Towards
Requirements for Community Z Tools

Andrew Martin
(incorporating Mark Utting’s suggestions)

December 2001

This document attempts to collect together some of my ideas and those
of others expressed in the czt-project mailing list recently. It is very
definitely a draft document: comments will be welcomed, and changes may
be anticipated. If it sometimes seems to cross the line from requirements
specification to design, that is a common failing among users who think
they know what they want...

Ideally this paper should be published at a conference or in a journal, in
the names of those who contribute significantly to its development. In the
fullness of time, it may split into a number of separate documents. Many of
Mark Utting’s ideas have been incorporated; some seemlessly, some so far
not (and identified as such). His thoughts on design and architecture are
perhaps implicitly present, but not reproduced.

I began by calling this the Community Z Tools Project; I think perhaps
Community Z Tools Initiative might be a more appropriate term. Within
the following description, a number of distinct projects can be identified —
descriptions of such projects would be welcomed.

The requirements have been grouped into a number of ‘Levels’, with
Level 1 as a collection of pieces of infrastructure, and Level 2 the beginnings
of an integrated GUI Level O entails the design and identification of file
formats and programming interfaces. This does not necessarily imply a
linear progression through the levels with time. Experience in Level 1 may
feed back into Level 0, and so on.

1 Context

1.1 State of the art

Many have developed Z tools over the last fifteen years. A few have been
commercial ventures; others have been development or research projects
of varying levels of sophistication. Few of the commercial ventures have
proved financially viable; few of the research projects have either received



sustained development or been archived in such a way as to be accessible
to other researchers or users.

The Z notation continues to attract considerable interest from educa-
tors and researchers, as well as industrial application in a number of areas.
Production of simple tools may not be commercially attractive; it is hardly
a research exercise, either: all the ‘proof of concept’ work has been done.
Nevertheless, such tools have great potential to aid learners in making sense
of Z, and if well-designed could provide a useful platform for advanced and
speculative research.

Z specifications are richly visual; the schema boxes make a Z document
distinctive. The mathematics used in Z is expressed concisely (some would
say tersely), in the best traditions of mathematical argument, using a large
collection of symbols. Whilst these symbols may be the bane of a student’s
life, they contribute much to Z’s ability to make complex descriptions in
a few lines, and for users to examine and reason with small and compre-
hensible terms. Modern desktop computers can readily display these nota-
tions, yet many formal methods tools remain stubbornly text-based, at best
complicating the learning process and at worst completely obscuring the
possible clarity of expression.

1.2 Standard Z

Considerable effort over the last decade has contributed to the development
of an ISO standard for the Z notation. In most regards, the de facto standard
of Spivey’s Z reference manual is a subset of Standard Z. Other writers
have extended Z in various ways, typically incorporating explicit object-
orientation or process-algebraic ideas.

Any new tools produced under this initiative should seek to conform
to Standard Z. Designs should have flexibility, however, to support other
dialects and experimental extensions to the language. In its long develop-
ment, Z has never been a ‘closed’ fixed language, but rather a framework
into which useful notational ideas have been placed.

The most common file format for Z uses the KIgXmark-up defined by
Spivey’s fuzz. This and other existing mark-ups/formats should be sup-
ported.

1.3 Sources of effort

The observation that core Z tools are neither likely to be commercially viable
nor the subject of successful research proposals leaves the question of how
they are to be paid for.

Two promising angles seem open:

e Advanced research projects may apply for a quantity of money to de-
velop the necessary infrastructure for their real research. The draw-
back here is that research output is measured in most areas by the out-



put of learned papers, not by completing software. Something ‘good
enough’ to support a proof-of-concept development, may not be good
enough for a different project wanting different aspects of the core
functionality.

e Many pieces of core functionality may be amenable to implementation
by undergraduate (honours) or Master’s students. Of course, many
such projects happen already, but they often repeat the same work,
and are almost never integrated together. There may be considerable
educational value in, say, trying to develop a parser for Z, but some
students could derive value by taking such a component from a shared
repository.

Other ideas are sought.

If these tools are to be useful and re-usable in various ways, they must
somehow fall within the broad thrust of ‘free software’. The precise licenc-
ing terms will depend on the author, but the CZT initiative should expect
mainly to encompass software which is free for almost any kind of use
(other than sale for commercial gain).

The open-source model is not in itself sufficient to guarantee quality
software development, though it offers a good start. Work should be subject
to peer-review and widespread testing, so that it may be able both to support
future student projects, but also be strong enough to be used industrially.

1.4 Implementation Technologies

One of the problems associated with academic tools projects is that they
frequently use exotic implementation technologies which are themselves
experimental. These may offer a rapid development route (the author’s
experience differs!), but those tools and languages are seldom supported or
available in the medium-term.

Most of the world — including many commercial development environ-
ments — is a Microsoft Windows mono-culture. Many academics are com-
mitted to other platforms — Solaris, and Linux in particular. For wide appli-
cability and maximum flexibility, the core of CZT must use readily available
software tools, capable of running on all popular platforms. For this rea-
son, the Java language will play a large part in CZT, though perhaps not an
exclusive role.

1.5 Existing Tools

One valuable contribution to the community would be to develop Jonathan
Bowen’s list of Z tools. Someone could usefully catalogue which are ‘live’,
which are available (free or at a price), the implementation languages, input
and output formats, and capabilities of these tools.



2 Level 0: Interface Design

Abstract discussion of interfaces is hard at this point. The components
identified in Level 1 might, however, usefully be abstracted as interfaces.

Moreover, CZT will need a detailed description of those file formats
which are to be supported for interchange and general 1/0.

3 Level 1: Infrastructure

Many separate components can be identified as worth implementing in their
own right. Such a ‘bottom-up’ approach seems unusual, but may be suitable
in this area, since the basic components are well-understood.

3.1 Internal Representation of structures

Several people have argued that the representation of Z terms as data struc-
tures is the key component of this type of tool-set. One requirement is
clearly for a data structure which captures as precisely as possible the form
of the specification under consideration. That is, it should reflect the pre-
cise structure of each input term, and also record any commentary present
in the specification. This is, somehow, an abstract representation of the
concrete syntax.

Various applications will need to manipulate this structure: it may gain
annotations through type-checking or other processes; it may be rewritten
using syntactic or logical re-writes, etc.

The ideal approach seems to me to be the creation of a collection of inter-
faces (or abstract classes?) which represent a specification and allow it to be
manipulated using visitors etc. Classes which implement these interfaces
may do more than necessary (storing extensive annotations, for example)
without violating their ability to be used in simpler situations.

[Utting] CZT should produce accurate error messages. Where possible,
error messages should include accurate references to the line and column
of the SOURCE file which caused the error.

5a. Tools that transform the Z AST in various ways must try to preserve
‘source locator’ information which provides back-links to the source. For
example, each AST object might have an optional attribute that records the
source locator of that construct (which specifies the file name, line number
and column number where the construct was originally read from).

5b. Any interchange formats must be able to include these ‘locators’.

3.2 Input and output of specifications

Parsers are needed for a variety of mark-up and source formats, including as
many as possible of those in current use. These include fuzz-style KIgX(or



oz-style); the email mark-up; one or more XML representations. Ideally,
tools would also support a word-processed format such as RTF, since this
is in widespread use.

The interfaces (and their implementations) described in section 3.1 can
be used as the targets of such parsing activities.

Likewise, methods will be needed to output a specification stored in the
internal data format (i.e. a format implementing at least the most basic
interface), in a variety of textual formats, including those listed above.

Plainly, with just this collection of classes, a simple ‘translation’ tool with
a command-line interface will be almost trivial to implement. For any given
format, it should be capable as performing the identity translation.

3.3 GUI components

Classes consistent with the Swing library should be implemented, capable
of instantiation to display a fragment or whole specification, as described in
section 3.1. The simplest requirement would be to render a Z paragraph as
a suitable subclass of Container. A fuller implementation would allow the
display of smaller fragments (predicates, expressions); folding and unfold-
ing lines; browsing of whole specification documents (with various material
optionally elided); and so on.

A key aspect of this work will be to identify suitable fonts and unicode
presentations of Z symbols. Portable and durable font-handling code will
be needed, as will a distribution with at least one fully-capable font.

More elaborate GUI components can be envisaged which allow editing.
Again, these should find an appropriate place within the Swing hierarchies.
These might enable editing of full specifications, individual paragraphs, or
smaller fragments — these will find application in general editing and also
interaction with proof and animation tools.

3.4 Other components

The description in the other sub-sections has been rather Java-centric. Other
components may usefully use different technologies. For example, some
work has been undertaken with XML transformations; interplay with tools
such as ZEUS (with FrameMaker) might also be relevant.

[Utting] To help tool builders who wish to use programming languages
other than Java (the preferred language of CZT), such as Prolog or functional
languages, a good approach is to provide interchange formats that can be
easily read by that language. (Perhaps an XML format, and/or a Prolog-
specific format etc.).



3.5 Enabling integration

CZT should be able to integrate with existing Z tools. It must be possible
to connect it to existing interactive Z tools, like the CadiZ prover. It should
also be possible to connect it to batch-oriented Z tools that produce reports
or perform Z to Z transformations.

At this level, the need is for integration components; tools that will fa-
cilitate interchange via files. Additionally, the components should address
issues of batch-invocation of external tools, and the scope for user interface
integration.

As a research topic, the inclusion of Z fragments in XMI might usefully
be investigated, with a view to interchange between CZT and popular UML
tools.

4 Level 2: Approaching tools

4.1 A GUI

The components above might be combined to produce one or more CZT
applications. The re-use of such components might enable different tools
to adopt similar interfaces, for ease of learning.

An exemplar GUI would include:

1. a WYSIWIG editor for Z specifications
2. facilities to load specifications from file, save to file, and print

3. a type-checking facility (ideally pluggable), with error reporting linked
to the editor

In order to pass beyond the mundane, it might also incorporate:

1. front-end support for animation of Z specifications — pluggable ani-
mator behind the scenes

2. support for re-writing expressions (calculation in Z)
3. support for full-blown proof tools

As many components of the GUI as possible would be readily replaceable,
to provide a simple environment in which to demonstrate ideas and new
projects.

The GUI tool should be capable of easy installation and use on at least
MS-Windows and X-Windows (Solaris/Linux). A ‘lite’ version running as a
Java applet is desirable, too.



4.2 Integration

[Utting]

2b. CZT must be able to invoke existing tools, so must have some knowl-
edge of their command line options etc. For the batch-oriented tools that
produce output files (perhaps Z files), CZT must also know roughly what
the tool does and what kind of output it produces, so that the output can
be incorporated back into CZT.

2c. Using existing tools means that CZT cannot have a completely uni-
form user interface. The core tools of CZT may follow a common GUI-style,
but some add-on existing tools will continue to use their own interfaces.

A Terminology

[Utting]

Z source format The format of a source file that contains a Z specification
plus natural language commentary, and possibly other things like di-
agrams, table of contents, indexes, specifications in other formal lan-
guages (statecharts etc.). This is the format that USERS create with
some kind of editor.

Interchange format A file or storage format that is used to communicate a
Z specification between tools. This may be used to communicate just
the Z part of a specification, or all of the specification, so I propose
two more specific terms:

Z interchange format An interchange format that contains ONLY the Z con-
structs of the specification. (The remaining parts, such as natural lan-
guage, are discarded before creating this format.)

Complete interchange format An interchange format that contains EVERY-
THING in the specification, including natural language, diagrams etc.
as discussed above.

Annotation A piece of Z-related information that can be deduced automat-
ically by some tool, and attached to a Z construct.

e Example 1: the inferred type of a Z function application. In the
predicate, a =, the ’a’ and ” might be annotated with P Colour, to
indicate that a set of Colour values are being compared.

o Example 2: the inferred signature of a Z schema expression

There has been some debate about whether interchange formats should
be annotated or not. The advantage of including annotations is that
the receiving tool does not need to derive the annotations for itself
(e.g., the type checking is already done). On the other hand, if the



receiving tool is not interested in that information, it can ignore the
annotations. So I propose the following final four kinds of interchange
format (and an abbreviation for each one):

Annotated Z interchange format (AnnZIF)

Non-annotated Z interchange format (ZIF)

Annotated complete interchange format (AnnCIF)

Non-annotated complete interchange format (CIF)

AST

(If you use an abbreviation, please spell it out in full the first time you
use it).

Note that, by definition, a Z source format is not ‘annotated’, because
annotations are added automatically by tools. However, it is possible
that a Z source format could also be used as an interchange format.
(In that case, it would be a CIF).

‘Annotated Syntax Tree’. This is a Java data structure for representing
Z constructs. It contains roughly the same kind of information as an
Annotated Z interchange format (AnnZIF).

(NOTE: it would be possible to define four different kinds of syntax
tree: non-annotated/annotated x complete/z-only. However, I think
that the annotated, z-only one will be most common.

Source Locator areference to a precise position in a Z source file (including

file name, line number, column number etc.)



