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Introduction to Formal Proof 2: Proofs about Propositional Calculus Road Map

Introduction to Formal Proof 2: Proofs about Propositional Calculus Propositional semantics

Road Map

> We need a definition of the validity of conjectures that is independent of Natural Deduction
> We will construct this by

o Defining the semantics of propositions
* inventing two truth-values — to represent true and false
* defining a valuation as a mapping from the atomic propositions to truth-values
* showing how to map every proposition to a truth value, given a valuation

> We will then equip ourselves to discuss soundness and completeness by

o Defining the entailment relation: Py, Ps,...P, E () to mean:

Propositional semantics

> There are two truth values. T represents true and F represents false.

> We are going to define the (truth-)value of every composite proposition in terms of the
(truth-)values of its components.

> Our first step is to define for each propositional connective ¢, a truth-function ¢
(i.e. a function of truth-valued operand(s) that yields a truth-value).

> The truth functions -, A, v, —, and < are specified by the tables:

@ is true in any valuation in which Py, ..., P, are all true qb‘q/;‘(;ﬁ/\d} gb‘q/;‘(;ﬁvw d)‘q/)‘qﬁeq/) qﬁ‘d;‘qﬁed;
o Defining semantic validity of the conjecture P|-~¢ FIF F FIF F FIFT FIF T
F| T FIT| F FIT T FIT T FIT F
P, Py, Pr- Q T| F TIF| F TIF| T TIF F TIF F
to mean TIT| T TIT| T TIT| T T T
PPy .. P EQ
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Introduction to Formal Proof 2: Proofs about Propositional Calculus Road Map Introduction to Formal Proof 2: Proofs about Propositional Calculus Propositions are a recursive data type

> Next we will give a (Haskell) representation for proof trees, together with the definition of
functions that

o check that a proof tree is valid according to the rules of Natural Deduction

o check that a valid proof tree proves the theorem it purports to prove

> We will use these definitions to prove the main result of this part of the course, namely that

‘every valid Natural Deduction proof proves a semantically valid conjecture\

> Finally, we will prove some results about Natural Deduction proofs and use these to justify
a new form of presentation of the Natural Deduction rules.
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Propositions are a recursive data type

> Imagine Haskell with a more liberal notation for defining data types

> We can define a type Prop to represent propositions

type AtomName = String
data Prop =1

| Atomic AtomName

| -~ Prop

| Prop A Prop

| Prop v Prop

| Prop — Prop

| Prop < Prop deriving (Show, Eq)

> Example: the proposition P - —@) — R — L would be represented by the Prop

(Atomic "P" - ((-~(Atomic "Q") — Atomic "R") — 1))
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Introduction to Formal Proof 2: Proofs about Propositional Calculus Proving things about Propositions

Introduction to Formal Proof 2: Proofs about Propositional Calculus Evaluating propositional formulae

Proving things about Propositions

> A reminder: structural induction for Prop

o Suppose we want to prove P(p) for every p: :Prop
o Base cases:
* prove P(L1)
 prove P(a) for every proposition a of the form Atom n
o Inductive cases:
+ Assuming P(p) prove P(-(p))
* Assuming P(p;) and P(p,) prove
P(pi A pr)
P(pivpr)
P(pi— pr)
P(p< pr)

> This method of proof can be used in proofs about propositions.

—5- 314 May, 2016011:45 [688]

Introduction to Formal Proof 2: Proofs about Propositional Calculus Evaluating propositional formulae

> Example: suppose v(R) =T,v(H) =T,v(D) =F, then:

[HAR—D],
[HAR],~[D].
([H].A[R])~[D]
(v(H) A v(R)) = v(D)

= (TAT)—F
=T—>F
=F
-7- 34 May, 2016@11:45 [688]

Introduction to Formal Proof 2: Proofs about Propositional Calculus A lemma about irrelevant atoms

Evaluating propositional formulae

> Definition: the atoms of proposition ¢ are the atomic propositions that appear in it.
> Definition: a valuation for proposition ¢ is a mapping from its atoms to truth values.
> Definition: a valuation is a total function from atoms to truth values

> Using the notation [ ¢ ], to denote the value of ¢ in valuation v we can define, recursively,
the value of any formula in any valuation:

[[J-]]v =
[a], = v

(for atomic a)

—2

)
¢l

I[_'(b:llv = -
[orv ]y = [o]o A [¥]s
[[¢Vw]]1' = I[¢]Iﬂ 4 I[w]lv
|[¢—’7/)]|u:[[¢]|v—>|[7/1]|u
[¢ov]o=[0). < [¥]

[.

> Note that connectives always appear within [ ... | and the truth functions always appear outside [ ... |

(without the colour cue we'd be able to take our cue from the types)
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A lemma about irrelevant atoms

> Lemma: if the atom a is not an atom of ¢, then [ ¢ ], is independent of v(a)

> Proof method: induction over the structure of the proposition

> Base cases:

o[ L]=F, and this is independent of v(a)

o Let P be an atomic proposition distinct from a
If v(a) =T, then [ P ], =v(P)
If v(a) =F, then [ P ], = v(P)
So [ P ], is independent of v(a)

> Inductive cases are typified by A
Let P; and P; be propositions not containing a, with [ P; ], independent of v(a) (i = 1,2)
Then [ P1 Ju A [ P2 ]v is independent of v(a)
and [ PrAPy ], =[ Pi]oA[ P2]osoitis independent of v(a)

-8~ 3rd May, 2016@11:45 [688]



Introduction to Formal Proof 2: Proofs about Propositional Calculus Definitions: tautology, satisfiability, entailment

Introduction to Formal Proof 2: Proofs about Propositional Calculus Detour: Tautology and Satisfiability Checking

Definitions: tautology, satisfiability, entailment

> Definition: “¢ is a tautology” means [ ¢ ], =T for every valuation v

> Definition: “¢ is satisfiable” means [ ¢ ], = T for some valuation v

(in this case we say that v satisfies ¢)

> Definition: “the propositions ¢1, ¢, ...¢»,, entail 10" means
[ ]. =T for every valuation v for which [ ¢; ], =T (all i =1,...n)

> We write this as ¢1, ¢, ...¢0, = ¢

> Notice that & ¢ if and only if ¢ is a tautology

-9- 314 May, 2016011:45 [688]

Introduction to Formal Proof 2: Proofs about Propositional Calculus Detour: Tautology and Satisfiability Checking

> The truth table method allows us to do this systematically by hand
> Example: (H AR — D) - -D — —H is satisfiable but not a tautology

H|R|D|((HAR)—-D) - (-D-> - H)
F|F|F F T T T T T
F|F|T F F T F T T
F|T|F F T T T T T
F|T|T F T T F T T
T|F|F F T T F F
T|F|T F T T F T F
T|T|F T F T T F F
T|T|T T T T F T F

> Each row has

o on the left: a description of the relevant part of a valuation
o on the right: the values of each sub-proposition at that valuation
written beneath the main connective of that sub-proposition.

13 11— 37 May, 2016011:45 [688]

Introduction to Formal Proof 2: Proofs about Propositional Calculus Detour: Tautology and Satisfiability Checking

Detour: Tautology and Satisfiability Checking

> In principle we must evaluate ¢ for all possible valuations
o If its value is always T then it's a tautology.
o If its value is sometimes T then it's satisfiable.

o If its value is always F then it's unsatisfiable.

> The lemma suggests that we can just evaluate ¢ for all combinations of values of the
atoms that occur in it.
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D> Is brute-force tautology / satisfiability testing practical?

o Evaluating a proposition is easy to implement:
e.g. (in Haskell) using Bool for truth values
eval:: (Prop->Bool) -> Prop -> Bool
eval v prop = case prop of

1 -> False

Atomic _ -> v(prop)

Not p -> not (eval v p)

PAq -> eval v p & eval v q

p—a -> if eval v p then eval v q else True

o But a proposition ¢ with n distinct atoms has a truth table with 2" rows, and needs
evaluating 2" times for a tautology test or to find all satisfying valuations.

o So tautology / satisfiability by this “brute force” method gets impractical quite quickly.

o There are more sophisticated algorithms (SAT-solvers) that can do these checks on
propositions with huge numbers of atomic propositions of the kind that arise when
search problems are modelled in propositional logic.

End of Detour
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Introduction to Formal Proof 2: Proofs about Propositional Calculus Soundness 1: Definition

Introduction to Formal Proof 2: Proofs about Propositional Calculus Soundness 2: Proofs represented as data structures

Soundness 1: Definition

> Our natural deduction proof system was intended to allow us to make rigorous arguments
in support of conjectures of the form ¢1,..., ¢, -

> Having a proof of such a conjecture ought to give us complete confidence that the
conclusion is true in a situation where all the premisses are true.

> We need to convince ourselves that the Natural Deduction rules are sound as a whole; in
other words, that

if there is a proof of ¢1,..., ¢, - 1, then ¢y, ..., 0, E Y

" 13 37 May, 2016011:45 [688]

Introduction to Formal Proof 2: Proofs about Propositional Calculus Soundness 1: Definition

Soundness 2: Proofs represented as data structures

> Proofs are trees built by putting simpler proofs together using inference rules

> The leaves of a proof tree are the premisses of the conjecture being proved
(or the hypotheses of hypothetical subproofs)

> So we can define a type ProofTree (in Haskell) as follows:

data ProofTree = InferBy RuleName [ProofTree] Prop

> Each node in a proof tree represents the use of an inference rule, and is labelled with

o zero or more subproofs
o the name of a proof rule
o the conclusion that is inferred (and that the node purports to prove from the subproofs)

> For later use we define:

conclusion :: Proof -> Prop
conclusion(InferBy name subproofs conc) = conc

15 37 May, 2016011:45 [688]

Introduction to Formal Proof 2: Proofs about Propositional Calculus Soundness 2: Proofs represented as data structures

> We will convince ourselves by means of a rigorous argument about proofs: a meta-proof

> This argument will look like an argument about a (recursively-defined) data structure

o We start by showing how to represent a proof tree as a (Haskell) data structure
o Then we show how to define a (Haskell) function that checks the validity of a proof tree

o Then we show, with a proof by structural induction over valid proof trees, that

\Every valid proof tree proves a semantically valid conjecture

314 May, 2016@11:45 [688]

> In this representation, the proof

hyp hyp
Yvag YA
A-elim-R A-elim-L
¢ v
A-Intro

¢

would be represented by the Haskell tree

InferBy "A-intro" [1, r] (phi A psi) where
1 = InferBy "A-elim-R" [InferBy "hyp" [] (psi A phi)] phi
r = InferBy "A-elim-L" [InferBy "hyp" [1 (psi A phi)] psi
phi = Atomic "¢"
psi = Atomic "y"

> But not every ProofTree built by InferBy represents a proper proof. For example:

o The hyp rule has no subproofs, and can only infer an actual premiss (or hypothesis)
o The and-introduction rule requires subproofs that prove the conjuncts of its conclusion

o The and-elimination rules requires a subproof that ends in a conjunction ....

314 May, 2016@11:45 [688]

16 —16 —



Introduction to Formal Proof 2: Proofs about Propositional Calculus Soundness 3: a proof checker

Introduction to Formal Proof 2: Proofs about Propositional Calculus Soundness 3: a proof checker

Soundness 3: a proof checker

Next we will build a (Haskell) function that checks whether a tree that purports to be a proof
of a conjecture actually represents a valid proof of that conjecture.

data Conjecture = [Prop] + Prop

proves:: Proof -> Conjecture -> Bool
p ‘proves‘ (ps + c) = conclusion p == c && valid ps p

We need to check that the purported proof's conclusion is the conclusion of the conjecture;
and that the tree as a whole was built according to the proof rules, and that that the leaves of
the proof tree are premisses or assumptions, and that the assumptions made for hypothetical
subproofs are used in only those subproofs.

For the last two reasons we pass a list representing the collection of currently-in-scope
hypotheses (and premisses) to the workhorse validity-checker, valid.

17 314 May, 2016011:45 [688]

Introduction to Formal Proof 2: Proofs about Propositional Calculus Soundness 3: a proof checker

The interesting cases are those with hypothetical subproofs. For example:
InferBy "—-intro" [pr’] (p—q) —>
valid (p:hs) pr’ && conclusion pr’ == q

InferBy "v-elim" [d, 1, r] ¢ ->
valid hs d &&
conclusion 1 == c &&
conclusion r == c &&
case conclusion d of
pvq —> valid (p:hs) 1 &&
valid (q:hs) r
-> False

In each case, the assumption is added to the collection of assumptions permitted in the
subproof(s) while they are being checked for validity.

This captures the graphically-presented notion of “boxed subproof” — making quite precise
what we mean when we say of a rule that the assumption made here cannot be used outside of
the subproof(s) used to justify the inference step.

> Exercise: complete the proof checker by implementing the other proof rules.
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Introduction to Formal Proof 2: Proofs about Propositional Calculus Soundness 4: some observations about subproofs

The validity of a particular inference depends on the rule used, and requires the validity of its
subproofs (if any). First we present a few of the more straightforward cases.

valid:: [Prop] -> Proof -> Bool
valid hs proof = case proof of

InferBy "hyp" 1 c -> c € hs

InferBy "A-intro" [1, r] (prq) —>
valid hs 1 && conclusion 1 == p &&
valid hs r &% conclusion r == q

InferBy "a-elim-L" [pr’] ¢ ->

valid hs pr’ && case conclusion pr’ of p’A_ -> c==p’; _ -> False
InferBy "A-elim-R" [pr’] ¢ ->

valid hs pr’ &% case conclusion pr’ of _Ap’ -> c==p’; _ -> False
InferBy "—-elim" [1, r] c >

valid hs 1 && valid hs r &&

case conclusion r of

(p—~q) -> conclusion 1 == p && q == ¢
-> False
-18- 34 May, 2016011:45 [688]

Soundness 4: some observations about subproofs

> Observations about hypothetical subproofs of valid proofs

> Example:

valid hs (InferBy "—-intro" [pr’] (p—q))

{by valid definition (the "—-intro" case) }
valid (p:hs) pr’ && conclusion pr’ == q

{by definition of proves}

pr’ ‘proves‘ (p:hs + q)

> Similarly, if conclusion d = p v q

valid hs (InferBy "v-elim" [d, 1, r] c

={ ...}
d ‘proves‘ (hs - p VvV q) &&
1 ‘proves‘ (p:hs + c) &&

r ‘proves‘ (q:hs + c)

20— 314 May, 2016@11:45 [688]



Introduction to Formal Proof 2: Proofs about Propositional Calculus Soundness 4: some observations about subproofs

Introduction to Formal Proof 2: Proofs about Propositional Calculus Soundness 6: proof of soundness

> Observations about non-hypothetical subproofs of valid proofs

> Example:

valid hs (InferBy "A-intro" [1, r]l (pAqQ))
{by valid definition (the "A-intro" case) }
valid hs 1 && conclusion 1 == p &&

valid hs r && conclusion r == q

{by definition of proves}

1 ‘proves‘ (hs + p) &&

r ‘proves‘ (hs - q)

> Similarly, if conclusion r = p—q

valid hs (InferBy "—-elim" [1, r] q
={ ...}

1 ‘proves‘ (hs + p ) &&

r ‘proves‘ (hs + p—q)

o1 314 May, 2016011:45 [688]

Introduction to Formal Proof 2: Proofs about Propositional Calculus Soundness 6: proof of soundness

A introduction: suppose pr is InferBy "A-intro" [1, r] (pAq)
then | ‘proves’ [¢1,...,¢n] F p (by an earlier observation)
and r ‘proves’ [¢1,...,0,] - ¢ (by an earlier observation)
Suppose (induction hypotheses) that the nested valid proofs [, r are sound,
ie ¢1,...0, =pand ¢1,...0, E q
othen[p],=[ ¢ ], =T, for any v satisfying ¢1,...¢, (by the induction hypotheses)
oso [ pAgq],=T, for any v satisfying ¢y,...¢,
oso [ ], =T for any v satisfying ¢1, ...,
050 @1, .0 EY

o3 37 May, 2016011:45 [688]

Introduction to Formal Proof 2: Proofs about Propositional Calculus Soundness 6: proof of soundness

Soundness 6: proof of soundness

Soundness: Every valid proof tree is sound — i.e. proves a semantically valid conjecture
Proof: (for every proof tree pr) if pr ‘proves‘ [¢1,...0,] - ¢ then ¢1,...0, E Y
Suppose pr ‘proves' [¢1,...0n] F ¥

> We will proceed by induction on the structure of pr to show that [ ¢ ], =T for any
valuation v satisfying ¢y, ...¢,; i.e. suchthat [ ¢y Jo=...=[¢0n Ju=T.

> There will be a case for each inference rule.

Base Case: pris InferBy "hyp" [] %
o then valid [¢1,...0n] pr (definition of proves)
050 Y€ [P1,...0n] (definition of valid)
oso [ % ], =T for any v satisfying ¢1,...0,

-22- 3rd May, 2016011:45 [688]

A elimination R: suppose pr is InferBy "A-elim-R" [pr’] q

then pr' ‘proves’ [¢1,...,¢n] F p A g (for some p).

Suppose (induction hypothesis) that pr’ is sound, i.e. ¢1,...0, EpA g
oSo[pAq],=T, for any v satisfying ¢1,...0, (by the induction hypothesis)
oSo [ ¢q],=T, for any v satisfying 1, ...¢, (definition of A)
0so [¢ ], =T for any v satisfying ¢y, ...,
050 (1, ...0, E Y

o4 31 May, 2016011:45 [688]



Introduction to Formal Proof 2: Proofs about Propositional Calculus Soundness 6: proof of soundness

Introduction to Formal Proof 2: Proofs about Propositional Calculus Statement of the Completeness Theorem for Natural Deduction

v elimination : suppose pr is InferBy "v-elim" [d 1 r] o

then d ‘proves’ [¢1,..., 0] F p Vv ¢ (for some p, q) (by an earlier observation)

and [ ‘proves‘ [p,¢1,...,0n] F ¥ (ditto)
and r ‘proves’ [q,d1,...,0n] F ¢ (ditto)
Suppose (induction hypothesis) that d, [, r are sound,
ie. (a) ¢1,...0n EpV g, and (b) p,¢1,...0, £, and (¢) q, P1,...0n E VY
oSo[pvq],=T, for any v satisfying ¢1,...¢,, (by induction hypothesis a)
oand [ ¢ ], =T, for any v satisfying p, &1, ...¢, (ditto)
oand [ ¢ ], =T for any v satisfying ¢, ¢1,...¢, (ditto)
* Now suppose that v satisfies ¢1,...¢,, then [pv ¢ ], =T
* then one or bothof [ p ], =Tor[ ¢, =T
> If [ p ], =T then v satisfies p, ¢1,...0,, 50 ¢1,...00, E ¥
> If [ ¢ ], =T then v satisfies ¢, @1, ...¢, 50 @1, ...00, E O

(definition of v)
(induction hypothesis b)
(induction hypothesis ¢)

> Exercise: complete the proof of soundness

D> Exercise: what happens to soundness if you add the rule 1 Placet
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Introduction to Formal Proof 2: Proofs about Propositional Calculus Consequence of Soundness

Statement of the Completeness Theorem for Natural Deduction

> Definition: We say that a proof system is complete for a semantics, when

everything that is true in the semantics can be proven in the proof system

> Completeness of Natural Deduction:
every semantically valid! conjecture can be proven by Natural Deduction
in symbols:

If ¢1,..., 0, = 1 then there is a pr :: ProofTree such that pr ‘proves’ [¢1,...,0n] F ¢

> The proof of completeness is intricate, and beyond the scope of these lectures.

i.e. semantically valid under the present definition of A, v, ..., T,F.

o7 314 May, 2016011:45 [688]

Introduction to Formal Proof 2: Proofs about Propositional Calculus Reusing proofs and using proofs-about-proofs

Consequence of Soundness

> Suppose you cannot find a proof of ¢y,...¢, + 1.
> Then it may be worth checking whether it is semantically invalid.

> For if it is semantically invalid, then you will never find a proof for it.
Q: How can | check for semantic invalidity?
A: Just find a single counterexample

— a valuation that satisfies ¢4, ...¢, but doesn't satisfy .

Exercise: find a proof of R, HA R — D, D+ H, or give a counterexample.

Exercise: find a proof of R,H AR - D,-D + =H, or give a counterexample.

-26- 3rd May, 2016011:45 [688]

Reusing proofs and using proofs-about-proofs

> There are two kinds of “reusable result” we can use in proofs

o Derived Rules: a derived rule is the obvious generalization of a proven conjecture.

o Admissible Rules: an admissible rule is a rule that can be proven by a meta-proof about
proofs, that shows that any proof that uses the rule is equivalent to one that doesn't.

Warning: for a while we will use the unofficial notation: ¢1,...¢, [F] Y
to mean that ¢1,...¢, + ¢ has a (natural deduction) proof.

> Example: weaken is an admissible rule

¢1, - [F1Y
Qb: ¢17 ---an w

weaken

> This can be read as a proof rule, or as a conjecture about proofs, whose meta proof goes:

o Let pr be such that pr ‘proves’ ¢y,...¢, -
o Then valid [¢1,...¢,] pr, so valid [¢, ¢y, ...¢,] pr, so pr ‘proves’ ¢, ¢1,...0n — 1

\3.2%
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Introduction to Formal Proof 2: Proofs about Propositional Calculus Reusing proofs and using proofs-about-proofs

Introduction to Formal Proof 2: Proofs about Propositional Calculus ASIDE: completeness steps in proofs of admissibility

> Another admissible rule is:

¢, ¢, I'lElY
¢, I

contract

> This suggests that the number of occurences of a formula in the assumptions doesn't really
matter when we are doing (ND) proofs; and the admissible rule weaken means that we

can neglect spurious assumptions.

> Another way of looking at these rules is that we can prune irrelevant premisses from a
conjecture, and irrelevant subproofs from the proof of a conjecture.

110 111 -29 - 3rd May, 2016@11:45 [688]

Reusing proofs and using proofs-about-proofs

ASIDE: completeness steps in proofs of admissibility

> Example: substitutivity of equivalent propositions is admissible

1, ---Pn, ¢(A) E1 ¢ (4) o1, onF A~ B
(Z)l: "'(bnv ¢(B) ¢(B)

(Here ¢, are "proposition schemas”; i.e. have type Prop->Prop)

subst

> Proof:

1: By soundness: ¢y, ..., #(A) = (A) and ¢1,...0, = A< B

2: A straightforward semantic argument from the definition of [ ... ]... can be used to
show from (1) that: ¢y,...¢,, ¢(B) E ¥(B)

3: By completeness we know that there is a proof of ¢y, ..., #(B) + (B)
(but not what the proof is!)

END ASIDE
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Introduction to Formal Proof 2: Proofs about Propositional Calculus Reformulating ND as a single-conclusion sequent calculus

Introduction to Formal Proof 2: Proofs about Propositional Calculus

> Example: cut is an admissible rule

Mathematicians and Computer Scientists habitually use Lemmas to simplify the structure
of a proof by proving an intermediate result “on the fly". This is justified by the following
result (which has an analogous dual reading to thin)

$UEY
[

I'Fo

t

If there is a proof pl of I' - ¢ and a proof pr of ¢,I" 1), then there is a proof of I" - )

> Meta proof: (sketch)
o Define paste: :ProofTree->ProofTree->ProofTree such that paste pl pr replaces every
occurence in pr of InferBy "Hyp" [1 (conclusion pl) by pl.
o Prove (by structural induction) that paste pl pr ‘proves' I'+
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Reformulating ND as a single-conclusion sequent calculus

> We have used the unofficial notation I"[F] ¢ to mean T+ %) has a (natural deduction) proof
> We will now reformulate natural deduction as an inference system using this notation
> The assumption collections implicit in ND will become explicit here

> We drop the word “conjecture” and refer to the form I'[F]4) as a single-conclusion sequent

> The hypothesis rule:

“We may conclude ¢ from any collection of hypotheses that contains ¢"
— hyp
oo

> We will take the cut, weaken, and contract rules as read

314 May, 2016@11:45 [688]



Introduction to Formal Proof 2: Proofs about Propositional Calculus Reformulating ND as a single-conclusion sequent calculus

Introduction to Formal Proof 2: Proofs about Propositional Calculus Reformulating ND as a single-conclusion sequent calculus

> Rules can be straightforwardly transcribed from ND. eg:

['Elé ST
T[E A1) |
NEC
CEovYy
CEY
TE¢vy
DoEY
NEPEY

> They may be seen as the rules of a new inference system equivalent to ND....

. or as an inference system whose subject matter is proofs in ND.

13 -33- 3 May, 2016011:45 [688]

Introduction to Formal Proof 2: Proofs about Propositional Calculus Reformulating ND as a single-conclusion sequent calculus

> These derived rules can be proven from the elimination rules (and vice-versa) using cut, hyp

R@wﬂﬂw
Lond[Ek

[o—=9lEo LyFEw
Io—>YHEEk

[

[ oE kK [yEk
L,ovylEk

[

> They support goal-directed proof search more directly than the elimination rules.

35— 34 May, 2016@11:45 [688]

Introduction to Formal Proof 2: Proofs about Propositional Calculus Reformulating ND as a single-conclusion sequent calculus

> Elimination rules are also straightforwardly transcribed:
TEgAY
N[
TEoAG
INREE
I'lF¢ -~
['[F]4

L oEk
I'Flk

€L

€R

['Fo

-€

[E¢vy R¢H%V

-€

Exercise: transcribe the rules for negation
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> Proofs in this calculus consist of trees of sequents

o Leaves are labelled with hyp

o Branches are labelled with the name of a non-hyp rule

> For example (reverting to the conventional notation for sequents)

— —
FGer P Faora P
iy ——— i
F,.Gr-EVF F,.GrEv@G
A-i
h h
e E Y\Fj. T E YS. F,G-(EvF)A(EV@) .
_ErE " _ErE 7
ErEVF " ErEvG " FAGr(EVF)A(EVG)

Er(EvVF)A(EVG) FAGH(EVF)A(EVG) M
Ev(FAG)-(EVF)A(EVG) "

> Reading the tree upwards, think of the left hand side of + as “what we have established
from the assumptions” and the right hand side as “what we need to establish to close this
branch of the proof”
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Introduction to Formal Proof 2: Proofs about Propositional Calculus Reformulating ND as a single-conclusion sequent calculus

Introduction to Formal Proof 2: Proofs about Propositional Calculus An alternative approach: valid proofs as a data type

> Such proof trees can be linearized

v EVv(FAG) premiss
> | B hyp

3: EvF V—iL 2

& EvG V-ig, 2

s | (EVFE)A(EVGQG) A3, 4
6 FAG hyp

7 F hyp

e G hyp

o EvF V-ip 7

10 EvG v-ip 8

il (EvF)A(EVG) A-i 9,10
v | (EVF)A(EVG) A(6) 7-11

s (EVF)A(EvVG) vi(1) 2-5, 6-12
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Introduction to Formal Proof 2: Proofs about Propositional Calculus Is it essential to represent proofs in Haskell?

An alternative approach: valid proofs as a data type

> We can make the rules themselves the constructors of the proof data type

data Proof = Hyp Prop
| AndI Proof Proof | AndEL Proof | AndER Proof
|

ImpI Proof | ImpE Proof Proof |

define a data type to represent proven conjectures (theorems)

data Theorem = [Prop] Prop - written :|- in ‘proper’’ Haskell

and define a function that extracts the theorem that the proof proves

thm :: Proof -> Theorem
thm pr =
case pr of
Hyp h -> [h] h
AndI 1 r -> let hsl p = thm 1; hsr q = thm r in hsl++hsr PAQ
AndEL pr’ -> let hs P A q = thm pr’ in hs P
ImpI pr’ -> let p:hs q = thm pr’ in hs p—q
ImpE 1 r -> let hsl p = thm 1; hsr p’—q = thm r
in if p==p’ then hsl++hsr q else error (show [p, p’->ql)

39— 34 May, 2016@11:45 [688]

Introduction to Formal Proof 2: Proofs about Propositional Calculus An alternative approach: valid proofs as a data type

Is it essential to represent proofs in Haskell?

No, provided

o we are prepared to accept the idea of structural induction over a proof tree

o we are quite precise about the meaning of the proof-rule notation: namely that it
constructs valid proof trees from valid proof trees, where validity is specified by patterns
and (possibly) subproof notation

o we are quite precise about the meaning of the subproof notation

o we make quite explicit the places where hypotheses/premisses can be used: namely at
the leaves of (certain) trees

But it helps novices distinguish propositional proofs from proofs about such proofs

“Logicians were functional programmers avant la lettre; but we are now
living aprés la lettre, so if you want to study logic then you should really
study functional programming first” Fr. Saul N. Braindrane

-38 - 3rd May, 2016011:45 [688]

> The function thm is partial — not all Proofs correspond to a theorem ...

... but if a theorem emerges from thm it will have exactly the right premisses

(aside)
Avoid accidental forgery of arbitrary theorems by making Theorem an abstract type
. in Haskell this is done by hiding its constructor in the module that defines theorems

. and exporting thm, but not the Theorem constructor

module Theorems (Theorem, thm)
import Prop
data  Theorem = [Prop] Prop
thm :: Proof -> Theorem
thm pr = ...

(/aside)

115 —40 - 3rd May, 2016@11:45 [688]



Introduction to Formal Proof 2: Proofs about Propositional Calculus Proof procedures and completeness

Proof procedures and completeness

> Suppose we could build a function prove:: Conjecture -> Proof that, if it terminates
without error, finds a correct proof for its argument conjecture.

> Then we could define

provable :: Conjecture -> Bool
provable(I' + p) =

let I p’ = thm(prove(I' + p))
in [? =T && p’ ==

and be able to claim that provable(T' + p) == True (if it terminates without error).

> The completeness theorem would now take the form of a proof that
provable(T" + p) == True follows from I = p

> So a way of proving the completeness theorem is to show that we can indeed build such a
prove function, and that it terminates without error at semantically valid conjectures.
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