
LAWS OF PROGRAMMING

A complete set of algebraic laws is given for Dijkstra’s nondeterministic
sequential programming language. Iteration and recursion are explained in
terms of Scott’s domain theory as fixed points of continuous functionals.
A calculus analogous to weakest preconditions is suggested as an aid to
deriving programs from their specifications.

C. A. R. HOARE, 1. J. HAYES, HE JIFENG, C. C. MORGAN, A. W. ROSCOE,
J. W. SANDERS, 1. H. SORENSEN, J. M. SPIVEY, and B. A. SUFRIN

Some computer scientists have abandoned the search
for rational laws to govern conventional procedural
programming. They tend to recommend the use of
functional programming [Z] or logic programming [lo]
as alternatives. Here we shall substantiate a claim that
conventional procedural programs are mathematical
expressions, and that they are subject to a set of laws as
rich and elegant as those of any other branch of mathe-
matics, engineering, or natural science.

Furthermore, we suggest that a comprehensive set of
algebraic laws serves as a useful formal definition (ax-
iomatization) of a set of related mathematical notations,
and specifically of a programming language-a sugges-
tion due originally to Igarishi [8]. The algebraic laws
provide an interface between the user of the language
and the mathematical engineer who designs it. Of
course, the mathematician should also design a model
of the language, to check completeness and consistency
of the laws, to provide a framework for the specifica-
tions of programs, and for proofs of correctness.

Here are some of the familiar laws of arithmetic,
which apply to multiplication of real numbers:

(1) Multiplication is symmetric, or in symbols,

xxy=yxx, for all numbers x and y.

It is conventional in quoting laws to omit the
phrase “for all x and y in the relevant set.”

Q 1987 ACM ml-0782/87/0800-0672 $1.50

(2) Multiplication is associative, or in symbols,

x x (y x 2) = (x x y) x z.

It is conventional to omit brackets for associative
operators and write simply x x y x z.

(3) Multiplication by zero always gives zero:

oxx=o.

Zero is said to be a fixed point or zere of multiplica-
tion.

(4) Multiplication by one leaves a number unchanged:

1xx=x.

The number one is said to be an identity or a unit
for multiplication.

(5) Division is the inverse of multiplication:

Y x WY1 = X! provided y # 0.

Another law relating multiplication and division is

z/(x x Yl = (Z/Xl/Y~ provided y # 0 and x # 0.

(6) Multiplication distributes through addition:

(x + y) x z = (x x 2) + (y x z).

It is usual for brackets to be omitted on the right-
hand side of this equation, on the converrtion that
a distributive operator binds tighter than the opera-
tor through which it distributes.

872 Communications’of the ACM August 1987 Volume 30 Number 8

(71

03)

(9)

Multiplication by a nonnegative number is mono-
tonic, in the sense that it preserves ordering in its
other operand, or in symbols,

x~y*xxz~yxz, provided z 2 0.

If either factor is reduced, the value of the product
does not increase.

Multiplication is continuous in the sense that it pre-
serves the limit of any convergent sequence of
numbers:

(lim x,) X y = lim(x, X y),
n-w= n-m

If we define

provided xn converges.

x n y = the lesser of x and y

x U y = the greater of x and y,

then we have the following laws:

xny=ynx

The mathematician or engineer will be intimately
familiar with all these laws, having used them fre-
quently and intuitively. The applied mathematician,
scientist, or engineer will also be familiar with many
relevant laws of nature and will use them explicitly to
find solutions for otherwise intractable problems. Igno-
rance of such laws would be regarded as a disqualifica-
tion from professional practice. What then are the laws
of programming, which provide the formal basis for the
profession of software engineering?

Many programmers may be unable to quote even a
single law. Many who have suffered the consequences
of unreliable programs may claim that programmers do
not observe any laws. This accusation is both unfair
and inappropriate. The laws of programming are like
the laws of arithmetic. They describe the properties of
programs expressible in a suitable notation, just as the
laws of arithmetic describe the properties of numbers,
for example, in decimal notation. It is the responsibility
of programming language designers and implementors
to ensure that programs obey the appropriate collection
of useful, elegant, and clearly stated laws.

The designers of computer hardware have a similar
responsibility to ensure that their arithmetic units obey
laws such as the monotonicity of multiplication (7).
Regrettably, several computer designs have failed to
do so. Similarly, many current programming languages
fail to obey even the most obvious laws such as those
expounded in this paper. Occam [ll] is one of the first
languages to be deliberately designed to obey such
mathematical laws. The language used in this paper is
simpler than Occam, in that it omits communication
and concurrency. Laws that are not valid in the more
complex language will be noted.

Articles

THE LANGUAGE
In order to formulate mathematical laws, it is necessary
to introduce some notation for describing programs. We
shall use a notation (programming language) that is es-
pecially concise and suitable for its purpose, based on
the language introduced in [a]. It has three kinds of
primitive command and five methods of composing
larger commands (programs). The SKZP command is
denoted II. Execution of this command terminates
successfully, leaving everything unchanged.

The ABORT command is denoted 1. It places no con-
straint on the behavior or misbehavior of the executing
machine, which may do anything, or fail to do any-
thing; in particular, it may fail to terminate. Thus I
represents the behavior of a broken machine, or a pro-
gram that has run wild. The most important property of
ABORT is that it is a program that no one would ever
want to use or write. It is like a singularity in a mathe-
matical system that must, at all costs, be avoided by the
competent engineer. In order to prove the absence of
such an error, one must use a mathematical theory that
admits its existence.

In the Assignment command, let x be a list of distinct
variables, and let E be a list of the same number of
expressions. The assignment x := E is executed by eval-
uating all the expressions of E (with all variables taking
their most recently assigned values) and then assigning
the value of each expression to the variable at the same
position in the list x. This is known as multiple or
simultaneous assignment. We assume that expressions
are evaluated without side effects and stipulate that the
values of the variables in the list x do not change until
all the evaluations are complete. For simplicity, we
shall also assume that all operators in all expressions
are defined for all values of their arguments, so that the
evaluation of an expression always terminates success-
fully. This assumption will be relaxed in the section on
undefined expressions.

Sequential composition. If P and Q are programs,
(P; Q) is a program that is executed by first executing P.
If P does not terminate, neither does (P; Q). If and when
P terminates, Q is started; and then (P; Q) terminates
when Q does.

Conditional. If P and Q are programs and b is a
Boolean expression, then (P abD Q] is a program. It is
executed by first evaluating b. If b is true, then P is
executed, but if b is false, then Q is executed instead.
The more usual notation for a conditional is if b then P
else Q. We have chosen an infix notation QbD because
it simplifies expression of the relevant algebraic laws.

Nondeterminism. If P and Q are programs, then
(P U Q) is a program that is executed by executing
either P or Q. The choice between them is arbitrary.
The programmer has deliberately postponed the deci-
sion, possibly to a later stage in the development of the
program, or possibly has even delegated the decision to
the machine that executes the program.

August 1987 Volume 30 Number 8 Communications of the ACM 673

Articles

Iteration. If P is a program and b is a Boolean expres-
sion, then (b * P) is a program. It is executed by first
evaluating b; if b is false, execution terminates success-
fully, and nothing is changed. But, if b is true, the
machine proceeds to execute P; (b * P). A more
conventional notation for iteration is while b do P.

P U Q = if true + P 0 true + Q fi

P4bDQ=ifb-+POlb+Qfi,

where lb is the negation of b

b * P = do b + P od.

Recursion. Let X be the name of a program that we
will define by recursion, and let F(X) (containing occur-
rences of the name X) be a program text defining its
behavior. Then pX.F(X) is a program that behaves like
F(pX.F(X)); that is, all recursive occurrences of the pro-
gram name have been replaced by the whole recursive
program. This fact is formalized in the following law:

pX.F(X) = F(pX.F(X)).

In mathematics, substitution of equals is always al-
lowed and may be repeated indefinitely:

pX.F(X) = F(/LX.F(X)) = F(F(pX.F(X))) =

This is essentially the way that recursively defined pro-
grams are executed by computer. Of course, iteration is
only a special case of recursion:

b * P = pX.(P; X) 4bD II.

Iteration is simpler and more familiar than general re-
cursion, and so is worth treating separately. An under-
standing of or liking for recursion is not needed for
appreciation of this article.

As an example of the use of these notations, here is a
program to compute the quotient 9 and remainder r of
division of nonnegative x by positive y. It offers a choice
of methods, one of which terminates when y = 0.

(9, r := 0, x; (r 2 y * (9, r := q + 1, r - y)))

U ((9, r := x + y, x rem y) Uy # OD 9 := 0).

The free use of brackets around the subexpressions of
a computer program may seem unfamiliar, but follows
naturally from our decision to treat programs as mathe-
matical formulas. Sometimes it is convenient to omit
brackets, provided they can be reinserted by prece-
dence rules such as the following:

binds tightest

:=

*

ClbD

U binds loosest.

Normal arithmetic operators bind tightest of all. Thus
the example quoted above could have been written
without any brackets.

The notations of our language can be defined in
terms of Dijkstra’s language of guarded commands:

Conversely, guarded commands can be defined in
terms of the notations given above, for example:

ifb-,POc+Qfi=((PUQ)QcDP)dbD(Q<IcDI)

Thus any program expressed in Dijkstra’s language
can be translated into our language, but this may cause
an explosion in the length of the code for guarded com-
mand sets. Any program expressed in our notation, but
restricted to iteration as the only form of recursion, can
be translated into Dijkstra’s language. We make no
claim of notational superiority, except that our notation
permits more succinct expression of some of the laws.

This description of the commands of our program-
ming language is quite informal and deliberately fails to
give a mathematical definition of the concept of a pro-
gram. Experienced programmers will understand our
intention. It would be inappropriate to postpone a study
of the laws of arithmetic until after giving the tradi-
tional foundationary definitions (e.g., that a cardinal is
a class of sets related by one-one functions]. Indeed,
even a mathematician gains a clearer, deeper, and more
useful understanding of a concept by the study of its
properties rather than its formal definition. One of the
objectives of this article is to propose that the details of
the design of a programming language can allso be
neatly explained by algebraic laws.

Technical Notes
It is usual in theoretical texts to make a sharp distinc-
tion between concrete notations like numerals (ex-
pressed in a variety of bases) and the abstract objects
for which they stand (e.g., the natural numbers). In
this article the word program will stand for an. abstract
concept, roughly equated with the range of possible
observable effects of executing its text in a variety of initial
states. When we wish to emphasize the specific con-
crete text being manipulated by program transforma-
tion, we will call it a program text. But, in general, we
shall take a relaxed attitude toward these formal
distinctions, as do most applied mathematicians and
engineers.

The laws given in this article can be regarded as a
completely formal algebraic specification of our pro-
gramming language. The laws are strong enough to per-
mit each program, not involving recursion, to be re-
duced to a normal form. A natural partial ordering is
defined for normal forms, and programs can be identi-
fied with ideals in this partial ordering. The ideal con-
struction is somewhat reminiscent of the Dedekind def-
inition of a real number as a certain set of rationals.

Among theoreticians, it is common to identify a non-

614 Communications of the ACM August 1987 Volume 30 Number 8

Articles

deterministic program with a relation, namely, the set
of all pairs of states of a machine such that if the pro-
gram starts in the first state of the pair then it can end
in the second state. For example, II would be the iden-
tity relation, and ABORT would be the universal rela-
tion. However, this definition would not be correct for
our language, since it would invalidate several of the
laws (e.g., see (3) under “Sequential Composition” and
(4) under “Limits”). In order to make these laws true, it
is necessary to define programs as a particular subset of
relations that have special properties. For example,

a program is a total relation;
the image of each state is finite or universal.

Nontermination has to be represented by a fictitious
“state at infinity” that can be “reached” only by a non-
terminating program. Also, if the fictitious state is in
the image of a state, then that image is universal. These
properties are preserved by all the operators of our lan-
guage. For further details see [7].

The fictitious state involves both controversy and
complexity, both of which are irrelevant to the needs of
practicing programmers. For practicing engineers,
mathematical laws are also more relevant than the
elaborate models constructed in a study of foundations.

Another problem with models is that they change
quite radically when the programming language is ex-
tended, for example, by introduction of input and out-
put commands. Such extensions can be (and perhaps
should be) designed to preserve the validity of most of
the laws obeyed by the simpler language, just as the
arithmetic of real numbers shares many of the prop-
erties of integer arithmetic. This has been done for
Occam in [ll].

Summary
The laws presented here not only apply to concrete
programs, as expressed in the notations of the program-
ming language described in the first section, but most
also apply to program specifications, expressible in a
wider range of more powerful notations. Additional
laws are given to assist in the stepwise development of
designs from specifications and programs from designs.
In fact, we shall study a series of four classes of object,
where each class includes its predecessor in the series
and obeys all or almost all of the same laws.

(1) Finite programs are expressible in the notations It might seem preferable to report a case study in
of the programming language, excluding iteration and which the laws had been used to assist in the develop-
recursion. Laws for finite programs are given under ment of a correct program of substantial size. Unfortu-
“Algebraic Laws.” They are sufficiently powerful to nately, this is not possible. The task of writing a sub-
permit every finite program text to be reduced to a stantial program requires more application-orientated
simple normal form. mathematics than the elementary algebra presented in

(2) Concrete programs are expressible in the full this article. One would not expect to illustrate the laws
programming language, including recursion. of arithmetic by a case study in the design of a bridge.

(3) Abstract programs are expressible by means of The laws of programming are broad and shallow, like
programming notations plus an additional operator for the laws of arithmetic. They should be learned and
denoting a limit of a convergent sequence of consistent used intuitively, like the grammatical rules of a foreign
programs. The relevant concepts and laws are those language.

of domain theory and are explained under “Domain
Properties.”

Objects in the first three classes are called programs,
and they all satisfy the laws of programming explained
under “Algebraic Laws” and “Domain Properties.”

(4) The remaining class is that of specifications. This
is the most general class because there is no restriction
on the notations in which they may be expressed. Any
well-defined operator of mathematics or logic may be
freely used, even including negation. The laws that ap-
ply to specifications are useful in the stepwise develop-
ment of designs and programs to meet their specifica-
tions. The price of the greater notational freedom of
expression of specifications is that it is possible (and
easy) to write specifications that cannot be satisfied by
any program. Another source of potential difficulty is
that specifications fail to obey some of the laws that are
valid for programs.

The distinction between these classes may seem
complicated, but is actually as simple as the familiar
distinctions made between different classes of numbers.

(1) Finite programs can be compared to rational
numbers. Algebraic laws permit all arithmetic expres-
sions to be reduced to a ratio of coprime integers,
whose equality can be easily established.

(2) Concrete programs are like algebraic real num-
bers, which are definable within a restricted notational
framework (as solutions of polynomial equations). They
constitute a denumerable set.

(3) Abstract programs are like real numbers; they
enjoy the property that convergent sequences have a
limit. For many purposes (e.g., calculus) real numbers
are far more convenient to reason with than algebraic
numbers. They form a nondenumerable set.

(4) Specifications may be compared to complex
numbers, where more operators (e.g., square root) are
total functions. The acceptance of imaginary numbers
may be difficult at first, because they cannot be repre-
sented in the one-dimensional real continuum. Fur-
thermore, they fail to obey such familiar laws as x2 2 0.
Nevertheless, it pays to use them in definition, calcula-
tion, and proof, even for problems where the eventual
answers must be real. In the same way, specifications
are useful (even necessary) in requirements analysis
and program development, even though they will never
be executed by computer.

August 1987 Volume 30 Number 8 Communications of the ACM 676

Articles

ALGEBRAIC LAWS
About 30 algebraic laws obeyed by finite programs, that
is, programs expressible without iteration or recursion,
will be presented in this section. The laws are suffi-
ciently powerful to permit every finite program to be
reduced to a simple normal form, which can be used
to test whether any two such texts denote the same
program.

objective of allowing inefficient program texts to be
replaced by more efficient representations of the same
program. Thus the laws of programming can be used as
correctness-preserving transformations, or as justifica-
tion for automatic code optimization. That is the practi-
cal reward for designing, implementing, and using lan-
guages with mathematical properties.

We shall adopt the following conventions for the
range of variables:

P, Q, R stand for programs.
b, c, d stand for Boolean expressions.
e, f, g stand for single expressions.
E, F, G stand for lists of expressions.
x, y, z stand for lists of assignable program variables,

where no variable appears more than once in
the combined list X, y, z.

(3) On several occasions we shall introduce new
notations into the laws, which are not included in the
programming language, but that describe programs that
could be so expressed. This is a fairly familiar mathe-
matical practice. For example, a polynomial in x can be
defined syntactically as a text that is either a constant
or a polynomial multiplied by x and added to a con-
stant. Thus the following are polynomials:

0, 7, 7 x x + 4, (7 x x + 4) x x + 17, . . .

Furthermore, x is the same length as E, y the same However, a polynomial is often more conveniently
length as F, and z the same length as G. described using summation (C) and exponentiation,

Technical Notes

(1) The phrase “P stands for a program” may be
ambiguous. Does P stand for some mathematical object
that can be expressed in several different ways in a
certain programming notation? Or does P stand for the
text of a program, which must replace P before any law
containing P is used? A reasonable answer to these
questions is that it does not matter. Consider the anal-
ogy of the mathematical equation

n+m=mfn.

The variables n and m are normally considered to rep-
resent actual numbers, independent of the way in
which they are expressed. But the law is equally valid
if IZ and m are replaced by numerals, that is, sequences
of digits in ternary notation, for example. Furthermore,
it is equally valid if n is consistently replaced by any
other arithmetic expression, such as 2 X p* + 9 in
2Xp2+q+m=m+2XpZ+q.

(2) Similar questions may be asked about the mean-
ing of the equations that embody the algebraic laws of
programming and that assert the identity of two pro-
grams written in different ways. Clearly it cannot be
the texts of the programs that are stated to be equal, but
rather the meanings. The meaning of a program can be
roughly understood as the possible effects of its execu-
tion in each initial state of the computer. For example,
the following equations are true:

(x := 037) = (x := 37)

(x:=yxy+2xyxx+zxz)=(x:=(y+z)x(y+z))

(x := 0; x := 1) = (x := 1).

In each case, the two programs are equal, even
though one of them may be slower in execution than
the other. This reflects a deliberate decision to abstract
from questions of execution speed, with the explicit

C Ui X Xi,
irn

even though these notations are not included in the
formal language of polynomials.

Nondeterminism
The laws governing nondeterministic choice apply to
all kinds of choice. The equations given below assert
the identity of the whole range of choices described by
their left- and right-hand sides. Of course, a particular
selection made from the left-hand side may differ from
a particular selection made from the right-hand side.
This is also true of two selections made from the same
text. So, in the presence of nondeterminism, two execu-
tions of the same program test do not necessarily give
the same result.

(1) Clearly, it does not make any difference in what
order a choice is offered. “Tea or coffee?” is the same as
“coffee or tea?.”

PuQ=QUP (symmetry)

(2) A choice between three alternatives (tea, coffee,
or cocoa) can be offered as first a choice between one
alternative and the other two, followed (if nec:essary) by
a choice between the other two, and it does not matter
in which way the choices are grouped.

P U (Q U R) = (P U Q) U R (associativity)

(3) A choice between one thing and itself offers no
choice at all (Hobson’s choice).

PUP=P (idempotence)

(4) The ABORT command already allows completely
arbitrary behavior, so an offer of further choice makes
no difference to it.

IUP=I (zero I)

676 Communications of the ACM August 1987 Volume 30 Number 8

Articles

This law is sometimes known as Murphy’s Law, which
states, “If it can go wrong, it will”; the left-hand side
describes a machine that can go wrong (or can behave
like P), whereas the right-hand side might be taken to
describe a machine that will go wrong. But the true
meaning of the law is actually worse than this: The
program I will not always go wrong-only when it is
most disastrous for it to do so! The abundance of empir-
ical evidence for law (4) suggests that it should be taken
as the first law of computer programming.

A choice between n + 1 alternatives can be ex-
pressed more briefly by the indexed notation

The indexed notation need not be included in the pro-
gramming language. Nevertheless, it is useful in for-
mulating the laws, since it enables a single law to be
applied to an arbitrary number of alternatives. In each
application of the laws to an actual program text, the
list of alternatives would be written in full.

The Conditional
For each given Boolean expression b, the choice opera-
tor %D specifies a choice between two alternatives
with one written on each side. The first two laws
clearly express the criteria for making this choice, that
is, the truth or falsity of b.

(1) P 4trueD Q = P.

(2) P 4falseD Q = Q.

Like U, the conditional is idempotent and associative:

(3) P 4bD P = P.

(4) P 4bD (Q <3bD R) = (P 4bD Q) 4bD R.

Furthermore, it satisfies the less familiar laws

(5) PdbDQ=Q+bDP,

where lb is the negation of b;

(6) P Oc W dD Q = (P QcD Q) UbD (P <IdD Q),

where c 4bD d is a conditional expression, giving value
c if b is true and d if b is false; and

(7) P 4bD (Q 4bD R) = P 4bD R.

These laws may be checked by considering the two
cases when b is true and when it is false. For example,
law (7) states that the middle operand Q is not selected
in either case.

Suppose one of the operands of a conditional offers a
nondeterministic choice between P and Q. Then it does
not matter whether this choice is made before evalua-
tion of the condition or afterward, since the value of
the condition is not affected by the choice:

(8) (P U Q) GD R = (P 4bD R) U (Q 4bD R).

From this can be deduced a similar law for the right
operand of 4bD:

(9) R UbD (P U Q) = (R abD P) u (R 4bD Q).

PROOF.

LHS=(PuQ)+bDR

= (P albD R) u (Q QlbD R) = RHS (by (5)). •I

An operator that distributes like this through U is said
to be disjunctive.

Any operation that does not change the value of the
Boolean expression b will distribute through dbD. An
example is nondeterministic choice. It does not matter
whether the choice is exercised before or after evalua-
tion of b:

(lo) (PGDQ)UR=(PUR)4bD(QUR).

For the same reason, a conditional ad> distributes
through another conditional with a possibly different
condition ObD:

(11) (P +D Q) QCD R = (P 4cD R) 4bD (Q QcD R).

Using these laws we can prove the theorem

(12) (P 4cD R) 4bD (Q 4dD R)

=(PGDQ)*<IbDdDR.

PROOF.

RHS = ((P 4bD Q) ad> R) 4bD ((P 4bD Q) QdD R)

(by (6))

= ((P 4+ R) 4bD (Q QcD R))

<IbD ((P <IdD R) +D (Q QdD R))

(by (111)

= LHS (by (71 and (411. 0

Seqliential Composition

(1) Sequential composition is associative; to perform
three actions in order, one can either perform the first
action followed by the other two or the first two actions
followed by the third.

P; (Q; RI = (P; Qh R (associativity)

(2) To precede or follow a program P by the com-
mand II (which changes nothing) does not change the
effect of the program P.

(II; P) = (P; II) = P (unit II)

(3) To precede or follow a program P by the com-
mand I (which may do anything whatsoever) results in
a program that may do anything whatsoever-it may
even behave like P!

(I; P) = (P; I) = I (zero I)

The law P; I = I states that we are not able to observe
anything that P does before P; I reaches 1. This law
will not be true for a language in which P can inter-
act with its environment, for example, by input and
output.

August 1987 Volume 30 Number 8 Communications of the ACM 677

Articles

The informal explanation of this law is weak. Per-
haps it is better explained as a moral law. The program
1. is one that the programmer has a duty to avoid.
Equally, the sequential programmer has the duty to
avoid both (I; P) and (P; I). It is pointless to draw
distinctions between programs that must be avoided
anyway.

(4) A machine that selects between P and Q, and
then performs R when the selected alternative termi-
nates, cannot be distinguished from one that initially
selects whether to perform P followed by R or Q fol-
lowed by R:

(P u Q); R = (P; R) U (Q; R).

(3) In fact, such a vacuous assignment can be added
to any other assignment without changing its effect
(recall that x and y are disjoint):

(x, y := E, y) = (x := E).

(4) Finally, the lists of variables and expressions
may be subjected to the same permutation without
changing the effect of the assignment:

(x, y, z := E, F, G) = (y, x, z := F, E, G).

Corollary. (x, y := E, F) = (y, x := F, E).

These four laws together are sufficient to reduce any
sequence of assignments to a single assignment. For
example,

For the same reason, composition distributes rightward
through U:

R; (P u Q) = (R; P) U (R; Q).

In summary, sequential composition is a disjunctive
operator.

6, y := F, G; y, z := H(x, y), J(x, y))

= (x, y, z := F, G, z; x, y, z := x, H(x, y), 7(x, :y))

(by (3) and (41

= (xv y, z := F, H(F, G), J(F, G]) (by (1)).
(5) Evaluation of a condition is not affected by what

happens afterwards, and therefore ; distributes leftward
(5) Assignment distributes rightward through a con-

through a conditional:
ditional, changing occurrences of the assigned variables
in the condition

(P 4hD Q); R = (P; R) abt> (Q; R).

However, ; does not distribute rightward through a con-
ditional, so in general it is not true that R; (P abD Q) =
(R; P) UbD (R; Q). On the left-hand side, b is evaluated
after executing R, whereas on the right-hand side it is
evaluated before R; and in general, prior execution of R
can change the value of b.

(x := E; (P Ub(x)D Q)) = ((x := E; P) Qb(E)D (x := E; Q)).

(6) A conditional joining two assignments (to the
same variables) may be replaced by a single assignment
of a conditional expression to the same variables:

((x := E) 4bD (x := F)) = (x := (E 4bD F)).

(7) The conditional distributes down to the individ-
ual components of a list of expressions:

(e, E) abD (f, F) = (e 4bD f), (E 4bD F).

(8) Using these laws, we can eliminate conditionals
from sequences of assignments by driving them into the
expressions. For example,

(x := E; (x := F(x) ab(x)D x := G (x)))

= (x := (F(E) Qb(E)D G(E))).

The following theorem will also be useful in reduction
to normal forms:

Assignment
It is a law of mathematics that the value of an expres-
sion is unchanged when the variables it contains are
replaced by expressions or constants denoting the val-
ues of each variable. If E(x) is a list of expressions and F
is a list of the values of the variables x, then E(F) is a
copy of E in which every occurrence of each variable of
x is replaced by a copy of the expression occupying the
same position in the list F.

(1) This convention is used in the first law of assign-
ment, which permits merging of two successive assign-
ments to the same variables:

(x := E; x := F(x)) = (x := F(E)).

For example,

(x:=x-l;x:=2xx+1)

= (x := 2 x (x - 1) + 1).

(2) The second law states that the assignment of the
value of a variable back to itself does not change any-
thing:

(x := x) = II.

This law is false for a language in which access to an
uninitialized variable leads to a different effect, for
example, abortion.

(9) ((x := E dbD I); (x := F(x) ac(x)D I))

= (x := F(E) at(E) abD falseD I).

PROOF.

LHS = (x := E; ((x := F(x) ac(x)D 1))

4bD (I; (x := F(x) ac(x)D I)))

(by (5) under “Sequential Composition”)

= (x := F(E) Qc(E)D I) abD I

(by (1) and (5), and (3) under “Sequential Composition”)

= RHS

(by (2) and (6) under “The Conditional”). 0

678 Comtnunications of the ACM August 1987 Volume 30 Number 8

Articles

Undefined Expressions
If the notations of the programming language include
expressions that may be undefined for some values of
their operands, then some of the laws quoted above
need to be slightly weakened. We assume that the
range of expressions allowed in the programming lan-
guage is sufficiently narrow that for each expression [or
list of expressions) E there is a Boolean expression
(which we will denote 9E) that is true in all circum-
stances in which evaluation of E would succeed and
false in all circumstances in which evaluation of E
would fail. Thus evaluation of L9E itself will always
succeed (this would not be possible in a language with
arbitrary programmer-defined functions). Note that 9
is not assumed to be a notation of the programming
language. Here are some examples:

9 true = 9false = true

9(E + F) = L%E A g,F

@E/F) = 9E A 9-F A F # 0

9(E 4bD F) = Bb A @E 4bD BF)

9.9E = true.

Now we stipulate that the effect of attempting to
evaluate an expression outside its domain is wholly
arbitrary, so

(1) x := E = (x := E Q9ED I),

(2) P 4bD Q = (P 4bD Q) 4gbD I, and

(3) P <IbD I = P Ub U9bD falseD 1.

In view of this, some of the preceding laws need altera-
tion, as follows:

(4) PQbDP=PQgbDI

(see (3) under “The Conditional”).

(5) (P 4bD Q) UcD R

= ((P UcD R) abD (Q QcD R)) QgbD (I QcD R)

(see (11) under “The Conditional”).

(6) (x := E; x := F(x)) = (x := F(E) U9ED I)

(see (1) under “Assignment”).

(7) x := E; (x := F(x) 4b(x)D x := G(x))

= x := (F(E) 4b(E)D G(E)) Q9ED I

(see (8) under “Assignment”).

Theorem (9) under “Assignment” also requires modifi-
cation and the proof (but not the statement) of (12)
under “The Conditional.”

Reasoning with undefined expressions can be compli-
cated and needs some care. But there are also some
rewards. For example, the fact that the minimum of an
empty set is undefined permits a simple formulation of
Dijkstra’s linear search theorem [4, pp. 105-1061:

(8) (i := 0; lb(i) * (i := i + 1)) = (i := min(ijb(i) A i L 0)).

Note that, in general, the minimum function appear-
ing on the right-hand side cannot be implemented or
included in any programming language. So the right-
hand side of (8) should be regarded as an exact specifi-
cation of the program on the left.

Normal Form
To illustrate the power of the laws given so far, we can
use them to reduce every finite program text of our
language to a simple normal form. A finite program text
is one that does not contain iteration or recursion. In
normal form a program looks like

40 I,

where b j 9E; for all i zz n, and + denotes logical
implication. Without loss of generality, we can ensure
that in this context 9b = true by replacing b if neces-
sary by

Ub QgbD falseD

(by (3) under “Undefined Expressions”).

A notable feature of the normal form is that the se-
quential composition operator does not appear in it.

To explain how to reduce a program text to normal
form, it is sufficient to show how each primitive com-
mand can be written in normal form and how each
operator, when applied to operands in normal form,
yields a result expressible in normal form. The section
on assignment explained how all assignments of a pro-
gram can be adapted so that they all have the same list
of variables on the left; so we can assume this has
already been done.

(1) SKIP.

II = ((x := x) QtrueD I)

(by (2) under “Assignment” and (1) under

“The Conditional”).

(2) ABORT.

I = (x := x 4falseD I)

(by (2) under “The Conditional”).

(3) Assignment.

(x := E) = (x := E QLZED I)

(by (1) under “Undefined Expressions”).

(4) Nondeterminism.

(P UbD I) U (Q <lcD I)

= (P U (Q QcD I)) abD (I U (Q UcD I))

(by (10) under “The Conditional”)

= ((P u Q) act> (P u I)) 4bD I

(by (10) under “The Conditional,” and

(1) and (4) under “Nondeterminism”)

August 1987 Volume 30 Number 8 Communications of the ACM 679

Articles

(5)

(61

= ((P U Q) QO I) 4bD I

(by (1) and (4) under “Nondeterminism”)

= (P U Q) Qc 4bD falseD I

(by (2) and (6) under “The Conditional”).

Here, P and Q stand for lists of assignments sepa-
rated by U, so P U Q is just the union of these two
lists. The condition Qc QbD falseD is equivalent to
(c A b). Since the operands are normal forms, this
is defined everywhere and implies that all expres-
sions in P U Q are also defined.

Conditional.

(P aCD I) 4bD (Q adD I)

=(P4bDQ)QcabDdDI

(by (12) under “The Conditional”).

If

P = U x := Ei and Q = U x := Fj,
isn jsm

then

PUbDQ=U U (X:=Ei4bDX:=Fj)
isn jsm

(by (9) under “The Conditional”)

= U U x := (Ei 4bD Fj)
isn jsm

(by (6) under “Assignment”).

Since c e 9Ei and d * 9Fi, it follows that

C UbD d ti JZ(Ei UbD Fj), for all i and j.

Thus the LHS of (5) is reducible to normal form.

Sequential composition.

can be reduced (by distribution through U) to

U U ((x := Ei 4bD I); (X := Fj(X) Qc(X)D I))
ian jcm

= U U (X := Fj(Ei) ac(Ei) QbD falseD I)
ian jzm

(by (9) under “Assignment”).

The method described in (4) can be used to distribute
the unions into the conditional, obtaining

U U x:=Fj(EJ){Ac(EJ)dbDfalseDI,
isn j5m

where the conjunction notation A can be defined by
induction:

A Ci = CO

ia0

680 Communications of the ACM

This completes the proof that all finite programs are
reducible.

The importance of normal forms is that they provide
a complete test as to whether two finite program texts
denote the same program. The two programs are first
reduced to normal form. If the normal forms are equal,
so are the programs; otherwise they are unequal.

Two normal forms

(,,:=Ei)4DI and (ymx:=Fj) QcDI

are equal if and only if

b=c

and

{vI3iIn.v= EJ=(wI3j5m.W.==Fj), . <

where these equations must hold for all values of the
variables contained-in the expressions b, c, Ei, and Fj.

The truth of these equations may not be decidable, as
in integer arithmetic, for example. The results shown
here establish only relative completeness.

DOMAIN PROPERTIES
In this section we introduce iteration and recursion,
using the methods of [12].

The Ordering Relation
As a preliminary we shall explore the properties of an
ordering relation 3_ between programs.

Definition. P 2 Q 4 P U Q = P.

This means that Q is a more deterministic program
than P. Everything that Q can do, P may also do, and
everything that Q cannot do, P may also fail to do. So Q
is, in all respects, a more predictable program and more
controllable than P. In any circumstance where P reli-
ably serves some useful purpose, P may be replaced by
Q, in the certainty that it will serve the same purpose.
But not vice versa. There may be some purpo.ses for
which Q is adequate, but P, given its greater non-
determinism, cannot be relied on. Thus P 2 Q means
that, for any purpose, Q is better than P, or at least as
good. From this point on, we will use the comparative
“better” by itself, with the understanding that it means
“better or at least as good.”

The relation 2 is not a total ordering on prolgrams,
because it is not true for all P and Q that P > IQ or
Q 1 P; P may be better than Q for some purposes, and
Q may be better than P for others. However, 2 is
a partial order, in that it satisfies the following laws:

(1) P 2 P (reflexivity).

(2) P>QAQ>P+P=Q (antisymmetry).

(3) P>QAQ>R+P>R (transitivity).

These laws can be proved directly from the definition,
together with the laws for U.

August 1987 Volume 30 Number 8

PROOF.

(1) P u P = P

(2) (P u Q = P) A (Q u P = Q)

=z.P=PUQ=QUP=Q

(3) (P U Q = P) A (Q U R = Q)

aPUR=(PuQ)uR

= P u (Q u R)

=PuQ

= P

(idempotence of U).

(symmetry of U).

(antecedent)

(first antecedent)

(associativity of U)

(second antecedent)

(first antecedent]. Cl

The ABORT command I is the most nondeterministic
of all programs. It is the least predictable, the least
controllable, and in short, for all purposes, the worst:

(4) I 2 P.

PROOF.

IUP= 1. 0

The machine that behaves either like P or like Q is,
in general, worse than both of them:

(5) (P U Q) 2 I’ A (P U Q) 2 Q.

PROOF.

(P U Q) U P = P U (Q U P) (associativity)

= P u (P u Q) (symmetry)

= (P U P) U Q (associativity)

=PuQ (idempotence). 0

In fact, P U Q is the best program that has property (5).
Any program R that is worse than both P and Q is also
worse than P U Q, and vice versa:

(6) R > (P U Q) = (R > P A R 2 Q).

PROOF.

LHS j R > P

(by transitivity from (3))

LHS + R 2 Q

(similarly)

RHS zj (R u P = R) A (R U Q = R)

(by definition of >)

+ (R u P) u (R u Q) = R u R

(by adding the equations)

*RU(PUQ)=R

(by properties of U)

- LHS

(by definition of 2). 0

If P > Q this means that Q is, in all circumstances,
better than P. It follows that wherever P appears within

August 1987 Volume 30 Number 8

Articles

a larger program, it can be replaced by Q, and the only
consequence will be to improve the larger program (or
at least to leave it unchanged). For example,

(7) If P > Q then

PuR>QuR

A (P; RI 2 (Q; W

A CR; PI 2 (R; Q1

A (P <3M> R) _> (Q QbD R)

A (R QbD P) 2 (R 4bD Q)

A (b * P) > (b * Q).

In summary, the law quoted above states that all the
operators of our small programming language are mono-
tonic, in the sense that they preserve the > ordering of
their operands. In fact, every operation that distributes
through U is also monotonic.

THEOREM. If F is any function from programs to
programs, and for all programs P and Q, F(P U Q) =

F(P) U F(Q), then F is monotonic.

PROOF.

P>Q-PUQ=P (by definition of 2)

;j F(P) U F(Q) = F(P U Q) (by distribution of F)

= F(P) (by property of =)

-F(P) 2 F(Q) (by definition of 2).
q

One important fact about monotonicity is that every
function defined from composition of monotonic func-
tions is also monotonic. Since all the operators of our
programming language are monotonic, every program
composed by means of these operators is monotonic in
each of its components. Thus, if any component is re-
placed by a possibly better one, the effect can only be
to improve the program as a whole. If the new program
is also more efficient than the old, the benefits are
increased.

Least Upper Bounds
We have seen that P U Q is the best program worse than
both P and Q. Suppose we want a program better than
both P and Q. In general, there will be no such pro-
gram. Consider the two assignments x := 1 and x := 2.
These programs are incompatible, and there is no pro-
gram better for all purposes than both. If the final value
of x should be 1, the first program is suitable, but the
second cannot possibly give an acceptable result. On
the other hand, if the final value should be 2, the first
program is totally unsuitable.

Consider two nondeterministic programs:

P = (x := 1 u x := 2 u X := 3)

Q = (x := 2 U x := 3 U x := 4).

In this case there exists a program better than both,
namely, x := 2. In fact there exists a worst program that

Communications of the ACM 681

Arficles

is better than both, and we will denote this by P n Q:

P n Q = (x := 2 U x := 3).

Two programs P and Q are said to be compatible if they
have a common improvement; and then their worst
common improvement is denoted P CI Q. This fact is
summarized in the law

(1) (I’>R)A(Q>R)=(PnQ)2R.

Corolla y.

P 2 (P n Q) A Q 2 (P n Q)

(by (1) under “The Ordering Relation”).

The operator n, wherever it is defined, is idempo-
tent, symmetric, and associative, and has identity 1.

(2) P n P = P.

(3) P n Q = Q n P.

(4) P rl (Q rl R) = (P tl Q) tl R.

(5) I n P = P.

The n operator generalizes to any finite set of com-
patible programs

S = (P, Q, . . . , T)

Provided that there exists a program better than all of
them, the least such program is denoted nS:

ns=PnQn . . . nT,

provided 3R.P 2 R A Q 2 R A . . . A T 2 R.

It follows that

(6) (VP E S. P 2 R) = fl S 2 R,

provided ns is defined.

It is important to recognize that n is not a combinator
of our programming language, and that P n Q is not
strictly a program, even if P and Q are compatible pro-
grams. For example, let P be a program that assigns an
arbitrary ascending sequence of numbers to an array,
and let Q be a program that subjects the array to an
arbitrary permutation. Then P n Q would be a program
that satisfies both these specifications and consequently
would sort the array into ascending order. Unfortu-
nately, programming is not that easy. As in other
branches of engineering, it is not generally possible to
make many different designs, each satisfying one re-
quirement of a specification, and then merge them into
a single product satisfying all requirements. On the
contrary, the engineer has to satisfy all requirements in
a single design, This is the main reason why designs
and programs get complicated.

These problems do not arise with pure specifications,
which may be freely connected by the conjunction and.
P n Q may be regarded as an abstract program, or a
specification of a program that accomplishes whatever
P accomplishes and whatever Q accomplishes, and fails
only when both P and Q fail. P rl Q specifies a program

that (if it exists) is, for all purposes, better than both
P and Q.

In fact, conjunction is the most useful operator for
structuring large specifications. It should be included in
any language designed for that purpose. C:la:rity of spec-
ification, achieved by using the conjunction operator,
is much more important than using a specification lan-
guage that can be implemented. It is unfortu.nate that
conjunction is so difficult to implement. As a conse-
quence, the formulation of appropriate specifications
and the design of programs to meet them (i.e., software
engineering) will always be a serious intellectual
challenge.

Limits
Suppose S is a nonempty (possibly infinite) set, and for
every pair of its members, S actually contams a mem-
ber better than both. Such a set is said to be directed.

Definition. S is directed means that

(S # { 1) A VP, Q E S. 3R E S. P 2 R A Q 2 R.

Examples of directed sets are

F-9 a set with only one member,
(P, P U Q] since P U Q 2 P and P 2 P, and
U’s Qv RI where P 2 R A Q 2 R.

If S is finite and directed, then clearly it contains a
member that is better than all the other members, so
ns is defined and ns E S.

If S is directed but infinite, then it does not necessar-
ily contain a best member. Nevertheless, the set has a
limit ns. As noted it is the worst program better than
all members of S. The set S is like a convergent se-
quence of numbers, tending toward a limit that is not a
member of the sequence. By selecting members of the
set, it is possible to approximate its limit as closely as
we please. Since no metric has been introduced, “close-
ness” has to be interpreted indirectly; that is, for any
finite program P worse than ns there exists a member
of S better than P.

One interesting property of the limit of a directed set
of programs is that it is preserved by all the operators of
OUT programming language; such operators are there-
fore said to be continuous.

(1) (nS) u Q = n{P u Q j P E Sj.

(2) (nS) abD Q = n(P abD Q) P E S).

(3) (W; Q = W’; Q I P E Sl

(4) Q; (nS) = n!Q; P) P E S).

(5) b * (t-6) = n(b * P (P ES).

A fact about continuity is that any composit.ion of
continuous functions is also continuous. Let X stand for
a program, and let F(X) be a program constructed solely
by means of continuous operators, and possibly con-
taining occurrences of X. If S is directed, it follows that

602 Communications of the ACM August 1987 Volume 30 Number 8

Articles

(6) F(m) = n{F(x) I X E S] PROOF.

Iteration and Recursion
Given a program P and a Boolean expression b, we can
define by induction an infinite set

where

Qo = 1,

Q ,,+I = 0’; Qnl *D II, for all n >- 0.

From these definitions it is clear that Q,, is a program
that behaves like (b * P) up to n iterations of the body P,
but breaks on the nth iteration, and can do anything
(I). Clearly, therefore

Qn 2 Qn+l, for all n,

(which can be proved formally by induction). Conse-
quently, the set (Qn 1 n 2 0) is directed, and by taking n
large enough, we can approximate as closely as we
please to the behavior of the loop (b * P). The loop
itself can be defined as the limit of all its approxima-
tions:

(1) b * P = n(Q, 1 n z 01.

The same technique can be used to define a more
general form of recursion. Let X stand for the name of
the recursive program that we wish to construct, and
let F(X) define the intended behavior of the program.
Within F(X), each occurrence of X stands for a call on
the whole recursive program again. As before, we can
construct a series of approximations to the behavior of
the recursive program:

F’(Q) = Q,

F”+‘(Q) = W”(Q)), for all n 2 0.

F”(I) behaves correctly provided that the recursion
depth does not equal or exceed n. Because F is mono-
tonic and F’(I) 2 F’(I), it follows that

F”(I) 2 F’+‘(l), for all n.

Consequently, (F”(I) 1 n 2 0) is a directed set, and we
define the recursive program (denoted by pX.F(X)) as its
limit:

(2) pX.F(X) = n{F”(I) I n 2 0).

In accordance with the explanation given above, itera-
tion is a special case of recursion:

(3) b * P = rX.(P; X) <IbD II.

The most important fact about a recursively defined
program is that each of the recursive calls is equal
to the whole program again, or more formally that
pX.F(X) is a solution of the equation X = F(X). This is
stated in the following law:

(4) wX.F(X) = F(pX.F(X)).

RHS = F(n{F”(I) 1 n 2 0))

(by definition of r]

= n{F(F”(I)) 1 n 2 0)

(by continuity of F)

= fl((F”+‘(l) 1 n 2 0) U (11)

(by definition of F”+’ and (5)

under “Least Upper Bounds”)

= fl(F”(I) 1 n 2 0)

(since F’(I) = I)

= LHS

(by definition). 0

Corollary. b * P = (P; (b * P)) abD II.

In general, there will be more than one solution of
the equation X = F(X). Indeed, for the equation X = X,
absolutely every program is a solution. But, of all the
solutions, pX.F(X) is the worst:

(5) Y = F(Y) + pX.F(X) 2 Y.

PROOF.

(Y = F(Y)) + (I 2 Y) A (Y = F(Y))

==+ (F(I) 2 F(Y)) A (Y = F(Y)),

(by F monotonic)

* (F(I) 2 Y). 0

By induction it follows that, for any n 2 0,

Y = F(Y] + F”(I) 2 F”(Y] A Y = F”(Y)

+ F”(I) 2 Y

* n(F”(I) I n 2 0) 2 Y

(by (13) under “Least Upper Bounds”)

as required.

SPECIFICATIONS
Two important concepts have been introduced thus far.
The first is that a specification describes the intended
behavior of a program, without giving any guidance as
to how the program might be executed. Secondly, a
concrete program P may be better than a specification S;
so whenever a program that behaves like S is required,
the concrete program P will serve the purpose. In this
case, we can say that P satisfies the specification S, or in
symbols, S 2 P. It is the responsibility of the program-
mer, when given a specification S, to find a program P
that satisfies S. The practical purpose of the laws pre-
sented is to assist in this task.

Introduced here is a calculus of specifications to aid
in the development of programs. Specifications do not
have to be executed by machine, so there is no reason

August 1987 Volume 30 Number 8 Communications of the ACM 603

Articles

to confine ourselves to the notations of a particular
programming language. Also, it is not necessary to con-
fine ourselves to specifications that can be satisfied. As
an extreme example, we introduce the specification T,
which cannot be satisfied by any program whatsoever.

To accept the risk of asking the impossible has as its
reward that the ft operator is defined on all specifica-
tions: Wherever R and S are inconsistent, the result of
(R. fl S) is T. Furthermore, if S is any set of specifica-
tions, then

nS is the specification that requires all R in S to be
satisfied, and

US is the specification that requires some R in S to be
satisfied.

These specifications are limits of S:

(1) Q>US=VRES.Q>R.

(2) f-62 Q = VRES R>Q.

The 2 ordering applies to specifications, just as it
does to programs, but it can be interpreted in a new
sense. If S 2 R, it means that S is a weaker specification
and easier to meet than R. Any program that satisfies R
will serve for S, but it may be that more programs will
satisfy S. Thus I is the easiest specification, satisfied by
any program, and T is impossible.

We do not introduce any specific notation or lan-
guage for specifications; we permit any language that
describes a relationship between the values of variables
before and after execution of a program. Thus we may
use the notations of a programming language, possibly
extended even by noncomputable operators, or we may
use predicates as in predicative programming [6] or
predicate pairs as in VDM [9]. We assume that the spec-
ification language includes at least all the notations of
our programming language, so that a program is its own
strongest specification.

Thus all programs are specifications, but not neces-
sarily vice versa. As a consequence, there are certain
laws that are true for programs, but not for specifica-
tions. In particular, law (3) in “Sequential Composition”
and law (4) in “Limits” are not valid for specifications.
However, we believe it is reasonable to insist that
specifications obey all the laws of the calculus of
relations [13].

Weakest Prespecification
Specifications may be constructed in terms of all the
operators available for concrete programs. For example,
if R and S are specifications, then (R; S) is a specifica-
tion satisfied by any program (P; Q), where P satisfies R
and Q satisfies S (it can also be satisfied by other pro-
grams). This fact is extremely useful in the top-down
development of programs (also known as stepwise
refinement). Suppose, for example, that the original
task is to construct a program that meets the specifica-
tion W. Perhaps we can think of a way to decompose
this task into two simpler subtasks specified by R and S.

The correctness of the decomposition can be proved by
showing that W 2 R; S. This proof should be completed
before embarking on design for the subtasks R and S.
Then similar methods can be used to find programs P
and Q that solve these subtasks, such that R 2 P and
S 2 Q. It follows immediately from monotonicity of
sequential composition that P; Q is a program that
will solve the original task W, that is, W 2 (P; Q).

In approaching the task W, suppose we think of a
reasonable specification for the second of the two sub-
tasks S, but we do not know the exact specification of
the first subtask. It would be useful to calculate R from
S and W. Therefore we define the weakest pnspecifica-
tion S\W to be the weakest specification that must be
met by the first subprogram R in order that the compo-
sition (R; S) will accomplish the original task W. This
fact is expressed in symbols:

(1) w 1 (S\W); s.

(S\W) is a sort of left quotient of W by S; the divisor S
can be canceled by postmultiplication, and the result
will be the same as W or better.

Here are some examples of weakest prespecifications,
where x is an integer variable:

(x := 3 X x)\(x := 6 X y) = (x := 2 X y),

because (x := z x y; x := 3 x x) = (x := 6 x y).

(x := 2 x x)\(x := 3) = T,

since 3 is odd and cannot be the result of dou-
blingan integer.

(x := 2 x x)\(x := 3 u x := 4) = (x := 2),

because (x := 3 U x := 4) > x := 4 = (x :=I 2; x := 2 X

The law given above does not uniquely define
S\W. But, of all the solutions for X in the inequality
W 2 (X; S), the solution S\W is the easiest to achieve.
Thus, to find such a solution, a necessary and sufficient
condition is that the solution should satisfy S/W:

(2) w 2 (X; S) = (S\W) a x.

Thus in developing a sequential program to meet
specification W, there is no loss of generality in taking
S\W as the specification of the left operand of sequen-
tial composition, given that S is the specification of the
right operand. That is why it is called the weakest pre-
specification. For the remainder of this article, for con-
venience we will omit the word weakest.

The prespecification P\R, where P is a program, plays
a role very similar to Dijkstra’s weakest precondition. It
satisfies the analogue of several of his conditions. In the
following three laws, P must be a program.

(3) To accomplish an impossible task, it is :still im-
possible, even with the help of P:

P\T = T.

:).

684 Communications of the ACM August 1987 Volume 30 Number 8

(4) To accomplish two tasks with the help of P, one
must write a program that accomplishes both of them
simultaneously:

P\(Rl rl R2) = (P\Rl) t-r (P\R2).

This distributive law extends to limits of arbitrary sets:

P\(nS) = n[P\R 1 R E S).

(5) Finally, consider a set of specifications
S = [Ri) i -Z 0) such that

Ri+l 2 Ri.

Then

P\(M) = U(P\Ri 1 i 2 0).

The following laws are very similar to the corre-
sponding laws for weakest preconditions.

(6) The program II changes nothing. Anything one
wants to achieve after II must be achieved before:

II\R = R.

(7) To achieve R with the aid of P U Q, one must
achieve it with either of them:

(P U Q)\R = (P\R) n (Q\R).

(8) To achieve R with the aid of (P; Q), one must
achieve (Q\R) with the aid of P:

(P; Q)\R = P\(Q\R).

(9) The corresponding law for the conditional
requires a new operator on specifications:

(P abD Q)W = (P\R) &D (Q\R),

where S 46D T specifies a program as follows: If b is
true after execution, it has behaved in accordance with
specification S. If b is false afterwards, it has behaved in
accordance with specification T. P QbD Q is not a pro-
gram, even if P and Q are; in fact it may not even be
implementable. Consider the example

x := false aiD x := true.

General Inverse
The \ operator has a dual, /. (R/S) is the weakest speci-
fication of a program X such that R > (S; X). Its proper-
ties

(1)

(21

(3)

(4)

(5)

(6)

(7)

are very similar to those of \, for example,

R 2 S; (R/S),

R > (S; X) = (R/S) > X,

T/P = T, if P is a program,

(it1 r-7 R2)/P = (Rl/P) n (R2/P),

R/II = R,

R/(P u Q) = (R/P) n (R/Q), and

R/U’; Q) = W/PI/Q.

Articles

The prespecification and postspecification are, in a
sense, the right and left inverses of sequential composi-
tion. This type of inverse can be given for any operator
F that distributes through arbitrary unions. It is defined
as follows:

(8) F-‘(R) = U(P 1 R 2 F(P)).

This is not an exact inverse of F, but it satisfies the law

(9) R > F(F-l(R)).

PROOF.

RI-IS = F(u(P 1 R > F(P)}) (by definition of F-‘)

= U(F(P) 1 R > F(P)) (by distribution of F)

CR (by set theory). Cl

Since F-‘(R) is the union of all solutions for X in the
inequation R 2 F(X), it must be the weakest (most gen-
eral) solution:

(10) R 2 F(X) = F-‘(R) 2 X.

The condition that F must distribute through U is
essential to the existence of the inverse F-‘. To show
this, consider the counterexample:

F(X) = X; X

P = x := x

Q = x := -x.

F is a function that may require more than one exe-
cution of its operand. When applied to the nondeter-
ministic choice of two programs P or Q, each execution
may produce a different choice. Consequently, F does
not distribute, as shown by the following example:

F(PUQ)= F’UQ);PUQl

(by definition of F)

= P; PI U 0’; Ql U (Q; PI U (Q; Ql

(by ; disjunctive)

= (x:=x;x:=x)u(x:=x;x:=-x)

U(x:=-x;x:=x)U(x:=-x;x:=-x)

= x:=xux:=-x.

But

F(P) U F(Q) = (x := x; x := x) U (x := -x; x := -x)

= x := x.

Since P 2 F(P) and P 2 F(Q), it follows that

u(X I P > F(X)) 2 P U Q (by set theory).

By law (IO) and the definition of F-‘(P), we could
conclude that P 1 F(P U Q), which is false. The contra-
diction shows that F does not have an inverse, even in
the weak sense described by law (10).

August 1987 Volume 30 Number 8 Communications of the ACM 555

Articles

The inverse F-‘(R) (when it exists) could be of assis-
tance in the top-down development of a program to
meet the specification R. Suppose it is decided that the
top-level structure of the program is defined by F. Then
it will be necessary to calculate F-‘(R) and use it as the
specification of the component program X, secure in
the knowledge that the final program F(X) will meet
the original specification R: That is, R 1 F(X).

Unfortunately, the method does not generalize to a
structure F with two or more components. Therefore it
would be necessary to fix all but one of the components
before calculating the inverse.

CONCLUSION
The laws presented here should assist programmers in
the reasoning necessary to develop programs that meet
their specifications. They should also help with optimi-
zation by algebraic transformation. The basic insight is
that programs themselves, as well as their specifica-
tions, are mathematical expressions. Therefore they
can be used directly in mathematical reasoning in the
same way as expressions that denote familiar mathe-
matical concepts, such as numbers, sets, functions,
groups, categories, among others. It is also very conve-
nient that programs and specifications are treated to-
gether in a homogeneous framework; the main distinc-
tion between them is that programs are a subclass of
specification expressed in such severely restricted nota-
tions that they can be input, translated, and executed
by a general-purpose digital computer.

However, we admit the exposition of this article does
have deficiencies. One theoretical weakness is that the
laws are presented as self-evident axioms or postulates,
intended to command assent from those who already
understand the properties of programs they express.

For sequential programs and their specifications, the
relevant mathematical definitions would be formulated
within the classical theory of relations [?‘I. The use of
such definitions to prove the laws enumerated in this
article yields a valuable reassurance that the laws are
consistent. Furthermore, the definitions give additional
insight into the mathematics of programming and how
it may be applied in practice. Specifically they suggest
additional useful laws, and establish that a given set of
laws is complete in the sense that some clearly defined
subset of all truths about programming can be deduced
directly from the laws, without appeal to the possibly
greater complexity of the definitions. This could be
extremely useful to the practicing programmer, who
does not have to know the foundations of the subject
any more than the scientist has to know about the
definition of real numbers in terms of Dedekind cuts.

Although nearly one hundred laws are given in this
article, we are still a long way from knowing how to
apply them directly to the design of correct and effi-
cient programs on the scale required by modern tech-
nology. Gaining practical experience in the application
of these mathematical laws to programming is the way

to go. The search for deeper and more specific theorems
that can be used more simply on limited but not too
narrow ranges of problems should continue. That is the
way that applied mathematics, as well as pure mathe-
matics, has made such great progress in the last two
thousand years. If we follow this example, perhaps
we may make more rapid progress, both in theoretical
research and in its practical application.

Note: References [I], [3], and [5] are not cited in text.
Backhouse, R.C. Program Construction and Verification. Prentice-Hall 1.

2.

3.

4.

5.

6.

7.

6.

Jnternational, London, 1968.
Backus, J. Can programming he liberated from the van Neumann
style? Commun. ACM 21, 8 (Aug. 19781, 613-641.
de Bakker, J.W. Mathematical Theory of Program Correct~zess. Prentice-
Hall International. London. 1980.
Dijkstra, E.W. A Discipline of Programming. Prentice-Hall, Englewood
Cliffs. N.I.. 1976.
Cries, D. The Science of Programming. Springer-Verlag, New York,
1981.
Hehner, E.C.R. Predicative programming parts I and II. Commun.
ACM 27,2 (Feb. 1984), 134-151.
Hoare, C.A.R., and He, J. Weakest prespecification. Tech. Monogr.
PRG-44, Programming Research Group, Oxford Univ., 1985.
Igarishi, S. An axiomatic approach to equivalence problems of algo-
rithms with applications. Rep., Computer Centre, Univ. of Tokyo,
1968.

9.

10.

11.

12.

13.

Jones, C.B. Software Development: A Rigorous Approach. Prentice-Hall
International, London, 1980.
Kowalski, R.A. The relation between logic programming and logic
specification. In Mathematical Logic and Programming Languages,
C.A.R. Hoare and J.C. Shepherdson, Eds. Prentice-Hall International,
London, 1985, pp. 11-27.
Roscoe, A.W. Laws of Occam programming. Tech. Monogr. PRG-53,
Programming Research Group, Oxford Univ., 1986.
Scott, D.S. Outline of a mathematical theory of computetion. Tech.
Monogr. PRCX!, Programming Research Group, Oxford Univ., 1970.
Tarski, A. On the calculus of relations. J. Symbolic Logic 6 (1941),
73-89.

REFERENCES

CR Categories and Subject Descriptors: D.1.4 [Programming Tech-
niques]: Sequential Programming: D.3.1 [Programming Languages]: For-
mal Definitions and Theory-semantics; D.3.4 (Programming Languages]:
Processors-optimization; F.l.2 [Computation by Abstract Devices]:
Modes of Computation; F.3.1 [Logics and Meanings of Programs]: Speci-
fying and Verifying and Reasoning about Programs-pre- and post-
conditions; specification techniques; F.3.2 [Logics and Meanings of Pro-
grams]: Semantics of Programming Languages--algebraic approaches to
semantics; 12.2 [Artificial Intelligence]: Automatic Programming-pro-
gram transformation

General Terms: Design, Languages, Theory

Authors’ Present Addresses: C.A.R. Hoare, Dept. of Computer Science,
Taylor Hall 2.2124, University of Texas at Austin, Austin, ‘IX
78712; He Jifeng, CC. Morgan, A.W. Roscoe, J.W. Sanders, I.H. Sorensen,
J.M. Spivey, and B.A. Sufrin, Programming Research Group, Oxford Uni-
versity Computing Laboratory, 11, Keble Road, Oxford OX1 3GQ, Eng-
land; 1.1. Hayes, Dept. of Computer Science, University of Queensland.
St. Lucia, Queensland, Australia, 4067.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of thcz publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

A few last minute corrections arrived too late for inclusion here. They will be printed in CACM, September 1987.

666 Communications of the ACM August 1987 Volume 30 Number 8

