
Polymorphic Systems with Arrays:
Decidability and Undecidability?

(Extended Abstract of Work in Progress)

Ranko Lazić1??, Tom Newcomb2, and Bill Roscoe2

1 Department of Computer Science, University of Warwick, UK
Ranko.Lazic@dcs.warwick.ac.uk

2 Computing Laboratory, University of Oxford, UK
Tom.Newcomb@comlab.ox.ac.uk

Bill.Roscoe@comlab.ox.ac.uk

Abstract. Polymorphic systems with arrays (PSAs) is a general class of nonde-
terministic reactive systems. A PSA is polymorphic in the sense that it depends
on a signature, which consists of a number of type variables, and a number of
symbols whose types can be built from the type variables. Some of the state
variables of a PSA can be arrays, which are functions from one type to an-
other. We present several new decidability and undecidability results for the
parameterised control-state reachability problem on subclasses of PSAs.

1 Introduction

Model checking (e.g. [1]) is the approach to verification where it is checked algorith-
mically whether a model of a given system satisfies a correctness property. Compared
with testing and theorem proving, which are the other main techniques for verifica-
tion, model checking is distinguished by being exhaustive, automatic, and returning
counter-examples when the model does not satisfy the property. Due to these features,
model checking is being used in industry.

In its basic form, model checking applies to finite-state systems, where correctness
is either satisfaction of a temporal logic formula, or refinement of another finite-state
system. Such verification problems are decidable, and efficient algorithms for solving
them have been developed.

Model checking of infinite-state systems has also been a successful research area (e.g.
[7]). Without the finite-state restriction, many verification problems are undecidable,
such as the Halting Problem for Turing machines. However, for many interesting classes
of infinite-state systems and correctness properties, verification is decidable. Research
has concentrated on classifying verification problems as undecidable or decidable, and
? We acknowledge support from the EPSRC Standard Research Grant ‘Exploiting Data In-

dependence’, GR/M32900. The first author was also supported by a research grant from
the Intel Corporation, the second author by QinetiQ Malvern, and the third author by the
US ONR.

?? Also affiliated to the Mathematical Institute, Serbian Academy of Sciences and Arts, Bel-
grade.

148
Proceedings of the 1st South-East European
Workshop on Formal Methods, SEEFM'03
November 2003, Thessaloniki, Greece

in the latter case determining their complexity. Much valuable work has also been done
on semi-algorithms, abstraction, combinations of model checking, theorem proving and
testing, etc.

In this paper, we introduce polymorphic systems with arrays (PSAs). A PSA is
polymorphic in the sense that it depends on a signature, which consists of a number
of type variables, and a number of symbols whose types can be built from the type
variables. Some of the state variables of a PSA can be arrays, which are functions from
one type to another.

A signature is instantiated by assigning sets to its type variables, and concrete
elements or operations to its symbols. Given a PSA and an instantiation of its signature,
we get a model which is a transition system, and which is finite-state if all the type
variables are assigned finite sets.

We study parameterised verification of PSAs, so a PSA will in fact be equipped with
a set of instantiations of its signature. Its model will consist of all transition systems for
the given instantiations. Normally, infinitely many instantiations are given, resulting
in an infinite-state model.

PSAs generalise data-independent systems with arrays [10, 8, 14, 12]. They are PSAs
whose signatures consist of type variables and binary predicate symbols on some of
those type variables, which are always instantiated as equality predicates. In other
words, data-independent systems with arrays are polymorphic, but can use at most
equality on elements of variable types.

Another interesting subclass of PSAs which we consider in this paper generalises
data-independent systems with arrays by allowing some type variables to be equipped
with linear-order predicates.1

The definition of PSAs allows a general form of assignment to array variables,
whereas the research on data-independent systems with arrays considered specific op-
erations, such as a write to an array component, or a reset of a whole array to a value.
This corresponds to studying subclasses of PSAs where only certain kinds of assignment
to array variables are allowed.

There is strong practical motivation to study PSAs, as they arise wherever a system
is parameterised by data types, and contains arrays. Examples include: database with
record locking and two security levels of records, which is parameterised by types of
record indices and record contents [10]; fault-tolerant memory, parameterised by types
of memory addresses and storable data [8]; cache-coherence protocols, parameterised
by types of processor indices, memory addresses and storable data (e.g. [2, 13]).

PSAs are related to a number of other classes of systems: a marking of a Petri net
can be seen as an array which maps each token to the place which contains it [14]; a
configuration of a Broadcast Protocol [3] can be regarded as an array mapping process
indices to process states; a system with sets can be seen as a system with arrays by
representing a set by an array containing booleans. These relationships, together with
the fact that they are not equivalences, strengthen the case for studying PSAs and
their verification.

Another view of PSAs worth mentioning is that, for example, a PSA whose signature
consists of a linearly-ordered type variable X, and which has an array variable indexed

1 A linear-order predicate can express the equality predicate by a = b ⇔ a ≤ b ∧ b ≤ a.

149

by X and a number of variables of type X, can be seen as a Turing machine which
is parameterised by the size of its tape, has a number of heads, and is only able to
compare the positions of two heads (as well as move a head to a nondeterministic new
position), but not move a head left or right by exactly one position.

In this paper, we present a few new undecidability results for parameterised verifi-
cation of subclasses of PSAs, and one new decidability result. Both kinds of results are
useful for guiding work on verification tools.

Proofs will be available in the full paper [9].

2 Polymorphic systems with arrays

To define PSAs, we start with the syntax of types.2 For simplicity, we have basic types
built from type variables, products and non-empty sums (i.e. disjoint unions), and
function types from one basic type to another. Function types will be used as types of
array variables, and also as types of signature symbols such as equality predicates.

B ::= X | B1 × · · · ×Bn | B1 + · · ·+ Bn≥1

T ::= B | B → B′

Next we need a syntax of terms, which will be used to form one-step computations
of PSAs. The terms are built from term variables, tuple formation, tuple projection,
sum injection, sum case, and function application. For simplicity, instead of having a
λ-abstraction term construct for forming functions, PSAs will have a general form of
assignment to array variables.

t ::= x | (t1, . . . , tn) | πi(t) |
ιBi (t) | case t of x1.t

′
1 or . . . or xn.t′n |

t1 t2

We consider only well-typed terms. A signature consists of a finite set Ω of type
variables, and a type context Γ which is a finite sequence x1 : T1, . . . , xn : Tn of typed
and mutually distinct term variables, where the types Ti can contain only type variables
from Ω. A well-typed term-in-context is written Ω, Γ ` t : T , where these valid type
judgements are deduced by standard typing rules.

Using the types and terms above, we can for example express:

– the singleton type Unit as the empty product, and its unique element as the empty
tuple;

– the boolean type Bool as the sum of two Unit types, and terms false, true, and
if t then t′1 else t′2;

– for any positive n, the n-element enumerated type Enumn as the sum of n Unit
types, its elements e1, . . . , en, and a case term.

2 For computations within PSAs, we use a fragment of a typed λ-calculus (e.g. [11]).

150

We can also express any given operation on the Bool and Enumn types, of any arity.
Semantics of types is defined as follows. A finite set Ω of type variables is instanti-

ated by a mapping ω to non-empty sets. For any type T such that Vars(T) ⊆ Ω, its
semantics with respect to ω is a non-empty set JTKω, which is defined in the usual
way.

For semantics of terms, a signature (Ω,Γ) is instantiated by a ω as above, and a
mapping γ ∈ JΓKω, i.e. Dom(γ) = Dom(Γ) and γJxK ∈ JTKω for all x : T in Γ . For
any well-typed term-in-context Ω, Γ ` t : T , its semantics with respect to (ω, γ) is an
element JtKω,γ of JTKω, and is defined in the standard way.

Definition 1. A PSA is a 5-tuple (Ω, Γ, Θ, R, I) such that:

– (Ω,Γ) is a signature, consisting of type variables and typed term variables (i.e.
typed constant or operation symbols) which the PSA is parameterised by.

– Θ is a type context disjoint from Γ , and such that (Ω, ΓΘ) is a signature. Θ specifies
the state variables of the PSA and their types. According to its type, a state variable
is either basic or an array.

– R is a finite set of instructions. Each J ∈ R is a set of assignments (performed
simultaneously) to mutually distinct state variables. The form of each assignment
is:
• For basic state variables b : B, it is b := ?Φ : d · t, where Φ is a type context

disjoint from ΓΘ and containing only basic types, and

Ω, ΓΘΦ ` d : Bool
Ω, ΓΘΦ ` t : B

The semantics will be that Φ consists of parameters whose values are chosen
nondeterministically subject to satisfying d, and then the value of t is assigned
to b.

• For array state variables a : B → B′, it is a[x : c] := ?Φ : d · t, where ΓΘ,
〈x : B〉 and Φ are mutually disjoint type contexts and Φ contains only basic
types, and

Ω,ΓΘ〈x : B〉 ` c : Bool
Ω,ΓΘ〈x : B〉Φ ` d : Bool
Ω,ΓΘ〈x : B〉Φ ` t : B′

The semantics will be that, for all values of x such that c is satisfied, values for
the parameters in Φ are chosen nondeterministically (and possibly differently
for different values of x) subject to satisfying d, and then the value of t is
assigned to a[x].

– I is a set of instantiations of (Ω, Γ).

The following are some special cases of array assignment:

Write. Assigning t′ to a[t]:

a[x : x = t] := ?〈〉 : true · t′

151

Reset. Assigning t′ to all components of a:

a[x : true] := ?〈〉 : true · t′

Assign. Assigning an array a′ to a:

a[x : true] := ?〈〉 : true · a′x

Choose. Nondeterministically choosing a whole array:

a[x : true] := ?〈y : B′〉 : true · y

Map. Applying an operation componentwise to several arrays:

a[x : true] := ?〈〉 : true · f(a′1x, . . . , a′nx)

Cross-section. For example, a row t of an array a : (B1 ×B2) → B′ can be assigned
to using the condition π1(x) = t.

Definition 2. The semantics of a PSA (Ω,Γ, Θ, R, I) is the transition system (S,→)
defined as follows:

– The set of states S consists of all (ω, γ, θ) such that (ω, γ) ∈ I and θ ∈ JΘKω.
– (ω, γ, θ) → (ω′, γ′, θ′) iff ω′ = ω, γ′ = γ, and there exists J ∈ R which can produce

θ′ from θ. This means that, for each assignment b := ?Φ : d · t in J , there exists
φ ∈ JΦKω such that

JdKω,γθφ = tt
θ′JbK = JtKω,γθφ

Also, for each assignment a[x : c] := ?Φ : d · t in J , where Θ(a) = B → B′, and for
each v ∈ JBKω such that JcKω,γθ{x7→v} = tt, there exists φv ∈ JΦKω such that

JdKω,γθ{x7→v}φ = tt
θ′JaK(v) = JtKω,γθ{x7→v}φ

Finally, for each v ∈ JBKω such that JcKω,γθ{x 7→v} = ff , we have θ′JaK(v) =
θJaK(v).

3 Undecidability results

We consider the following classes of PSAs:

X ×X-to-Bool. This class consists of all PSAs (Ω,Γ, Θ,R, I) such that:
– Ω = {X} and Γ = 〈=X : X ×X → Bool〉;
– there is only one array variable in Θ, and it is of type X ×X → Bool ;
– the array assignments in R are only writes and resets;

152

– I consists of all (ω, γ) such that ω assigns to X a set of the form k̂ = {1, . . . , k},
and γ assigns to =X the equality predicate on k̂.

X × Y -to-Bool. Here X and Y are distinct type variables, and the restrictions are:
– Ω = {X, Y } and Γ = 〈=X : X ×X → Bool , =Y : Y × Y → Bool〉;
– there is only one array variable in Θ, and it is of type X × Y → Bool ;
– the array assignments in R are only writes and resets;
– I consists of all (ω, γ) such that ω assigns to X and Y some k̂ and l̂, and γ

assigns to =X and =Y the equality predicates.
X-to-Y ,Z. Here X, Y , Z are distinct type variables, and the restrictions are:

– Ω = {X, Y, Z} and Γ = 〈=X : X×X → Bool ,=Y : Y ×Y → Bool ,=Z : Z×Z →
Bool〉;

– there are only two array variables in Θ, and they are of types X → Y and
X → Z;

– the array assignments in R are only writes and resets;
– I consists of all (ω, γ) such that ω assigns to X, Y , Z some k̂, l̂, m̂, and γ

assigns to =X , =Y , =Z the equality predicates.
X,≤-to-Y . Here X and Y are distinct type variables, and the restrictions are:

– Ω = {X, Y } and Γ = 〈≤X : X ×X → Bool , =Y : Y × Y → Bool〉;
– there is only one array variable in Θ, and it is of type X → Y ;
– the array assignments in R are only writes and resets;
– I consists of all (ω, γ) such that ω assigns to X and Y some k̂ and l̂, γJ≤XK

is the ordering on k̂, and γJ=Y K is the equality predicate on l̂.

Given a PSA, a state variable b of type Enumn
3, and i, j ∈ {1, . . . , n}, the control-

state reachability problem is to decide whether there exists a sequence of transitions
from a state (ω, γ, θ) with θJbK = i to a state (ω, γ, θ′) with θ′JbK = j. The problem
of checking any safety property can be reduced to this problem.

Theorem 1. The control-state reachability problem is undecidable for each of the classes
X ×X-to-Bool, X × Y -to-Bool, X-to-Y ,Z, and X,≤-to-Y .

Proof. In each case, the proof is by a reduction from the reachability problem for
2-counter automata.

In [14], it was shown that control-state reachability is decidable for systems with
an array from X with equality to an enumerated type. In [12, Chapter 8], decidability
of the same problem was shown for systems with an array from X with equality to
Y with equality. Theorem 1 tells us that decidability fails when the former arrays are
generalised to two-dimensional, and when the latter arrays are generalised to X with
a linear ordering.

By regarding X as the type of processor indices, Y as the type of memory addresses,
and Bool as the type of storable data, the class X×Y -to-Bool contains classes of cache-
coherence protocols (e.g. [2, 13]). By Theorem 1, any decidability result for control-
state reachability for such a class of protocols must depend on some properties of the
protocols which are not common to the whole class X × Y -to-Bool.
3 Any tuple of variables whose types do not contain type variables is isomorphic to a variable

of type Enumn.

153

It was also shown in [14] that control-state reachability is undecidable for systems
with two arrays from X with equality to Y with equality. Theorem 1 states that
undecidability remains for the less expressive class X-to-Y ,Z.4

4 Decidability result

Let X,≤-to-Enum be the class of all PSAs (Ω, Γ,Θ, R, I) such that:

– Ω = {X} and Γ = 〈≤X : X ×X → Bool〉;
– the type of any array variable in Θ is of the form X → Enumm;
– in every array assignment a[x : c] := ?Φ : d · t in R, d does not contain x;
– I consists of all (ω, γ) such that ω assigns to X some k̂, and γ assigns to ≤X the

linear ordering on k̂.

Theorem 2. The control-state reachability problem is decidable for the class X,≤-to-
Enum.

Proof. The proof uses the set-saturation methods in [5].

Theorem 2 strengthens the decidability result in [14] for systems with arrays from
X with equality to enumerated types.

The restriction on array assignments is necessary because a counter can be repre-
sented by the number of indices of an array at which a certain value i ∈ {1, . . . ,m} is
stored. An array assignment

a[x : true] := ?〈〉 : a x 6= ei · a x

can then be executed iff the counter is zero, enabling a reduction of the reachability
problem for 2-counter automata.

Example 1. The class X,≤-to-Enum contains a model of the Bully Algorithm for lead-
ership election in a distributed system in which process identifiers are linearly ordered
[6]. The parameterisation by (X,≤) captures the parameterisation by the number of
processes. By Theorem 2 and by reducing safety properties to control-state reachability,
many interesting properties can be decided, such as:

– there are never two distinct coordinators;
– a process cannot receive a coordinator announcement from a process whose iden-

tifier is smaller than the identifier of the previous coordinator without detecting
that the previous coordinator had failed;

– there is never a coordinator and a process with a greater identifier which believes
it has a coordinator.

4 This class is less expressive because the types prevent the values contained in the two arrays
to be mixed.

154

5 Future work

Related to Theorem 1, undecidability of control-state reachability for classes of PSAs
which contain the reset operation on arrays can be used to deduce undecidability of
checking certain temporal properties for classes of PSAs which do not contain resets.

The part of Theorem 1 for the class X ×Y -to-Bool implies undecidability of model
checking safety properties for a class of systems obtained by generalising Broadcast
Protocols [3] to rectangular networks, where broadcasts restricted to a row or a column
are possible.

A corollary of Theorem 2 is a generalisation of the decidability result for model
checking safety properties of Broadcast Protocols [4], where linear-ordering comparisons
of process indices are allowed.

Other on-going work includes generalising the decidability results in [14] and [12,
Chapter 8], and Theorem 2 to classes of PSAs with more than one array.

Acknowledgements

We thank Sara Kalvala for a useful discussion.

References

1. E.M. Clarke, O. Grumberg and D.A. Peled, Model Checking, MIT Press, January 2000.

2. G. Delzanno, Automatic verification of parameterised cache coherence protocols, Proceed-
ings of the 12th International Conference on Computer-Aided Verification (CAV 2000),
Lecture Notes in Computer Science 1855, 53–68, Springer, July 2000.

3. E.A. Emerson and K.S. Namjoshi, On model checking for non-deterministic infinite-state
systems, Proceedings of the 13th Annual IEEE Symposium on Logic in Computer Science
(LICS), 1998.

4. J. Esparza, A. Finkel and R. Mayr, On the verification of broadcast protocols, Proceedings
of the 14th Annual IEEE Symposium on Logic in Computer Science (LICS), 352–359,
July 1999.

5. A. Finkel and Ph. Schnoebelen, Well-structured transition systems everywhere!, Theoret-
ical Computer Science 256 (1–2): 63–92, 2001.

6. H. Garcia-Molina, Elections in a distributed computing system, IEEE Transactions on
Computers 31 (1): 48–59, 1982.

7. International Workshops on Verification of Infinite-State Systems.
http://www.lsv.ens-cachan.fr/infinity03/

8. R.S. Lazić, T.C. Newcomb and A.W. Roscoe, On model checking data-independent systems
with arrays without reset, Programming Research Group Research Report RR-02-02, 31
pages, Oxford University Computing Laboratory, January 2002. Revised version to appear
in the journal Theory and Practice of Logic Programming (TPLP), Cambridge University
Press.

9. R.S. Lazić, T.C. Newcomb and A.W. Roscoe, Polymorphic systems with arrays: decidabil-
ity and undecidability, Research Report, Department of Computer Science, University of
Warwick, in preparation.

155

10. R. Lazić and A.W. Roscoe, Verifying determinism of concurrent systems which use un-
bounded arrays, Proceedings of the 3rd International Workshop on Verification of Infinite
State Systems (INFINITY ’98), Report TUM-I9825, 2–8, Technical University of Munich,
July 1998.

11. J.C. Mitchell, Type Systems for Programming Languages, in [15], 365–458.
12. T.C. Newcomb, Model Checking Data-Independent Systems with Arrays, D.Phil. thesis

draft, Computing Laboratory, Oxford University, June 2003.
13. S. Qadeer, Verifying sequential consistency on shared-memory multiprocessors by model

checking, Research Report 176, Compaq, Palo Alto, 2001.
14. A.W. Roscoe and R.S. Lazić, What can you decide about resetable arrays?, Proceedings

of the 2nd International Workshop on Verification and Computational Logic (VCL’2001),
Technical Report DSSE-TR-2001-3, 5–23, Declarative Systems and Software Engineer-
ing Research Group, Department of Electronics and Computer Science, University of
Southampton, September 2001.

15. J. van Leeuwen (editor), Formal Models and Semantics, Handbook of Theoretical Com-
puter Science, volume B, Elsevier, 1990.

156

