sentences are sentences that only contain a single intransitive or transitive verb. Simple sentences will contain at least
one noun, and may optionally contain adjectives, adverbs, and adpositions. The rules for generating simple sentences are as follows:

IV-intro TV-intro

→

v ∈ 𝐕𝑖

i

V-label

1 2

→→

→

ADJ-intro

→

ADJ-label

i →

i

ADV-intro

→

ADV-label

→

N↑-intro

↔

↔ →

ADPV-tendril

ADPN-tendril ADP-intro

→

ADP-label

↔

ADPN-pass

↔

ADPADV-pass

↔

ADPADP↑-pass

↔

ADPADP-pass

j ∈ 𝐀N

p ∈ 𝐀N

The N↑-intro rule introduces new unsaturated nouns. The IV-intro and TV-intro rules apply when there are precisely one or two unsaturated nouns in the
sentence respectively, saturating their respective nouns. Adjectives may be introduced immediately preceding saturated nouns. Adverbs may be introduced
immediately preceding verbs. To capture context-sensitive placement of adposition introductions, the ADPV-tendril rule allows an unsaturated adposition to
succeed a verb; a bulb may travel by homotopy to the right seeking an unsaturated noun. Conversely, the bidirectional ADPN-tendril rule sends a mycelic tendril
to the left, seeking a verb. The two pass-rules allow unsaturated adpositions to swap past saturated nouns and adjectives. By construction, neither verbs nor
adverbs will appear in a simple sentence to the right of a verb, so unsaturated adpositions will move right until encountering an unsaturated noun. In case it
doesn’t, the tendril- and pass- rules are reversible.
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Rules 3.2.3 (Complex sentences). Now we consider two refinements; conjunctions, and verbs that take sentential complements. We may have two sentences
joined by a conjunction, e.g. Alice dances while Bob drinks. We may also have verbs that take a sentential complement rather than a noun phrase, e.g.
Alice sees Bob dance; these verbs require nouns, which we depict as wires spanning bubbles.

CNJ-intro SCV-intro

→

s

→

The dotted-blue wires do not contentfully interact with anything else, but the points at which they connect on the surface magenta wire serve as blockers that
prevent overgeneration cases where adpositional phrases might interject between SCV verbs and their sentential complement, e.g. Alice sees at lunch Bob

drink. Later, they serve as visual indicators for the contents of untyped-boxes in text circuits.
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Example 3.2.4 (sober 𝛼 sees drunk 𝛽 clumsily dance.). Now we can see our rewrites in action for sentences. As a matter of convention – reflected in how
the various pass- rules do not interact with labels – we assume that labelling occurs after all of the words are saturated. We have still not introduced rules for
labelling nouns: we delay their consideration until we have settled coreferential structure. For now they are labelled informally with greeks.

→ →

SCV-intro

s𝛼

N↑-intro

s𝛼

→

ADJ-intro

s𝛼

→

N↑-intro

s𝛼

→

IV-intro

𝛽

s𝛼

→

𝛽

ADV-intro

𝛼

→

𝛽

(label rules)

sober sees clumsily dance
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Example 3.2.5 (𝛼 laughs at 𝛽). Adpositions form by first sprouting and connecting tendrils under the surface. Because the tendril- and pass- rules are bidirec-
tional, extraneous tendrils can always be retracted, and failed attempts for verbs to find an adpositional unsaturated noun argument can be undone. Though
this seems computationally wasteful, it is commonplace in generative grammars to have the grammar overgenerate and later define the set of sentences by
restriction, which is reasonable so long as computing the restriction is not computationally hard. In our case, observe that once a verb has been introduced
and its argument nouns have been saturated, only the introduction of adpositions can saturate additionally introduced unsaturated nouns. Therefore we may
define the finished sentences of the circuit-growing grammar to be those that e.g. contain no unsaturated nodes on the surface, which is a very plausible linear-
time check by traversing the surface. It is an invariant of the rules by construction that left-to-right traversal of the surface is always meaningful and yields the
desired linear ordering of text in finished derivations.

→

N↑-intro

→

𝛼

IV-intro

→

𝛼

N↑-intro

𝛼

ADPV-tendril

→

𝛼

→

ADPN-tendril

𝛼

→

ADP-intro

𝛽
𝛼

→

𝛽

laughs at

(labels)
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Rules 3.2.6 (Coreferential structure and noun labels).

→

linked-N-intro

→
𝛼 𝛽

N↑-swap

→ →
𝛼 𝛽

N-shift

↔ ↔
𝛽𝛼

→
𝛾

→
𝛾

(all types)

↔
𝛾

The linked-N-intro rules introduce a new unsaturated noun in the next sentence that coreferences the noun in the previous sentence that generated it, with vari-
ants for each pair of sentences involved. We depict three: simple to simple, between CNJ-related sentences, and from either a CNJ or SCV to a simple sentence.
N-shift rules allow any unsaturated noun to move into the next sentence, again with variants for different pairs of sentences. Observe that nouns with a for-
ward coreference have two dotted-black wires leaving the root of their wires, which distinguishes them from nouns that only have a backward coreference or
no coreference at all, which only have a single dotted-black wire leaving the root of their wire.
The N-swap rule variants allow a unsaturated noun with no forward coreferences to swap places with any unsaturated noun that immediately succeeds it.
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Rules 3.2.7 (Labelling nouns). When the structure of coreferences is set, we propagate noun labels from the head of each list. The rules for noun-label propaga-
tion are as follows:

n

→

label-propagate

→ → →

→ → →

link-rise

n
→←

nn
n ∈ 𝐍

n

n→
n

→
nn

n ∈ 𝐍

𝛼 𝛽 𝛾

n ∈ 𝐍

n
→

n
n ∈ 𝐍

𝛿

*nn

n
→←

*nn

n ∈ 𝐍 n ∈ 𝐍

n ∈ 𝐍 n ∈ 𝐍

N-label

n ∈ 𝐍

n
→

link-label

The 𝑛 ∈ 𝐍 notation indicates a family of rewrites (and generators) for each noun in the lexicon. Link-label assigns a noun to a diagrammatically linked collec-
tion of coreferent nouns, and link-propagation is a case analysis that copies a link label and distributes is across coreferent nouns. Link-rise is a case analysis to
connect labels to the surface, and finally N-label allows a saturated noun to inherit the label of its coreference class, which may either be a noun n or a pronoun
appropriate for the noun, notated *n
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Example 3.2.8 (sober Alice sees Bob clumsily dance. She laughs at him.). We start the derivation by setting up the sentence structure using S- and
SCV-intro rules, and two instances of N-intro, one for Alice, and one for Bob. Observe how the N-intro for Bob occurs within the subsentence scoped over by the
SCV-rule.

→ →

s

→

s

→

s

N↑-intro SCV-intro S-introN↑-intro

By homotopy, we can rearrange the previous diagram to obtain the source of the linked-N-intro rewrite in the dashed-box visual aid. Observe how we drag in
the root of what is to be Alice’s wire. Then we use the IV-intro in the second sentence, which sets up the surface structure she laughs, and the deep structure
for bookkeeping that she refers to Alice.

s

→

≃

→

s

→

s≃
1

linked-N-intro(𝛼) IV-intro

By homotopy again, we can do the same for Bob, this time setting up for the 𝛾 variant of linked-N-intro which handles the case when the spawning noun is
within the scope of an SCV. Then by applying a series of N↑-swaps, the unsaturated noun is placed to the right of the intransitive verb phrase.

→

s≃

1

→

s

1

→

s

1

linked-N-intro(𝛾) N↑-swaps

We’ve already done the surface derivation for the two sentences separately in Examples 3.2.4 and 3.2.5; since neither of those derivations touch the roots of
noun-wires, we can emulate those derivations and skip ahead.
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→

≃

laughs atsober sees clumsily dance

A

B→

≃

A

B

→

A

B A

B

→

A B

A

B

A
B

→

A
B

A
B

→

→

≃

sober Alice sees Bob dance she laughs at him

link-label (×2)

label-propagate(𝛽) × 2

link-rises

≃

label-propagate(𝛿) × 2

N-labels
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Rules 3.2.9 (Text to circuit). We turn finished text diagrams into text circuits by operating in situ, with extra rules outside the grammatical system that handle
connecting noun wires.

→ → →
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Example 3.2.10 (Text to circuit in action). In the first step below, by Lemmas 3.2.16 and 3.2.17, we can always rearrange a finished text diagram such that the
noun wires are processive. In the second step, use the first rewrite of Construction 3.2.9 to prepare the wires for connection.

→

≃

→

In the third step, we just ignore the existence of the bubble-scaffolding and the loose scalars. We could in principle add more rewrites to melt the scaffolding
away if we wanted to. In the fourth step, we apply the second and third rewrites of Construction 3.2.9 to connect the wires and eliminate nodules underneath
labels. We can also straighten up the wires a bit and make them look proper. At this point, we’re actually done, because the resulting diagram is already a text

circuit up to a choice of notation.

→ →

≃

∶=∶

Alice Bob

sober

sees

clums

dance

laughs at
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Example 3.2.11 (Growing circuits directly). Here is the combined content of Examples 3.2.4, 3.2.5, 3.2.8, this time presented directly as string-diagram rewrites
treating text circuits as a primitive syntax, where dotted-boxes indicate sentence scopes.

→

N↑-intro

→

SCV-intro

→

N↑-intro

→

S-intro

→

linked-N(𝛼)

→

IV-intro

→

linked-N(𝛾)

→

N↑-swaps

→

ADJ-intro

→

IV-intro

→

ADV-intro

→

ADP-intro

→

labels

sober

sees

laughs

clumsily

dance

at

Alice Bob

The point is this: if it is possible to relate a string-diagram rewrite system to a linear syntax by graphical means, then (so I hope to have demonstrated) it may
be done with a suitably specified weak 𝑛-category. So we may declare string diagram rewrite systems as we please and treat them as in-principle-formal gener-
ative grammars. I have demonstrated here how to construct a concrete witness for such a correspondence and to prove well-behaviour properties.
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3.2.2 Text circuit theorem

Now we would like to forget about the messy details of the circuit-growing grammar and treat
the text circuits themselves as a generative grammar for text, where the primitive operations are string-
diagrammatic composition and nesting within boxes: we aim to prove that all text circuits that one might
draw correspond to grammatically acceptable text. Moreover, this correspondence has to hold in such a way
that connectively equivalent ways to present text circuits correspond to texts that "mean the same thing", e.g.
up to rearrangement or grouping of sentences respecting constraints on pronominal reference.

Our strategy has two phases. Since we have already demonstrated that the circuit-growing grammar
yields text circuits it will suffice to demonstrate grammatical acceptability for the circuit-growing gram-
mar, and separately exhibit a well-behaved translation from arbitrary text circuits to circuit-growing gram-
mars. Altogether this achieves our desired correspondence between text circuits and finished circuit-growing
derivations, and text circuits will inherit the grammatical acceptability properties we demonstrate of circuit-
growing grammars.

We proceed in steps. First, we relate the circuit-growing rules for simple and complex sentences to pedes-
trian CSGs, which establishes grammatical sensibility at the sentential level. Second, we analyse the pronoun
connection rules of the circuit-growing grammar to establish that the text produced is sensible. Third, we ex-
pand the rules for our circuit-growing grammar so that all of the diagrammatic idiosyncrasies of text circuits
have something to correspond to in the circuit-growing grammar. Finally, we demonstrate how to convert
text circuits into finished circuit-growing derivations.
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Construction 3.2.12 (CSG for simple sentences). We may characterise simple sentences (containing only one
verb) with the context-sensitive grammar in Figures 3.25 and 3.26.

Figure 3.25: Reading each diagram from top-to-
bottom, from left-to-right we have generators for
intransitive verbs, transitive verbs, adjectives, and
adverbs. Generators for verbs require a number of
N↑ matching their arity as input, hence a CSG.

N↑ N↑ N↑

N N NNIV TV

N

ADJ ADV1 IV

IV

ADV2 TV

TV

Figure 3.26: Adpositions require several helper-
generators, which are the components within
dashed boxes in the depicted example demonstrat-
ing the process of appending adpositions to an
intransitive verb.

→ →

ADP

ADPADP

N↑

N↑ N↑
N↑ N↑

N↑

N↑N↑
N↑

N↑ N↑ N↑

N

N N

N N N

IV

IV

IV

Proposition 3.2.13. Up to labels, the simple-sentence rules of the circuit-growing grammar are strongly
equivalent to the CSG; in particular, they yield the same sentences.

Proof. By graphical correspondence between CSG rules and how the generators of the circuit-growing gram-
mar changes surface nodes (Figure 3.27).

Figure 3.27: Viewing nodes on the pink surface of
circuit-growing grammar as 1-cells, each rewrite
rule yields a 2-cell; e.g. the dashed-blue helper
lines for adpositions correspond to the ADP-pass
rules in circuit-growing grammar. The correspon-
dence between the IV-intro rules of both grammars
is depicted.

1

Proposition 3.2.14. Up to labels, Rules 3.2.2 and 3.2.3 for simple and complex sentences yield the same sen-
tences as the combined CSG of Construction 3.2.12 with the additional rules depicted in Figure 3.28.
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Proof. Same correspondence as Proposition 3.2.13, ignoring the dotted-blue guards.

S

[ ]

]

]N↑

[ ]

[ ][] CNJ [ ]

[ ]N↑

][N SCV

Figure 3.28: The first rule instantiates the left and
right boundaries of a sentence, corresponding the
starting bubble in circuit-growing grammar. The
second corresponds to N↑-intro, the third CNJ-intro,
and the fourth SCV-intro.

Now we address complex sentences and text by connecting nouns (Figure 3.29). This presents no issue
across distinct simple sentences, but a complication arises when connecting nouns within the same simple
sentence with reflexive pronouns e.g. Alice likes herself. Reflexive coreference would violate of the
processivity condition of string diagrams for symmetric monoidal categories. Not all symmetric monoidal
categories possess the appropriate structure to interpret such reflexive pronouns, but we several options
exist, explored in Figure 3.30.

VA B W C

→

V

A B

W

C

∶⇔

V

W

A B C
Figure 3.29: We choose the convention of connect-
ing from left-to-right and from bottom-to-top, so
that we might read circuits as we would English
text: the components corresponding to words will
be arranged in the reverse order, left-to-right and
top-to-bottom.

Terminology 3.2.15 (Kinds of nouns with respect to coreference).

...

...

...

...

Lonely Head Middle Foot
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We classify kinds of nouns by their tails. Lonely nouns have no coreferences, their tails connect to nothing.
Head nouns have a forward coreference in text; they have two tails, one that connects to nothing and the other
to a noun later in text. Middle nouns have a forward and backward coreference; they have two tails, one that
connects to a noun in some preceding sentence, and one that connects forward to a noun in a succeeding
sentence. Foot nouns only have a backward coreference; they have a single tail connecting to a noun in some
preceding sentence.

Lemma 3.2.16. The unsaturated nouns in Terminology 3.2.15 are exhaustive, hence nouns that share a coref-
erence are organised as a diagrammatic linked-list.

Proof. The N-intro rule creates lonely nouns. Head nouns can only be created by the linked-N-intro applied
to a lonely noun. Any new noun created by linked-N-intro is a foot noun. The linked-N-intro rule turns foot
nouns into middle nouns. These two intro- rules are the only ones that introduce unsaturated nouns, so it
remains to demonstrate that no other rules can introduce noun-kinds that fall outside our taxonomy. The N-
shift rule changes relative position of either a lonely or foot noun but cannot change its kind. The N-swap rule
may start with either a lonely or foot noun on the left and either a head or middle noun on the right, but the
outcome of the rule cannot change the starting kinds as tail-arity is conserved and the local nature of rewrites
cannot affect the ends of tails.

Lemma 3.2.17. No nouns within the same sentence are coreferentially linked.

Proof. Novel linked nouns can only be obtained from the linked-N-intro rule, which places them in succeed-
ing sentences. The swap rules only operate within the same sentence and keep the claim invariant. The
N-shift rules only apply to nouns with no forward coreferences; nouns with both forward and backward
coreferences cannot leave the sentence they are in. Moreover, N-shift is unidirectional and only allows the
rightmost coreference in a linked-list structure to move to later sentences. So there is no danger of an N-shift
breaking the invariant.

Figure 3.30: From left to right in roughly decreas-
ing stringency, compact closed categories are the
most direct solution for reflexive pronouns. Traced
symmetric monoidal categories also suffice. So
long as the noun wire possesses a monoid and
comonoid, a convolution works. We also can just
specify a new gate. We provide a purely syntactic
treatment in [WLC23]; for now we treat them as if
they were just verbs of lower arity.

VA

V∶⇔ V V V′
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Remark 3.2.21. There are some oddities about our
conventions that will make sense later when we consider
semantics. For example, Convention 3.2.22 an acceptable
thing to ask for syntactically but quite odd to think about
at the semantic level, where we would like to think that
distinct nouns manifest as different states on the same
noun-wire-type. A semantic interpretation that makes
use of this convention will become clearer later in Sketch
5.5. Similarly, Convention 3.2.27 wouldn’t be true if we
consider the order of text to reflect the chronological
ordering of events, in which case there are implicit ...
and then ... conjunctions that distinguish ordered
gates from parallel gates conjoined by an implicit ...
while .... This and the distinction in Convention 3.2.23
between typed and "untyped" higher-order processes
will be given a suitable semantic interpretation in Sketch
5.4.

Definition 3.2.18 (Finished text diagram). The circuit-growing grammar produces text diagrams. We call a
text diagram finished if all surface nodes are labelled.

Proposition 3.2.19. Finished text diagrams yield text, up to interpreting distinct sentences as concatenated
with punctuation ., ,, contentless conjunctions or complementisers – such as and, or that respectively.

Proof. Sentence-wise grammaticality is gauged by Propositions 3.2.13 and 3.2.14. When multiple sentences
occur within the scope of a SCV we might prefer the use of contentless complementisers and conjunctions,
e.g. Alice sees that Bob draws and Charlie drinks , and Dennis dances . is grammatically prefer-
able but meaningfully equivalent to Alice sees (Bob draws Charlie drinks) Dennis dances. For our
purposes it makes no difference whether surface text has these decorations, as the deep structure of text dia-
grams encodes all the information we care to know.

Proposition 3.2.20 (Finished text diagrams yield unique text circuits (up to processive isotopies)). Proof.

Every sentence corresponds to a gate up to notation, and we have a handle on sentences via Propositions
3.2.13 and 3.2.14. Lemmas 3.2.16 and 3.2.17 guarantee processivity. Uniqueness-up-to-processive-isotopy is
inherited: text diagrams themselves are already specified up to connectivity, which entails equivalence up to
processive isotopy. Therefore, for any circuit 𝐶 obtained from a text diagram 𝑇 by Construction 3.2.9, 𝑇 can
be modified up to processive-isotopy on noun wires to yield 𝑇′ and another circuit 𝐶′ that only differs from 𝐶

up to processive isotopy, and all 𝐶′ may be obtained in this way.

The converse of Proposition 3.2.20 would be that any text circuit that can be formed by the composition of
symmetric monoidal categories and of plugging gates into boxes yields a text diagram. This would mean that
text circuit composition is acceptable as a generative grammar for text. Establishing this converse requires
elaboration of some conventions.

Convention 3.2.22 (Wire twisting). Wires are labelled by nouns. We consider two circuits the same if their
gate-connectivity is the same. In particular, this means that we can eliminate unnecessary twists in wires to
obtain diagrammatically simpler representations (Figure 3.31).

Convention 3.2.23 (Arbitary vs. fixed holes). Diagrammatically, adverbs and adpositions are depicted with
no gap between the bounding box and their contents, whereas conjunctions and verbs with sentential com-
plement are depicted with a gap; this is a visual indication that the former are type-sensitive, and the latter
can take any circuit.

Convention 3.2.24 (Sliding). Since only gate-connectivity matters, we consider circuits the same if all that
differs is the horizontal positioning of gates composed in parallel (Figure 3.32).
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PICKS

LIKESHATES

A B C D E

PICKS

LIKES

HATES

A B C D E

=

Figure 3.31: Only connectivity matters in text cir-
cuits, which we may use to freely rearrange and
simplify presentations.

LIKES

HATES

LIKES HATES

LIKES

HATES

= =

A B C D A B C D A B C D

Figure 3.32: While sequential composition in pro-
cess theories often has implicit temporality, this is
not necessarily the case for text circuits, which may
just (for instance) represent relational constraints.
Temporality may be achieved in text circuits by
interpreting them in premonoidal settings [Jef98],
at the cost of the interchange rule depicted here.

Convention 3.2.25 (Reading text circuits). Pronominal connection conventions are to be chosen so that text
circuits may be read in the same directional reading conventions of the language they aim to represent.

Convention 3.2.26 (Contentless conjunctions). Conventions 3.2.24 and 3.2.25 require something else to allow
them to work at the same time: something to distinguish when the gates are parallel. In terms of text dia-
grams, we want rewrites that introduces such contentless conjunctions and witnesses their associativity, as in
Figure 3.33:

Figure 3.33: Parallel gates represent compound
sentences with contentless conjunctions. In En-
glish, some examples might be a punctuation mark
such as a comma, or phrases such as and also. →

&
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Convention 3.2.27 (Lonely wires). There’s only a single kind of text circuit we can draw that does not obvi-
ously correspond to a text diagram, and that’s one where gates are missing (left). In process theories, wires
are identity processes that do nothing to their inputs. So to deal with lonely wires in terms of text diagrams,
we want a rewrite that introduces such contentless verbs (Figure 3.34).

A B C

→

∃

Figure 3.34: Lonely wires in text circuits are iden-
tity processes. We require a text diagram analogue,
and an intransitive "null-verb" in English that
seems to work is is, in the sense of exists.
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Construction 3.2.28 (Circuit to text). In the presence of additional rewrites from Conventions 3.2.26 and 3.2.27, every text circuit is obtainable from some text
diagram, up to Conventions 3.2.22 and 3.2.24. Starting with a circuit, we may use Convention 3.2.22 to arrange the circuit into alternating slices of twisting
wires and (possibly tensored) circuits, and this arrangement recurses within boxes. Slices with multiple tensored gates will be treated using Convention 3.2.26.
By convention 3.2.27, we decorate lonely wires with formal exists gates, as in the Frank sees box. Observe how verbs with sentential complement are de-
picted with grey gaps, whereas the adverb and adposition combination of Mac crazily laughs at Cricket is gapless, according to Convention 3.2.23.

LAUGHS

CRAZILY

AT

DRUNK

SEES

FRANK MAC CHARLIE

HATES

LIKES

TELLS

DENNIS DEE CRICK
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We then linearise the slices, representing top-to-bottom composition as left-to-right. Twist layers are eliminated, replaced instead by dotted connections indi-
cating processive connectivity. The dashed vertical line distinguishes slices. This step of the procedure always behaves well, guaranteed by Proposition 3.2.16.
Noun wires that do not participate in earlier slices can be shifted right until the slice they are introduced.

LAUGHS

CRAZILY

AT
DRUNK

SEES

FRANK MAC CHR.

HATES

LIKES

TELLS

DEN. DEE CRK.

We recurse the linearisation procedure within boxes until there are no more sequentially composed gates. The linearisation procedure evidently terminates for
finite text circuits. At this point, we have abstracted away connectivity data, and we are left with individual gates.

LAUGHS

CRAZILY

AT
DRUNK

SEES

FRANK MAC CHR.

HATES LIKESTELLS

DEN. DEE CRK.
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By Proposition 3.2.14, gates are equivalent to sentences up to notation, so we swap notations in situ. Conventions 3.2.26 and 3.2.27 handle the edge cases of
parallel gates and lonely wires. Observe that the blue-dotted wiring in text diagrams delineates the contents of boxes that accept sentences.

SEES

FRANK

TELLS

&∃

Recursing notation swaps outwards and connecting left-to-right slices as sentence-bubbles connect yields a text circuit, up to the inclusion of rewrites from
Conventions 3.2.26 and 3.2.27: applying the reverse of those rewrites and the reverse of text-diagram rewrites yields a valid text-diagram derivation, by Propo-
sitions 3.2.14 and 3.2.16. We haven’t formally included transitive verbs with sentential complement in our vocabulary, but it should be obvious at this point
how they function with our existing machinery.

&∃

Frank sees [ drunk Mac (&) Charlie (∃) ].

Frank tells Charlie [ Dennis hates Dee (&) Dee likes Dennis ]

&

(&) Mac crazily laughs at Cricket.
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Theorem 3.2.29 (Text Circuit Theorem). Text generated by the circuit-growing grammar is sensible and surjects onto text circuits. Hence:

Text circuits are a generative grammar for text

Proof. Sensibility at the sentential level is established by Propositions 3.2.13 and 3.2.14. Proposition 3.2.20 establishes a map from text to circuits, and Construc-
tion 3.2.28 witnesses its surjectivity. The conventions required for the construction are accompanied by justifications of sensibility.
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An example from Task 1, "single supporting fact", is:

Mary went to the bathroom.

John moved to the hallway.

Mary travelled to the office.

(Query:) Where is Mary?

(Answer:) office.

Translating the setup of each task into a circuit of neural
nets-to-be-learnt, and queries into appropriately typed
measurements-to-be-learnt, each bAbi task becomes
a training condition in the form of a process-theoretic
equation to be satisfied: the depicted composite process
ought to be equal to the office state:

J

M b

h

o

went

moved

travelled

where is?

M

3.3 Text circuits: details and development

This section covers some practical developments, references for technical details of text circuits, and sketches
of how to play with them. The most striking demonstration to date is that circuits are defined over a large
enough fragment of language to leverage several bAbi tasks [BAb], which are a family of 20 general-reasoning
text tasks – the italicised choice of wording will be elaborated shortly. Each family of tasks consists of tuples
of text in simple sentences concluded by a question, along with an answer. It was initially believed that world
models were required for the solution of these tasks, but they have been solved using transformer architec-
tures. While there is no improvement in capabilities by solving bAbi using text circuits, the bAbi tasks have
been used as a dataset to learn word gates from data, in a conceptually compliant and compositional manner,
detailed in the margin. Surprisingly, despite the low-data, low-compute regime, the tasks for which the cur-
rent theory has the expressive capacity to cover are solved better by text circuits than by LSTMs; a proof-of-
concept that with the aid of appropriate mathematics, not only might fundamental linguistic considerations
help rather than hinder NLP, but also that explainability and capability are not mutually exclusive. Exper-
imental details are elaborated in a forthcoming report [ano]. While there are expressivity constraints con-
tingent on theoretical development, this price buys a good amount of flexibility within the theoretically es-
tablished domain: text circuits leave room for both learning-from-data and "hand-coded" logical constraints
expressed process-theoretically, and naturally accommodate previously computed vector embeddings of
words.

In practice, the process of obtaining transparently computable text goes through two phases. First, one has
to obtain text circuits from text, which is conceptually simple: typelogical parsers for sentences can be mod-
ified to produce circuit-components rather than trees, and a separate pronomial resolution module dictates
symmetric monoidal compositionality; details are in the same forthcoming report. Second, one implements
the text circuits on a computer. On quantum computers, boxes are modelled as quantum combs. On clas-
sical computers, boxes are sandwiches of generic vector-manipulation neural nets, and boxes with ’dot dot
dot’ typing are interpreted as families of processes, which can be factored for instance as a pair of content-
carrying gates along with a monoid+comonoid convolution to accommodate multiplicity of wires; an exam-
ple of this interpretation of families of processes is the use of an aggregation monoid in graph neural network
[DV22]. The theoretical-to-practical upshot of text circuits when compared to DisCoCat is that the full gamut
of compositional techniques, variations, and implementation substrates of symmetric monoidal categories
may be used for modelling, compared to the restrictions inherent in hypergraph and strongly compact closed
categories.

In terms of underpinning mathematical theory, the ‘dot dot dot’ notation within boxes that indicates re-
lated families of morphisms is graphically formal [WGZ22], and interpretations of such boxes were earlier
formalised in [Mer14, Qui15, Zam17]. Boxes with holes may be interpreted in several different ways. Firstly,
boxes may be considered syntactic sugar for higher-order processes in monoidal closed categories, and boxes
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are diagrammatically preferable to combs in this regard, since the latter admits a typing pathology where two
mutually facing combs interlock. Secondly, boxes need not be decomposable as processes native to the base
category, admitting for instance an interpretation as elementwise inversion in linear maps, which specialises
in the case of Rel (viewed as Vect over the boolean ring) to negation-by-complement. In some sense, none of
these formalities really matter, on the view that text circuits are algebraic jazz for computing with text, where
facets are open to interpretation and modification.

3.4 How to play

Text diagrams of the sort we have been growing with the circuit-growing grammar have rich structure for
modelling syntactic structure. In tandem with an implementation in neural nets, there are many things that
can be achieved. Here I want to share some possibilities and general principles.

Functional words. No separate "information structure" is required; all is transparent and manipulable.
For instance, in the case of relative pronouns in Example 3.4.2, ansatz wires may be freely introduced and
manipulated to achieve the desired correspondence between deep and surface structure.

Grammar equations. A principle for the extension of text diagrams to larger fragments of text is to devise
grammar equations [CW21] that express novel textual elements in terms of known text diagrams, for instance,
that the use of passive voice or copulas amounts to swaps in the linear surface order, as in Examples 3.4.3
and 3.4.4. Syntactic rules may even introduce semantic components, as in for instance the treatment of the
possessive pronoun in Example 3.4.5. In sum, intuitions about the systematicity of language are directly
translatable into rewrite rules that manipulate deep structure as one sees fit.

Grammatical typing is nesting. A heuristic for the extension of text diagrams to novel grammatical cate-
gories is the absorption of type-theoretical compositional constraints at the level of sentences into nesting of
boxes, as demonstrated in Examples 3.4.6 and 3.4.7.

Syncategorematicity. A useful heuristic for the application of text diagrams is to treat individual text cir-
cuits as analogous to propositional contents, and certain logical or temporal connectives as structural oper-
ations upon circuits – rewrites – that must be applied in order to obtain a purely propositional format. In
other words, logical or structural words are to be treated as circuit-manipulation instructions to be executed
in order to obtain a circuit, in the same way that 1 + 1 is only an integer expression once addition has been
evaluated. See Examples 3.4.8 and 3.4.9 for a demonstration.

Syntax in context. Extending the reach of text circuits to determiners, quantifiers, and conditionals appears
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to require a contextual process theory in which to evaluate and enforce constraints upon the purely syntactic
content of text circuits. The broad strategy sketched here rests upon three tactics. First, as in the neural ap-
proach to bAbi, word-gates are considered to be paired with measurement-processes that return an analog
of truth values, the latter of which may be generic tests for adjectives as static predicates or verbs as dynamic
predicates. The pairing of gates with measurements follows the philosophy of update structures [HWW20].
The truth-measurements allow conditionals to be expressed as either circuit-rewrites or constraints on truth-
measurements, the latter which are in turn interpretable as loss-functions in the process of training gates.
Second, we model context as the rest of the text circuit, which is a modifiably finite model. Third, we sup-
pose we have a way to record and relate alternative circuits. These tactics appear sufficient for a first pass.
Determiners may be considered to be context-sensitive connectivity. Universal quantifiers may be analysed
in particular finitary contexts as conditionals and constraints on truth-conditional measurements. Existential
quantifiers evaluated in the finitary case yield alternative circuits. See Examples 3.4.11, 3.4.12, 3.4.13, 3.4.15,
and 3.4.15 for demonstrations.

Text is composition. Apart from nesting, the other form of composition available for text circuits is the con-
nectivity of wires. We have presented a simplified theory of discourse where the only discourse referents are
nouns, but this is not an inherent limitation of text diagrams, where grammatical data of all kinds are freely
presentable and composable. In this presentation, I have stuck to string-diagrams in a compact-closed setting
and their rewrites, and I have avoided the affordance of weak 𝑛-categories to specify manifold diagrams and
their rewrites, where in addition to 1-D strings connecting 0-D boxes, there may be 2-D planes connecting
1-D strings, 3-D volumes connecting planes, string diagrams restricted to surfaces or volumes... All this is
to say that if you can draw it, language can have whatever geometry you want. It just so happens that sym-
metric monoidal categories are the royal road for pedagogy and practicality (who knows how to interpret a
manifold diagram as a computational process?), so it is best to stick to strings.

Objection!: Hold on, isn’t this just transformational grammar? Haven’t we moved on from that?
In spirit, yes. The two major mathematical distinctions here are well-typing and many-input-many-output
instead of treelike. The practical distinction is that this theory works with neural nets. Both approaches have
the same theoretical problems: over- and undergeneration, no evidentiary basis for psychological realism, too
rigid for functionalists, and so on. But recall that we differ in aims: our formalist approach is ultimately in
service of approximating human language structure in machines for interpretability. How so? Solving lan-
guage tasks such as bAbi via text circuits also means that each word gate has been learnt in a conceptually-
compliant manner, insofar as the grounded meanings of words are reflected in how words interact and mod-
ify one another. What is meant by "conceptually-compliant" is a stronger variant of Firth’s maxim: "the mean-
ing of a word is how it interacts with other words". How do we justify that claim? The initial conception of
bAbi was that the ability to answer questions about – for instance, the verb to go – in many different contexts
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amounted to having a consistent internal "world-model". But question-answering performance by itself is
evidently insufficient for the degree of interpretability implied by conceptual-compliance, because the inter-
nal model is not forthcoming in transformer solutions. On the other hand, we do obtain the building blocks
of compositional world-models by learning word gates in text circuits: each learnt word gate may be consid-
ered a well-grounded semantic primitive in the construction of novel text circuits, and the resulting circuits
are modifiable world-models that are queriable using the (also learnt) measurement-gates. Why is that so?
Because just as in Section 1.6 we do not need to know how an update is implemented if it satisfies character-
istic operational constraints imposed by process-theoretic equations, we don’t need to know what’s going on
inside the gate to go so long as it satisfies the process-theoretic equations that to go ought to satisfy. What
are these equations? Firth says that it is how to go behaves with respect to all other words in all contexts,
which we approximate by translating individual bAbi tasks involving the word to go, via text circuits, into
a representative sample of the process-theoretic equations that to go ought to satisfy. So the philosophical
strength of the claim that to go and synonyms have been learnt-from-data in a way that coheres with human
conceptions rests on three points: performance, Firth (or if you like, the Yoneda Lemma), and the breadth
and variety exhibited in the bAbi dataset. The real test is practical demonstration, for which time will tell.
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Rules 3.4.1. A relative pronoun glues two sentences across a single noun. For example, what would be a text with two sentences Alice teaches at school.

School bores Bob. can be composed by identifying school: Alice teaches at school that bores Bob. In this case, that is called a subject-relative pro-
noun, as it stands in for the subject argument in bores. In Alices teaches at school that Bob attends., we have an object-relative pronoun, as that
stands in for the object argument in attends. In English, relative pronouns occur immediately after the noun they copy, and are followed immediately by a
sentence missing a noun. Reflexive pronouns may be dealt with in a similar fashion as we have with relative pronouns, and various semantic interpretation
options have been covered already in Figure 3.30. We can extend our system to accommodate relative pronouns as follows. The introduction of a relative pro-
noun is considered to start a new sentence with a premade pronominal link. The relative pronoun connects to a new kind of surface noun, which for most
intents and purposes behaves just like the nouns we have seen before, except for two caveats: it cannot be labelled (since the relative pronoun is already han-
dling that), and it cannot leave the sentence it starts in by N-shift rules. We can eliminate relative pronouns by forcing the governed noun to be named, which is
equivalent to dropping the relative pronoun and recovering distinct sentences.

→

rp

→

rp

rel. pron. intro rel. pron. elim.

n

n ∈ 𝐍 n
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Example 3.4.2 (Introducing relative pronouns). Here we demonstrate derivations of Alice teaches at school that bores Bob and Alice teaches at

school that Bob attends. The initial steps in both cases are the same, setting up the teaches phrase structure and introducing a new unsaturated noun in
the Bob phrase to work with the relative pronoun.

→ → →

rp rp

→

(TV) N-intro rp-intro (ADP)&(N-intro)

Now have a branching derivation. We may either directly generate a transitive verb treating the relative pronoun as a subject, or we may first perform an N↑-
swap first and then generate a transitive verb, treating the relative pronoun as an object. Now the ends of either branch can be labelled to recover our initial
examples.

→

→

rp

(N↑-swap)

TV-intro
rp

rprp

rprp

→

rprp
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Example 3.4.3 (Passive voice).
School bores Bob = Bob is bored by school

Twists in wires can be used to model passive voice constructions, which amount to swapping the argument order of verbs. In the original [WLC23], a more
detailed analysis including the flanking words is bored by involves introducing a new diagrammatic region, which is modelled by having more than a single
0-cell in the 𝑛-categorical signature.

→

(psv.)

borespsv.

S B

bores

S B

=

Example 3.4.4 (Copulas).
Red car = Car is red

Modifiers such as adjectives and adverbs when they occur before their respective noun or verb are called attributive. When modifiers occur after their respec-
tive target, they are called predicative. In English, without the aid of and, only a single predicative modifier is permissible, e.g. big red car and big car is

red are both acceptable, but car is big red is not. There is no issue in introducing rewrites to handle copular modifier constructions in text diagrams, and in
text circuits, there is no distinction between either kind of modifier.

→ ↔

cop.

ADJ-intro(pred.)

pred/attr swap
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Example 3.4.5 (Possessive pronouns).
Bob’s pub = Pub that Bob owns

This example, along with other grammar equations, was first introduced in the pregroups and internal wirings context in [CW21]. Possessive pronouns are
placed contiguously in between noun-phrases, for which the diagrammatic technology we developed for placing adpositions can be repurposed. Possessive
pronouns may be dealt with by a single rewrite that relies on the presence of a transitive ownership verb in the lexicon, which corresponds to a box-analysis in
text circuits.

Bob ’s pub

→

Bobpub that owns Bob

’s

pub

=

Bob pub

owns
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Example 3.4.6 (Intensifers).
Alice very quickly runs

The deep nodes of a text diagram may be equivalently viewed as evaluators in a symmetric monoidal closed setting, and the surface nodes as states for the
evaluators. By Curry-Howard-Lambek, this view recovers typelogical grammar settings where composition is some variant of modus ponens. So long as the
typing rules are operadic or treelike (which is almost always the case for typelogical grammars, as there are rarely gentzen-style sequent rules that generate
multiple outputs), we may instead use a notation where parent edges of evaluation branches become nesting boxes.

N

INT

ADV

IV

N

INT

ADV

IV
⇔

n

n⇒n

(n⇒n)⇒(n⇒n)

((n⇒n)⇒(n⇒n))⇒((n⇒n)⇒(n⇒n))

≡
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Example 3.4.7 (Comparatives).
Alice drinks less than Bob drinks

Just as transitive verbs modify two nouns, comparatives are higher-order transitive modifiers that act on the data of verbs or adjectives. A benefit of the sym-
metric monoidal closed view is that it easily accommodates mixed-order and multi-argument modifiers.

A d dB<

⇔ ≡
dd

<

A B
A d dB<
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Example 3.4.8 (Syncategorematicity I). Syncategorematic words are roughly those that have contextually-dependent semantics. Their dependency is usually
predicated on the grammatical type of their arguments. In our terms, since we consider the semantics of text circuits to be underpinned by monoidal functors
that reify the circuits in a target category, syncategorematic words such as and may be treated as distributive laws. Here and occurs as a conjunction of nouns
and is eliminated by distributive-law rewrites within the deep structure of the text diagram before translation into circuits. Note that what is meant by distribu-

tive here is, in string-diagrammatic terms, precisely the same as that in algebra, for expressions such as 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐). A new copy-node for
verb labels that has rewrites for all verbs facilitates distribution, and the deep and nodes come in a tensor-dentensor pair analogous to those for nonstrict string
diagrams. Sources of rewrites are outlined in dashed boxes.

Alice and Bob drink

A B+ d

→

A B+ d

→

d ∈ V

A B+ d

dd

A B+ d

dd
→ ↦

d d

BA
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Example 3.4.9 (Syncategorematicity II).
Bob drinks and smokes

In this example, the same word and is a conjunction of verbs. In this case we choose to interpret the conjunction of verbs as sequential composition, so there is
no need for a corresponding detensor for the and of verbs.

B +d s

→

B +d s

↦

d

s

B

Example 3.4.10 (Coordination).
Alice and Bob drink beer and wine respectively

We stand to win in terms of conceptual economy for modelling; more complex phenomena of text structure such as coordination appear to be resolvable in the
same framework of distributivity-law rewrites.

d b + wA + B r d b + wA + B r

→ ↦ d d

b wA B
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Example 3.4.11 (Determiners I).
Bob drinks the beer (among drinks)

Here, drinks is considered transitive and the beer a nesting box for drinks that reaches over to contextual wires representing a selection of beverages. In this
case (relying on the implicit uniqueness of the), a series of beer? tests may be computed, and the best match chosen as the resulting argument for drinks.

the beer

Bob Duvelwater

↦ drinks

B Dw

drinks

Bob Duvelwater

drinks=
b? b?

argmax

Example 3.4.12 (Determiners II).
Bob drinks a beer (among drinks)

We take the logical (and pragmatic) reading of a as ∃!𝑥 ∶ beer?(𝑥) ∧ drinks?(Bob, 𝑥). Subject to having a method to hold onto alternatives – in essence an in-
quisitive semantics approach – we may create alternative circuits for each successful beer? test.

a beer

Bob DuvelHells

drinks

B DH

drinks

Bob DuvelHells

drinks

=

b? b?

drinks

B DH

+
+

+
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Example 3.4.13 (Determiners III).
Bob drinks a beer (that we didn’t know about)

When there are no beers in context, the same statement takes on a dynamic reading: it constitutes the introduction of a beer into discourse. In terms of text
circuits, this amounts to introducing a novel beer-state and beer-wire. Determining an appropriate setting to accommodate "arbitrary" vs. "concrete" beers (c.f.
Fine’s arbitrary objects [Urq20]) requires further research and experimentation, but preliminarily it is known that density matrices are capable of modelling
semantic entailment [BSC15], at the computational cost of adopting the kronecker product. This diagram doesn’t typecheck, but note that it doesn’t have to,
because our strategy for evaluation of determiners treats circuits as syntactic objects to be manipulated.

a beer

Bob winewater

drinks

Bob winewater

drinks

Bob winewater

drinks

=

b? b?

=0?

=0?

beer

𝜄
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Example 3.4.14 (Quantifiers I).
Bob drinks all the beers (in context)

In a finitary context, drinking all the beers amounts to applying the distributivity of and iteratively in that context. In this case, all the beers is treated as
a reference-in-context to Hells and Duvel. In the same manner, existential quantifiers in finite contexts can be treated as finitary disjunctions, which is handled
by creating alternative circuits, as in Example 3.4.12

all the beers

Bob DuvelHells

drinks

B Dw

drinks

Bob DuvelHells

drinks=

b? b?

=1?

=1?

H

water

b?

=1?

water

drinks
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Example 3.4.15 (Quantifiers II).
Bob drinks all beers (generic)

Without the determiner the, this becomes a generic statement, which logically amounts to (analysing the usual conditional as a disjunction) ∀𝑥 ∶ ¬beer?(𝑥) ∨

drinks?(Bob, 𝑥). We can treat generic universal quantifiers of this kind in at least two ways. The first essentially truth-conditional approach is to treat the
generic as a process-theoretic condition governing measurements: whenever it is the case that something is a beer, it is the case that Bob drinks it. The sec-
ond "inferential" appraoch is to treat the generic as a rewrite of text circuits conditioned on a beer test: whenever something is a beer we may add on a gate
witnessing that Bob drinks that beverage.

all beers

Bob

drinks

∶=

x

b? =

1

⇒
d?

Bob x

1

= Or

x

b?

=1?

Bob x

↦

Bob x

drinks





4

Continuous relations for semantics

We want a setting within which to reason formally with and about pictorial iconic representations, of the
sort one might draw to illustrate a conceptual schema from cognitive linguistics. For this I introduce and
investigate the category of continuous relations, ContRel.
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4.1 Continuous Relations for iconic semantics

Figure 4.1: Sometimes it is very helpful to illus-
trate concepts using iconic representations in
cartoons. For instance in the conduit metaphor [Red],
words are considered containers for ideas, and
communication is considered a conduit along which
those containers are sent.

A

B

Speaker

Idea

Words

Communication

Listener

A

B

“Put an idea into words"

A

B

“Get the message across"

A

B

“I got a lot out of her talk"

The aim of this chapter is to give us a formal setting in which we can paint pictures with words. More
verbosely, to formalise cartoon doodles like the one above in a symmetric monoidal category so that we can
give semantics to text circuits in terms of graphical, iconic representations – cartoons, in short. To do so, we
introduce the category ContRel of continuous relations, which are a naïve extension of the category Top of
topological spaces and continuous functions towards continuous relations.

The main reason we prefer ContRel to either Rel or Top for our purposes is that we can diagrammatically
characterise set-indexed collections of mutually disjoint open sets as sticky-spiders: a generalisation of spiders
that interact with idempotents. We can then treat the indexing set as a collection of labels, and an indexed
open set as a doodle. Notably, spiders don’t exist in cartesian Top except for the one-point space, and the spa-
tial structure of open sets doesn’t exist in Rel. But there are all kinds of poorly behaved open sets even on the
plane, so enter the next benefit: In ContRel, we can diagrammatically characterise the reals as a topological
space up to homeomorphism, which gives us a diagrammatic handle on paths and homotopies, mathemati-
cal concepts that enable us to diagrammatically characterise when open sets are connected, how they might
move and transform continuously in space, and when open sets are contained inside others. And once we’ve
formalised doodles we’ll be able to treat ourselves to cartoons as formal semantics for language and nobody
can stop us.

Sidenote for category theorists
The naïve approach I take is to observe that the preimages of functions are precisely relational converses

when functions are viewed as relations, so the preimage-preserves-opens condition that defines continuous
functions directly translates to the relational case. To the best of my knowledge, the study of ContRel is a
novel contribution. I venture two potential reasons.

First, it is because and not despite of the naïvity of the construction. Usually, the relationship between
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Rel and Set is often understood in sophisticated general methods which are inappropriate in different ways.
I have tried applying Kliesli machinery which generalises to "relationification" of arbitrary categories via
appropriate analogs of the powerset monad to relate Top and ContRel, but it is not evident to me whether
there is such a monad. The view of relations as spans of maps in the base category should work, since Top

has pullbacks, but this makes calculation difficult and especially cumbersome when monoidal structure is
involved.

Second, the relational nature of ContRel means that the category has poor exactness properties. Even if
the sophisticated machinery mentioned in the first reason manages to work, relational variants of Top are
poor candidates for any kind of serious mathematics because they lack many limits and colimits. Since we
take an entirely "monoidal" approach, we are able to find and make use of the rich structure of ContRel with
a different toolkit.
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Reminder 4.2.1 (Topological Space). A topological space is
a pair (𝑋, 𝜏), where 𝑋 is a set, and 𝜏 ⊂ 𝒫(𝑋) are the open

sets of 𝑋, such that:

"nothing" and "everything" are open

∅, 𝑋 ∈ 𝜏

Arbitrary unions of opens are open

{𝑈𝑖 ∶ 𝑖 ∈ 𝐼} ⊆ 𝜏 ⇒
⋃

𝑖∈𝐼

𝑈𝑖 ∈ 𝜏

Finite intersections of opens are open 𝑛 ∈ N:

𝑈1,⋯ , 𝑈𝑛 ∈ 𝜏 ⇒
⋂

1⋯,𝑖,⋯𝑛

𝑈𝑖 ∈ 𝜏

Reminder 4.2.2 (Relational Converse). Recall that a
relation 𝑅 ∶ 𝑆 → 𝑇 is a subset 𝑅 ⊆ 𝑆 × 𝑇.

𝑅† ∶ 𝑇 → 𝑆 ∶= {(𝑡, 𝑠) ∶ (𝑠, 𝑡) ∈ 𝑅}

Reminder 4.2.3 (Continuous function). A function
between sets 𝑓 ∶ 𝑋 → 𝑌 is a continuous function
between topologies 𝑓 ∶ (𝑋, 𝜏)→ (𝑌, 𝜎) if

𝑈 ∈ 𝜎 ⇒ 𝑓−1(𝑈) ∈ 𝜏

where 𝑓−1 denotes the inverse image.

Recall that functions are relations, and the inverse
image used in the definition of continuous maps is
equivalent to the relational converse when functions are
viewed as relations. So we can naïvely extend the notion
of continuous maps to continuous relations between
topological spaces.

Notation 4.2.4. For shorthand, we denote the topology
(𝑋, 𝜏) as 𝑋𝜏. As special cases, we denote the discrete
topology on 𝑋 as 𝑋⋆, and the indiscrete topology 𝑋◦.

The symmetric monoidal structure is that of product
topologies on objects, and products of relations on mor-
phisms.

4.2 Continuous Relations by examples

Definition 4.2.12 (Continuous Relation). A continuous relation 𝑅 ∶ (𝑋, 𝜏) → (𝑌, 𝜎) is a relation 𝑅 ∶ 𝑋 → 𝑌

such that
𝑈 ∈ 𝜎 ⇒ 𝑅†(𝑈) ∈ 𝜏

where † denotes the relational converse.

Let’s consider three topological spaces and examine the continuous relations between them. This way we
can build up intuitions, and prove some tool results in the process.

The singleton space consists of a single point which is both open and closed. We denote this space ∙.
Concretely, the underlying set and topology is

({⋆} , {{⋆},∅})

Open Closed

The Sierpiński space consists of two points, one of which (in yellow) is open, and the other (in cyan) is
closed. We denote this space 𝒮. Concretely, the underlying set and topology is:

(
{0, 1} , {∅, {1}, {0, 1}}

)

Open Closed

The unit square has [0, 1] × [0, 1] as its underlying set. Open sets are "blobs" painted with open balls.
Points, lines, and bounded shapes are closed. We denote this space ■.
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Reminder 4.2.5 (Product Topology). We denote the
product topology of 𝑋𝜏 and 𝑌𝜎 as (𝑋 × 𝑌)(𝜏×𝜎). 𝜏 × 𝜎 is
the topology on 𝑋 × 𝑌 generated by the basis {𝑡 × 𝑠 ∶
𝑡 ∈ 𝔟𝜏, 𝑠 ∈ 𝔟𝜎}, where 𝔟𝜏 and 𝔟𝜎 are bases for 𝜏 and 𝜎

respectively.

Reminder 4.2.6 (Product of relations). For relations
between sets 𝑅 ∶ 𝑋 → 𝑌, 𝑆 ∶ 𝐴 → 𝐵, the product relation
𝑅 × 𝑆 ∶ 𝑋 ×𝐴 → 𝑌 × 𝐵 is defined to be

{((𝑥, 𝑎), (𝑦, 𝑏)) ∶ (𝑥, 𝑦) ∈ 𝑅, (𝑎, 𝑏) ∈ 𝑆}

Example 4.2.7 (A noncontinuous relation). The relation
{(0, ∙)} ⊂ 𝒮 × ∙ is not a continuous relation: the preimage
of the open set {∙} under this relation is the non-open set
{0}.

Terminology 4.2.8. Call a continuous relation ∙ → 𝑋𝜏 a
state of 𝑋𝜏 , and a continuous relation 𝑋𝜏 → ∙ a test of 𝑋𝜏.

Proposition 4.2.9. States 𝑅 ∶ ∙ → 𝑋𝜏 correspond with
subsets of 𝑋.

Proof. The preimage 𝑅†(𝑈) of a (non-∅) open 𝑈 ∈ 𝜏 is ⋆
if 𝑅(⋆) ∩𝑈 is nonempty, and ∅ otherwise. Both ⋆ and ∅

are open in {⋆}∙. 𝑅(⋆) is free to specify any non-∅ subset
of 𝑋. The empty relation handles ∅ as an open of 𝑋𝜏 .

Proposition 4.2.10. Tests 𝑅 ∶ 𝑋𝜏 → ∙ correspond with
open sets 𝑈 ∈ 𝜏.

Proof. The preimage 𝑅†(⋆) of ⋆ must be an open set of
𝑋𝜏 by definition. 𝑅†(⋆) is free to specify any open set of
𝑋𝜏 .

Reminder 4.2.11 (Union, intersection, and ordering of
relations). Recall that relations 𝑋 → 𝑌 can be viewed as
subsets of 𝑋 ×𝑌. So it makes sense to speak of the union
and intersection of relations, and of partially ordering
them by inclusion.

Open Closed

∙ → ∙: There are two relations from the singleton to the singleton; the identity relation {(∙, ∙)}, and the empty
relation ∅. Both are topological.

∙ → 𝒮: There are four relations from the singleton to the Sierpiński space, corresponding to the subsets of 𝒮.
All of them are topological.

𝒮 → ∙: There four candidate relations from the Sierpiński space to the singleton, but as we see in Example
4.2.7, not all of them are topological.

Now we need some abstraction. We cannot study the continuous relations between the singleton and the
unit square case by case. We discover that continuous relations out of the singleton indicate arbitrary subsets,
and that continuous relations into the singleton indicate arbitrary opens.

∙ → ■: Proposition 4.2.9 tells us that there are as many continuous relations from the singleton to the unit
square as there are subsets of the unit square.

■ → ∙: Proposition 4.2.10 tells us that there are as many continuous relations from the unit square to the
singleton as there are open sets of the unit square.

There are 16 candidate relations 𝒮 → 𝒮 to check. A case-by-case approach won’t scale, so we could
instead identify the building blocks of continuous relations with the same source and target space.

Given two continuous relations 𝑅, 𝑆 ∶ 𝑋𝜏 → 𝑌𝜎 , how can we combine them?

Proposition 4.2.13. If 𝑅, 𝑆 ∶ 𝑋𝜏 → 𝑌𝜎 are continuous relations, so are 𝑅 ∩ 𝑆 and 𝑅 ∪ 𝑆.
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Figure 4.2: Regions of ■ in the image of the yellow
point alone will be coloured yellow, and regions in
the image of both yellow and cyan will be coloured
green:

Figure 4.3: Regions in the image of the cyan point
alone cannot be open sets by continuity, so they are
either points or lines. Points and lines in cyan must
be surrounded by an open region in either yellow
or green, or else we violate continuity (open sets in
red).

Figure 4.4: A continuous relation 𝒮 → ■: "Flower
and critter in a sunny field".

Proof. Replace □ with either ∪ or ∩. For any non-∅ open 𝑈 ∈ 𝜎:

(𝑅□𝑆)†(𝑈) = 𝑅†(𝑈)□𝑆†(𝑈)

As 𝑅, 𝑆 are continuous relations, 𝑅†(𝑈), 𝑆†(𝑈) ∈ 𝜏, so 𝑅†(𝑈)□𝑆†(𝑈) = (𝑅□𝑆)†(𝑈) ∈ 𝜏. Thus 𝑅□𝑆 is also a
continuous relation.

Corollary 4.2.14. Continuous relations 𝑋𝜏 → 𝑌𝜎 are closed under arbitrary union and finite intersection.
Hence, continuous relations 𝑋𝜏 → 𝑌𝜎 form a topological space where each continuous relation is an open set
on the base space 𝑋 × 𝑌, where the full relation 𝑋 → 𝑌 is "everything", and the empty relation is "nothing".

A topological basis for spaces of continuous relations

Reminder 4.2.15 (Topological Basis). 𝔟 ⊆ 𝜏 is a basis of the topology 𝜏 if every 𝑈 ∈ 𝜏 is expressible as a union
of elements of 𝔟. Every topology has a basis (itself). Minimal bases are not necessarily unique.

Having a tangible topological basis for continuous relations is good for intuition: we can think of breaking
down or constructing complex relations to or from simpler parts. Luckily, there do exist nice topological
bases for continuous relations!

Definition 4.2.16 (Partial Functions). A partial function 𝑋 → 𝑌 is a relation for which each 𝑥 ∈ 𝑋 has at
most a single element in its image. In particular, all functions are special cases of partial functions, as is the
empty relation.

Lemma 4.2.17 (Partial functions are a ∩-ideal). The intersection 𝑓 ∩ 𝑅 of a partial function 𝑓 ∶ 𝑋 → 𝑌 with
any other relation 𝑅 ∶ 𝑋 → 𝑌 is again a partial function.

Proof. Consider an arbitrary 𝑥 ∈ 𝑋. 𝑅(𝑥) ∩ 𝑓(𝑥) ⊆ 𝑓(𝑥), so the image of 𝑥 under 𝑓 ∩ 𝑅 contains at most one
element, since 𝑓(𝑥) contains at most one element.

Lemma 4.2.18 (Any single edge can be extended to a continuous partial function). Given any (𝑥, 𝑦) ∈ 𝑋 × 𝑌,
there exists a continuous partial function 𝑋𝜏 → 𝑌𝜎 that contains (𝑥, 𝑦).

Proof. Let 𝒩(𝑥) denote some open neighbourhood of 𝑥 with respect to the topology 𝜏. Then {(𝑧, 𝑦) ∶ 𝑧 ∈

𝒩(𝑥)} is a continuous partial function that contains (𝑥, 𝑦).

Proposition 4.2.19. Continuous partial functions form a topological basis for the space (𝑋 × 𝑌)(𝜏⊸𝜎), where
the opens are continuous relations 𝑋𝜏 → 𝑌𝜎 .
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Figure 4.5: A continuous relation ■ → 𝒮: "still
math?". Black lines and dots indicate gaps.

Proof. We will show that every continuous relation 𝑅 ∶ 𝑋𝜏 → 𝑌𝜎 arises as a union of continuous partial
functions. Denote the set of continuous partial functions 𝔣. We claim that:

𝑅 =
⋃

𝐹∈𝔣

(𝑅 ∩ 𝐹)

The ⊇ direction is evident, while the ⊆ direction follows from Lemma 4.2.18. By Lemma 4.2.17, every 𝑅 ∩ 𝐹
term is a partial function, and by Corollary 4.2.14, continuous.

𝒮 → 𝒮: We can use Proposition 4.2.19 to write out the topological basis of continuous partial functions, from
which we can take unions to find all the continuous relations, which we depict in Figure 4.6.

𝒮 → ■: Now we use the colour convention of the points in 𝒮 to "paint" continuous relations on the unit
square "canvas", as in Figures 4.2 and 4.3. So each continuous relation is a painting, and we can characterise
the paintings that correspond to continuous relations 𝒮 → ■ in words as follows: Cyan only in points and
lines, and either contained in or at the boundary of yellow or green. Have as much yellow and green as you
like.

■ → 𝒮: The preimage of all of 𝒮 must be an open set. So the painting cannot have stray lines or points
outside of blobs. The preimage of yellow must be open, so the union of yellow and green in the painting
cannot have stray lines or points outside of blobs. Point or line gaps within blobs are ok. Each connected
blob can contain any colours in any shapes, subject to the constraint that if cyan appears anywhere, then
either yellow or green must occur somewhere. Open blobs with no lines or points outside. Yellow and green
considered alone is a painting made of blobs with no stray lines or points. If cyan appears anywhere, then
either yellow or green have to appear somewhere.
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Figure 4.6: Hasse diagram of all continuous re-
lations from the Sierpiński space to itself. Each
relation is depicted left to right, and inclusion
order is bottom-to-top. Relations that form the
topological basis are boxed.
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Figure 4.7: continuous functions [0, 1] → ■ follow
the naïve notion of continuity: a line one can draw
on paper without lifting the pen off the page.

Figure 4.8: An example of a continuous relation
is "(countably) many (open-ended) lines,

each of which one can draw on paper without

lifting the pen off the page."

⋯

⋃

→

Figure 4.9: We can control the thickness of the
brushstroke, by taking the union of (uncountably)
many lines.

Figure 4.10: Assign the visible spectrum of light
to [0, 1]. Colour open sets according to perceptual
addition of light, computing brightness by normal-
ising the measure of the open set.

One more example for fun, [0, 1] → ■: We know how continuous functions from the unit line into the
unit square look.

Then what are the partial continuous functions? If we understand these, we can obtain all continuous
relations by arbitrary unions of the basis. Observe that the restriction of any continuous function to an open
set in the source is a continuous partial function. The open sets of [0, 1] are collections of open intervals, each
of which is homeomorphic to (0, 1), which is close enough to [0, 1].

Any painting is a continuous relation [0, 1] → ■. By colour-coding [0, 1] and controlling brushstrokes,
we can do quite a lot. So, like it or not, here’s a continuous relation

Now we would like to develop the abstract machinery required to formally paint pictures with words.
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Proposition 4.3.1. Continuous functions are always
continuous. If 𝑓 ∶ 𝑋𝜏 → 𝑌𝜎 is a continuous function,
then it is also a continuous relation.

Proof. Functions are special cases of relations. The
relational converse of a function viewed in this way is the
same thing as the preimage.

Corollary 4.3.2. There is a faithful, identity-on-objects
monoidal embedding 𝐓𝐨𝐩↪ 𝐂𝐨𝐧𝐭𝐑𝐞𝐥.

Proposition 4.3.3. The identity relation 𝑋 → 𝑋 relates
anything to itself. It is defined {(𝑥, 𝑥) ∶ 𝑥 ∈ 𝑋} ⊆ 𝑋 ×𝑋.
The identity relation is always continuous.

Proof. The preimage of any open set under the identity
relation is itself, which is open by assumption. The iden-
tity relation is also the trivial continuous function from
a space to itself, so this also follows from Proposition
4.3.1.

Figure 4.11: The copy map 𝑋𝜏 → 𝑋𝜏 × 𝑋𝜏,

{(𝑥, (
𝑥

𝑥
)) | 𝑥 ∈ 𝑋}.

Proposition 4.3.4. Copy maps are continuous relations.

Proof. For a direct proof, we draw on the fact that given
a basis 𝔟 for a topology 𝜏, ordered pairs of 𝔟 form a basis
for the product topology 𝜏 × 𝜏. To show that the preim-
age of an open in 𝜏 × 𝜏 is open in 𝜏, we may consider
the preimages under the copy map of basis elements of
𝜏 × 𝜏, which are intersections of pairs of basis elements
of 𝜏, and hence definitionally open. By closure of opens
under arbitrary unions, all opens of 𝜏 × 𝜏 have an open
preimage in 𝜏.

4.3 The category ContRel

Definition 4.3.9 (ContRel). The (purported) category ContRel has topological spaces for objects and continu-
ous relations for morphisms.

Proposition 4.3.10 (ContRel is a category). continuous relations form a category 𝐂𝐨𝐧𝐭𝐑𝐞𝐥.

Proof. Identities: Identity relations, which are always continuous since the preimage of an open 𝑈 is itself.

Composition: The normal composition of relations. We verify that the composite 𝑋𝜏
𝑅
→ 𝑌𝜎

𝑆
→ 𝑍𝜃 of continu-

ous relations is again continuous as follows:

𝑈 ∈ 𝜃 ⟹ 𝑆†(𝑈) ∈ 𝜎 ⟹ 𝑅†◦𝑆†(𝑈) = (𝑆◦𝑅)† ∈ 𝜏

Associativity of composition: Inherited from Rel.

4.3.1 Symmetric Monoidal structure

Proposition 4.3.11. (𝐂𝐨𝐧𝐭𝐑𝐞𝐥, ∙, 𝑋𝜏 ⊗𝑌𝜎 ∶= (𝑋 ×𝑌)(𝜏×𝜎)) is a symmetric monoidal category.

Tensor Unit: The one-point space ∙. Explicitly, {⋆} with topology {∅, {⋆}}.

Tensor Product: For objects, 𝑋𝜏 ⊗𝑌𝜎 has base set 𝑋 × 𝑌 equipped with the product topology 𝜏 × 𝜎. For
morphisms, 𝑅 ⊗ 𝑆 the product of relations. We show that the tensor of continuous relations is again a con-
tinuous relation. Take continuous relations 𝑅 ∶ 𝑋𝜏 → 𝑌𝜎, 𝑆 ∶ 𝐴𝛼 → 𝐵𝛽 , and let 𝑈 be open in the product
topology (𝜎 × 𝛽). We need to prove that (𝑅 × 𝑆)†(𝑈) ∈ (𝜏 × 𝛼). We may express 𝑈 as

⋃

𝑖∈𝐼

𝑦𝑖 × 𝑏𝑖 , where the 𝑦𝑖

and 𝑏𝑖 are in the bases 𝔟𝜎 and 𝔟𝛽 respectively. Since for any relations we have that 𝑅(𝐴 ∪ 𝐵) = 𝑅(𝐴) ∪ 𝑅(𝐵) and
(𝑅 × 𝑆)† = 𝑅† × 𝑆†:

(𝑅 × 𝑆)†(
⋃

𝑖∈𝐼

𝑦𝑖 × 𝑏𝑖)

=
⋃

𝑖∈𝐼

(𝑅 × 𝑆)†(𝑦𝑖 × 𝑏𝑖)

=
⋃

𝑖∈𝐼

(𝑅† × 𝑆†)(𝑦𝑖 × 𝑏𝑖)

Since each 𝑦𝑖 is open and 𝑅 is continuous, 𝑅†(𝑦𝑖) ∈ 𝜏. Symmetrically, 𝑆†(𝑏𝑖) ∈ 𝛼. So each (𝑅† × 𝑆†)(𝑦𝑖 × 𝑏𝑖) ∈

(𝜏 × 𝛼). Topologies are closed under arbitrary union, so we are done.



string diagrams for text 187

𝑋𝜏

𝑋𝜏 (𝑋 ×𝑋)(𝜏×𝜏) 𝑋𝜏

𝑖𝑑 𝑖𝑑

𝜋0 𝜋1

𝑐𝑜𝑝𝑦

Figure 4.12: An alternative proof of Proposition
4.3.4 follows from Proposition 4.3.1, Corollary
4.3.2, and the definition of the product topology
as the coarsest topology that satisfies categorical
product for the diagram above.

Figure 4.13: The everything state is the relation
{(⋆, 𝑥) ∣ 𝑥 ∈ 𝑋}, notated as above.

Proposition 4.3.5. The everything states are continuous
relations.

Proof. The preimage of any subset of 𝑋 – in particular
the opens – is the whole of the singleton space, which is
open.

Figure 4.14: The delete test, {(𝑥,⋆) ∣ 𝑥 ∈ 𝑋}.

Proposition 4.3.6. The delete tests are continuous rela-
tions.

Proof. There are only two opens in the singleton space.
The preimage of the empty set is the empty set, and the
preimage of the singleton is the whole of 𝑋; both are
opens in 𝑋 by definition.

The natural isomorphisms are inherited from Rel. We will be explicit with the unitor, but for the rest,
we will only check that the usual isomorphisms from Rel are continuous in ContRel. To avoid bracket-glut,
we will vertically stack some tensored expressions.

Unitors: The left unitors are defined as the relations 𝜆𝑋𝜏 ∶ ∙ ×𝑋𝜏 → 𝑋𝜏 ∶= {((
⋆

𝑥
) , 𝑥) | 𝑥 ∈ 𝑋}, and we reverse

the pairs to obtain the inverse 𝜆−1
𝑋𝜏

. These relations are continuous since the product topology of 𝜏 with the
singleton is homeomorphic to 𝜏: 𝑈 ∈ 𝜏 ⟺ (∙, 𝑈) ∈ (∙ × 𝜏). These relations are evidently inverses that
compose to the identity. The construction is symmetric for the right unitors 𝜌𝑋𝜏 .

Associators: The associators 𝛼𝑋𝜏𝑌𝜎𝑍𝜌 ∶ ((𝑋 ×𝑌) × 𝑍)((𝜏×𝜎)×𝜌) → (𝑋 × (𝑌 × 𝑍))(𝜏×(𝜎×𝜌)) are inherited from Rel.
They are:

𝛼𝑋𝜏𝑌𝜎𝑍𝜌 ∶= {
(
((
𝑥

𝑦
) , 𝑧) , (𝑥, (

𝑦

𝑧
))
)

| 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 , 𝑧 ∈ 𝑍}

To check the continuity of the associator, observe that product topologies are isomorphic in Top up to brack-
eting, and these isomorphisms are inherited by ContRel. The inverse of the associator has the pairs of the
relation reversed and is evidently an inverse that composes to the identity.

Braids: The braidings 𝜃𝑋𝜏𝑌𝜎 ∶ (𝑋 ×𝑌)𝜏×𝜎 → (𝑌 ×𝑋)𝜎×𝜏 are defined:

{((
𝑥

𝑦
) , (

𝑦

𝑥
)) | 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌}

The braidings inherit continuity from the isomorphisms between 𝑋𝜏 × 𝑌𝜎 and 𝑌𝜎 × 𝑋𝜏 in Top. They inherit
everything else from Rel

Coherences: Since we have verified all of the natural isomorphisms are continuous, it suffices to say that the
coherences are inherited from the symmetric monoidal structure of Rel up to marking objects with topolo-
gies.

4.3.2 Rig category structure

Definition 4.3.12 (Biproducts and zero objects). A biproduct is simultaneously a categorical product and
coproduct. A zero object is both an initial and a terminal object. Rel has biproducts (the coproduct of sets
equipped with reversible injections) and a zero object (the empty set).

Proposition 4.3.13. 𝐂𝐨𝐧𝐭𝐑𝐞𝐥 has a zero object.
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=

coassociativity

=

cocommutativity

=

counitality

Figure 4.15: Copy and delete satisfy the above
properties, expressed as diagrammatic equations.

Proof. As in Rel, there is a unique relation from every object to and from the empty set with the empty topol-
ogy.

Proposition 4.3.14. 𝐂𝐨𝐧𝐭𝐑𝐞𝐥 has biproducts.

Proof. The biproduct of topologies 𝑋𝜏 and 𝑌𝜎 is their direct sum topology (𝑋 ⊔ 𝑌)(𝜏+𝜎) – 𝜏 ⊔ 𝜎. As in Rel, the
(in/pro)jections are partial identities, which are continuous by construction. To verify that it is a coproduct,
given continuous relations 𝑅 ∶ 𝑋𝜏 → 𝑍𝜌 and 𝑆 ∶ 𝑌𝜎 → 𝑍𝜌, where the disjoint union 𝑋 ⊔ 𝑌 of sets is {𝑥1 | 𝑥 ∈

𝑋} ∪ {𝑦2 | 𝑦 ∈ 𝑌}, we observe that 𝑅 + 𝑆 ∶= {(𝑥1, 𝑧) | (𝑥, 𝑧) ∈ 𝑅} ∪ {(𝑦2, 𝑧) | 𝑦 ∈ 𝑆} is continuous and commutes
with the injections as required. The argument that it is a product is symmetric.

Remark 4.3.15. Biproducts yield another symmetric monoidal structure which the × monoidal product dis-
tributes over appropriately to yield a rig category. Throughout the chapter we will use ∪, but we could have
also "diagrammatised" ∪ by treating it as a monoid internal to ContRel viewed as a symmetric monoidal cat-
egory with respect to the biproduct. There are at least two diagrammatic formalisms for rig categories that
we could have used such as [CDH20], but it gets too visually complicated. especially when we sometimes
take unions over arbitrary indexing sets, which is alright in topology but not depictable as a finite diagram in
the ⊕-structure. A neat fact that follows is that a topological space is compact precisely when any arbitrarily
indexed ∪ of tests in the ×-structure is depictable in the ⊕-structure of either diagrammatic calculus for rig
categories. FdHilb also has a monoidal product notated ⊗ that distributes over the monoidal structure given
by biproducts ⊕. In contrast, we have used × – the cartesian product notation – for the monoidal product of
ContRel since that is closer to what is familiar for sets.

4.3.3 Monoidal (co!)closure

Definition 4.3.16 (Closure type). Recall by Proposition 4.2.13 that continuous relations 𝑋𝜏 → 𝑌𝜎 form a
topological space. Denote this space (𝑋 ×𝑌)(𝜏⊸𝜎)

The permissible continuous relations 𝑋𝜏 → 𝑌𝜎 are tests on (𝑋 × 𝑌)(𝜏⊸𝜎). ContRel is not monoidal closed,
because taking a closure type as an input to the evaluator would permit arbitrary subsets of 𝑋 × 𝑌 as argu-
ments. So what we seek instead is a coevaluation, where the closure type is an output. This is not as straight-
forward as it is in strongly compact closed Rel, where we may use cups and caps for process-state duality
(CJ-isomorphism), because in ContRel we have cups but no caps. However, we may exploit the fact that dis-
crete topologies behave like plain sets (see Lemma 4.3.23) and the observation that we may coarsen discrete
topologies into target topologies, which is essentially enough to recover monoidal coclosed structure.

Proposition 4.3.17. For any 𝑋𝜏 and 𝑌𝜎, 𝜏 × 𝜎 ⊆ 𝜏 ⊸ 𝜎; the product topology is coarser than the corresponding
closure topology.
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=

point

=

partial function

=𝑓

left-total

Figure 4.16: Relations that interact with copy and
delete are nice, and we notate them with the same
black dots as for copy and delete to mark them.
States are singletons, or points, when they are
copiable (and non-empty). Partial continuous func-
tions are those that commute with copy. Left-total
relations are those that commute with delete. Con-
tinuous functions are those that satisfy the latter
two criteria.

Proposition 4.3.7. The full relation 𝑋 → 𝑌 relates
everything to everything. It is all of 𝑋 ×𝑌. Full relations
are always continuous.

Proof. For a direct proof, the preimage of any subset
of 𝑌 under the full relation is the whole of 𝑋, which is
open by definition. Alternatively, the full relation is the
composite of delete and then everything.

Proof. Let 𝔟𝜏, 𝔟𝜎 be bases for 𝜏 and 𝜎 respectively, then 𝜏 × 𝜎 has basis 𝔟𝜏 × 𝔟𝜎. An arbitrarily element (𝑡 ∈
𝜏, 𝑠 ∈ 𝜎) of this product basis can be viewed as a topological relation 𝑡 × 𝑠 ⊆ 𝑋 × 𝑌. Every open of 𝜏 × 𝜎 is
a union of such basis elements, and topological relations are closed under arbitrary union, so we have the
(evidently injective) correspondence:

𝜏 × 𝜎 ∋
⋃

𝑖∈𝐼

(𝑡𝑖 × 𝑠𝑖)↦
⋃

𝑖∈𝐼

(𝑡𝑖 × 𝑠𝑖) ∈ 𝜏 ⊸ 𝜎

Example 4.3.18 (𝜏 ⊸ 𝜎 ⊈ 𝜏 × 𝜎). Recalling Proposition 4.2.9, let 𝜏 = {∅, {⋆}} on the singleton, and 𝜎 be an
arbitrary nondiscrete topology on base space Y. ({⋆} × 𝑌)(𝜏×𝜎) is isomorphic to 𝑌𝜎, but ({⋆} × 𝑌)(𝜏⊸𝜎) is the
isomorphic to the discrete topology 𝑌∙. For a more concrete example, consider the Sierpiński space 𝒮 again,
along with the topological relation {(0, 0), (1, 0), (1, 1)} ⊂ 𝒮 × 𝒮; due to the presence of (0, 0), this topological
relation cannot be formed by a union of basis elements of the product topology, which are:

{1} × {1} = {(1, 1)}

{1} × {0, 1} = {(1, 0), (1, 1)}

{0, 1} × {1} = {(1, 1), (0, 1)}

{0, 1} × {0, 1} = {(0, 0), (0, 1), (1, 0), (0, 1)}

Definition 4.3.19 (Coarsening). Where 𝜏 ⊇ 𝜌 are topologies on 𝑋, the identity-on-elements relation 𝑋𝜏 → 𝑋𝜌

is continuous; the relational converse of the identity is the identity, which witnesses opens of 𝜌 as opens of 𝜏.
but the converse is not unless 𝜏 = 𝜌. We denote these coarsening relations as:

𝑋𝜏 𝑋𝜌

Definition 4.3.20 (Pseudo-compare). For any 𝑋𝜏, the relation 𝑋⋆ ×𝑋𝜏 → 𝑋𝜏 defined on objects as

{(
𝑥

𝑥
) , 𝑥 | 𝑥 ∈ 𝑋}

is continuous; the relational converse is the copy map, which sends opens 𝑈 in 𝜏 to 𝑈 ×𝑈 ∈ 𝜏 × 𝜏 ⊆ 𝑋 × 𝑋,
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Figure 4.17: The empty state ∙ → 𝑋𝜏 and empty

test relate nothing. The empty relation 𝑋𝜏 → 𝑌𝜎 is
the composite of empty tests and states, and relates
nothing: as a relation it is ∅ ⊂ 𝑋 ×𝑌.

Proposition 4.3.8. Empty states, tests, and relations are
continuous.

Proof. The preimage of any empty relation is the empty
set, which is definitionally open.

=

(b)one

=

zero

= =

=

=

Figure 4.18: There are two scalars: the unit, and
the zero scalar. Both the one and zero scalars are
idempotent, which diagrammatically means that
we may freely make and merge copies of them.

which are opens in 𝑋⋆ ×𝑋𝜏. We denote these pseudo-compare maps:

𝑋𝜏

𝑋𝜏

𝑋⋆

Proposition 4.3.21. Where ⋆𝑋 and ⋆𝑌 are discrete topologies on 𝑋 and 𝑌, ⋆𝑋 ×⋆𝑌 = ⋆𝑋 ⊸ ⋆𝑌 .

Proof. Relations between discrete topologies are just arbitrary relations, and relations are monoidal closed
with 𝑋 ⊸ 𝑌 ≃ 𝑋 ×𝑌.

Proposition 4.3.22 (ContRel is monoidal coclosed). The coevaluation map is:

𝑋𝜏

𝑌⋆ 𝑌𝜎

(𝑋 ×𝑌)(𝜏→𝜎)

𝑋⋆

𝑌⋆

𝑋⋆

Proof. The string diagram itself demonstrates that the coevaluation is continuous, since we have demon-
strated that ContRel is symmetric monoidal, and we know that copy (Prop. 4.3.4), everything (Prop. 4.3.5),
coarsenings (Defn. 4.3.19) and pseudo-compares (Defn. 4.3.20) are continuous. What remains to be demon-
strated is that the coevaluation behaves like one; i.e. that plugging in a continuous relation expressed as a test
into the closure type of the coevaluator recovers that continuous relation. This can be shown diagrammati-
cally by equating the underlying relations on sets in Rel.

=

Rel

=

The first equation is obtained by a few steps. Forgetting topology, we turn all coarsenings into identities in
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=

Figure 4.19: There is a zero-morphism for every
input-output pair of objects in ContRel, which is
diagrammatically the composition of the empty
test and state. Zero scalars turn any relation into
a zero relation. Substituting the zero relation into
the LHS of the above equation means that zero
relations also spawn zero scalars.

=
=

Figure 4.20: So, whenever a zero-process appears
in a diagram, it spawns zero scalars which infect
all other processes, turning them all into zero-
processes. The same holds for whenever a zero-
scalar appears; it makes copies of itself to infect all
other processes.

Rel, and in particular, proposition 4.3.21 deals with the 2-1 coarsening. The expression inside the closure
test is obtained by CJ-isomorphism using strong compact closure in Rel. The pseudo-compares in ContRel

becomes an honest compare in Rel. The second equation then follows by frobenius.

That’s all we need for the diagrams. The remainder of this section are endnotes for category theorists
addressing the question of how ContRel relates to Rel and Top, and some conceptual motivations for topo-
logical relations. If none of that interests you, ignore the main body: the margins carry on with diagrammatic
facts about ContRel.
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4.3.4 Category-theoretic endnotes

ContRel and Rel are related by a free-forgetful adjunction
We provide free-forgetful adjunctions relating ContRel to Rel by "forgetting topology" and sending sets to

"free" discrete topologies. We exhibit a free-forgetful adjunction between Rel and ContRel.

Lemma 4.3.23 (Any relation 𝑅 between discrete topologies is continuous). Proof. All subsets in a discrete
topologies are open.

Definition 4.3.24 (L: 𝐑𝐞𝐥→ 𝐂𝐨𝐧𝐭𝐑𝐞𝐥). We define the action of the functor 𝐿:

On objects 𝐿(𝑋) ∶= 𝑋⋆, (𝑋 with the discrete topology)

On morphisms 𝐿(𝑋
𝑅
→ 𝑌) ∶= 𝑋⋆

𝑅
→ 𝑌⋆, the existence of which in ContRel is provided by Lemma 4.3.23.

Evidently identities and associativity of composition are preserved.

Definition 4.3.25 (R: 𝐂𝐨𝐧𝐭𝐑𝐞𝐥 → 𝐑𝐞𝐥). We define the action of the functor 𝑅 as forgetting the topological
structure.

On objects 𝑅(𝑋𝜏) ∶= 𝑋

On morphisms 𝑅(𝑋𝜏
𝑆
→ 𝑌𝜎) ∶= 𝑋

𝑆
→ 𝑌

Evidently identities and associativity of composition are preserved.

Lemma 4.3.26 (𝑅𝐿 = 1
Rel

). The composite 𝑅𝐿 (first 𝐿, then 𝑅) is precisely equal to the identity functor on 𝐑𝐞𝐥.

Proof. On objects, 𝐹𝑈(𝑋) = 𝐹(𝑋⋆) = 𝑋. On morphisms, 𝐹𝑈(𝑋
𝑅
→ 𝑌) = 𝐹(𝑋⋆

𝑅
→ 𝑌⋆) = 𝑋

𝑅
→ 𝑌

Reminder 4.3.27 (Coarser and finer). Given a set of points 𝑋 with two topologies 𝑋𝜏 and 𝑋𝜎, if 𝜏 ⊂ 𝜎, we say
that 𝜏 is coarser than 𝜎, or 𝜎 is finer than 𝜏.

Lemma 4.3.28 (Coarsening is a continuous relation). Let 𝑋𝜎 be coarser than 𝑋𝜏. The identity relation on

underlying points 𝑋𝜏
1𝑋
→ 𝑋𝜎 is then a continuous relation.

Proof. The preimage of the identity of any open set 𝑈 ∈ 𝜎,𝑈 ⊆ 𝑋 is again 𝑈. By definition of coarseness,
𝑈 ∈ 𝜏.

Proposition 4.3.29 (𝐿 ⊣ 𝑅). Proof. We verify the triangular identities governing the unit and counit of the
adjunction, which we first provide. By Lemma 4.3.26, we take the natural transformation 1𝐑𝐞𝐥 ⇒ 𝑅𝐿 to be the
identity morphism:
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𝜂𝑋 ∶= 1𝑋

The counit natural transformation 𝐿𝑅 ⇒ 1𝐂𝐨𝐧𝐭𝐑𝐞𝐥 we define to be a coarsening, the existence of which in
ContRel is granted by Lemma 4.3.28.

𝜖𝑋𝜏 ∶ 𝑋
⋆ → 𝑋𝜏 ∶= {(𝑥, 𝑥) ∶ 𝑥 ∈ 𝑋}

First we evaluate 𝐿
𝐿𝜂
→ 𝐿𝑅𝐿

𝜖𝐿
→ 𝐿 at an arbitrary object (set) 𝑋 ∈ Rel. 𝐿(𝑋) = 𝑋⋆ = 𝐿𝑅𝐿(𝑋), where

the latter equality holds because 𝐿𝑅 is precisely the identity functor on Rel. For the first leg from the left,

𝐿(𝜂𝑋) = 𝐿(1𝑋) = 𝑋⋆
1𝑋
→ 𝑋⋆ = 1𝑋⋆ . For the second, 𝜖𝐿(𝑋) = 𝜖𝑋⋆ = 𝑋⋆

1𝑋
→ 𝑋⋆ = 1𝑋⋆ . So we have that 𝐿𝜂; 𝜖𝐿 = 𝐿 as

required.

Now we evaluate 𝑅
𝜂𝑅
→ 𝑅𝐿𝑅

𝑅𝜖
→ 𝑅 at an arbitrary object (topological space) 𝑋𝜏 ∈ ContRel. 𝑅(𝑋𝜏) = 𝑋 =

𝑅𝐿𝑅(𝑋𝜏), where the latter equality again holds because 𝐿𝑅 = 1
Rel

. For the first leg from the left, 𝜂𝑅(𝑋𝜏) = 𝜂𝑋 =

1𝑋 . For the second, 𝑅(𝜖𝑋𝜏 ) = 𝑅(𝑋⋆
1𝑋
→ 𝑋𝜏) = 𝑋

1𝑋
→ 𝑋 = 1𝑋 . So 𝜂𝑅;𝑅𝜖 = 𝑅, as required.

The usual forgetful functor from ContRel to Loc has no left adjoint. Just as the forgetful functor from
ContRel to Rel "forgets topology while keeping the points", we might consider a forgetful functor to Loc

that "forgets points while remembering topology". But we show that there is no such functor that forms a
free-forgetful adjunction.

Reminder 4.3.30 (The category Loc). [nLab] A frame is a poset with all joins and finite meets satisfying the
infinite distributive law:

𝑥 ∧ (
⋁

𝑖

𝑦𝑖) =
⋁

𝑖

(𝑥 ∧ 𝑦𝑖)

A frame homomorphism 𝜙 ∶ 𝐴 → 𝐵 is a function between frames that preserves finite meets and arbitrary
joins. The category Frm has frames as objects and frame homomorphisms as morphisms. The category Loc is
defined to be Frm

op.

Remark 4.3.31. Here are informal intuitions to ease the definition. The lattice of open sets of a given topology
ordered by inclusion forms a frame – observe the analogy "arbitrary unions" : "all joins" :: "finite intersec-
tions" : "finite meets". Closure under arbitrary joins guarantees a maximal element corresponding to the open
set that is the whole space. So frames are a setting to speak of topological structure alone, without referring
to a set of underlying points, hence, pointless topology. Observe that in the definition of continuous func-
tions, open sets in the codomain must correspond (uniquely) to open sets in the domain – so every continuous
function induces a frame homomorphism going in the opposite direction that the function does between
spaces, hence, to obtain the category Loc such that directions align, we reverse the arrows of Frm. Observe
that continuous relations induce frame homomorphisms in the same way. These observations give us insight
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into how to construct the free and forgetful functors.

Definition 4.3.32 (𝑈 ∶ ContRel → Loc). On objects, U sends a topology 𝑋𝜏 to the frame of opens in 𝜏, which
we denote �̂�.

On morphisms 𝑅 ∶ 𝑋𝜏 → 𝑌𝜎, the corresponding partial frame morphism �̂� ← �̂� (notice the direction
reversal for Loc), we define to be {(𝑈∈𝜎, 𝑅

†(𝑈)∈𝜏) | 𝑈 ∈ 𝜎}. We ascertain that this is (1) a function that is (2) a
frame homomorphism. For (1), since the relational converse picks out precisely one subset given any subset
as input, these pairs do define a function. For (2), we observe that the relational converse (as all relations)
preserve arbitrary unions and intersections, i.e. 𝑅†(

⋂

𝑖

𝑈𝑖) =
⋂

𝑖

𝑅†(𝑈𝑖) and 𝑅†(
⋃

𝑖

𝑈𝑖) =
⋃

𝑖

𝑅†(𝑈𝑖), so we do have

a frame homomorphism. Associativity follows easily.

Proposition 4.3.33 (𝑈 has no left adjoint). Proof. Seeking contradiction, if 𝑈 were a right adjoint, it would
preserve limits. The terminal object in Loc is the two-element lattice ⊥ < ⊤, where the unique frame ho-
momorphism to any ℒ sends ⊤ to the top element of ℒ and ⊥ to the bottom element. In ContRel, the empty
topology 0 = (∅, {∅}) is terminal (and initial). However, 𝑈0 is the singleton lattice, not ⊥ < ⊤ (which is the
image under 𝑈 of the singleton topology).

This is a rather frustrating result, because 𝑈 does turn continuous relations into backwards frame homo-
morphisms on lattices of opens; see Proposition 4.2.13, and note that in the frame of opens associated with a
topology, the empty set becomes the bottom element. The obstacle is the fact that the empty topology is both
initial and terminal in ContRel. We may be tempted to try treating 𝑈 as a right adjoint going to Frm instead,
but then the monad induced by the injunction on Loc would trivialise: left adjoints preserve colimits, so any
putative left adjoint 𝐹 must send ⊥ < ⊤ (initial in Frm by duality) to the empty topology, and the empty
topology as terminal object must be sent to the terminal singleton frame, which implies that the monad 𝑈𝐹

on Frm sends everything to the singleton lattice.

Why not Span(Top)? One common generalisation of relations is to take spans of monics in the base cat-
egory. This actually produces a different category than the one we have defined. Below is an example of a
span of monic continuous functions from Top that corresponds to a relation that doesn’t live in ContRel. It
is the span with the singleton as apex, with maps from the singleton to the closed points of a two Sierpiński
spaces.
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Why not a Kleisli construction on Top? Another way to view the category Rel is as the Kleisli category
𝐾𝒫 of the powerset monad on Set; that is, every relation 𝐴 → 𝐵 can be viewed as a function 𝐴 → 𝒫𝐵, and

composition works by exploiting the monad multiplication: 𝐴
𝑓
→ 𝒫𝐵

𝒫𝑔
→ 𝒫𝒫𝐶

𝜇𝒫𝐶
→ 𝒫𝐶. So it is reasonable

to investigate whether there is a monad 𝑇 on Top such that 𝐾𝑇 is equivalent to ContRel. We observe that the
usual free-forgetful adjunction between Set and Top sends the former to a full subcategory (of continuous
functions between discrete topologies) of the latter, so a reasonable coherence condition we might ask for the
putative monad 𝑇 to satisfy is that it is related to 𝒫 via the free-forgetful adjunction. This amounts to asking
for the following commutative diagram (in addition to the usual ones stipulating that 𝑇 and 𝒫 are monadic):

Top Top

Set Set

𝑇

𝒫

⊣ ⊣

This condition would be nice to have because it witnesses 𝐾𝒫 as precisely 𝐾𝑇 restricted to the discrete
topologies, so that 𝑇 really behaves as a conservative generalisation of the notion of relations to accommodate
topologies. As a consequence of this condition, we may observe that discrete topologies 𝑋⋆ must be sent to
discrete topologies on their powerset 𝒫𝑋⋆. In particular, this means the singleton topology is sent to the the
discrete topology on a two-element set; 𝑇∙ = 2. This sinks us. We know from Proposition 4.2.10 that the
continuous relations 𝑋𝜏 → ∙ are precisely the open sets of 𝜏, which correspond to continuous functions into
Sierpiński space 𝑋𝜏 → S, and S ≠ 2.

Where is the topology coming from?
It is category-theoretically natural to ask whether ContRel is "giving topology to relations" or "power-

ing up topologies with relations", but we have explored those techniques and it doesn’t seem to be that. It
is possible that the failure of these regular avenues may explain why I had such difficulty finding ContRel

in the literature. However, we do have a free-forgetful adjunction between ContRel and Rel, and if we focus
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on this, it is possible to crack the nut of where topology is coming from with enough machinery; here is one
such sketch. Observe that the forgetful functor looks like it could be a kind of fibration, where the elements
of the fibre over any set 𝐴 in Rel correspond to all possible topologies on 𝐴. Moreover, these topologies may
be partially ordered by coarseness-fineness to form a frame (though a considering it a preorder will suffice.)
The fibre over a relation 𝑅 ∶ 𝐴 → 𝐵 is all pairs of topologies 𝜏, 𝜎 such that 𝑅 is continuous between 𝐴𝜏 and
𝐵𝜎. The crucial observation is that if 𝑅 is continuous between 𝜏 and 𝜎, then 𝑅 will be continuous for any finer
topology in the domain, 𝜏 ≤ 𝜏′, and any coarser topology in the codomain 𝜎′ ≤ 𝜎; that is, the fibre over 𝑅
displays a boolean-valued profunctor between preorders. So ContRel can be viewed as the display category
induced by a functor Rel → 𝒞, where 𝒞 is a category with preorders for objects and boolean-enriched pro-
functors as morphisms, and the functor encodes topological data by sending sets in Rel to preorders of all
possible topologies, and relations to profunctors. I have deliberately left this as a sketch because it doesn’t
seem worth it to view something so simple in such a complex way (I accept the charges of hypocrisy having
just used weak 𝑛-categories to present TAGs.)
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4.4 Populating space with shapes using sticky spiders

In this section, we seek to process-theoretically characterise disjoint collections of open sets of a space, so that
we can play with doodles on the page as formal objects. It turns out that in ContRel, we can express them as
idempotents that interact with spiders in a certain way.

Example 4.4.1 (The copy-compare spiders of 𝐑𝐞𝐥 are not always continuous). The compare map for the Sier-
piński space is not continuous, because the preimage of {0, 1} is {(0, 0), (1, 1)}, which is not open in the product
space of 𝒮 with itself.

Reminder 4.4.2 (copy-compare spiders of 𝐑𝐞𝐥). For a set 𝑋, the copy map 𝑋 → 𝑋 ×𝑋 is defined:

{(𝑥, (𝑥, 𝑥)) ∶ 𝑥 ∈ 𝑋}

the compare map 𝑋 ×𝑋 → 𝑋 is defined:
{((𝑥, 𝑥), 𝑥) ∶ 𝑥 ∈ 𝑋}

These two maps are the (co)multiplications of special frobenius algebras. The (co)units are delete:

{(𝑥,⋆) ∶ 𝑥 ∈ 𝑋}

and everything:
{(⋆, 𝑥) ∶ 𝑥 ∈ 𝑋}
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Proposition 4.4.3. The copy map is part of a special commutative frobenius algebra iff the topology is discrete.

Proof. Discrete topologies inherit the usual copy-compare spiders from Rel, so we have to show that when the copy map is part of a spider, the underlying
wire must have a discrete topology. Suppose that some wire has a spider, and construct the following open set using an arbitrary point 𝑝:

p

It will suffice to show that this open set tests whether the input is the singleton {𝑝} – when all singletons are open, the topology is discrete. As a lemma, we
show that comparing distinct points 𝑝 ≠ 𝑞 yields the empty state.

p

q

p

q

p

q

p

q

p

=

= p

q

q

=

=

= ⇒

p

q
=

(zero)

p

q

=

=

p

q

(counit) (frob.)

The (zero) implication follows since 𝑝 ≠ 𝑞 by assumption, so we know that deleting the comparison of 𝑝 and 𝑞 cannot be the unit scalar, and so must be the
zero scalar, hence the comparison of 𝑝 and 𝑞 is the empty state. Now, the following case analysis shows that our open set only contains the point 𝑝.

p
q =

p

q
=

p

p
= p = p =

if 𝑝 ≠ 𝑞 if 𝑝 = 𝑞

(pt.) (spec.)
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Definition 4.4.4 (Sticky spiders). A sticky spider (or just an 𝑒-spider, if we know that 𝑒 is a split idempotent), is a spider except every identity wire on any side
of an equation is replaced by the idempotent 𝑒.

The desired graphical behaviour of a sticky spider is that one can still coalesce all connected spider-bodies together, but the 1-1 spider "sticks around" rather
than disappearing as the identity. This is achieved by the following rules that cohere the idempotent 𝑒 with the (co)unit and (co)multiplications; they are the
same as the usual rules for a special commutative frobenius algebra with two exceptions. First, where an identity wire appears in an equation, we replace it
with an idempotent. Second, the monoid and comonoid components freely emit and absorb idempotents. By these rules, the usual proof [] for the normal
form of spiders follows, except the idempotent becomes an explicit 1-1 spider, rather than the identity.

= =

Frobenius

=

Sticky-special

= =

AssociativeCoassociative

= =

Sticky-(co)unital

= =

Commutative Cocommutative

Absorb-comult

==

Absorb-mult

=

=

Absorb-(co)unit

== =

Idempotence
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We can use split idempotents to transform copy-spiders from discrete topologies to sticky-spiders on other spaces.

Reminder 4.4.5 (Split idempotents). An idempotent in a category is a map 𝑒 ∶ 𝐴 → 𝐴 such that

𝐴
𝑒
→ 𝐴

𝑒
→ 𝐴 = 𝐴

𝑒
→ 𝐴

A split idempotent is an idempotent 𝑒 ∶ 𝐴 → 𝐴 along with a retract 𝑟 ∶ 𝐴 → 𝐵 and a section 𝑠 ∶ 𝐵 → 𝐴 such that:

𝐴
𝑒
→ 𝐴 = 𝐴

𝑟
→ 𝐵

𝑠
→ 𝐴

𝐵
𝑠
→ 𝐴

𝑟
→ 𝐵 = 𝐵

𝑖𝑑
→ 𝐵

We can graphically express the behaviour of a split idempotent 𝑒 as follows, where the semicircles for the section and retract 𝑟, 𝑠 form a visual pun. Recall that
𝑋⋆ denotes the discrete topology on the set 𝑋.

𝑠 𝑟

𝑌𝜎𝑋⋆ 𝑋⋆

𝑠𝑟

𝑋⋆𝑌𝜎 𝑌𝜎

= 𝑒

𝑌𝜎 𝑌𝜎

𝑒

𝑌𝜎 𝑌𝜎

= 𝑒

𝑌𝜎

=

𝑋⋆

Construction 4.4.6 (Sticky spiders from split idempotents). Given an idempotent 𝑒 ∶ 𝑌𝜎 → 𝑌𝜎 that splits through a discrete topology 𝑋⋆, we construct a new
(co)multiplication as follows:

∶= ∶=
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Proposition 4.4.7 (Every idempotent that splits through a discrete topology gives a sticky spider). The following is a sticky spider:

𝑌𝜎 𝑌𝜎

, , ,𝑒

𝑌𝜎

𝑌𝜎

𝑌𝜎

𝑒

𝑌𝜎

𝑌𝜎

𝑌𝜎

We can check that Construction 4.4.6 satisfies the frobenius rules as follows. We only present one equality; the rest follow the same idea.

=

(defn.)

=

(idem.)

=

(frob.)

=

(split)

=

(defn.)
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To verify the sticky spider rules, we first observe that since 𝑋⋆
𝑠
→ 𝑌𝜎

𝑟
→ 𝑋⋆ = 𝑋⋆

𝑖𝑑
→ 𝑋⋆, 𝑟 must have all of 𝑋⋆ in its image, and 𝑠 must have all of 𝑋⋆ in its

preimage, so we have the following:

𝑠

𝑟 =

𝑌𝜎 𝑋⋆ 𝑋⋆

=

𝑋⋆𝑌𝜎𝑋⋆

Now we show that e-unitality holds:

𝑒

𝑌𝜎

𝑌𝜎

𝑌𝜎

=

(defn.)
𝑟

𝑠

𝑟

𝑌𝜎

𝑌𝜎

𝑌𝜎

𝑋⋆

𝑋⋆

=

(obs.)

𝑠

𝑟

𝑌𝜎

𝑌𝜎

𝑋⋆

𝑋⋆

=

(unit)

𝑠𝑟

𝑌𝜎 𝑌𝜎𝑋⋆

=

(idem.)

𝑒

𝑌𝜎 𝑌𝜎

The proofs of e-counitality, and e-speciality follow similarly.
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We can prove a partial converse of Proposition 4.4.7: we can identify two diagrammatic equations that tell us precisely when a sticky spider has an
idempotent that splits though some discrete topology.

Theorem 4.4.8. A sticky spider has an idempotent that splits through a discrete topology if and only if in addition to the sticky spider equalities, the following
relations are also satisfied.

=

Unit/everything

=

Comult/copy

The proof is involved, so here is a map of lemmas and propositions.

=

=

=

=
⋃

=

⋃

⋃

=

⋃

=

=

⋃

unit/everything

comult/copy

copiable-basis

counit/delete

basis decomposition : idem.

basis decomposition : counit

basis decomposition : comultiplication

Lemma 4.4.10

Prop. 4.4.11

Prop. 4.4.9

Lemma 4.4.18

Prop. 4.4.13 Prop. 4.4.14 Prop. 4.4.20

Lemma 4.4.15

Lemma 4.4.17
basis decomposition : multiplication

Prop. 4.4.21

Prop. 4.4.12
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Proposition 4.4.9 (comult/copy implies counit/delete).

= ⇒ =

Proof.

= ⊆

=⊇

=

So:

= = =

(comult/copy) (del)

(del)
(e-unit) (copy-del)
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Lemma 4.4.10 (All-or-Nothing). Consider the set 𝑒({𝑥}) obtained by applying the idempotent 𝑒 to a singleton {𝑥}, and take an arbitrary element 𝑦 ∈ 𝑒(𝑥) of this
set. Then 𝑒({𝑦}) = ∅ or 𝑒({𝑥}) = 𝑒({𝑦}). Diagrammatically:

∈ ⇒ = Or

≠Suppose

⊇

(premise)

= =

(copy)

=

(comult/copy) (e-special)

Since: ≠

We have the following inclusion:

=For the claim, we seek:

=

(assumption) (absorb-mult)

and ⊇

we have that: ≠

=

(absorb-mult)
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So we have the following equality:

=

=

=

=

=

=

=

=

(frob.) (comult/copy) (e-spider) (e-copy) =

=

Which implies: == =

and symmetrically, =

So we have the claim:
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Proposition 4.4.11 (𝑒 of any point is 𝑒-copiable).

Proof.

= = ∈

⋃

=

(Lem. 4.4.10)(idem.)

∈

⋃

∈

⋃

=

(point)

=

(∪ & comult/copy)
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Proposition 4.4.12 (The unit is the union of all 𝑒-copiables).

=

⋃

Proof.

= =

⋃

⋃

∈

=

(unit/evr.) (Prop. 4.4.11)

The unit is some union of 𝑒-copiables.

⊆

⋃

=

⋃

=

The union of all 𝑒-copiables is a subset of the unit.

(evr.)(Lem. 4.4.18) (unit/evr.)

So the containment must be an equality.
⋃

=

∀ ∀

?

∀
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Proposition 4.4.13 (𝑒-copiable decomposition of 𝑒).

=

⋃

Proof.

=

⋃

=

⋃

=

(Prop. 4.4.12) (𝑒-copiable)
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Proposition 4.4.14 (𝑒-copiable decomposition of counit).

⋃

=

Proof.

⋃

==

⋃

=

(Prop. 4.4.13)
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The 𝑒-copiable states really do behave like an orthonormal basis, as the following Lemmas show.

Lemma 4.4.15 (𝑒-copiables are orthogonal under multiplication).

=

if ≠

if =

Proof.

= =

=

=

=

=

So:

≠ ⇒ =

=

=

=

=

=
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Convention 4.4.16 (Shorthand for the open set associated with an 𝑒-copiable). We introduce the following diagrammatic shorthand.

:=

Including the coloured dot is justified, because these open sets are co-copiable with respect to the multiplication of the sticky spider.

:= = = =:
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Lemma 4.4.17 (Co-match).

=

if ≠

if =

Proof.

= = = =

The claim then follows by applying Lemma 4.4.15 to the final diagram.

Lemma 4.4.18 (e-copiables are e-fixpoints).

=

Proof.

= = = =

(e-counit) (coun/del) (e-copy)

Observe that the final equation of the proof also holds when the initial e-copiable is the empty set.
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Lemma 4.4.19 (𝑒-copiables are normal).

⇒≠ =

Proof.

== =

(coun/del) (Lem. 4.4.18) (Prem.)

Proposition 4.4.20 (𝑒-copiable decomposition of multiplication).

⋃

=

Proof.

,

⋃

==

(e-spider) (Prop. 4.4.13)

⋃

=

(Lem. 4.4.15)
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Proposition 4.4.21 (𝑒-copiable decomposition of comultiplication).

⋃

=

Proof.

⋃

=

=

=
,

⋃

= =

(comult/copy) (idem.) (comult/copy)

(Prop. 4.4.13) (Lem. 4.4.17)
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Now we can prove Theorem 4.4.8. First a reminder of the claim; we want to show that when given a sticky spider, the following relations hold if and only if
the idempotent splits through a discrete topology.

=

Unit/everything

=

Comult/copy

The crucial observation is that the 𝑒-copiable decomposition of the idempotent given by Proposition 4.4.13 is equivalent to a split idempotent though the set of
𝑒-copiables equipped with discrete topology.

=

⋃

𝑖∈ℐ

𝑖 𝑖

(Prop. X)

=

ℐ⋆

∶= {(𝑥, 𝑖) | 𝑖 ∈ ℐ , 𝑥 ∈ |𝑖 >}

∶= {(𝑖, 𝑥) | 𝑖 ∈ ℐ , 𝑥 ∈< 𝑖|}

By copiable basis Proposition 4.4.12 and the decompositions Propositions 4.4.14, 4.4.20, 4.4.21, we obtain the only-if direction.

=
=

(Prop. 4.4.21)
(Prop. 4.4.20)

= =

(unit/evr.) (Prop. 4.4.12)

==

(Prop. 4.4.9) (Prop. 4.4.14)
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The if direction is an easy check. For the unit/everything relation, we have:

(Prop. 4.4.7)

=

(split)

= =

(split)

For the counit/delete relation, we observe that for any split idempotent, the retract must be a partial function. To see this, suppose the split idempotent 𝑒 = 𝑟; 𝑠

is on (𝑋, 𝜏) and the discrete topology is 𝑌⋆. Seeking contradiction, if the retract is not a partial function, then there is some point 𝑥 ∈ 𝑋 such that 𝑥 ∈ 𝑒(𝑥), and
the image 𝐼 ∶= 𝑟(𝑥) ⊆ 𝑌 contains more than one point, which we denote and discriminate 𝑎, 𝑏 ∈ 𝑟(𝑥) ⊆ 𝑌 and 𝑎 ≠ 𝑏. Because the composite 𝑠; 𝑟 = 1𝑌 of the
section and retract must recover the identity on 𝑌⋆, the section 𝑠 must be total – i.e. the image 𝑠(𝑋) = 𝑌. So 𝑥 ∈ 𝑠(𝑎) ∩ 𝑠(𝑏). Now we have that (𝑎, 𝑥), (𝑏, 𝑥) ∈ 𝑠,
and (𝑥, 𝑎), (𝑥, 𝑏) ∈ 𝑟, therefore (𝑎, 𝑏), (𝑏, 𝑎) ∈ 𝑠; 𝑟, which by 𝑎 ≠ 𝑏 contradicts that 𝑠; 𝑟 is the identity relation 1𝑌 .

(split)

=

(pfn.)

= =

(split)
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Definition 4.4.22 (Labels, shapes, cores, halos). Recall by Proposition 4.4.13 that we can express the idempotent as a union of continuous relations formed of a
state and test, for some indexing set of labels ℒ.

=

⋃

𝑙∈ℒ

𝑙 𝑙

A shape is a component of this union corresponding to some arbitary 𝑙 ∈ 𝐿. So we refer to a sticky spider as a labelled collection of shapes. The state of a shape
is the halo of the shape. The halos are precisely the copiables of the sticky spider. The test of a shape is the core. The cores are precisely the cocopiables of the
sticky spider.

𝑙 𝑙

Shape 𝑙

Core Halo

Proposition 4.4.23 (Core exclusion: Distinct cores cannot overlap). Proof. A direct consequence of Lemma 4.4.17.

Proposition 4.4.24 (Core-halo exclusion: Each core only overlaps with its corresponding halo). Proof. Seeking contradiction, if a core overlapped with multiple
halos, Lemma 4.4.18 would be violated.
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Proposition 4.4.25 (Halo non-exclusion: halos may overlap). Proof. By example:

The two shapes are colour coded cyan and magenta. The halos are two triangles which overlap at a yellow region, and partially overlap with their blobby
cores. The cores are outlined in dotted blue and orange respectively. Observe that cores and halos do not have to be simply connected; in this example the core
of the magenta shape has two connected components. Viewing these sticky spiders as a process, any shape that overlaps with the magenta core will be deleted
and replaced by the magenta triangle, and similarly with the cyan cores and triangle. Any shape that overlaps with both the magenta and cyan cores will be
deleted and replaced by the union of the triangles. Any shape that overlaps with neither core will be deleted and not replaced.
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Corollary 4.4.26 (Only opens please). A sticky spider corresponds to a set-indexed disjoint collection of open sets when, in addition to the equations of Theo-
rem 4.4.8, it satisfies one more, depicted below on the left.

⋃

= ⇔ =

Observe that the right hand equation above is precisely what we want expressed in diagrams: that every halo matches its core. For the forward direction, we
have:

= ⇒

⋃

=

⋃(Prop. 4.4.12)

⇓ ⋃

==

(Prop. 4.4.13) ⋃
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For the backward direction, we rely on the fact that cores are non-empty (or else we would fail to satisfy the identity equation of the split idempotent) to elimi-
nate the floating scalars.

⋃

=

⇓

=

=

⋃
(Unit/everything) ⋃

= =

By Proposition 4.4.23, we have disjointness.
So, without loss of generality, we may treat any collection of disjoint open shapes on a page as a sticky spider.





5

Sketches in iconic semantics

How to reason formally with and about pictorial iconic representations as a semantics of natural language.
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5.1 Preliminary concepts for the sketches

This section should be read as a smooth transition from the contents of the previous chapter towards sketches
that gradually trade off rigour for expressivity, while ideally being descriptive enough that the reader trusts
that the necessary details can be worked out.

5.1.1 Open sets: concepts

Apart from enabling us to paint pictures with words, ContRel is worth the trouble because the opens of
topological spaces crudely model how we talk about concepts, and the points of a topological space crudely
model instances of concepts. We consider these open-set tests to correspond to "concepts", such as redness
or quickness of motion. Figure 5.1 generalises to a sketch argument that insofar as we conceive of concepts
in (possibly abstractly) spatial terms, the meanings of words are modellable as shared strategies for spatial
deixis; absolute precision is communicatively impossible, and the next best thing mathematically requires
topology.

Figure 5.1: Points in space are a useful mathemat-
ical fiction. Suppose we have a point on a unit
interval. Consider how we might tell someone else
about where this point is. We could point at it with
a pudgy appendage, or the tip of a pencil, or give
some finite decimal approximation. But in each
case we are only speaking of a vicinity, a neigh-
bourhood, an open set in the borel basis of the reals

that contains the point. Identifying a true point
on a real line requires an infinite intersection of
open balls of decreasing radius; an infinite process
of pointing again and again, which nobody has
the time to do. In the same way, most language
outside of mathematics is only capable of offering
successively finer, finite approximations.

?

0.69420

Maybe this explains the asymmetry of why tests are open sets, but why are states allowed to be arbitrary
subsets? One could argue that states in this model represent what is conceived or perceived. Suppose we
have an analog photograph whether in hand or in mind, and we want to remark on a particular shade of red
in some uniform patch of the photograph. As in the case of pointing out a point on the real interval, we have
successively finer approximations with a vocabulary of concepts: "red", "burgundy", "hex code #800021"...
but never the point in colourspace itself. If someone takes our linguistic description of the colour and tries
to reproduce it, they will be off in a manner that we can in principle detect, cognize, and correct: "make it a
little darker" or "add a little blue to it". That is to say, there are in principle differences in mind that we cannot
distinguish linguistically in a finite manner; we would have to continue the process of "even darker" and
"add a bit less blue than last time" forever. All this is just the mathematical accommodation of a common
observation: sometimes you cannot do an experience justice with words, and you eventually give up with "I
guess you just had to be there". Yet the experience is there and we can perform linguistic operations on it.
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5.1.2 Using sticky spiders as location-tests

Example 5.1.1 (Where is a piece on a chessboard?). How is it that we quotient away the continuous structure of positions on a chessboard to locate pieces
among a discrete set of squares? Evidently shifting a piece a little off the centre of a square doesn’t change the state of the game, and this resistance to small
perturbations suggests that a topological model is appropriate. We construct two spiders, one for pieces, and one for places on the chessboard. For the spider
that represents the position of pieces, we open balls of some radius 𝑟, and we consider the places spider to consist of square halos (which tile the chessboard),
containing a core inset by the same radius 𝑟; in this way, any piece can only overlap at most one square.

⋱

Place Chessboard

𝑟

Piece

𝜖

Now we observe that the calculation of positions corresponds to composing sticky spiders. We take the initial state to be the sticky spider that assigns a ball of
radius 𝑟 on the board for each piece. We can then obtain the set of positions of each piece by composing with the places spider. The composite (pieces;places)
will send the king to a2, the bishop to b4, and the knight to d1, i.e. ⟨𝐾| ↦ ⟨𝑎2|, ⟨𝐵| ↦ ⟨𝑏4| and ⟨𝑁| ↦ ⟨𝑑1|. In other words, we have obtained a process that
models how we pass from continuous states-of-affairs on a physical chessboard to an abstract and discrete game-state.

𝐾

𝑁

𝐵

a b c d

1

2

3

4

⋯

⋮
⋱

𝐾

𝑁

𝐵

⋱

pieces places

⋃

𝑥∈{𝑎1,𝑎2,⋯}

𝑥 𝑥
⋱

K

N

B

∶=
⋃

𝑝∈{𝐾,𝑁,𝐵}

𝑝 𝑝
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= =

If I’m just telling you static properties of the way things
are, it doesn’t matter in what order I tell you the facts
because restrictions commute. Recall that gates of the
following form are intersections with respect to open
sets, and they commute. These intersections model
conjunctive specifications of properties.

5.1.3 Copy: stative verbs and adjectives

Stative verbs are those that posit an unchanging state of affairs, such as Bob likes drinking. Insofar as sta-
tive verbs are restrictions of all possible configurations to a permissible subset, they are conceptually similar
to adjectives, such as red car, which restricts permissible representations in colourspace. By interpreting
conceptual spaces topologically, where concepts are particular open sets, we can test for whether states lie
within concepts in the same way we can test whether a chesspiece is on a certain square. Moreover, Con-

tRel conspires in our favour by giving us free copy maps on every wire, which allows us to define a family of
processes that behave like stative restrictions of possibilities. These model stative verbs and adjectives. The
desirable property we obtain is that in the absence of dynamic verbs that posit a change in the state of affairs,
stative constructions commute in text.

Example 5.1.2 (Containment and insideness).

UK Catz OX OX cont Catz

UK cont OX

Consider the configuration space of a sticky spider on the unit square with three labelled shapes, which has
6 connected components, depicted. Oxford contains Catz. restricts away configurations where Catz is
not enclosed in Oxford. Adding on England contains Oxford. further restricts away incongruent config-
urations, leaving us only with a single connected component, which contains all spatial configurations that
satisfy the text. A similar story holds for abstract conceptual spaces, in which fast red car, fast car that

is red, car is (red and fast) all mean the same thing.
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Postscript: If you’re already happy that in principle we
may either start with nicer spaces or otherwise restrict
ourselves to contractible opens, then you may skip the
next two subsections and just glance at how relational
homotopies differ from regular homotopies, and look
briefly at the definition of a nice spider at the end. The
relevant conceptual takeaway for the couple of sketches
is that one may recover the usual topological notions
such as simple connectivity, metrics and their open balls,
and contractibility, from which one can in principle con-
struct models of linguistic topological relations such as
touching, enclosure, and so on. The submitted ver-
sion of this thesis had detailed constructions of these
linguistic topological relations "from scratch" but I’ve cut
them, so only the next two sketches remain as artifacts
to suggest that "low-level" hacking in ContRel is doable.
I’ve opted to remove sketches of linguistic topological
relations because (1) they took up too much space for
too little gain (2) they still admitted counterexamples,
and (3) it seems plausible that any analysis of linguistic
topological primitives in mathematical terms will ad-
mit counterexamples, because I suspect they have the
status of semantic primes [Wie96], which are charac-
terised by their universality across languages and their
unanalysability in simpler terms.

5.1.4 The unit interval

To begin modelling more complex concepts, we first need to extend our topological tools. Throughout, we
now consider string-diagrams to be expressions that may be quantified over, and we allow ourselves addi-
tional niceties like endocombinators. Ultimately we would like to get at the unit interval so we can do ho-
motopies to move shapes around, which we plan to arrive at by first expressing the reals, and then adding in
endpoints. However, there are many spaces homeomorphic to the real line. How do we know when we have
one of them? The following theorem provides an answer:

Theorem 5.1.3 ([Fri05]). Let
(
(𝑋, 𝜏), <

)
be a topological space with a total order. If there exists a continuous

map 𝑓 ∶ 𝑋 ×𝑋 → 𝑋 such that ∀𝑎, 𝑏∈𝑋 ∶ 𝑎 < 𝑓(𝑎, 𝑏) < 𝑏, then 𝑋 is homeomorphic to R.

Definition 5.1.4 (Less than). We define a total ordering relation < as an open set on 𝑋 × 𝑋 that obeys the
usual axiomatic rules:

< <

<

=

Antireflexive (∀𝑥 ∶ 𝑥 ≮ 𝑥)

<

<=

Transitive (∀𝑥𝑦𝑧 ∶ 𝑥 < 𝑦 & 𝑦 < 𝑧 ⇒ 𝑥 < 𝑧)

<

<

=

Antireflexive ∀𝑥𝑦¬(𝑥 < 𝑦 & 𝑦 < 𝑥)

< <∪ ∪ =

Trichotomy (∀𝑥𝑦 ∶ 𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ∨ 𝑥 = 𝑦)

Definition 5.1.5 (Friedman’s function). Just as a wire in ContRel has the discrete topology if it possesses
spider structure (Proposition 4.4.3), a wire is homeomorphic to the real line by Theorem 5.1.3 if it possesses
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an open that behaves as Definition 5.1.4, and a map that satisfies:

=

(Continuous) partial function...

=

<

...defined on domain (𝑎, 𝑏) ∶ 𝑎 < 𝑏... ...such that 𝑎 < 𝑓(𝑎, 𝑏) < 𝑏

=

<

<

Let’s say that the unit interval is like the real line extended with endpoints. One way to define this that
aligns with the usual presentation of the reals in analysis is to provide the ability to take suprema and infima
of subsets, which are functions that map subsets to points. This kind of function is subsumed by a kind of
structure on a category called an endocombinator.

Definition 5.1.6 (Endocombinator). An endocombinator on a category 𝒞 is a family of functions on homsets
typed 𝒞(𝑋,𝑌)→ 𝒞(𝑋,𝑌), for all objects 𝑋,𝑌.

Definition 5.1.7 (Upper and lower bounds via endocombinators). Upper bounds are endocombinators that
send states to points, which we depict as a little gray lassoed region around the state of interest. Recall that
points are states with a little decorating copy-dot as they are copiable. The following equational condition
quantified over all states characterises an "upper bound" endocombinator that returns an upper bound for
any subset of a totally ordered space: in prose, such subsets are all less than their upper bound.

<

=∀𝑥 ∶

<

∶= 𝑥

𝑥

𝑥

𝑥

We can add in further equations governing the upper bound endocombinator to turn it into a supremum,
or least-upper-bound.
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Unless 𝑦 already contains sup(𝑥), so the consequent of
the implication needs a disjunctive case where sup(𝑥) ∪
𝑦|sup(𝑥)< = 𝑦. The reason we cannot use ≤ as an open
(even though it would make this definition easier) is that
it would imply the equality relation = is an open, which
would imply that the underlying space has the discrete
topology, trivialising everything.

Conceptually, we are embedding the real line into a
new space with two extra points, and then defining an
extension of the less-than relation in terms of suprema
to accommodate those points to characterise them as
endpoints.

Definition 5.1.8 (Suprema). An upper bound endocombinator is the supremum when the following addi-
tional condition (with caveats, see sidenote) holds: for all subsets 𝑦 whose elements are all greater than those
of a subset 𝑥, the supremum of 𝑥 is less than all elements of 𝑦.

<

=

<

⇒ =∀𝑥∀𝑦 ∶

𝑥

𝑥

𝑦

𝑦

𝑦

𝑦

Now the lower endpoint is expressible as the supremum of the empty set, and the upper endpoint is the
supremum of the whole set.

Definition 5.1.9 (Endpoints). The lower endpoint is the supremum of the empty state, and the upper the
supremum of everything.

< <= =

Lower endpoint (0) Upper endpoint (1)

Definition 5.1.10 (The unit interval). In ContRel, an object equipped with a less-than relation (Definition
5.1.4), Friedman’s function (Definition 5.1.5), and suprema (Definitions 5.1.7 and 5.1.8) is homeomorphic to
the unit interval. Going forward, we will denote the unit interval using a thick dotted wire.
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Example 5.1.11 (Simple connectivity). Recall that we notate points and functions with the same small black
dot for copying and deleting, as points are precisely the states that are copy-delete cohomomorphisms. In
prose, simple connectivity states that for any pair of points that are within the open 𝑉, there exists some
continuous function from the unit interval into the space that starts at one of the points and ends at the other.
The left pair of conditions state that the points 𝑥 and 𝑦 are within 𝑉. The right triple of conditions require the
the image of the homotopy 𝑓 is contained in 𝑉, and that its endpoints are 𝑥 and 𝑦.

=

=

∀𝑥 ∶

∀𝑦 ∶

∃𝑓 ∶ =

=

𝑉

𝑉

𝑉 is simply connected when:

𝑥
𝑥

𝑥

𝑦
𝑦

𝑦

𝑓

𝑓

𝑓

𝑉

= 𝑓

Simple connectivity is a useful enough concept that we will notate simply connected open sets as follows,
where the hole is a reminder that simply connected spaces might still have holes in them.



string diagrams for text 231

5.1.5 Metric structure

Definition 5.1.12 (Addition). In order to define metrics, we must have additive structure, which we encode
as an additive monoid that is a function. All we need to know is that the lower endpoint of the unit interval
stands in for "zero distance" – as the unit of the monoid – and that adding positive distances together will
deterministically give you a larger positive distance.

++ += =

+ < =

∀𝑥

∀𝑦

+

+
+

+
=Symmetric

Associative

Unital (with lower endpoint)

Monotone

𝑥

𝑦

Definition 5.1.13 (Metric). A metric on a space is a continuous map 𝑋 → R+ to the positive reals that satisfies
the following axioms. We depict metrics as trapezoids because why not.

=

𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦

=

𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)

⇕

=
+

∀𝑥

∀𝑦

∀𝑧

≤ =

𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)

𝑥

𝑦

𝑧

∀𝑥∀𝑦

𝑥

𝑥

𝑦

𝑦
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Example 5.1.14 (Open balls). Once we have metrics, we can define the usual topological notion of open balls.
With respect to a metric, an 𝜀-open ball at 𝑥 is the open set (effect) of all points that are 𝜀-close to 𝑥 by the
chosen metric.

<

𝜖

⇔

𝑥

𝜖, 𝑥

Open balls will come in handy later, and a side-effect which we note but do not explore is that open balls
form a basis for any metric space, so in the future whenever we construct spaces that come with natural
metrics, we can speak of their topology without any further work.
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5.1.6 Relational homotopy

Definition 5.1.15 (Homotopy in Top). where 𝑓 and 𝑔 are continuous maps 𝐴 → 𝐵, a homotopy 𝜂 ∶ 𝑓 ⇒ 𝑔 is a
continuous function 𝜂 ∶ [0, 1] ×𝐴 → 𝐵 such that 𝜂(0,−) = 𝑓(−) and 𝜂(1,−) = 𝑔(1,−).

In other words, a homotopy is like a short film where at the beginning there is an 𝑓, which continuously
deforms to end the film being a 𝑔. Directly replacing "function" with "relation" in the above definition does
not quite do what we want, because we would be able to define the following "homotopy" between open sets.

= =

What is happening in the above film is that we have a sticky spider expressing an open set in blue, which
stays constant for a while. Then suddenly the ending open set in red appears (expressed by another sticky
spider), and then the blue open disappears, and we are left with our ending; technically there was no disconti-
nuity relative to the [0, 1]-parameter in this relational homotopy between the two sticky spiders as endpoints,
but there is something evidently discontinuous happening here that we would like to define away. The exem-
plified issue is that we can patch together (by union of continuous relations) vignettes of continuous relations
that are not individually total on [0, 1]. We can patch this issue by asking for relational homotopies in Con-

tRel to satisfy the additional condition that they are expressible as a union of "partial homotopies" that are
individually total on [0, 1].
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Observe that the second condition asking for decom-
position in terms of partial functions (of which total
functions are a special case) comes for free by Proposi-
tion 4.2.19, as the partial functions form a topological
basis. the constraint of the definition is provided by the
first condition, which is a stronger condition than just
asking that the original continuous relation be total on
𝐼. Definition 5.1.16 is "natural" in light of Proposition
4.2.19, that the partial continuous functions 𝐴 → 𝐵 form
a basis for 𝐂𝐨𝐧𝐭𝐑𝐞𝐥(𝐴, 𝐵): we are just asking that homo-
topies between partial continuous functions – which can
be viewed as regular homotopies with domain restricted
to the subspace topology induced by an open set – form
a basis for homotopies between continuous relations.

Definition 5.1.16 (Relational Homotopy).

= =

=

⋃

𝑝∈𝐏𝐟𝐧
𝑝

𝜂(0,−) = 𝑓(−) 𝜂(1,−) = 𝑔(−)

𝜂 is the union of homotopies of partial cts. maps

∀𝑝

𝑝

𝑝

𝑝 is a partial map

=

𝑝

𝑝 is total on [0, 1]

𝑝 𝑝=
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5.1.7 Coclosure: adverbs and adpositions

m

m
o
v
e
s

=

(coclosure) Figure 5.2: Recall that ContRel is coclosed (Propo-
sition 4.3.22), which means that every dynamic
verb may be expressed as the composite of a
coevaluator and an open set on the space of ho-
motopies. For instance, move is an intransitive
dynamic verb, which corresponds to a concept in
the space of all movements.

m
o
v
e
s

s
t
r
a
i
g
h
t

∶=
m

s

Figure 5.3: Adverb-boxes may be modelled as
static restrictions in movement-space. For instance,
straight may restrict movements to just those
that satisfy some notion of path-length minimality:
e.g., given a metric in movement-space on path-
lengths, we may construct an open ball (Definition
5.1.14) around the geodesic to model the adverb
straight.

m
o
v
e
s

s
t
r
a
i
g
h
t

t
o
w
a
r
d
s

∶=

t

m

s

Figure 5.4: Similarly, adposition-boxes may be
modelled as static restrictions on the product of the
spaces of nouns and verbs. For instance, towards
may be modelled as an open set that pairs potential
positions of the thing-being-moved-towards with
movements in movement-space that indeed move
towards the target.
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5.1.8 Nice spiders

Example 5.1.17 (Contractibility). With homotopies in hand, we can define a stronger notion of connected
shapes with no holes, which are usually called contractible. The reason for the terminology reflects the method
by which we can guarantee a shape in flatland has no holes: when any loop in the shape is contractible to a
point. I’ve depicted homotopies here as hexagons for no particular reason, and they’ve got a dot to indicate
that they’re functions. In prose, for all points 𝑥 and paths 𝑓 such that 𝑓 starts and ends at 𝑥 and is contained
within 𝑉, contractability implies that there exists a point 𝑦 in ℎ and a regular homotopy ℎ that begins with 𝑓
and finishes at the point 𝑦, and all of the images of the homotopy are contained within 𝑉.

∀𝑓 =∀𝑥 =

∃ℎ =∃𝑦 & =

𝑉 is contractible when:

𝑓 𝑓𝑥

ℎ

𝑓

ℎ

𝑦

& 𝑓

𝑉

𝑓 =

⇒
ℎ

𝑉
ℎ

=
&

Contractible open sets are worth their own notation; a solid black effect, this time with no hole.

Let’s assume for simplicity that henceforth, unless otherwise specified, we only deal with nice sticky-
spiders where cores and halos agree and are both contractible opens; i.e. the spider can be expressed as a
finite union of open solid blobs as effects followed by the same open solid blob as a state.

Definition 5.1.18 (Nice sticky-spiders). A sticky-spider is nice if it is equal to a union of contractible open
effects followed by the same contractible open expressed as a state.

⋃

𝑖

=

𝑖
𝑖
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Postscript: These sketches are mostly a restructuring of
content that otherwise dangled from the previous chap-
ter. Dynamic verbs and modals are two new sketches I
had in mind while initially writing the thesis but didn’t
make it to the submitted version. There will probably
be technical errors, but the sketches are not intended to
be rigorous. None of these sketches (and nothing else in
this thesis for that matter) should be taken as canonical
once-and-for-all solutions to the conceptual problems
they are meant to tackle; they are more meant to provoke
as first-pass attempts, and they are meant to demonstrate
how to play around and have fun in ContRel with string
diagrams. I’ll also note here that everything in ContRel

is a kind of truth-conditional possible worlds semantics
(up to some arbitrary but fixed choice of what particular
ensembles of shapes and movements the modeller sup-
plies up front), so there are no guarantees about how any
of this material would fare if one tried to take the dia-
grams and interpret them in terms of neural networks,
and I make no claims about whether the mathematics
reflects actual cognition. However, I will claim that these
mathematical sketches reflect at least the phenomenol-
ogy of how I think about language, which should come
as no surprise because my methodology was armchair
introspection.

5.2 Composition of dynamic verbs via temporal anaphora

Dynamic verbs in iconic semantics may be modelled by homotopies, but non-parallel composition of homo-
topies is only defined up to parameters with indications of how the two separate homotopies begin and end
relative to one another; i.e. temporal data.

Example 5.2.1 (Gluing homotopies sequentially at a time 𝛾 ∈ (0, 1)). Given two homotopies 𝑓 ∶ 𝑋 × [0, 1]→ 𝑌

and 𝑔 ∶ 𝑌 × [0, 1] → 𝑍, we may define their composite along 𝑌 with respect to 𝛾 ∈ (0, 1) by compressing 𝑓 to
occur within [0, 𝛾] while holding 𝑔 fixed at time 0, followed by compressing 𝑔 to occur within time [𝛾, 1] while
holding 𝑓 fixed at time 1.

𝑓;𝛾 𝑔(𝑥, 𝑡) ∶=

⎧
⎪

⎨
⎪

⎩

𝑔(𝑓(𝑥,
𝑡

𝛾
), 0) if 𝑡 < 𝛾

𝑔(𝑓(𝑥, 1), 0) if 𝑡 = 𝛾

𝑔(𝑓(𝑥, 1),
𝑡

𝛾
− 1) if 𝑡 > 𝛾

∶ 𝑋 × [0, 1]→ 𝑍

In this case, composition asks for one free parameter 𝛾, but it is easy to see that we may ask for more, corre-
sponding to the free parameters of gaps, overlaps, and so on.

The technical difficulty I’d like to sketch a solution for is that while these parameters must be given as real
numbers in the interval [0, 1], temporal natural language underspecifies: e.g. in the utterance Bob drank,

and then he slept he could have drank in the morning and then slept in the afternoon, or both in the
evening, and so on. The easy solution is to have absolute temporal anchors, but we seem to get by with less,
which appears to necessitate a possible-worlds approach. Arguably the theoretical minimum we require is
a kind of algebra for temporal aspects as in the Yucatec Maya language [Boh09], so here I sketch an algebra
for temporal anaphora in ContRel that only requires copy-delete along with the standard topology on R ob-
tained by the encoding of intervals as the open set <∶ [0, 1] × [0, 1]. Then I’ll show how this temporal data can
be used to supply the information required for homotopy composition, which should indicate that ContRel is
in-principle sufficiently expressive for dynamic iconic semantics for natural language, i.e. the interpretation
of text as little moving cartoons.

Definition 5.2.2 (A sketch text-circuit algebra for temporal anaphora). We consider three kinds of events.
The first is episodic, which corresponds to some interval on [0, 1] with endpoints 𝑡0EV and 𝑡1EV. We model these
as bipartite states with the initial constraint that 𝑡0EV < 𝑡1EV. The second is habitual, which could in principle
be an arbitrary subset of [0, 1], but there are pathologies we would like to rule out as a matter of common
sense (e.g. we don’t really talk about events that occur in time according cantor set), so we treat habituals
as open sets (unions of intervals) to be later constructed or supplied as constraints; when we are finished
specifying the algebra, equipping it with unions as a kind of formal sum will approximate those open sets
that are constructible by finite amounts of talking about times. The third is a hybrid of the first two, where
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we consider some open set with distinguished endpoints, modelled as a restriction/intersection of an interval
with some other open set.

<

𝑡0EV

𝑡1EV

Episodic event
(Interval determined by ordered endpoints)

𝑡EV

Habitual event (as constraint)
(An arbitrary open set on [0, 1])

Hybrid event
(Open set with endpoints)

<

𝑡0EV

𝑡1EV

𝑡EV

𝑡EV

𝑡EV 𝑡EV

Now we model temporal aspects as circuit components — what appears to distinguish aspects from tenses
is that aspects are always relative to the temporal data of two events, whereas tenses may be "intransitive"
on events — so all of our aspectual data will involve constraining pairs of events (one of which is a TOPIC).
The first kind of aspect we consider is perfective, which constraints an event time to be within topic time; we
model this as imposing a constraint that the endpoints of the event must lie within the interval specified by
the endpoints of the topic. In discourse, introducing a perfective constraint corresponds to adding a gate.

𝑡0TOP
𝑡1TOP

𝑡0EV
𝑡1EV

<

Perfective: 𝑡EV ⊆ 𝑡TOP

<

(Event time contained within topic time)

𝑡0TOP
𝑡1TOP

𝑡0EV
𝑡1EV

→
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The terminative aspect constrains an event to occur entirely before the beginning of the topic time. Termina-
tive composition of verbs may be glossed as (event) and-then (topic), and this kind of composition yields
the view of text circuits as implicitly encoding the temporal order in which gate-as-events occur, where now
the sequential ordering of gates matters. This failure of interchange interprets text circuits in something like a
premonoidal setting [Jef98, RS24].

𝑡0TOP
𝑡1TOP

𝑡0EV
𝑡1EV

<

Terminative: 𝑡EV < 𝑡0TOP

<

(Event will have been completed by the topic time)

𝑡0TOP
𝑡1TOP

𝑡0EV
𝑡1EV

→

The imperfective aspect we consider as constraining an episodic topic time to lie within some ongoing habitual
event, where the habitual event is represented as a free coparameter. In discourse, introducing an imperfec-
tive constraint corresponds to splicing in such a constraint, which we gloss as a gate that restricts the end-
points of the topic interval to lie within the open set representing the habitual event time as a coparameter.
We skip over the subtly distinct progressive aspect here as we won’t need it for our later example, but it should
be clear that an approach along these lines will also suffice.

Imperfective: 𝑡TOP ⊂ 𝑡EV

(Episodic time contained within habitual event time)

→<

𝑡0TOP

𝑡1TOP

𝑡𝐸𝑉

𝑡𝐸𝑉

<

𝑡0TOP

𝑡1TOP

<

𝑡𝐸𝑉

𝑡0TOP

𝑡1TOP

∶=

i
m
p
e
r
f
.
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Example 5.2.3. So here is an example of Yucatan Maya taken from[Nat19], which is an excerpt of an interview
with a speaker fleeing a cyclone. I have split the excerpt into numbered single-verb clauses, accompanied
by glosses in English with aspect-markers and the corresponding evolution of a text-circuit by the discourse
rewrites we have defined. The first event introduced into discourse is the arrival of the refugees in the village,
which is marked as perfective.

(1)

⎡
⎢
⎢

⎣

Kaajk’ucho’on túun way tekàajil x Jaxleyile,

When we arrived
⏟⎴⏟⎴⏟

PERF.

,

⎤
⎥
⎥

⎦

<

𝑡0arrive

𝑡1arrive

→

The second event is what the refugees saw, implicitly concurrent with event (1), which we opt to treat with a
prepended copy of endpoints. arrive & see then form an atomic topic for events (3) and (4), which we deal
with by constraining both (1) and (2) in the same way. Note that there is a single variable open set 𝑡say that is
repeated 4 times in the diagram.

(2)

⎡
⎢
⎢

⎣

kilike’ tuláakal máake’,

we saw
⏟⏟⏟
PERF.

,

⎤
⎥
⎥

⎦

<

𝑡0arrive

𝑡1arrive

→

<

𝑡0see

𝑡1see

The third event refers to the villagers saying something, in the imperfective aspect with respect to events (1)
and (2), so we constrain those topics accordingly. In gloss, it was an ongoing event that the villagers were
saying something when the refugees arrived.

(3)

⎡
⎢
⎢
⎢

⎣

táan uya’aliko’obe’ jach

everyone was saying
⏟⎴⎴⏟⎴⎴⏟

IMPF. wrt. (1,2)

⎤
⎥
⎥
⎥

⎦

→

𝑡0arrive

𝑡1arrive

<

𝑡0see

𝑡1see

<

𝑡say

𝑡say

𝑡say

𝑡say

The fourth event refers to what the villagers had heard, in the terminative aspect with respect to (1) and (2).
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In gloss, the villagers were saying (reporting) the episodic event of them hearing something on the radio, and
this hearing-event had completed before the refugees’ arrival.

(4)

⎡
⎢
⎢

⎣

ts’uyu’ubiko’ob ti’ ràadyoe’

(they) had heard
⏟⎴⎴⏟⎴⎴⏟

TERM. wrt. (1,2)

on the radio

⎤
⎥
⎥

⎦

→

𝑡0arrive

𝑡1arrive

<

𝑡0see

𝑡1see

<

𝑡say

<

<< <<

𝑡0
hear

𝑡1
hear

𝑡say

𝑡say

𝑡say

The fifth event refers the coming of the cyclone, which was ongoing at the time of the villagers hearing the ra-
dio report. This introduces a new habitual event as the variable open set 𝑡come, repeated twice in the diagram
as constraints.

(5)

⎡
⎢
⎢
⎢

⎣

túun tàal le siklòono’.

the cyclone was coming.
⏟⎴⎴⎴⏟⎴⎴⎴⏟

(4) IMPF. wrt. (5)

⎤
⎥
⎥
⎥

⎦

→

𝑡0arrive

𝑡1arrive

<

𝑡0see

𝑡1see

<

<

<< <<

𝑡0
hear

𝑡1
hear

𝑡say

𝑡say

𝑡say

𝑡say

𝑡come

𝑡come

Altogether, the final diagram represents a map from two open sets on [0, 1] (representing the potentially ha-
bitual events say and come encoded as variable open sets 𝑡say and 𝑡come) to return a state in ContRel that en-
codes the set of possible endpoints for the episodic events arrive, see and hear: {(𝑡0arrive, 𝑡1arrive, 𝑡0see, 𝑡1see, 𝑡0hear, 𝑡

1
hear

)}.
Moreover, we have set up the algebra to allow us to leverage compositional discourse structure in such a way
that sampling any of the elements of the resultant set returns a choice of endpoints consistent with the tem-
poral constraints of the excerpt.
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5.3 Iconic semantics for modal verbs

In this sketch I want to deal with certain modal verbs: that means those of cognition and perception like to
think and see, and the sketch will taper out towards some modal auxiliaries like wanting. These kinds of
verbs are roughly characterised as requiring copies of entities to be instantiated in worlds similar to but not
exactly that of whatever base narrative reality is referred to in the discourse. For example, in Alice sees Bob

drink a beer, Bob drinks another after Alice leaves., there are two Bobs, because the one in Alice’s
mental-theatre drinks a single beer, and the one in the base reality of the narration drinks two. So there are
two worlds 𝔚 here, one basic, and a 𝔚A for the world in Alice’s perception. Things get intractably tricky
fairly quickly with these modals: to do epistemic logic means to have nested indices of what Alice thinks
Bob thinks Alice thinks, to gossip is to reason about he-said-she-said, to understand complex narratives is to
reason about stories-told-within-stories, and counterfactuals are a whole thing too. So that is a fundamental
mystery: all this seems fairly complicated to encode and reason about symbolically, but it is phenomenolog-
ically fairly easy for adults to do, so what gives? What sort of mathematical presentation of these modals
would at least reflect this lightness and ease?

I think thought-bubbles that show up in comic books are a pretty good start. Their cloudlike shape is a
visual convention indicating a separate mental world, and they are typically used to represent want when the
contents are also iconic representations.

Figure 5.5: Two examples by Mordillo, an artist
I liked as a child: a thought bubble representing
a woman, where the context of a stranded man
implies a want for companionship, and a thought
bubble representing a chair, where the context of a
climber on a tall summit implies a want for rest.

The visual convention for cognitive and perceptive-alethic verbs is, as far as I can tell, a kind of x-ray ef-
fect into the contents of a head, which employs the familiar container metaphor: the head is a container for
thoughts.

For alethic verbs in particular (those modals that are truth-preserving, in that they "do not forget" the
truth), there’s a need for the contents of the container to be synchronised with the contents of the outside
world. Here are some observations that enable this in Contrel. The basic enabling insight is that, in Eu-
clidean spaces, if we have a hollow container with a solid blob inside, there’s an approximately continuous
bĳection between the (open set) insides of the container and the outside world.
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Figure 5.6: On the left, a scene from the Simpsons
showing the contents of Homer’s mental-theatre.
On the right, a depiction of two separate mental-
theatres with a fisheye effect, taken from Steven
Lahars "A Cartoon Epistemology" freely available
online, which was also the initial inspiration for
this sketch.

Figure 5.7: So the basic idea is to put representa-
tions of worlds inside bounded regions as contain-
ers, and in this way iconic semantics provides a
univocal setting that displays all of the relevant
worlds at once. We are free to pick visual conven-
tions, as they are no more or less arbitrary than the
assignment of indices and symbols such as 𝔚A to
the contents of possible worlds. Here is a sketch
convention for containers on an iconic representa-
tion of a person for different modal verbs: seeing,
thinking, feeling, owning, and wanting. I sent
this excitedly with little supporting context to Bob
while I was writing my thesis. He was concerned.
Then I got concerned. Childlike became creepy,
and neither are good looks. I think I have supplied
enough context to make this sensible, but there’s
no way I’m going to beat the crazy allegations.
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Figure 5.8: The inside and the outside of a con-
tainer with a solid blob inside are both homotopic
to the space with a puncture. This is only approx-
imately a continuous bĳection because the un-
bounded outside space can only map to the open
interior of the container. We can use such bĳec-
tions as a bridge to establish connections between
elements of different possible worlds.

↔

The second, and unfinished, idea is that if we have a handle on the individual components of sticky spi-
ders, then we may use something like a very-well-behaved lens (hence its occurrence in the introduction)
to ensure that the inside of the container is really behaving like a faithful storage medium for the goings-on
outside. I think that’s suggestive enough, and I’ll deal with parthood in the next sketch. The last thing I want
to deal with here is the problem of infinite regress for epistemic modals like knowing: if I know something,
then I know I know it, and I know I know I know it, and so on. A naïve solution is to just use an infinitely-
nested series of containers.

Figure 5.9: Again from Cartoon Epistemology, on
the unsatisfactory nature of infinitely-nested con-
tainers: But who is the viewer of this internal theatre of

the mind? For whose benefit is this internal performance

produced? Is it the little man at the center who sees this

scene? But then how does HE see? Is there yet another

smaller man inside that little man’s head, and so on to

an infinite regress of observers within observers?
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So the problem here is how to encode this infinite regress with finite means in an iconic model. The usual
monadic approach still runs into the problem that you have to map a potential nested-infinity of possible
worlds onto some finite model if one cares about cognitive realism. In iconic semantics, we can modify the
space itself; here I think Escher was onto something.

Figure 5.10: Escher’s "Print Gallery" lithograph
alongside his working sketch of the vortex-grid
geometry the work was built on. On the left of
the lithograph, an observer examines a framed
painting of a town. Going clockwise, we see more
details of the town, which has in it a print gallery,
within which is the original observer. The miss-
ing centre of the piece where Escher signed the
work obscures what would have been infinite nest-
ing; the right-hand-side of the frame would have
spiraled along the vortex infinitely. Treating the
frame as a container, here we have an example of
a container that contains itself, where movement
clockwise indicates going down a level, clockwise
going up, yet no explicit infinities anywhere.

The space in which such an arrangement can be realised is the same as that of the Penrose staircase: split-
ting the lithograph into four corners, each is a locally consistent snapshot, each gluing of quadrants is a con-
sistent (as/de)scent, but the overall manifold obtained needs to be embedded in a higher dimension. While
this in principle solves the problem of finitely representing infinite descent, these kinds of spaces are not
grounded in physical, embodied intuitions. I think it is mathematically neat that there can exist topological
models for such modal verbs, but whether such proposals are to be taken seriously as modelling cognition is
a thorny matter I don’t want to say more about.
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5.4 Iconic semantics for general anaphora via Turing objects

This sketch complements the sketch on modals, as it relies on the same container-trick. I would like to ex-
plain here how iconic semantics in ContRel might model untyped-boxes — these are conjunctions and verbs
with sentential complements — as well as the more general linguistic phenomena of entification and general

anaphora — where arbitrary discourse elements up to collections of sentences may be packaged up as if they
were nouns and referred to. I suggest that the mathematical property of ContRel that enables this is that it
contains FinRel equipped with a Turing object.

Entification is the process of turning words and phrases that aren’t nouns into nouns. We are fa-
miliar with morphological operations in English, such as inflections that turn the singular cat into the plural
cats, by adding a suffix -s. Another morphological operation generally called derivation changes the gram-
matical category of a word: for example, the adjective happy derives the noun happiness. With suffixes such
as -ness and -ing, just about any lexical word in English can be turned into a noun, as if lexical words have
some semantic content that is independent of the grammatical categories they might wear as a guise. With
more complex discourse prefixes such as the fact that, we may also disguise sentences and text as nouns.

Example 5.4.1. Generalised anaphora as entification.

Jono is paid minimum wage. He didn’t mind it.

J

W

P

M

An example of entification. It may be argued that it refers to the fact that Jono was paid minimum

wage. Graphically, we might want to depict the gloss as a circuit with a lasso that gives another noun-wire
that encodes the information of the lassoed part of the circuit.

The problem at hand is finding an appropriate mathematical setting to interpret and calculate with such
lassos. In principle, any meaningful (possibly composite) part of text can be referred to as if it were a noun.
For syntax, this is a boon; having entification around means that there is no need to extend the system to
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Another observation we could have made is that since
computers really just manipulate code, every data format
is a kind of restricted form of the same Turing object
Ξ, but this turns out to be a mathematical consequence
of the above equation (and the presence of a few other
operations such as copy and compare that form a vari-
ant of frobenius algebra), demonstrated in Pavlovic’s
forthcoming monoidal computer book [Pav23], which
is prefigured by a trilogy [Pav12, Pav14, PY18]. I would
be remiss to leave out Cockett’s work on Turing cate-
gories [CH08], from which I took the name Turing object.
Both approaches to a categorical formulation of com-
putability theory share the common starting ground of a
special form of closure (monoidal closure in the case of
monoidal computer and exponentiation in Turing cate-
gories) where rather than having dependent exponential
types A ⊸ B or BA, there is a single "code-object" Ξ.
They differ in the ambient setting; Pavlovic works in the
generic symmetric monoidal category, and Cockett with
cartesian restriction categories, which generalise partial
functions. I work with Pavlovics’ formalism because I
prefer string diagrams to commuting diagrams.

accommodate wires for anything apart from nouns, so long as there is a gadget that can turn anything into
a noun and back. For semantics this is a challenge, since this requires noun-wires to "have enough space in
them" to accommodate full circuits operating on other noun-wires, which suggests a very structured sort of
infinity. Computer science has had a perfectly serviceable model of this kind of noun-wire for a long time.
What separates a computer from other kinds of machine is that a computer can do whatever any other kind
of machine could do — modulo church-turing on computability and the domain of data manipulation —
so long as the computer is running the right program. Programs are (for our purposes) processes that ma-
nipulate variously formatted — or typed — data, such as integers, sounds, and images. They can operate
in sequence and in parallel, and wires can be swapped over each other, so programs form a process theory,
where we can reason about the extensional equivalence of different programs — whether two programs be-
have the same with respect to mapping inputs to outputs. What makes computer programs special is that on
real computers, they are specified by code. Programs that are equivalent in their extensional behavior may
have many different implementations in code: for example, there are many sorting algorithms, though all
of them map the same inputs to the same outputs. Conversely, every possible program in a process theory
of programs must have some implementation as code. Importantly, code is just another format of data. The
process-theoretic characterisation of the code-wire in a process-theory of computation is this:

Definition 5.4.2 (Turing object). A Turing object Ξ in a process-theory is equipped with evaluation morphisms
ev𝐴

𝐵
∶ 𝐴 ⊗ Ξ → 𝐵 for all pairs of objects 𝐴, 𝐵 such that for all morphisms 𝑓 ∶ 𝐴 → 𝐵, there exists a state

⌜𝑓⌝∶𝐼→Ξ of the Turing object such that partial evaluation with that state is equal to 𝑓. The diagrammatic con-
vention and visual pun [Pav23] for such code-states and evaluators is to depict the state-triangle as if it is cut
out from the rectangle of the evaluator.

∀𝐴, 𝐵 ∈ 𝑂𝑏(𝒞) ∃ev𝐴
𝐵
∀𝑓 ∃⌜𝑓⌝

𝑓
𝐴 𝐵

=

𝐴

⌜𝑓⌝ Ξ

ev𝐴
𝐵𝐵

Any programming language is a model for text circuits, using the code-data format as the noun wire and
Turing object. In ContRel, the unit square suffices as a Turing object for finite sets and relations, as we can
use the container-trick of modals.

Proposition 5.4.3 (Sticky spiders on the open unit square model FinRel equipped with a Turing object).
Using the open unit square with its usual topology as the Turing object, there is a subcategory of ContRel

which behaves as the category of countable sets and relations equipped with a Turing object

Proof. By Construction 5.4.8, which we work towards.
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Lemma 5.4.4 ((0, 1) × (0, 1) splits through any countable set 𝑋). For any countable set 𝑋, the open unit square
▦ has a sticky spider that splits through 𝑋⋆ — the discrete topology on 𝑋.

Proof. Proof by construction. Assume we work with nice spiders, so we only have to highlight the copiable
open sets. Take some circle and place axis-aligned open squares evenly along them, one for each element of
𝑋. The centres of the open squares lie on the circumference of the circle, and we may shrink each square as
needed to fit all of them.

Definition 5.4.5 (Morphism of sticky spiders). A morphism between sticky spiders (here cyan and magenta)
is any continuous relation that satisfies the following equation.

=

Lemma 5.4.6 (Morphisms of sticky spiders encode relations). For arbitrary split idempotents through 𝐴⋆ and
𝐵⋆, the morphisms between the two resulting sticky spiders are in bĳection with relations 𝑅 ∶ 𝐴 → 𝐵.

=𝑅′ 𝑅′∶ 𝐑𝐞𝐥(𝐴, 𝐵) ∋ 𝑅 ↔ ≃𝑅′

𝐴⋆

𝐵⋆

∀
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Proof.

=

⋃ ⋃

=

=

⋃
= 𝑎

(𝑎, 𝑏) ∈ 𝑅 ⊆ 𝐴 × 𝐵

𝑏

𝑅′

(⇐) ∶ Every morphism of nice spiders corresponds to a relation between sets.

(⇒) ∶ By idempotence of (co)copiables,

Since (co)copiables are distinct, we may uniquely reindex as:

⋃
= 𝑎

(𝑎, 𝑏) ∈ 𝑅

𝑏

⋃
𝑎

(𝑎, 𝑏) ∈ 𝑅

𝑏

𝑅′

every relation 𝑅 ⊆ 𝐴 × 𝐵 corresponds to a morphism of nice spiders.

Construction 5.4.7 (Representing sets in their various guises within ▦). We can represent the direct sum of
two ▦-representations of sets as follows.

⊕ :=

𝛼

𝛽

𝑢

𝑣 𝑤

𝛼1

𝛽1

𝑢2

𝑣2 𝑤2

The important bit of technology is the homeomorphism that losslessly squishes the open unit square into one
half of the unit square. The decompressions are partial continuous functions, with domain restricted to the
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appropriate half of the unit square.

◧ ◨◧ ◨

(𝑥, 𝑦)↦ (
𝑥

2
, 𝑦) (𝑥, 𝑦)|

𝑥<
1

2

↦ (2𝑥, 𝑦)(𝑥, 𝑦)↦ (
𝑥+1

2
, 𝑦) (𝑥, 𝑦)|

𝑥>
1

2

↦ (2𝑥 − 1, 𝑦)

We express the ability of these relations to encode and decode the unit square in just either half by the follow-
ing graphical equations.

◧ ◧ = ◨ ◨=

Now, to put the two halves together and to take them apart, we introduce the following two relations.
In tandem with the squishing and stretching we have defined, these will behave just as the projections and
injections for the direct-sum biproduct in Rel.

∶=
∶=

⋃
⋃

The following equation tells us that we can take any two representations in ▦, put them into a single copy of
▦, and take them out again.

◧

◨ ◨

◧

=

We encode the tensor product 𝐴⊗𝐵 of representations by placing copies of 𝐵 in each of the open boxes of
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𝐴.

⊗ :=

𝛼

𝛽

𝑢

𝑣 𝑤

(𝛼, 𝑢)

(𝛼,𝑤)

(𝛽, 𝑣)

The important bit of technology here is a family of homeomorphisms of ▦ parameterised by axis-aligned
open boxes, that allow us to squish and stretch spaces. Thus for every representation of a set in ▦ by a sticky-
spider, where each element corresponds to an axis-aligned open box, we can associate each element with a
squish-stretch homeomorphism via the parameters of the open box, which we notate with a dot above the
name of the element.

𝛼

𝛽

𝐻𝛼

𝑊𝛼

(𝑃𝛼𝑥 , 𝑃
𝛼
𝑦 )

�̇� = (𝑊𝛼, 𝐻𝛼, 𝑃𝛼𝑥 , 𝑃
𝛼
𝑦 )

�̇� = (𝑊𝛽 , 𝐻𝛽 , 𝑃
𝛽
𝑥 , 𝑃

𝛽
𝑦 )

𝐻

𝑊

(𝑃𝑥, 𝑃𝑦)

▣

(𝑥, 𝑦)↦ (𝑊𝑥 + 𝑃𝑥, 𝐻𝑦 + 𝑃𝑦)

▣

(𝑥, 𝑦)|∈(𝑃𝑥 ,𝑃𝑥+𝑊)×(𝑃𝑥 ,𝑃𝑦+𝐻)
↦ (

𝑥−𝑃𝑦

𝑊
,
𝑦−𝑃𝑦

𝐻
)

(𝑊,𝐻, 𝑃𝑥, 𝑃𝑦) (𝑊,𝐻, 𝑃𝑥, 𝑃𝑦)
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Now we can define the "tensor 𝑋 on the left" relation _ → 𝑋 ⊗ _ and its corresponding cotensor.

⋃

∈𝛼

𝛼

▣

�̇�

⋃

∈𝛼

𝛼

�̇�

▣

⊗ := ⊗ :=⊗ ⊗ =

The tensor and cotensor behave as we expect from proof nets for monoidal categories.

⊗ ⊗ =

𝑋 ⊗𝑌𝑋 𝑌

⊗ ⊗ =

And by construction, the (co)tensors and (co)pluses interact as we expect, and they come with all the natu-
ral isomorphisms between representations we expect. For example, below we exhibit an explicit associator
natural isomorphism between representations.

⊗

⊗

⊗

⊗

((𝑋 ⊗𝑌)⊗𝑍) (𝑋 ⊗𝑌)⊗ _

𝑋 ⊗ _

(𝑋 ⊗ (𝑌 ⊗𝑍))

𝑋 𝑌 𝑍

𝑌 ⊗ _ 𝑋 ⊗ _

Construction 5.4.8 (Representing relations between sets and their composition within ▦). With all the above,
we can establish a special kind of process-state duality; relations as processes are isomorphic to states of
▦, up to the representation scheme we have chosen. This is part of the condition for Turing objects. What
remains to be demonstrated is that the duality coheres with sequential and parallel relational composition.
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𝑅 ≃

𝑅

⊗

𝑅

≃

𝑅

=
≃

⊗ ⊗

=

𝑅

≃

Under this duality, we have continuous relations that perform sequental composition of relations as follows.

𝑅 𝑆

𝑅

𝑆

𝑅

⊗

=

𝑆

⊗

⊗

⊗

⊗

𝑋⊗𝑌 𝑋 ⊗𝑍

𝑌 ⊗𝑍

𝑌

𝑍

𝑋

𝑅 𝑆

⊗≃ ≃

And similarly, parallel composition. Therefore, we have demonstrated that the unit square behaves as a Tur-
ing object for the category of countable sets and relations.

𝑅
𝑅

𝑆

𝑅

⊗

≃=

𝑆

⊗

⊗

⊗

𝑊⊗𝑋
(
(𝑊⊗𝑌)⊗ (𝑋 ⊗𝑍)

)

𝑌 ⊗𝑍

𝑋

𝑌

𝑊

𝑍

⊗

⊗

⊗

𝑆
𝑅

𝑆

⊗

⊗

⊗≃



254 v.w.

Configuration spaces and possible-worlds semantics
favour working string-diagrammatically in ContRel

over Top. The latter’s cartesian monoidality limits it
to one effect (delete) and only tensor-separable states,
preventing native diagrammatic reasoning about cor-
related states analogous to entangled quantum states
and spatial relations [CK17, WC21]. The Fregean notion
of compositionality — knowing a composite system is
equivalent to knowing all its parts — corresponds to
tensor-separability in cartesian monoidal categories.
Schrödinger’s quantum mechanics insight offers an
alternative: perfect knowledge of the whole doesn’t
necessitate perfect knowledge of the parts [Coe21]. In-
formation about a composite system restricts possible
outcomes a priori. The bell-state exemplifies this: we
know both qubits measure identically, but discarding
one qubit leaves maximal entropy for the remaining
one. Similarly, imagining "a cup on a table in a room"
entangles the objects’ positions. Removing either object
eliminates restrictions on the other’s location, demon-
strating that meaning resides in the entangled whole
rather than individual parts.

5.5 Configuration spaces

Individual sticky-spiders correspond to static collections of set-labelled shapes in ContRel; in this sketch I
want to talk about all the different ways the same collection of shapes can be arranged in space.

Let’s also say we start with the ability to detect whether two sticky-spiders are related to one another by
rigid displacements, expressed as a topological group with elements we denote 𝜌. Since sticky-spiders can be
represented as unions of effects followed by states, we can define a binary relation on sticky-spiders that tells
us whether they are the same up to rigidly displacing component shapes:

Definition 5.5.1 (Displacement relation). Two sticky-spiders (cyan and green, both assumed to be nice here),
each with components indexed by 𝐼, are equivalent up to displacement when there exist 𝜌𝑖 such that:

∼

∃𝜌−
𝑖

∃𝜌𝑖

⋃

𝑖

⇔ =

We’ve suppressed labelling of the states and we’ve contracted the cup to just depict the open state as a semi-
circle.

Displacement is evidently an equivalence relation, and moreover requires that the two spiders related have
the same number of components. Now given a particular nice spider, we treat its equivalence class of spiders
as a configuration space in which we have access to all of its rigidly displaced variants at once.

Definition 5.5.2. The configuration space 𝐶(𝔰) of a nice spider 𝔰 with indexing set 𝐼 is the topological space
with underlying set defined to be the equivalence class [𝔰] of 𝔰 under displacement. Assuming the topolog-
ical group of rigid displacements is itself a topological space 𝐺, the topology of 𝐶(𝔰) is a restriction of

⨉|𝐼|
𝐺

to those |𝐼|-tuples of displacements witnessed by [𝔰].

Example 5.5.3 (The connected components of configuration space). Configuration space allows us to define a
"slideability" relation between configurations of a spider 𝔨 as the endpoints of continuous functions from the
unit interval into 𝐶(𝔰). This in turn allows us to consider what the connected components of configuration
space are. Evidently, there are pairs of spiders that are both valid displacements, but not mutually reachable
by sliding. For example, shapes might enclose or trap other shapes, or shapes might be interlocked. So at first
blush, the connected components of configuration space tells us something about holes, or the cohomology
of configurations. Depicted are some pairs of configurations corresponding to some linguistically topological
terms that are mutually unreachable by rigid transformations, and so must live in disconnected components
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of configuration space.

Trapped

Not trapped

Interlocked

Not interlocked

Enclosed

Not enclosed

In configuration spaces we’re making use of the fact that any displacement relationship comes with (up to
a non-unique choice of basepoints for each component shape) a witnessing tuple of 𝜌𝑖s. As a consequence,
the configuration space of a sticky-spider is a retract of the product space

⨉|𝐼|
𝐺 where 𝐺 is the topological

group of displacements, and we can use the identity relation between the section and retraction to strip the
configuration space wire, revealing each of the

⨉|𝐼|
𝐺 like guitar strings: each element of the set that the

initial nice spider 𝔰 splits through gets its own string.

𝔵 ↦
𝐶(𝔰)

⋮

𝐺𝑎

𝐺𝑧

⋃

𝑖∈{𝑎,𝑏,⋯,𝑧}

𝑖 𝑖= =

Note that although every guitar string is 𝐺, there is extra typing data indicating which element of the in-
dexing set of the spider each 𝐺 corresponds to. So here’s a model in which the named wires of text circuits
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make sense. We can put gates on the guitar strings, which may for example correspond to constraints on the
relative positions of shapes in configuration space.

𝐺𝑎

𝐺𝑐

𝐺𝑏

𝑎

𝑏

𝑐t
o
u
c
h𝐶(𝔰) 𝐶(𝔰)f
a
r

The next thing we can try is to add and subtract shapes from configuration spaces, and while there are
technical details like matching choices of basepoints I’ll gloss over, the gist is this: when the shapes in a nice
spider 𝔰 are a subset of the shapes in a nice spider 𝔱, we can add in states to the guitar-picture of 𝔰 and wrap
them up again using the idempotent of 𝔱, and we can delete wires in the guitar-picture of 𝔱 and wrap that up
using the idempotent of 𝔰.

𝐶(𝔰)

𝐺𝑎

𝐺𝑐

𝐶(𝔱)

𝐺𝑑

𝐺𝑏
𝑎 𝑏

𝑐

𝑎 𝑏

𝑐𝑑

The last stop in this sketch is disintegrating and integrating shapes; if we could freely break apart a shape,
we know that in principle we get another configuration space where we can manipulate those parts, and if
we can glue those pieces back together again, then we could do simple things like open and close contain-
ers. Let’s first define the disintegration relation between spiders. Observe that the data of a nice spider is
equivalently viewed as a function 𝑓 ∶ 𝐼 → 𝔒, where 𝐼 is the indexing set, and 𝔒 is some set of opens with
whatever well-behaviour condition, along with the constraint that 𝑓(𝑥) ∩ 𝑓(𝑦) ≠ ∅ ⇒ 𝑥 = 𝑦 that enforces
non-overlapping shapes. This perspective gives us a foothold to define a disintegration relation: a "more re-
fined" spider is one that has a superset of 𝐼 as domain, with a function that sends elements of the indexing set
to either the same shape as 𝑓, or a subshape.

Definition 5.5.4 (Disintegration). Let 𝔰 and 𝔱 be nice spiders, described by functions 𝑠 ∶ 𝐼 → 𝔒 and 𝑡 ∶ 𝐽 → 𝔒

respectively. 𝔱 disintegrates 𝔰 (𝔱 ≻ 𝔰) if there exists a surjective 𝑑 ∶ 𝐽 ↠ 𝐼 such that 𝑔 = 𝑓◦𝑑, and such that for
all 𝑖 ∈ 𝐼 and all 𝑗 ∈ 𝑑−1(𝑖), 𝑔(𝑗) ⊆ 𝑓(𝑖).

Since the composition of surjectives is also surjective and the subsethood condition is transitive, disinte-
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gration is a transitive relation. It’s also reflexive, and since surjections 𝐴 ↠ 𝐵 and 𝐵 ↠ 𝐴 implies a bĳection
𝐴 ≃ 𝐵 and 𝑋 ⊆ 𝑌 with 𝑌 ⊆ 𝑋 implies 𝑋 = 𝑌, we also have antisymmetry, and hence a partial order. Treating
the identity disintegration as globally minimal, we can define shatterings as locally minimal elements.

Definition 5.5.5 (Solve). 𝔱 shatters 𝔰 if 𝔱 ≻ 𝔰, and for all spiders 𝔮, 𝔱 ≻ 𝔮 ≻ 𝔰 ⇒ 𝔮 = 𝔱 or 𝔮 = 𝔰, up to bĳective
relabellings of indexing sets.

The intuition behind shattering is that the ⊆-condition in the disintegration relation lets the disintegrating
spider "shave a little" off of the disintegrated spider, and locally minimal disintegrations "shave the least off",
doing the best they can to partition shapes. So now we get gluing for free:

Definition 5.5.6 (et Coagula). 𝔱 is a gluing of 𝔰 if 𝔰 shatters 𝔱.

Example 5.5.7 (Putting something in a container). To put a blob inside a container, we first shatter the con-
tainer of the initial spider 𝔰 to obtain a new spider 𝔱 that expresses the container as a combination of a con-
tainer and a lid, then (implicitly using dynamic verb composition of terminatives) we can move the lid, put
the blob in, close the lid, and glue. Below the circuit we represent one possible series of consistent snapshots
as a vignette, out of the many possible series of configurations that satisfy our linguistic description above.

𝐺𝔰𝑎

𝐺𝔰
𝑏

𝐺𝔱𝑥

𝐺𝔱
𝑏

𝐺𝔱𝑐 o
p
e
n

c
l
o
s
eg
o
-
i
n

𝑏

𝑎 𝑥

𝑦

𝑧

𝑧𝑥

𝑦

𝑧

𝑥

𝑦

𝑧

𝑥

𝑦 𝑏

𝑎

In principle, shapes can be shattered arbitrarily finely, which permits us some degree of freedom in specify-
ing how a container opens. In conjunction with a topological group of transformations that includes scaling,
we may express different ways in which things get in and out of containers, or otherwise leave the original
connected component of configuration space they start in. Here again I’m colour coding different shapes of



258 v.w.

Objection: Isn’t this way outside the scope of for-
mal semantics? Insofar as semantics is sensemaking,
we certainly are capable of making sense of things in
terms of mechanical models and games by means of
metaphor, the mathematical treatment of which is con-
cern of Section 5.6. It’s probably the case that any defi-
nition that encompasses what’s going on here as formal
semantics would also have to consider the programming
of a videogame to also be a form of formal semantics;
personally I think that’s ok, because I don’t consider any
particular form of mathematics-as-methodology to be
privileged over others. Feel free to disagree.

the same spider with different colours.

Enclosed

Open Squeeze
Leave then stretch

Move
Shut

Rotate

Not enclosed

I’ll close this sketch with something cute: if manipulating shapes in configuration space is serious and
sensible stuff, then just about anything is. We can (ab)use the fact that shapes of a nice sticky spider do not
overlap to model mechanical components, where acceptable configurations of different shapes are mutu-
ally constrained in a productive way. In particular, this means we may consider any linguistic semantics
grounded in mechanical or boardgame-tabletop models to be formal: in principle anything that can be rep-
resented by mechanisms and meeples is fair game. This gives us some cool possibilities for formal models
of natural language, as there are a lot of mechanical models, including: clocks [duh.], analogues of electric
circuits [Spi], computers [Ric15], and human-like automata [wik22].

Example 5.5.8 (Mechanical semantics). Here I’m going to allow shapes to be unions of disjoint contractibles,
and I’ll colour-code the different shapes in the spiders differently so the different components are clear:

Chain (taut) GearsChain (loose) Switch
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[Red] argues convincingly that the metaphor IDEAS are

CONTAINERS is pervasive in English; it is just about the
only way we talk about communication. Yet there is
no literal sense in which one can "get something" out
of a lecture or "pack a lot" into a book. Evidently the
systematicity of the metaphor itself yields the common
structure from which we can even begin to consider
pedestrian truth-conditional or possible-worlds analyses;
i.e. language has a role to play in constructing the stage,
and afterwards we can reason logically about the actors
and events.

Meta, beyond. Phor, as in amphora, an agent, carrier,
or producer. Metaphor carries meaning beyond one
domain to another. It bears and produces meaning.
Metaphors are the primary agents of meaning.

5.6 Formal models of figurative language

Figurative language is when language is used non-literally, e.g. to bathe in another’s affection. Fig-
urative language subsumes analogy (built like a mountain), metaphor (she got a lot out of that

lecture) and some idioms (raining cats and dogs). The issue with figurative language for formal seman-
tics, insofar as formal semantics is concerned with truth-conditions, is that one requires an underlying model
in order to begin truth-conditional analysis. The role of figurative language, especially that of metaphor,
is in some sense to provide those models in the first place. The process by which language constructs the
underlying model is essentially by structural correspondences, so the truth-theoretic (or inquisitive, or dy-
namic) approach to semantics operates at an inappropriate stage of abstraction. We might illustrate or depict
schema to represent figurative language, but to the best of my knowledge, there is no formal account of how
the systematicity of a chosen schematic corresponds to the organisation of a metaphor or concept. So what is
required is a methodology to construct the underlying models from the figurative language in a more-or-less
systematic way.

The whole point of mucking about with ContRel earlier is this: figurative language can be formally inter-
preted as vignettes involving topological figures. I will demonstrate here that cofunctors from ContRel into
text-circuits representing utterances are promising candidates for the formalisation of figurative language.
My focus will exclude idiomatic language and one-off analogies in favour of metaphor just because the lat-
ter is most interesting, though the methodology applies in other cases of figurative language. I will take a
metaphor to be figurative language that utilises the systematic structure in one conceptual domain to give
partial structure in another conceptual domain. This may subsume some cases of what would otherwise be
called similes or analogies. The differences far as I can tell between a metaphor and an analogy is the presence
of systematicity in the former, and a weak requirement that the correspondence involves separate conceptual
domains. It doesn’t really matter for this discussion what the difference is.

First, we observe that we can model certain kinds of analogies between conceptual spaces by considering
structure-preserving maps between them. For example, Planck’s law gives a partial continuous function from
part of the positive reals measuring tempature of a black body in Kelvin to wavelengths of light emitted, and
the restriction of this mapping to the visible spectrum gives the so-called "colour temperature" framework
used by colourists. It will turn out that a decategorified cofunctor has the right kind of structure.

Second, we observe that we can use simple natural language to describe conceptual spaces, instead of geo-
metric or topological models. Back to the example of colour temperature, instead of precise values in Kelvin,
we may instead speak of landmark regions that represent both temperature and colour such as incandescent
and daylight, which obey both temperature-relations (e.g. incandescent is cooler than daylight and
colour-relations (e.g. daylight is bluer than incandescent).

Third, we observe that we can also use simple natural language to describe more complex conceptual
schemes with interacting agents, roles, objects, and abilities. This will require a cofunctor. Organising this
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linguistic data in the concrete structure of a text circuit allows us to formally specify what it means for one
conceptual scheme to structure another by describing structure-preserving maps between the text circuits.
This will allow us construct topological models of metaphors such as TIME is MONEY.

5.6.1 Temperature and colour: the Planckian Locus

Example 5.6.1 (The Physicists’ Planckian Locus). Planck’s law describes the spectral radiation intensity of an
idealised incandescent black body as a function of light frequency and temperature. Integrating over light
frequencies in the visible spectrum yields a function from temperature of the black body to chromaticity.

Figure 5.11: The Planckian Locus in the CIE 1931
chromaticity diagram. Chromaticity refers only to
the hue of a colour, without other domains such as
saturation.

Abstractly, the Planckian Locus is a continuous function mapping the positive real line representing the
conceptual domain of temperature into the plane representing the conceptual domain of colour. The Planck-
ian locus is the basis of colourist-talk about colour schemes in terms of temperature, which allows them to
coordinate movements in colourspace using the terminology of temperaturespace, e.g. make this shot

warmer. This fits with what we would prototypically expect a metaphor to allow us to do with meanings.
However, the particular mathematical conception of metaphor-as-map in Example 5.6.1 is too rigid: it only

goes one way. It is a specific and inflexible kind of metaphor that does not behave at all outside its specified
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boundaries. For example, colourists have to deal with offsets towards green and magenta, which are not
in the chromaticity codomain of the function given by Planck’s law. It would be truer to life if we further
analysed the function as mediated by a strip.

Example 5.6.2 (The colourist’s Planckian Locus). Now we aim to extend our mathematical model to accom-
modate the fact that colourists deal with chromatic offsets or deviations from the mathematically precise
locus given by Planck’s law.

Figure 5.12: Consider the unit square (depicted as
a strip) as a fiber bundle over the unit interval rep-
resenting temperature range. There is an injective
continuous map from the strip into colourspace
that is centered on the Planck Locus.

Figure 5.13: The left leg is bĳective in the image
restriction, so any point or displacement in the
offset-strip in colourspace can be lifted to a point in
the apex strip, which is then projected down along
with other points in the vertical fiber to a point in
temperaturespace. So we have a decategorified
cofunctor!

A refinement we have just captured is the partially-structuring nature of metaphor [LJ03]. In the language
of our running example, pure green is outside the scope of the colour-temperature correspondence given by
the Planckian Locus, so the metaphor is only a partial structuring of the colour domain according to the tem-
perature domain. This partiality in the colour domain means that it would have been inappropriate to model
the passage of colour-talk to temperature-talk as a function from colour to temperature, as functions are to-
tal, rather than partial, on their domain. While it is conceptually nice that we are on the way to recovering
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monoidal cofunctors as a model of metaphor, why didn’t we stay simple and just use a partial function? The
answer is that the strip at the apex represents the talk part of colour- and temperature-talk.

Example 5.6.3 (Conceptual transfer between domains). When colourists use the temperature metaphor
they might say "hot", "warm", "cooler", which are not specific temperature ranges in Kelvin, but concepts
in temperature-space. Recalling that we may consider concepts to be open sets of a topology (and compara-
tives as opens of the product), we observe that we can linguistically model regions on the positive reals with
words little (labelled 𝑙), lot (labelled 𝐿), and more (labelled 𝑀), an algebraic basis from which derive less

by symmetry, and other regions such as more than a little, less than a lot. In this particular running
example, it happens that both legs of the span of functors have a lifting property, which explains how we
might model the fact that conceptual colourist-talk of "daylight" or "candlelight" in the colour domain can be
sensibly interpreted in the temperature domain. The formalisation of this fact follows by symmetry from this
example.

Figure 5.14: Starting from the right, the lifting
property of the right leg is what lets us map "hotter
and colder" temperature talk into the more abstract
quantity-talk of "more and less" in the apex strip.
Then the left functor sends quantity-talk into the
colour domain, which allows "hotter and colder" to
be used in the colour domain.

Figure 5.15: The additional expressive power that
the apex strip gives is the concept of vertical offset,
which doesn’t appear in the real line. So the apex
strip allows talk of quantity and offset, and this off-
set, when translated into the colour domain, allows
talk of offset towards and away from, for instance,
green.
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A preliminary observation is that the metaphor is a so-
cial construct, as we could just as well have collectively
settled on a convention that TIME is FOOD, which pro-
vides a liberating sense of mastery (at least in a context
where food is abundant): time can be prepared, pro-
duced, consumed, spiced if dull and best shared with
loved ones.

5.6.2 Time and Money: complex conceptual structure

Metaphor is perhaps the only methodology we have for making sense of certain abstract concepts, such as
Time. For example, many languages make use of the metaphor TIME is SPACE, in which space-talk is used to
structure time. In English, the future is ahead of us and the past behind, while conversely, for the Aymara the
future is behind and the past is ahead. Orthogonally, in Mandarin the future is below and the past is above.
We have already demonstrated that we have the tools to deal with conceptual transfer between static concep-
tual spaces viewed as topological spaces via spans of continuous maps. What is of concern to us are dynamic

metaphors that involve a conceptual space-time with agents and capabilities and so on. The following discus-
sion draws heavily from [LJ03].

For example, in English, we make ample use of the metaphor TIME is MONEY. Now here are two mathe-
matical observations about TIME is MONEY.

First, the conceptual affordances of money-talk are marshalled to give structure to time-talk, where there is
no such structure were it not for the metaphor. To establish this first point of conceptual transfer by example,
a phrase like Do you have time to look at this? is completely sensible to us, but literally meaningless;
even if we had an oracle to measure possession, what would we point it at to measure a person’s possession
of time? Even if we accept some argument that the concept of possession is an innately human faculty, when
we say This is definitely worth your time! or What a waste of time., we are drawing upon value-
talk that is properly contingent in the socially-constructed sense upon the conceptual complex of money.

Second, metaphor has a partial nature mediated by users and contexts, in that it is not the case that the
metaphor licenses all kinds of money-talk to structure time-talk. To establish this second point of partiality,
consider that money can be stored in a bank, whereas there is no real corresponding thing in the common
conceptual vocabulary which one can store time and withdraw it for later use — Although, in a wonderful
example of ‘pataphysical thinking, "Time Banks" have existed since the 19th century, which are practices of
reciprocal service exchange that use units of time as currency. But the partiality constraint is itself partial.
For instance, one can invest money into an enterprise in the expectation of greater returns, and this is not
appropriate for many domains of time-talk, but there is a metaphorical match in some specific contexts, such
as text-editor-talk: learning vim slows you down at first but it will save you time later.

Now I’ll try to demonstrate by example that the kinda-cofunctors we explored in Section 2.1 between text
circuits do all of the things we have asked for. The components of text circuits serve as an algebraic basis
for dynamic conceptual complexes, while the kinda-cofunctor handles partial structuring of one conceptual
domain in terms of another.
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Example 5.6.4 (Vincent spends his morning writing). To begin a formal figurative interpretation via the
metaphor TIME is MONEY, we require some model of the conceptual domain of money, as well as a topolog-
ical interpretation. As a first pass, we understand that money can be exchanged for goods and services, so
we will settle for a text-circuit signature for trade to serve as the conceptual domain as the apex of a cofunc-
tor, given in Figure 5.16. The elements of the topological model are given in Figure 5.17. The behaviour of
the opfibration part of the cofunctor is detailed in Figure 5.18, and that of the identity-on-objects functor in
Figures 5.19, 5.20, and 5.21. The figurative model serves as a foundation from which truth-theoretical seman-
tics can begin. In the sketched interpretation, there aren’t too many interesting questions one can ask, but
the purpose of this example is to point out that in principle, we can exploit the systematicity of metaphor
by constructing figurative mechanical models for which interesting questions can be asked and answered
truth-theoretically, as in Figure 5.22.

Figure 5.16: In the TRADE signature, we define two
roles as wires: TRADERS and TRADEABLES. There is
one static relation HAS to indicate a trader’s owner-
ship of a tradeable, which can be further elaborated
with equations to indicate e.g. exclusivity of own-
ership by interpreting violations of exclusivity as
a zero morphism, assumed but elided for brevity.
There is one dynamic verb (treated as a homotopy)
TRADE, which at time 0 enforces a precondition that
the traders have their respective tradables, and at
time 1 (completion of the trade), the traders swap
possession of their tradeables. The TRADE signature
contains all nominal instantiations of nouns with
respect to roles, which will be illustrated shortly.
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Figure 5.17: We build the topological model from
two sticky spiders in the Euclidean plane. The
TRADER spider will distinguish two regions of
possession, so that HAS may be interpreted as a
region-test. The TRADEABLES spider will specify
four meeples or counters, three for time, and one
for thesiswriting; we will use the configuration
space of the TRADEABLES spider to regulate their
movement and distribution. Next, we have to spec-
ify what the discrete opfibration is doing. Recalling
our functor box notation, we can consider the job of
the discrete opfibration to be role assignment from
the verb SPEND in the utterance to the verb TRADE in
the conceptual domain.

Figure 5.18: The opfibration forgets about role-
assignments in its domain by sending them to
the monoidal unit. The lift of the opfibration is a
role-assignment. (Arguably) unambiguously in
this example, Vincent is the spender and the first
trader, and A.M is the cost and the first tradeable.
However, there are two options to resolve writing

treated as a noun-phrase in the role of GOOD. In the
first lift, writing is resolved as the other trader,
and the implicit good as thesis. In the second lift,
writing is the tradeable and something else is the
trading counterparty, such as the world.
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Figure 5.19: The section of the opfibration over
the SPEND verb is a tabulation of all the ways in
which conceptual roles in the TRADING domain
can be assigned. To continue the example, we will
assume the first lift in Example 5.18 as our inter-
pretation. The identity-on-objects functor part of
the cofunctor maps our chosen interpretation into
the following diagram in ContRel. The configura-
tion space of the TRADEABLES spider is expanded
via split idempotent so that all thin wires in the di-
agram are typed as the Euclidean plane. Recalling
Example 5.1.1, HAS is interpreted as the intersection
of the position of a counter with the possessive
region of the respective trader.

Figure 5.20: We may verify that the equations gov-
erning TRADE cohere with our topological figures.
At time 0, before the trade, we can calculate that
the permissible figures have Vincent in possession
of A.M and writing in possession of thesis.

Figure 5.21: At time 1, we may calculate that the
permissible figures must be such that Vincent is in
possession of thesis and writing is in possession
of what was previously my morning.
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Figure 5.22: In a more detailed conceptual model
of TIME is MONEY, rather than just TRADE, we might
consider income, the spender’s agency, and cost.
In Euclidean 3-space, we might model income as a
clock-gated mechanism that deposits time-tokens
serially into Vincent’s possession, along with his
agency as a gated chute, and the time cost of writ-
ing a thesis as a dispenser that requires a certain
number of tokens to release a thesis-token into
Vincent’s possession. In this sketch model, one
obtains short films for He used to waste his

mornings but now he spends them writing, or
He once spent an evening writing but made

no progress. One can then ascertain certain con-
sequences truth-theoretically; for instance that
there is at least one morning that was not spent
on writing, or that there is at least one evening
spent on writing but not inside the slot that would
help a thesis-release mechanism trigger. In every
case, cofunctoriality handles bookkeeping for role-
interpretation choices and guarantees systematicity
of the topological figure according to the signa-
ture at the apex model that models the organising
concept.
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Postscript: That was the summary of the thesis. Thanks
and goodbye.

5.7 A specimen problem sheet from an imaginary future

In multiple reveries while writing, I audited a class on string-diagrammatic methods in formal linguistics
someplace in an unlikely future. The people there had strange views on facets of language as a formal object,
which I’ll try to summarise here.

Composition Compositionality equals topological representability; in particular, meaning relations in text are
witnessed by connectivity of string diagrams.

Systematicity Systematicity equals functorially witnessed relations between compositional structures; in
particular, spans of functors between families of string diagrams witness agreement between different
theories as topological equivalence.

Syntax Syntax equals a coherent method of synthesising and analysing composition; in particular, any inter-
nally consistent conception of natural language syntax in terms of string diagrams is permissible.

Semantics Semantics equals computatation; in particular, any consistent computational interpretation of the
content of string diagrams is permissible.

These beliefs led to a wild form of picturalism. I tried to explain that there was an essential tension be-
tween the detail of rigour and the creative-expressive aspect of formal models, but their synthesis of this
dichotomy was so ingrained they could not understand what the problem was. It was pretty liberating stuff.
With their permission, I took home a suitably redacted problem sheet and filled it in myself, which I share
with you now.



Prof.
: Diagrammatic Methods in

Date: , 20
Problem Sheet (due Week )

Question 1.
You may assume standard semantics of motion.
Consider the following iconic signature for the TUNNEL concept, with two movable shapes (in bold) and
two place-indexings (indicated by dashed and dotted lines.)

entrance passage exit

thing tunnel

start

end

a) Fill the 3-panel vignette in the TUNNEL signature for thing goes through the tunnel.

b) Depict an intermediate panel such that its splice is not a 3-panel vignette for the same sentence.

1
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c) Briefly justify your answer for part b).

d) Hence, or otherwise, provide process typing and relations for through in TUNNEL.

Question 2.
Consider the following to be the characteristic process of the CONDUIT metaphor.

sender

receiver

container

content

ca
us

e
co

nt
ai

n

ca
us

e
go

th
ru

conduit
to

container

ca
us

e
ex

tr
ac

t

sender

receiver

container

content

conduit



3

a) Analyse and equationally characterise (N)cause(contains) in terms of the dynamic verb put and
static relation in. You may assume put = cause(in) and standard put-get typing.

b) Assuming standard negation semantics, label and gloss the following composites.

sender

container

content

ca
us

e
co

nt
ai

n

go
th

ru

conduit

receiver

content

go
th

ru

ca
us

e
ex

tr
ac

t

ca
us

e
ex

tr
ac

t

receiver

container

go
th

ru

conduit

c) For each composite, give an example of a matching sentence in the CONDUIT metaphor, along with
with brief justification.
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Question 3.

a) Provide a phrasal analysis. You may ignore contextual determiners.

He gets the point through in an example.

b) Hence, or otherwise, provide a text circuit for the sentence.

c) Using your answers from previous questions, compute the iconic semantics in TUNNEL by merge-boxes.
You may assume standard causal semantics and notation. Justify nonstandard notations.
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(An additional blank page is provided for calculation, should you need it.)

Notices: Due to an ongoing weather-event there is a infestation in Hall .
Next week’s lectures will take place on - : a reminder that non- students must have
their -modules ed and ing AT ALL TIMES WITHOUT EXCEPTION.

University
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