
Accurate Sampling-Based Cardinality Estimation for
Complex GraphQueries
PAN HU, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, China
BORIS MOTIK, Oxford University, United Kingdom

Accurately estimating the cardinality (i.e., the number of answers) of complex queries plays a central role in
database systems. This problem is particularly difficult in graph databases, where queries often involve a large
number of joins and self-joins. Recently, Park et al. [55] surveyed seven state-of-the-art cardinality estimation
approaches for graph queries. The results of their extensive empirical evaluation show that a sampling method
based on the WanderJoin online aggregation algorithm [47] consistently offers superior accuracy.

We extended the framework by Park et al. [55] with three additional datasets and repeated their experiments.
Our results showed that WanderJoin is indeed very accurate, but it can often take a large number of samples
and thus be very slow. Moreover, when queries are complex and data distributions are skewed, it often fails
to find valid samples and estimates the cardinality as zero. Finally, complex graph queries often go beyond
simple graph matching and involve arbitrary nesting of relational operators such as disjunction, difference,
and duplicate elimination. Neither of the methods considered by Park et al. [55] is applicable to such queries.

In this article we present a novel approach for estimating the cardinality of complex graph queries. Our
approach is inspired byWanderJoin, but, unlike all approaches known to us, it can process complex queries with
arbitrary operator nesting. Our estimator is strongly consistent, meaning that the average of repeated estimates
converges with probability one to the actual cardinality. We present optimisations of the basic algorithm
that aim to reduce the chance of producing zero estimates and improve accuracy. We show empirically that
our approach is both accurate and quick on complex queries and large datasets. Finally, we discuss how to
integrate our approach into a simple dynamic programming query planner, and we confirm empirically that
our planner produces high-quality plans that can significantly reduce end-to-end query evaluation times.

CCS Concepts: • Information systems→ Database query processing.

Additional Key Words and Phrases: cardinality estimation, conjunctive queries, sampling, query planning

ACM Reference Format:
Pan Hu and Boris Motik. 2024. Accurate Sampling-Based Cardinality Estimation for Complex Graph Queries.
ACM Trans. Datab. Syst. 49, 3, Article 12 (September 2024), 46 pages. https://doi.org/10.1145/3689209

1 Introduction
Estimating query cardinality (i.e., the number of answers) plays a central role in database systems.
Query planners use cardinality estimates to determine the cost of candidate query plans, and
estimation accuracy can significantly influence the resulting plan quality [46]. At the same time,
thousands of candidate plans can be considered during planning, so, to be useful, estimation must
be orders of magnitude faster than query evaluation. Thus, striking the right balance between
speed and accuracy is key to designing effective cardinality estimation algorithms.

Authors’ Contact Information: Pan Hu, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong
University, Shanghai, China, pan.hu@sjtu.edu.cn; Boris Motik, Oxford University, Oxford, United Kingdom, boris.motik@
cs.ox.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 ACM.
ACM 1557-4644/2024/9-ART12
https://doi.org/10.1145/3689209

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

HTTPS://ORCID.ORG/0000-0003-1701-9640
HTTPS://ORCID.ORG/0000-0003-2506-4118
https://doi.org/10.1145/3689209
https://orcid.org/0000-0003-1701-9640
https://orcid.org/0000-0003-2506-4118
https://doi.org/10.1145/3689209

12:2 Pan Hu and Boris Motik

Background. Numerous approaches summarise the data in the database using a synopsis—a data
structure that can estimate the cardinality of certain types of queries. One-dimensional synopses,
such as one-dimensional histograms [38, 59] and wavelets [50], summarise one attribute of one
relation, so they can process queries involving one selection over a single relation. Multidimensional
synopses, such as multidimensional histograms [2, 12, 24, 58], multidimensional wavelets [14, 21],
discrete cosine transforms [45], and kernel methods [23, 32], summarise several attributes of one
relation, so they can process several selections over a single relation. Finally, schema-level synopses,
such as join synopses [3], graphical models [22, 69], TuG synopses [62], statistical views [11, 19, 66],
Bayesian networks [68], and correlated sample synopses [73], summarise results of joins of several
relations. Queries whose cardinality cannot be estimated using the available synopses are typically
broken into subqueries that can be estimated, and partial estimates are combined using ad hoc
assumptions [10, 20]: the independence assumption means that each selection or join affects the
query answers independently; the preservation assumption means that each attribute value of any
joined relation is present in the join result; and the containment assumption means that, for each
pair of joined attributes, all values of one attribute are contained in the other attribute. Chen et al.
[16] recently presented a systematic analysis of the space of such assumptions. However, these
assumptions usually do not hold in practice, which often leads to significant estimation errors.

Several recent approaches train anMLmodel that can be understood as an advanced schema-level
synopsis capturing statistical properties of the queries and/or the data. ML-based approaches can be
broadly divided into two groups. In the first group, training is performed on examples of queries and
corresponding cardinalities [43, 51, 56]. Producing training data thus typically requires computing
the exact cardinality of a large number of queries, which can be cumbersome. In the second group,
the objective is to learn an approximation of the distribution of tuples in either one [31, 72] or
several [35, 71] database relations. Such approaches have proved effective in practice, but they
typically rely on a join schema—an explicit list of joins that are expected in a subsequent query
workload. Queries with joins not covered by the join schema are broken into parts that can be
estimated independently, and the results are combined using ad hoc assumptions.
Finally, query cardinality can be estimated by sampling the data in the database. The objective

is usually to produce unbiased estimates, which means that the estimate expectation is equal to
the query cardinality. The average of independent unbiased estimates converges to the actual
cardinality as the number of estimates increases, so the number of samples provides a natural
way to control the efficiency vs. accuracy tradeoff. Lipton and Naughton [48] presented a general
framework for unbiased sampling-based cardinality estimation, and they showed how to choose the
number of samples for certain query classes. Query cardinality can also be estimated using online
aggregation algorithms, which can compute unbiased estimates of aggregation results [26, 27, 33].
WanderJoin [47] is a recent online aggregation algorithm that typically offers superior performance
to earlier approaches. Most sampling-based algorithms do not depend on a join schema and provide
unbiased estimates for queries with arbitrary combinations of (self-)joins.
Query cardinality estimation is also used in graph databases—systems that organise data as

labelled graphs [6]. Graph queries typically enumerate all embeddings of a graph pattern into
the database graph, which corresponds to evaluating select–rename–join queries. Graph patterns
are often include joins over dozens of edges, and they often express connectivity patterns (e.g.,
‘friends of friends’) that frequently involve self-joins. This makes cardinality estimation in graph
databases particularly challenging: joins are frequently not covered by schema-level synopses (e.g.,
[68, 71, 73]) so ad hoc assumptions are frequently needed; furthermore, the incurred errors are
known to compound exponentially with the number of joins [39].
To systematically compare existing approaches to cardinality estimation in graph databases,

Park et al. [55] recently presented the G-CARE framework consisting of five datasets, an extensive

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

Accurate Sampling-Based Cardinality Estimation for Complex GraphQueries 12:3

set of accompanying queries, and an implementation of seven known approaches to cardinality
estimation in graph databases. Three methods (Characteristic Sets [52], SumRDF [63], and Impr [17])
were specifically developed for graph data, and four (Correlated Sampling [70], WanderJoin [47],
JSUB [76], and Bounded Sketch [13]) were adapted from relational databases. After an extensive
comparison of the accuracy and efficiency of these approaches, Park et al. [55] identifiedWanderJoin
as consistently outperforming the other approaches.
Limitations of the Existing Approaches. We repeated the experiments by Park et al. [55] using
a much larger version of the LUBM [25] dataset, the WatDiv [4] benchmark, and a graph version
of DBLP.1 Our results confirm that WanderJoin is significantly more accurate than the other six
approaches, but they also revealed several drawbacks. Specifically, WanderJoin can be quite slow:
the median estimation time for a single run of the WanderJoin implementation by Park et al. [55]
was 5.1 s, 160 ms, and 1.5 s on our three new datasets, respectively, which is too slow to be effective
in query planning. Moreover, our investigation showed that, when datasets are large and queries
are complex and selective, WanderJoin often produces zero estimates. In such situations, query
optimisers typically fall back to heuristics that ignore attribute correlations, which can lead to large
estimation errors and consequently result in poor query plans [34].
Furthermore, graph queries often go beyond graph pattern matching and involve arbitrary

nesting of graph matching and operators such as union, projection, and duplicate elimination.
Example 1.1. The following is a simplified version of a SPARQL [30] query we encountered while

applying a leading RDF data management system to a product configuration use case.
SELECT ?axis ?motor WHERE {

{ SELECT DISTINCT ?axis ?motor WHERE {
?axis :compatible-mounting-kit ?mounting .
{ SELECT DISTINCT ?mounting WHERE { ?mounting :compatible-motor ?motor } }

} }
{ ?axis rdf:type ?cat . ?cat rdfs:subClassOf ?cls .

VALUES ?cls { :AxisFamily :AxisConsturction ... } }
UNION
{ ?axis rdf:type :Axis }

}

The aim of the nested DISTINCT operators was to reduce the number of bindings for the ?mounting
and ?motor variables and thus ensure efficient query evaluation. However, the RDF system we
used struggled to produce an efficient query plan because of its inability to accurately estimate the
cardinality of the UNION and DISTINCT subqueries, as well as of their join. ⊳

Approaches to cardinality estimation we are aware of typically handle only select–rename–join
queries—that is, queries over joins of several relations with equality or range conditions on relation
attributes. This presents a significant obstacle to the planning of complex graph queries.
Our Contribution. We present a novel WanderJoin-inspired method for estimating cardinality of
complex graph queries. Unlike WanderJoin, our method is applicable to queries involving arbitrary
nesting of join, union, difference, projection, filter, bind, and duplicate elimination operators with bag
semantics. Its estimates are strongly consistent in the sense that the average of repeated invocations
converges with probability one to the actual cardinality; moreover, for queries without duplicate
elimination, estimates are unbiased. We show that our approach can intuitively be understood as
‘sampling the loops’ of query evaluation with sideways information passing [40, 53, 74].

We also present several optimisations that aim to improve estimation accuracy without incurring
significant overheads. In particular, we show that we can partition the sample space without

1https://blog.dblp.org/2022/03/02/dblp-in-rdf/

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

https://blog.dblp.org/2022/03/02/dblp-in-rdf/

12:4 Pan Hu and Boris Motik

affecting the statistical properties of the estimator. Furthermore, we discuss ways to identify
conjunct orders that are more likely to produce accurate estimates.

We then discuss how our cardinality estimation approach can be integrated into a simple dynamic
programming query planning algorithm. We discuss the challenges that zero estimates pose for
query planning, and we present ways to overcome these issues without significant overheads.

Finally, we present the results of an extensive empirical evaluation of our results. We show that
our approach produces highly accurate estimates of graph pattern queries on the extended G-CARE
framework, but using a fraction of time of the WanderJoin variant by Park et al. [55]. We also show
that our approach can also efficiently and accurately estimate the cardinality of complex queries,
such as the one described in Example 1.1. We also conduct end-to-end experiments and show that
accurate cardinality estimations allow our query planning approach to speed up overall query
evaluation by several orders of magnitude on complex queries. Finally, we compare our approach
with NeuroCard [71], a prominent approach based on deep learning. We show that our algorithms
produce estimates of comparable accuracy but in a fraction of the time; moreover, our approaches
do not require a join schema and thus can be used without anticipating the query workload in
advance, and they can also process cyclic queries. Thus, our results significantly improve the
state-of-the-art of sampling-based cardinality estimation methods.

All code and datasets used in our experiments, as well as the detailed results of our experiments
are available for download online [37].

2 Preliminaries
In this section, we formally define the graph data model and the corresponding query language, we
introduce the notion of an estimator, and we define the problem we consider in this article.

2.1 Data Model andQuery Language
Angles et al. [6] recently classified the data models and query languages used in graph databases
into two main groups. In the first group, data is modelled as edge-labelled graphs—that is, only edges
can be labelled. Resource Description Framework (RDF) [44] is an example of such a model. An RDF
graph consists of finitely many triples of the form ⟨𝑠, 𝑝, 𝑜⟩, each representing a 𝑝-labelled edge from
the subject vertex 𝑠 to the object vertex 𝑜 . SPARQL [30] is the standard language for querying RDF
databases. The second group consists of property graphs, where each vertex and edge is associated
with a unique identifier, zero or more types, and a set of key–value pairs. Standardisation of query
languages for property graphs is still ongoing, but Cypher [65] and Gremlin [67] are commonly
used in practice. Graph pattern matching is a key feature of virtually all graph query languages.
A graph pattern is a graph in which some parts (e.g., a vertex, an edge, or a label) are replaced by
variables. The objective of graph pattern matching is to find all combinations of variable values for
which the graph pattern becomes a subset of the data graph. In addition, graph query languages
often provide algebraic operations such as union, difference, or optionals, as well as regular path
queries, which select pairs of vertices connected by paths matching a regular expression.
The syntaxes of SPARQL and Cypher are complex and cumbersome. When formalising the

semantics of SPARQL, Pérez et al. [57] introduced an algebraic query language that captures the
essence of SPARQL, but is more suited to formal presentation. We follow their approach and use
a slight variation of their query language in this article. Moreover, the principles we discuss are
independent from the details of the data model so, for simplicity, we assume that graph data is
represented relationally. Such a representation can easily capture both edge-labelled graphs and
property graphs, so our results can easily be applied in both kinds of databases.

We use the notion of a multiset 𝑀 over a domain set 𝐷 , which is a function that assigns to each
element 𝑑 ∈ 𝐷 a nonnegative number 𝑀 (𝑑) of occurrences of 𝑑 in 𝑀 . We use double braces to

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

Accurate Sampling-Based Cardinality Estimation for Complex GraphQueries 12:5

Table 1. The Syntax and the Semantics of theQuery Language

𝑄 v(𝑄) Constraint ans𝐼 (𝑄)
𝐴 the vars of 𝐴 {𝜎 | 𝜎 is a matcher of 𝐴 to some fact 𝐹 ∈ 𝐼 }

𝑄1 AND𝑄2 v(𝑄1) ∪ v(𝑄2) {{𝜎1 ∪ 𝜎2 | 𝜎1 ∈ ans𝐼 (𝑄1), 𝜎2 ∈ ans𝐼 (𝑄2), and 𝜎1 ∼ 𝜎2}}
𝑄1 UNION𝑄2 v(𝑄1) v(𝑄1) = v(𝑄2) ans𝐼 (𝑄1) ∪ ans𝐼 (𝑄2)
𝑄1 MINUS𝑄2 v(𝑄1) {{𝜎1 ∈ ans𝐼 (𝑄1) | �𝜎2 ∈ ans𝐼 (𝑄2) such that 𝜎1 ∼ 𝜎2}}
𝑄1 FILTER 𝐸 v(𝑄1) v(𝑄1) ⊇ v(𝐸) {{𝜎 | 𝜎 ∈ ans𝐼 (𝑄1) and 𝜎 (𝐸) evaluates to true}}
𝑄1 BIND 𝑥 := 𝐸 v(𝑄1) ∪ {𝑥 } 𝑥 ∉ v(𝑄1) ⊇ v(𝐸) {{𝜎 ∪ {𝑥 ↦→ 𝜎 (𝐸) } | 𝜎 ∈ ans𝐼 (𝑄1) and 𝜎 (𝐸) ≠ 𝜖 }}
PROJECT𝑋 (𝑄1) 𝑋 v(𝑄1) ⊇ 𝑋 {{𝜎 |𝑋 | 𝜎 ∈ ans𝐼 (𝑄1) }}
DISTINCT(𝑄1) v(𝑄1) {𝜎 | 𝜎 ∈ ans𝐼 (𝑄1) }

distinguish sets from multisets; for example, {{1, 1, 2}} is a multiset containing number 1 twice and
number 2 once. For𝑀1 and𝑀2 multisets over the same domain 𝐷 , multisets𝑀1 ∩𝑀2,𝑀1 ∪𝑀2, and
𝑀1 \𝑀2 are defined as (𝑀1 ∩𝑀2) (𝑑) = min(𝑀1 (𝑑), 𝑀2 (𝑑)), (𝑀1 ∪𝑀2) (𝑑) =𝑀1 (𝑑) +𝑀2 (𝑑), and
(𝑀1 \𝑀2) (𝑑) = max(0, 𝑀1 (𝑑) −𝑀2 (𝑑)) for each 𝑑 ∈ 𝐷 . Finally, when these operations are applied
to a multiset and a set, we implicitly treat the set as a multiset in which all elements occur once.

Data Model. A database schema consists of finitely many relations, each associated with a non-
negative integer arity. A database instance 𝐼 over a database schema maps each 𝑛-ary relation
𝑅 to a relation instance 𝐼 (𝑅), which is a finite set of 𝑛-tuples of constants. If desired, one can
require constants occurring at different tuple position to be drawn from appropriate domains (e.g.,
strings or integers), but such constraints do not play any role in our work. We assume that relation
instances are sets (i.e., they do not contain repeated tuples) because such models are commonly
used in graph databases; however, our results can be easily extended to multiset relation instances.
Sometimes, it is convenient to represent ⟨𝑐1, . . . , 𝑐𝑛⟩ ∈ 𝐼 (𝑅) as a fact 𝑅(𝑐1, . . . , 𝑐𝑛) that combines
the 𝑛-tuple of constants with the relation name, and to view a database instance 𝐼 as a finite set of
facts 𝑅(𝑐1, . . . , 𝑐𝑛) for each relation 𝑅 and each 𝑛-tuple ⟨𝑐1, . . . , 𝑐𝑛⟩ ∈ 𝐼 (𝑅).
Query Language. Our queries are constructed using countably infinite, disjoint sets of constants
and variables. A term is a constant or a variable. Unless stated otherwise, we use possibly subscripted
lowercase letters from the front (e.g., 𝑎, 𝑏, 𝑐, . . .), the middle (𝑠, 𝑡, . . .), and the end (𝑥,𝑦, 𝑧, . . .) of the
alphabet for constants, terms, and variables, respectively. A builtin expression is constructed in the
usual way from terms and builtin functions; for example, 𝑥 + 2 is a builtin expression where + is a
builtin function. An atom is an expression of the form 𝑅(𝑡1, . . . , 𝑡𝑛), where 𝑅 is an 𝑛-ary relation and
𝑡1, . . . , 𝑡𝑛 are terms. A query is defined inductively as shown in the first column of Table 1, where 𝐴
is an atom,𝑄1 and𝑄2 are queries, 𝑋 is a set of variables, and 𝐸 is a builtin expression. The table also
defines a function v(𝑄) that assigns to each query 𝑄 a set of free variables. Each query must satisfy
the constraint from the third column. We sometimes abbreviate 𝑄1 AND (𝑄2 AND (. . . AND𝑄𝑛)) and
𝑄1 UNION (𝑄2 UNION (. . . UNION𝑄𝑛)) as AND(𝑄1, . . . , 𝑄𝑛) and UNION(𝑄1, . . . , 𝑄𝑛), respectively.

A substitution 𝜎 is a function mapping finitely many variables to constants. We sometimes write 𝜎
as a set {𝑥1 ↦→ 𝑐1, . . . , 𝑥𝑛 ↦→ 𝑐𝑛}. The domain dom(𝜎) of𝜎 is the set of variables onwhich𝜎 is defined.
For a term 𝑡 ∉ dom(𝜎), let𝜎 (𝑡) = 𝑡 ; and for an atom𝐴 = 𝑅(𝑡1, . . . , 𝑡𝑛), let𝜎 (𝐴) = 𝑅(𝜎 (𝑡1), . . . , 𝜎 (𝑡𝑛)).
For 𝑋 a set of variables, 𝜎 |𝑋 is the substitution obtained from 𝜎 by removing all mappings for vari-
ables outside𝑋—that is, for each 𝑥 ∈ 𝑋 , substitution 𝜎 |𝑋 satisfies dom(𝜎 |𝑋) = 𝑋 and 𝜎 |𝑋 (𝑥) = 𝜎 (𝑥).
To simplify the notation, for𝑄 a query, we often abbreviate 𝜎 |v(𝑄) as 𝜎 |𝑄 . Substitution 𝜎 is amatcher
of an atom 𝐴 to a fact 𝐹 if dom(𝜎) = v(𝐴) and 𝜎 (𝐴) = 𝐹 ; when such 𝜎 exists, it is unique. Substi-
tutions 𝜎1 and 𝜎2 join, written 𝜎1 ∼ 𝜎2, if 𝜎1 (𝑥) = 𝜎2 (𝑥) for each 𝑥 ∈ dom(𝜎1) ∩ dom(𝜎2); in such
cases, 𝜎1 ∪ 𝜎2 is a substitution with domain dom(𝜎1) ∪ dom(𝜎2).

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

12:6 Pan Hu and Boris Motik

:Student :Professor

𝑠1

𝑠2

𝑠3

𝑐1

𝑐2

𝑝1

𝑝2

rdf :type

rdf :type

rdf :type

:takes

:takes

:takes

:teaches

:teaches

:supervises

rdf :type

rdf :type

Fig. 1. RDF Graph from Example 2.2

Evaluating a builtin expression 𝐸 using a substitution 𝜎 satisfying v(𝐸) = dom(𝜎) produces a
constant𝜎 (𝐸) obtained by replacing in 𝐸 all variables with their image in𝜎 and evaluating the builtin
functions as usual; if any of the builtin functions cannot be evaluated, evaluation produces a special
error value 𝜖 . For example, for 𝐸 = 𝑥 + 2 and substitutions 𝜎1 = {𝑥 ↦→ 3, 𝑦 ↦→ 𝑐} and 𝜎2 = {𝑥 ↦→ 𝑐},
we have 𝜎1 (𝐸) = 5 and 𝜎2 (𝐸) = 𝜖 ; the latter is because + cannot be applied to the constant 𝑐 .

Evaluating a query 𝑄 over a database instance 𝐼 produces a multiset of substitutions ans𝐼 (𝑄) as
specified in Table 1. Proposition 2.1 can be proved by a simple induction on the query structure.

Proposition 2.1. For each database instance 𝐼 , query 𝑄 , and substitution 𝜎 ∈ ans𝐼 (𝑄), it is the
case that v(𝑄) = dom(𝜎).

Our query language covers all of relational algebra with bag semantics, apart from a small detail
in the definition of MINUS: if ans𝐼 (𝑄1) = {{𝑥 ↦→ 𝑎, 𝑥 ↦→ 𝑎, 𝑥 ↦→ 𝑎}} and ans𝐼 (𝑄2) = {{𝑥 ↦→ 𝑎}}, then
ans𝐼 (𝑄1 MINUS𝑄2) = ∅; in contrast,𝑄1 MINUS𝑄2 evaluates to {{𝑥 ↦→ 𝑎, 𝑥 ↦→ 𝑎}} under standard bag
semantics. Our definition follows SPARQL 1.1 [30, Section 18.5]. Although PROJECT𝑋 (𝑄1) and
𝑄1 UNION𝑄2 do not eliminate duplicates, the set variants of these operators can be expressed as
DISTINCT(PROJECT𝑋 (𝑄1)) and DISTINCT(𝑄1 UNION𝑄2), respectively. Moreover, neither SPARQL
nor Cypher requires v(𝑄1) = v(𝑄2) in 𝑄1 UNION𝑄2; for example, evaluating a SPARQL query

SELECT ?X ?Y WHERE { { ?X rdf:type :Person } UNION { ?X :hasName ?Y } }

can produce substitutions that are defined just on ?X, or on both ?X and ?Y. A similar problem arises
with optional matches. Such features can be incorporated into our approach, but we do not discuss
the details for the sake of simplicity. Furthermore, both SPARQL and Cypher provide grouping and
aggregation. When aggregation and grouping are used at the top level of a query, their cardinality
is equivalent to the cardinality of PROJECT followed by DISTINCT. In contrast, queries that join
the result of aggregation with another subquery seem to be intrinsically difficult; we discuss this
issue in detail in Section 5.3. Finally, we do not consider path queries in this article, although our
preliminary investigation suggests that such features can be handled as well.

We next illustrate how to transform an RDF graph into our framework. We do not suggest that a
graph database should be physically converted to apply our algorithms; rather, the objective of
these transformations is to illustrate how to modify our algorithms so they are directly applicable
to the RDF data model. Property graphs can be handled analogously.

Example 2.2. Consider the RDF graph shown in Figure 1, where each triple ⟨𝑠, 𝑝, 𝑜⟩ is shown as a
𝑝-labelled edge from the vertex 𝑠 to the vertex 𝑜 . The following SPARQL query selects all distinct
pairs of students and professors such that the student is enrolled in a course taught by the professor,
or the student is supervised by the professor.

SELECT DISTINCT ?S ?P WHERE { ?S rdf:type :Student . ?P rdf:type :Professor .
{ SELECT ?S ?P WHERE { ?S :takes ?C . ?P :teaches ?C } } UNION { ?P :supervises ?S }

}

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

Accurate Sampling-Based Cardinality Estimation for Complex GraphQueries 12:7

A straightforward way to encode any RDF graph into a relational model is to transform each
triple ⟨𝑠, 𝑝, 𝑜⟩ to a fact 𝑇 (𝑠, 𝑝, 𝑜), where 𝑇 is a fixed ternary relation. Using such an approach, the
above SPARQL query corresponds to the following query in our language.

DISTINCT(AND(T(x,rdf:type,:Student), T(y,rdf:type,:Professor),
PROJECT{x,y}(T(x,:takes,z) AND T(y,:teaches,z))
UNION
T(y,:supervises,x)

))

Note that projection is necessary to ensure that the two sides of the union have the same variables,
as required by Table 1. When evaluated over facts corresponding to the RDF graph from Figure 1,
this query returns the following three mappings.

{ ?S ↦→ :s1, ?P ↦→ :p1 } { ?S ↦→ :s2, ?P ↦→ :p1 } { ?S ↦→ :s3, ?P ↦→ :p2 }
Without DISTINCT, the first mapping would be returned twice. Vertical partitioning [1, 5] is another
well-known method for transforming an RDF graph into a relational model: each triple ⟨𝑠, 𝑝, 𝑜⟩
is transformed to a unary fact 𝑜 (𝑠) if 𝑝 is equal to the rdf :type predicate, and otherwise it is
transformed into a binary fact 𝑝 (𝑠, 𝑜). Query atoms are transformed analogously.

To apply our results to the RDF data model directly, one can simply ‘invert’ these transformations
and adapt the notion of atoms to triples. ⊳

2.2 Estimators
An estimator is a rule for calculating an estimate of an unknown quantity 𝜃 from observed data. For
example, one can estimate the average height of a student population as the average of a randomly
selected student sample, and one can use the sample variance to evaluate the estimate quality.
The estimation process is often modelled as a random variable, so we next recapitulate the

relevant terminology and notation. A random variable 𝜃 on a sample space Ω assigns to each
outcome 𝜔 ∈ Ω a value 𝜃 (𝜔) ∈ R. We shall consider only finite sample spaces, so we can associate
each 𝜔 ∈ Ω with a probability P(𝜔). The expectation and variance of 𝜃 are defined by

E[𝜃] =
∑︁
𝜔∈Ω

P(𝜔) · 𝜃 (𝜔) and Var[𝜃] =
∑︁
𝜔∈Ω

P(𝜔) ·
(
𝜃 (𝜔) − E[𝜃]

)2
. (1)

An estimator is unbiased if E[𝜃] = 𝜃—that is, if its expectation is equal to the value being estimated.
The process of taking repeated estimates can be formally represented as an infinite sequence of

random variables 𝜃1, 𝜃2, . . . on the same sample space Ω. Note that 𝜃𝑖 need not be produced by the
same estimation rule, and in fact they can be correlated. Such a sequence is a strongly consistent
estimator of 𝜃 if it converges to 𝜃 with probability one—that is,

P(𝜔 ∈ Ω | lim
𝑛→∞

𝜃𝑛 (𝜔) = 𝜃) = 1. (2)

An estimator’s accuracy can often be improved by taking the average of several estimates.
Formally, given a sequence 𝜃1, 𝜃2, . . ., let 𝜇𝑛 = 1

𝑛
·∑𝑛

𝑖=1 𝜃𝑖 be the sequence of random variables repre-
senting estimate averages. By the Kolmogorov’s strong law of large numbers, if (i) 𝜃𝑖 are independent
and unbiased estimators of 𝜃 , (ii) for each 𝑖 ≥ 1 we have Var[𝜃𝑖] < ∞, and (iii)

∑∞
𝑖=1 Var[𝜃𝑖]/𝑖2 < ∞,

then the sequence 𝜇1, 𝜇2, . . . is a strongly consistent estimator of 𝜃 . Moreover, all 𝜃𝑖 are independent,
so Var[𝜇𝑛] =

∑𝑛
𝑖=1 Var[𝜃𝑖]/𝑛2. Variance Var[𝜃𝑖] is often bounded in practice so, as the number of

estimates increases, the average converges to the true value and the variance converges to zero.
If each outcome 𝜔 ∈ Ω corresponds to a quantity 𝜙 (𝜔) that can be determined from the outcome

such that
∑

𝜔∈Ω 𝜙 (𝜔) = 𝜃 , then 𝜃 (𝜔) = 𝜙 (𝜔)/P(𝜔) is the Horvitz–Thompson estimator [36] of 𝜃 . It
is straightforward to see that a Horvitz–Thompson estimator is always unbiased.

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

12:8 Pan Hu and Boris Motik

Given 𝑛 independent samples 𝑡1, . . . , 𝑡𝑛 produced by an unbiased estimator 𝜃 of some unknown
value 𝜃 , the sample average 𝑡 and sample variance 𝑆2 are given by

𝑡 =

∑𝑛
𝑖=1 𝑡𝑖

𝑛
and 𝑆2 =

∑𝑛
𝑖=1 (𝑡𝑖 − 𝑡)2

𝑛 − 1
. (3)

A 𝑝-confidence interval for 0 ≤ 𝑝 ≤ 1, given by[
𝑡 − 𝑧𝑝 · 𝑆/

√
𝑛, 𝑡 + 𝑧𝑝 · 𝑆/

√
𝑛
]

(4)

where 𝑧𝑝 is the (𝑝 +1)/2 quantile of the normal distribution with expectation zero and variance one,
is a possible measure of quality of estimating 𝜃 as 𝑡 . The value of 𝑝 is usually expressed as a percent-
age, and 𝑧𝑝 = 1.96 for the commonly used 𝑝 = 95%. Formula (4) is derived from two observations [9].
First, by the central limit theorem, random variable (𝜃1 + · · · + 𝜃𝑛 − E[𝜃])/(

√
𝑛 · Var[𝜃]) converges

in distribution to the standard distribution with expectation zero and variance one. Second, for
large 𝑛, the sample average 𝑡 and sample variance 𝑆2 converge to E[𝜃] and Var[𝜃], respectively.
It is difficult to choose 𝑛 without knowing the distribution of 𝜃 , but 𝑛 ≥ 30 is frequently used in
practice. Formula (4) can be intuitively understood as follows: if we repeatedly take 𝑛 samples of 𝜃
and compute each time the 𝑝 confidence interval, then, for large 𝑛, we can expect the confidence
interval to contain 𝜃 in roughly 𝑝 percent of cases. Lindberg’s version of the central limit theorem
can be used to show that formula (4) provides a 𝑝 confidence interval even if each sample 𝑡𝑖 is
obtained using a possibly different estimator 𝜃𝑖 , provided that all 𝜃𝑖 have the same expectation and
that Var[𝜃𝑖] ≤ 𝑉 for each 𝑖 ≥ 1 and some finite 𝑉 .2

2.3 Problem Statement
In this article we present several estimators of |ans𝐼 (𝑄) | for a database instance 𝐼 and query 𝑄 . We
do not construct any synopses or make any ad hoc assumptions about the data distribution, and we
aim to use significantly less work than to compute |ans𝐼 (𝑄) | exactly. We present each estimator as
a randomised algorithm that realises a random variable 𝜃 . Thus, each outcome 𝜔 ∈ Ω is a ‘record’
of all random choices that an algorithm can make; P(𝜔) is the probability of the algorithm making
such choices; and 𝜃 (𝜔) is the value that the algorithm computes (deterministically) from 𝜔 .
To obtain accurate estimates, we shall run our estimators several times and use formula (3) to

compute the sample average and variance. In all cases, this will produce a strongly consistent
estimator of |ans𝐼 (𝑄) |—that is, the sample average is guaranteed to converge to |ans𝐼 (𝑄) |. Moreover,
for queries without DISTINCT, individual estimates will be unbiased. We will also use formula (4)
to compute the 95% confidence intervals of the final estimate.
Following the established practice in the literature, we use the q-error to measure the accuracy

of cardinality estimation algorithms. In particular, if 𝑞 and 𝑞 are the real and estimated cardinalities,
respectively, the q-error is defined as

q-𝑒𝑟𝑟 (𝑞, 𝑞) =


max(𝑞
𝑞
,
𝑞

𝑞
) if 𝑞 ≠ 0 and 𝑞 ≠ 0

1 if 𝑞 = 0 and 𝑞 = 0, and
∞ otherwise.

3 Related Approaches toQuery Cardinality Estimation
The problem of query cardinality estimation has been extensively studied in the literature and
the space of proposed solutions is vast, so we cannot exhaustively survey the state of the art. We
mentioned some of the more prominent approaches in Section 1, and in this section we discuss the
2We thank Ke Yi from Hong Kong University of Science and Technology for a discussion of Lindberg’s CLT.

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

Accurate Sampling-Based Cardinality Estimation for Complex GraphQueries 12:9

works that are more closely relevant to ours. In particular, in Section 3.1 we show that sampling-
basedmethods can often be seen as instances of the very general framework by Lipton andNaughton
[48]; in Section 3.2 we discuss in detail the WanderJoin algorithm [47]; and in Section 3.3 we discuss
the cardinality estimation methods used in the G-CARE framework.

3.1 Principles of Sampling-Based Cardinality Estimation
Numerous sampling-based cardinality estimation approaches have been proposed in the literature.
Although seemingly different, many of them can be seen as instances of a general framework by
Lipton and Naughton [48]. Let 𝐼 be a database instance, let 𝑄 be a query, and let A be the set of
answers of𝑄 on 𝐼 . Now assume that we have an effective way of partitioningA into disjoint subsets
A1, . . . ,A𝑛 so that |A𝑖 | can be computed efficiently for each 1 ≤ 𝑖 ≤ 𝑛; we shall discuss shortly
how this can be achieved in practice. We can then estimate the cardinality of 𝑄 on 𝐼 as follows: we
choose 𝑖 ∈ {1, . . . , 𝑛} uniformly at random, we compute |A𝑖 |, and we return the estimate 𝑛 · |A𝑖 |.
The expected estimate is (∑𝑛

𝑖=1 𝑛 · |A𝑖 |)/𝑛 =
∑𝑛

𝑖=1 |A𝑖 | = |A|, where the last equality holds because
A1, . . . ,A𝑛 are disjoint; hence, our estimate is unbiased. In fact, we have a Horvitz–Thompson
estimator [36] where |A𝑖 | is the quantity corresponding to each outcome 𝑖 ∈ {1, . . . , 𝑛}.
This approach is applicable to any query that satisfies the assumption on answer partitioning,

including recursive path or Datalog queries. Moreover, estimation accuracy can be improved by
computing the average of several samples, and a key question is how many samples should be
taken. For certain classes of queries, it is possible to precompute the number of samples so that the
resulting estimate is within desired bounds [48]. Alternatively, one can keep taking samples until
the estimate falls within a confidence interval [29] computed as shown in Section 2.
Cardinality estimation should be orders of magnitude more efficient than query evaluation, so

the set of answers A should be partitioned indirectly—that is, without computing it fully. This is
usually achieved by partitioning the database 𝐼 in a way that induces partitioning of A. We next
outline several ways to achieve this using the example query 𝑄 = AND(𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧),𝑇 (𝑧, 𝑥)).

The CS2 approach [73] effectively partitions one relation in a query. For example, splitting 𝐼 (𝑅)
into disjoint subsets 𝐼 (𝑅)1, . . . , 𝐼 (𝑅)𝑛 induces a partition of the answers to 𝑄 where A𝑖 is as the
answer of 𝑄 on 𝐼 (𝑅)𝑖 ∪ 𝐼 (𝑆) ∪ 𝐼 (𝑇). The CS2 approach takes as input a join schema that identifies
all supported joins, and it uses the join schema to construct a synopsis of the database: one relation
of the join schema is sampled, and all tuples from all other relations that join (possibly indirectly)
with the sampled tuples are included into the synopsis. The cardinality of any query whose joins
are contained within the join schema can be estimated by evaluating the query over the synopsis
and scaling the result as shown by Lipton and Naughton [48].

Haas et al. [28] discuss theoretical and practical properties of estimators obtained by partitioning
several relations of a query. On our example, such estimators split all of 𝐼 (𝑅), 𝐼 (𝑆), and 𝐼 (𝑇) into
disjoint subsets, and they take each answer partition A 𝑗,𝑘,ℓ to be the answers of the query 𝑄

evaluated over partitions 𝐼 (𝑅) 𝑗 , 𝐼 (𝑆)𝑘 , and 𝐼 (𝑇)ℓ .
Online aggregation algorithms [33] use similar principles to approximate answers of aggregation

queries. The approach by Haas [26] can be seen as partitioning each relation into individual facts.
On our example query 𝑄 , the algorithm randomly selects facts 𝑅(𝑎, 𝑏), 𝑆 (𝑐, 𝑑), and 𝑇 (𝑒, 𝑓); if the
facts join (i.e., if 𝑏 = 𝑐 , 𝑑 = 𝑒 , and 𝑓 = 𝑎), then the cardinality is estimated as |𝐼 (𝑅) | · |𝐼 (𝑆) | · |𝐼 (𝑇) |,
and otherwise it is estimated as zero. The algorithm can also handle DISTINCT queries by estimating
the cardinality as zero whenever a repeated combination of values is encountered, but the resulting
estimator is unbiased only if sampling is performed without replacement. The ripple join algorithm
[27] improves this idea to ensure faster convergence: all selected facts are kept in memory, and,
whenever a new fact is added to the selected set of facts, it is joined with all previously selected
facts to update the running estimation of query cardinality. WanderJoin [47] is a recent proposal

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

12:10 Pan Hu and Boris Motik

that was empirically shown to outperform ripple join. WanderJoin provides the foundation for our
work so discuss in detail the variant from the G-CARE framework in Section 3.2.

Charikar et al. [15] proved that estimating the cardinality of DISTINCT queries over a single
relation is inherently difficult: no estimator can guarantee small error across all databases and
queries unless it examines a large fraction of the database. They also presented a provably optional,
but not unbiased estimator, as well as several heuristic estimators optimised for typical inputs.

3.2 The WanderJoin Algorithm
We describe the idea behind WanderJoin using the following example.

Example 3.1. Let 𝑄 = AND(𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧),𝑇 (𝑧, 𝑥)) be the example query from Section 3.1, and
let 𝐼 be the following database instance.

𝑅(𝑎, 𝑏1) 𝑆 (𝑏1, 𝑐1) 𝑇 (𝑐1, 𝑑1)
𝑅(𝑎, 𝑏2) 𝑆 (𝑏1, 𝑐2) 𝑇 (𝑐1, 𝑎)

𝑆 (𝑏1, 𝑐3) 𝑇 (𝑐4, 𝑑2)
𝑆 (𝑏2, 𝑐4)
𝑆 (𝑏2, 𝑐5)

The WanderJoin algorithm randomly selects one fact of 𝐼 per query atom, but the choices are not
independent. A fact for 𝑅(𝑥,𝑦) is chosen from the set 𝐼1 = 𝐼 (𝑅) of all facts for relation 𝑅. Assume
that 𝑅(𝑎, 𝑏1) is selected. Next, 𝑆 (𝑦, 𝑧) is matched to the set 𝐼2 = {𝑆 (𝑏1, 𝑐1), 𝑆 (𝑏1, 𝑐2), 𝑆 (𝑏1, 𝑐3)} of facts
with 𝑏1 in the first position: no fact in 𝐼 (𝑆) \ 𝐼2 joins with 𝑅(𝑎, 𝑏1) so one can disregard 𝐼 (𝑆) \ 𝐼2
and this increase the chance of obtaining a valid answer. One can now proceed in two ways.
First, assume that 𝑆 (𝑦, 𝑧) is matched to 𝑆 (𝑏1, 𝑐1). All variables of 𝑄 have been fixed at this

point; hence, 𝐼 1
3 = {𝑇 (𝑐1, 𝑎)} is the set of candidates for atom𝑇 (𝑧, 𝑥) and so one can choose𝑇 (𝑐1, 𝑎)

deterministically. Facts 𝑅(𝑎, 𝑏1), 𝑆 (𝑏1, 𝑐1), and𝑇 (𝑐1, 𝑎) provide one answer to𝑄 , and they are chosen
with probability P1 = 1/|(𝐼1 | · |𝐼2 | · |𝐼 1

3 |) = 1/(2 · 3 · 1); therefore, 1/P1 = 6 is the Horvitz–Thompson
(and thus unbiased) estimate of the cardinality of 𝑄 on 𝐼 .

Second, assume that 𝑆 (𝑦, 𝑧) is matched to 𝑆 (𝑏1, 𝑐2). The set of candidates for atom 𝑇 (𝑧, 𝑥) is now
𝐼 2
3 = ∅—that is, there is no way to match 𝑇 (𝑧, 𝑥) and obtain an answer to 𝑄 . The probability of
choosing 𝑅(𝑎, 𝑏1) and 𝑆 (𝑏1, 𝑐2) is P2 = 1/(|𝐼1 | · |𝐼2 |) = 1/6, but this choice does not provide a query
answer so the Horvitz–Thompson estimate is 0/P2 = 0. When sampling is repeated to compute the
average, such zero estimates must be included into the average.

This process can be seen as random walk on the graph whose vertices correspond to the facts of
𝐼 , and where two facts are connected if they join according to 𝑄 . For example, facts 𝑅(𝑎, 𝑏1) and
𝑆 (𝑏1, 𝑐2) are considered connected since they satisfy the join of 𝑅(𝑥,𝑦) and 𝑆 (𝑦, 𝑧). Note that this
graph is not constructed explicitly, but is used only to understand the sampling process. ⊳

The order in which atoms are sampled critically determines the accuracy of the estimates
produced by WanderJoin.
Example 3.2. Let 𝑄 ′ = AND(𝑇 (𝑧,𝑤), 𝑆 (𝑦, 𝑧), 𝑅(𝑥,𝑦)) be a reordering of the query 𝑄 from Exam-

ple 3.1; the answers to both queries clearly coincide. All relations in 𝐼 satisfy a functional dependency
from the second to the first argument so, once we match 𝑇 (𝑧,𝑤), all other atoms can be matched
deterministically. This increases the likelihood of obtaining a valid query answer, which ultimately
improves estimate precision. Indeed, if we match 𝑇 (𝑧,𝑤) to 𝑇 (𝑐1, 𝑎), we can deterministically
choose 𝑆 (𝑏1, 𝑐1) and 𝑅(𝑎, 𝑏1) and return the estimate 3 · 1 · 1 = 3. ⊳

Using a ‘good’ order of atoms is thus key to obtaining precise estimates, but selecting such an
order a priori is difficult. Li et al. [47] suggest to first conduct a fixed number of trial runs using all

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

Accurate Sampling-Based Cardinality Estimation for Complex GraphQueries 12:11

reasonable orders; after all trial runs have completed, one should compute the variance and the
cost for each order, select the order with the least cost, and use this order in all remaining runs
until either a time budget is exhausted or the estimate falls within a desired confidence interval.

Park et al. [55] included a variant of this approach into the G-CARE framework; we denote this
variant by WJ. To estimate the cardinality of a conjunction of atoms, WJ conducts 30 estimation
attempt; each attempt reports a single estimate, and the average of these 30 results is reported as
the final estimate. Each estimation attempt consists of the following steps. First, all reasonable
orders are enumerated. Second, the total number of runs to make is computed by

NR =

⌊
0.03 · |𝐼 (𝑅1) | + · · · + |𝐼 (𝑅𝑛) |

𝑛

⌋
, (5)

where 𝑅1, . . . , 𝑅𝑛 are the relations of all query atoms. Third, a series of trial runs is performed. In
each run, an order is selected in a round-robin fashion, and a cardinality estimate is produced as in
Example 3.1. The trial run phase finishes either after NR runs, or when one order accumulates 100
valid samples. In the latter case, all orders with at least 50 valid samples are identified, the order
with least estimate variance among these is selected as the ‘best’ one, and all remaining (i.e., up
to NR) runs are performed using this ‘best’ order. Finally, the result of the estimation attempt is
computed as the average of the estimates of all (i.e., trial and ‘best’-order) runs.

The WJ variant by Park et al. [55] can handle only queries of the form 𝑄 = AND(𝐴1, . . . , 𝐴𝑛). The
variant by Li et al. [47] can also handle aggregate queries with grouping, for which it provides an
aggregation estimate for each group; however, this does not estimate the number of groups and thus
does not provide a solution for DISTINCT queries. Moreover, none of the versions of WanderJoin
known to us can handle queries involving arbitrary nesting of query operators.

A key advantage of WanderJoin is that it does not require schema-level synopses whose construc-
tion requires anticipating the query workload. The latter is often possible in relational databases; for
example, ‘Line Items’ are likely to be joined with ‘Orders’ but not with ‘Employees’, and self-joins
of two instances of ‘Orders’ are unlikely. In contrast, queries in graph databases often explore
patterns that are difficult to predict, and self-joins are frequent (e.g., ‘friends of my friends’).

3.3 Cardinality Estimation Methods Used in the G-CARE Framework
We now briefly summarise the cardinality estimation algorithms in the G-CARE framework [55].
Park et al. have classified their approaches into the synopsis-based and sampling-based.

Synopsis-based methods follow the principles outlined in Section 1: a graph is summarised using
a synopsis data structure, which is used to estimate the cardinality of a class of queries. Park et al.
[55] actually call such methods summary-based; however, we prefer synopsis-based because the
term ‘summary’ often has a more specific meaning in the graph summarisation literature [49].
The Bounded Sketch (BS) method by Cai et al. [13] divides each relation into partitions, and,

for each partition and each attribute, records the number of constants and the maximum degree.
To estimate the cardinality of a query, each partition is processed using bounding formulas by
Khamis et al. [42]. These formulas are based on deep insights about how query structure limits the
maximum number of answers that a query can produce on a family of databases.
The Characteristic Sets (C-SET) method by Neumann and Moerkotte [52] was developed in the

context of the highly influential RDF-3X system [54]. It uses a synopsis that enumerates all types
of star-shaped structures in the database with their respective counts. The cardinality of a query is
estimated by decomposing the query into star-shaped subqueries, estimating the cardinality of each
subquery using the synopsis, and combining the estimates using the independence assumption.

The SumRDF method by Stefanoni et al. [63] uses a synopsis obtained via graph summarisation—
the process of merging graph vertices until the graph size falls within a given budget. The synopsis

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

12:12 Pan Hu and Boris Motik

is then interpreted using the possible worlds semantics: any graph that produces the same summary
is possible. The cardinality of a conjunctive query is estimated as the average number of answers
over all possible worlds. The method can also provide certainty bounds on the estimate.

Sampling-based methods in the G-CARE framework follow the ideas from Section 3.1. We have
described WanderJoin (WJ) in Section 3.2, so we next focus on the remaining three methods.

The JSUB method is derived from the work by Zhao et al. [76]: it selects uniformly at random a
fact matching the first query atom, and then it evaluates the remaining atoms with the first atom
bound to the selected fact. Thus, JSUB is similar to CS2 [73] in that it samples just one atom, but
sampling is performed for each estimate; in contrast, CS2 uses sampling to create a synopsis.
The Correlated Sampling (CS) method [70] in the G-CARE framework uses a similar approach,

but, instead of sampling the data, it uses hashing to produce a database synopsis.
The Impr method adapts the sampling-based technique by Chen and Lui [18] for estimating the

number of 𝑘-node graphlets for 𝑘 ∈ {2, 4, 5}. Roughly speaking, Impr uses random walks to identify
a visible subgraph of a given graph, and then counts the number of answers on the visible subgraph
to provide an estimate of the number of graphlets. Park et al. [55] adapted this technique to graph
matching, as well as to work on directed labelled graphs.

4 Motivation
Two observations motivate the results presented in this article. The first one is that no method we
mentioned in Section 1 or 3 can process complex queries with arbitrary operator nesting such as
the one in Example 1.1. One might attempt to apply the framework by Lipton and Naughton [48]
from Section 3.1, but Example 4.1 reveals several problems with such an approach.

Example 4.1. Consider queries 𝑄1 and 𝑄2, and a database instance 𝐼 as follows.

𝑄1 = DISTINCT(𝑄2) 𝑄2 = PROJECT{𝑥,𝑧} (𝑅(𝑥,𝑦) AND 𝑆 (𝑦, 𝑧)) (6)
𝐼 = {𝑅(𝑎, 𝑏𝑖), 𝑆 (𝑏𝑖 , 𝑐) | 1 ≤ 𝑖 ≤ 𝑘} (7)

To apply the approach from Section 3.1 to𝑄2, we could partition 𝐼 into 𝐼𝑖 = {𝑅(𝑎, 𝑏𝑖), 𝑆 (𝑏𝑖 , 𝑐)} for
1 ≤ 𝑖 ≤ 𝑘 ; clearly, ans𝐼 (𝑄) =

⋃𝑘
𝑖=1 ans𝐼𝑖 (𝑄2), as required. To estimate the cardinality of 𝑄2 in 𝐼 , we

randomly choose 𝑖 ∈ {1, . . . , 𝑘} and return 𝑘 · |ans𝐼𝑖 (𝑄2) | as the estimate. Since 𝐼𝑖 is much smaller
than 𝐼 , computing |ans𝐼𝑖 (𝑄2) | is likely to be much faster than computing |ans𝐼 (𝑄2) |.
Duplicate elimination reduces the number of answers in a way that can prevent effective parti-

tioning. Indeed, ans𝐼 (𝑄) ≠
⋃𝑘

𝑖=1 ans𝐼𝑖 (𝑄2), so the partitioning from the previous paragraph is not
applicable. In fact, it is unclear how to partition 𝐼 into 𝐼1, . . . , 𝐼𝑛 so that ans𝑄1 (𝐼) =

⋃𝑛
𝑖=1 ans𝑄1 (𝐼𝑖)

holds but computing |ans𝐼𝑖 (𝑄2) | is much faster than computing |ans𝐼 (𝑄2) |.
The approach we present in Section 5 addresses these problems. In particular, it can process

query 𝑄1 efficiently, and it is applicable even if 𝑄1 is conjoined with another query. ⊳

Our second observation is that the WanderJoin variant by Park et al. [55] is indeed very accurate,
but it can be slow on large datasets. To show this, we repeated the experiments by Park et al. [55]
on an extended set of datasets. We next present our experimental setup and discuss our findings.
Datasets. Park et al. [55] tested the accuracy of cardinality estimation methods on the following
four benchmarks.

• The AIDS Antiviral Screen dataset [60] describes chemical compounds and has been used for
benchmarking various graph problems.

• The Human dataset [75] describes protein interactions using the Gene Ontology vocabulary.
• The Yago [64] knowledge graph was derived fromWikiPedia and WordNet and has been used
in applications such as entity linking, information extraction, and ontology construction.

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

Accurate Sampling-Based Cardinality Estimation for Complex GraphQueries 12:13

Table 2. Summary of the Used Benchmarks

AIDS Human Yago LUBM-01K-mat WatDiv DBLP
unary facts 254,156 21,621 42,441,193 50,245,643 1,359,262 5,475,754
binary facts 547,910 172,564 15,835,675 132,123,767 107,638,452 50,111,001
queries 780 49 1,366 37 104 15
min. card. 1 1 1 0 0 1
max. card. 951,601 9,610 163,118,890 588,378,270 4,244,261 2,284,408
card. ≤ 10, 000 379 49 939 23 91 9

• The LUBM [25] benchmark has been extensively used to test various aspects of RDF systems.
It provides a generator of arbitrarily sized graphs, an OWL ontology that can be used to
perform logical inference over the graphs, and 14 test queries.

Park et al. [55] generated an extensive set of test queries for the Yago, AIDS, and Human datasets
and made them available in the G-CARE GitHub repository.3
All four datasets described above are fairly small: Yago was the largest dataset with 15.8 M

edges. (In the G-CARE study, a much larger DBpedia dataset with 225 M edges was used in the
query planning experiments, but not in the accuracy experiments.) To test the approaches from the
G-CARE framework on much larger inputs, we extended the datasets as follows.

• We replaced the version of LUBM with the LUBM-01K-mat dataset, which includes a much
larger base graph as well as facts logically implied by the LUBM ontology. We used the 14
standard test queries, as well as 23 queries handcrafted by Stefanoni et al. [63].

• We produced a large dataset using the WatDiv benchmark [4]. WatDiv provides a generator
that produces graphs and accompanying queries. We find WatDiv interesting because it was
designed to produce graphs with nonuniform data distribution, and the latter often causes
problems for cardinality estimation. Most WatDiv queries contain one constant and thus
produce a small number of answers so, to obtain queries that produce large answer sets, we
additionally produced ‘free’ queries by replacing all constants with variables.

• We used the DBLP benchmark by Zou et al. [77], where we extended the standard queries
with further nine handcrafted queries.

We thus obtained six benchmarks shown in Table 2. The numbers of facts correspond to the
result of transforming an RDF graph using vertical partitioning cf. Section 2.1: unary and binary
facts correspond to labelled vertices and edges, respectively. The new datasets are between one and
three orders of magnitude larger than those considered in the G-CARE study.
Test Setting. We compiled the G-CARE code from GitHub, ran it on the six datasets from Table 2,
and recorded all estimates and estimation times. The framework imposes a five minute timeout on
each run of an algorithm. We used a server with an Intel Core i7-13700 CPU running at 2.1 GHz
with eight performance and eight efficiency cores; the efficiency cores are extended to 16 logical
cores via hyperthreading. The server has 64 GB of main memory and an NVidia GeForce RTX 4080
GPU with 16 GB of RAM, and it was running Ubuntu 22.04, kernel version 6.5.0-14-generic.
Results. Figure 2 shows the q-errors (left) and estimation times (right) produced by the G-CARE
framework. Some approaches produce very small, yet nonzero estimates, which in turn yield very
large q-errors that can distort the results. We thus follow the practice by Park et al. [55] and
Stefanoni et al. [63] and round to one all nonzero cardinalities smaller than one. The number of
queries is very large so we cannot show the per-query results in this article. Detailed results are
available online [37], and here we summarise the result distribution using box plots, each showing
3https://github.com/yspark-dblab/gcare

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

https://github.com/yspark-dblab/gcare

12:14 Pan Hu and Boris Motik

Table 3. Summary of the Results on All Datasets

BS CS C-
SE

T

Im
pr

JS
U
B

Su
m
RD

F

W
J

BS CS C-
SE

T

Im
pr

JS
U
B

Su
m
RD

F

W
J

AIDS LUBM
errors 0 0 0 500 0 0 0 0 0 0 9 0 0 0
timeouts 0 0 0 0 0 287 0 0 2 0 0 0 0 0
q-𝑒𝑟𝑟 =∞ 0 329 0 145 14 0 5 1 5 0 11 17 2 0
q-𝑒𝑟𝑟 < ∞ 780 451 780 135 766 493 775 36 30 37 17 20 35 37

Human WatDiv
errors 0 0 0 0 0 0 0 0 0 0 39 0 0 0
timeouts 0 0 0 0 0 0 0 0 1 0 0 0 0 0
q-𝑒𝑟𝑟 =∞ 0 15 0 22 3 0 0 17 28 3 11 54 8 8
q-𝑒𝑟𝑟 < ∞ 49 34 49 27 46 49 49 87 75 101 54 50 96 96

Yago DBLP
errors 0 0 0 1,004 0 0 0 0 0 0 6 0 0 0
timeouts 0 0 0 0 0 839 0 0 1 0 0 0 0 0
q-𝑒𝑟𝑟 =∞ 0 688 0 189 308 0 175 0 6 0 0 9 0 4
q-𝑒𝑟𝑟 < ∞ 1,366 678 1,366 173 1,058 527 1,191 15 8 15 9 6 15 11

the minimum, lower quartile, median, upper quartile, and maximum values for q-errors and running
times. Values that cannot be plotted (e.g., infinite q-errors or timeouts) are shown using maximum
whiskers with arrows. Finally, we show the average of all valid values as a dot. Table 3 shows, for
each benchmark and estimation method, the numbers of queries that produced an unspecified
runtime error, timeout, infinite q-error, and finite q-error.
Discussion. Our results confirm the conclusions by Park et al. [55] about estimation accuracy:
WJ outperforms all other methods. Although the q-errors of CS an WJ seem comparable, Table 3
shows that WJ can successfully estimate a much larger number of queries. In fact, WJ performs
even better on the new datasets: larger data sizes typically increase the maximum q-error for most
techniques, while the maximum q-error of WJ seems largely unchanged.
Our results also agree with the observations by Park et al. [55] about estimation times on the

original datasets: the performance of WJ is roughly in line with the other methods. However, a
slightly different picture emerges on the larger datasets: C-SET and BS are fastest, and the remaining
techniques exhibit roughly the same maximum running times; however, the minimum running
times of WJ are several orders of magnitude larger than of most other techniques. Moreover, the
average running times of all techniques, but WJ in particular, are quite large: the averages for
LUBM-01K-mat, WatDiv, and DBLP are around 6.2 s, 0.25 s, and 1.5 s, respectively. A cardinality
estimation routine is often called hundreds or even thousands of time during query planning, so
it is essential that estimates are computed quickly. The WJ variant clearly does not satisfy this
requirement. We identified three plausible explanations for this.

First, as we discussed in Example 3.2, the order of query atoms critically determines the accuracy
of WJ. Since it is unclear how to identify a ‘good’ order in advance, the WJ variant considers all
possible orders. While this benefits accuracy, it inevitably increases the running times, particularly
on large queries with many possible orders.
Second, the number of samples to take is determined using equation (5), which, in most cases,

depends linearly on the data size. It intuitively makes sense to take more samples on larger inputs to
explore larger portions of the sample space, but such reasoning is actually misleading. For example,
queries containing a constant are localised to a subset of the input graph around that constant;

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

Accurate Sampling-Based Cardinality Estimation for Complex GraphQueries 12:15

Q-error Time (ms)
A
ID
S

100
103
106
109

1012
1015

10−1
100
101
102
103
104
105

H
um

an

100
101
102
103
104
105
106

0

20

40

60

80

Ya
go

100
104
108

1012
1016
1020

100
101
102
103
104
105

LU
BM

-0
1K

-m
at

100

102

104

106

108

10−1
100
101
102
103
104
105

W
at
D
iv

100

103

106

109

1012

100
101
102
103
104
105

D
BL

P

BS CS C-SET Impr JSUB SumRDF WJ
100

103

106

109

1012

BS CS C-SET Impr JSUB SumRDF WJ

100
101
102
103
104
105

Fig. 2. Results of the G-CARE Framework On All Benchmarks

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

12:16 Pan Hu and Boris Motik

this subset typically does not change even if the input grows in size so taking more samples is
unjustified. Moreover, even for queries that return more answers on larger graphs, estimation times
that scale linearly with the input size are not adequate for query planning.

Third, motivated by the folklore belief that 30 samples are generally sufficient, WJ repeats each
estimation attempt 30 times and reports the average. Combined with the first two observations,
this further increases the number of samples, particularly on large graphs.
To summarise, the number of samples tends to scale with the size of the input dataset and the

query. Since the average of unbiased estimates converges to the actual cardinality, the accuracy of
WJ is unsurprising. However, such an approach can easily become more costly than answering the
query exactly. The G-CARE framework does not provide code for computing the exact number of
answers, and Park et al. [55] do not report exact query answering times. We show in Section 7 that
exact cardinalities can be computed much faster than in Figure 2; for example, our implementation
needs at most 1.7 s, 55 ms, and 405 ms to answer any LUBM, WatDiv, and DBLP query, respectively.
Hence, further work is needed to turn WJ into an effective cardinality estimation approach.

5 Strongly Consistent Cardinality Estimator for ComplexQueries
Towards presenting our cardinality estimation approach, in Section 5.1 we first present a query
evaluation algorithm that provides the necessary context. Then, in Section 5.2 we discuss the
intuitions, in Section 5.3 we present the basic algorithm and state its properties, and in Section 5.4
we discuss an important optimisation. Finally, in Section 5.5 we discuss several practical issues.

5.1 Query Evaluation via Sideways Information Passing
Standard query evaluation proceeds bottom-up as in Table 1; for example, 𝑄 =𝑄1 AND𝑄2 is eval-
uated by computing ans𝐼 (𝑄1) and ans𝐼 (𝑄2), and joining the two results. Sideways information
passing techniques aim to optimise this process by allowing one operator in a query plan to identify
a set of possible bindings for query variables and pass these to other operators in the plan in order
to eagerly eliminate tuples that do not match these bindings. Such techniques have been applied to
relational [40, 61], RDF [53, 74], and recursive [8] queries, and in visual query processing [41].

Procedure eval𝐼 (𝑄, 𝜎) in Algorithm 1 uses a variant of sideways information passing to evaluate
a query 𝑄 over a database instance 𝐼 . This algorithm can be practical, but our point is mainly
conceptual: our cardinality estimation algorithm can be seen as ‘sampling the loops’ of Algorithm 1.
Intuitively, the algorithm can be seen as a variant of the magic sets transformation [8] adapted to
complex queries with nesting. For example, it evaluates𝑄 =𝑄1 AND𝑄2 by enumerating all answers
of𝑄1 and evaluating𝑄2 in the context of each answer. The algorithm realises sideways information
passing via the substitution 𝜎 , which must satisfy dom(𝜎) ⊆ v(𝑄), and it provides the context
produced by subqueries evaluated prior to 𝑄 and is used to constrain the evaluation of 𝑄 . The
procedure outputs each substitution 𝜇 ∈ ans𝐼 (𝑄) such that 𝜎 ∼ 𝜇; that is, only answers compatible
with the context substitution are produced. We present Algorithm 1 in form of a generator : each
invocation of eval𝐼 (𝑄, 𝜎) should be understood as providing an iterator, and the output keyword
adds one substitution to the iterator result. The algorithm can be easily turned into a form that
uses standard iterators and evaluates all queries apart from DISTINCT(𝑄) in a pipelined fashion.

Procedure eval𝐼 (𝑄, 𝜎) considers all possible forms of𝑄 (line 1). When𝑄 is an atom𝐴 (line 2), the
algorithm identifies all ways in which 𝜎 (𝐴) can be matched in 𝐼 (lines 3–4). For 𝑄 =𝑄1 AND𝑄1, the
algorithm uses a nested loop join: it evaluates 𝑄1 in the context of 𝜎 (line 6) and, for each resulting
𝜎1, it evaluates𝑄2 in the context of 𝜎 ∪ 𝜎1 (line 7) and outputs the result. To ensure that the context
substitutions are defined over the variables of the respective subquery, 𝜎 and 𝜎 ∪ 𝜎1 are projected
to v(𝑄1) and v(𝑄2) in lines 6 and 7, respectively. For 𝑄 =𝑄1 UNION𝑄2, the algorithm evaluates
𝑄1 and 𝑄2 in the context of 𝜎 independently. For 𝑄 =𝑄1 MINUS𝑄2, the algorithm evaluates 𝑄1 in

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

Accurate Sampling-Based Cardinality Estimation for Complex GraphQueries 12:17

Algorithm 1 eval𝐼 (𝑄, 𝜎)
Input: database instance 𝐼 , query 𝑄 , and substitution 𝜎 with dom(𝜎) ⊆ v(𝑄)
Output: each substitution 𝜇 ∈ ans𝐼 (𝑄) such that 𝜎 ∼ 𝜇

Local: set 𝐷 of substitutions

1: switch 𝑄

2: case 𝑄 = 𝐴

3: for each matcher 𝛽 of 𝜎 (𝐴) to some 𝐹 ∈ 𝐼 do
4: output 𝜎 ∪ 𝛽

5: case 𝑄 =𝑄1 AND𝑄2
6: for each 𝜎1 ∈ eval𝐼 (𝑄1, 𝜎 |𝑄1) do
7: for each 𝜎2 ∈ eval𝐼 (𝑄2, (𝜎 ∪ 𝜎1) |𝑄2) do
8: output 𝜎 ∪ 𝜎1 ∪ 𝜎2
9: case 𝑄 =𝑄1 UNION𝑄2
10: for each 𝑖 ∈ {1, 2} do
11: for each 𝜎𝑖 ∈ eval𝐼 (𝑄𝑖 , 𝜎) do
12: output 𝜎𝑖
13: case 𝑄 =𝑄1 MINUS𝑄2
14: for each 𝜎1 ∈ eval𝐼 (𝑄1, 𝜎) do
15: if eval𝐼 (𝑄2, 𝜎1 |𝑄2) = ∅ then
16: output 𝜎1

17: case 𝑄 =𝑄1 FILTER 𝐸
18: for each 𝜎1 ∈ eval𝐼 (𝑄1, 𝜎) do
19: if 𝜎1 (𝐸) = true then
20: output 𝜎1
21: case 𝑄 =𝑄1 BIND 𝑥 := 𝐸

22: for each 𝜎1 ∈ eval𝐼 (𝑄1, 𝜎 |𝑄1) do
23: if 𝜎1 (𝐸) ≠ 𝜖 and 𝜎 ∼ {𝑥 ↦→ 𝜎1 (𝐸)} then
24: output 𝜎1 ∪ {𝑥 ↦→ 𝜎1 (𝐸)}
25: case 𝑄 = PROJECT𝑋 (𝑄1)
26: for each 𝜎1 ∈ eval𝐼 (𝑄1, 𝜎) do
27: output 𝜎1 |𝑋
28: case 𝑄 = DISTINCT(𝑄1)
29: 𝐷 := ∅
30: for each 𝜎1 ∈ eval𝐼 (𝑄1, 𝜎) do
31: if 𝜎1 ∉ 𝐷 then
32: 𝐷 := 𝐷 ∪ {𝜎1}
33: output 𝜎1

the context of 𝜎 (line 14), and it filters out each answer 𝜎1 that can be extended to an answer of
𝑄2 (line 15). Again, 𝜎1 is restricted to v(𝑄2) to obtain a valid context substitution. Moreover, the
evaluation of eval𝐼 (𝑄2, 𝜎1 |𝑄2) in line 15 can stop as soon as one answer substitution is identified.
The case of 𝑄 =𝑄1 FILTER 𝐸 is analogous. For 𝑄 =𝑄1 BIND 𝑥 := 𝐸, each 𝜎1 obtained by evaluating
𝑄1 is extended by mapping 𝑥 to 𝜎1 (𝐸), and the result is output only if it is compatible with 𝜎 . For
𝑄 = PROJECT𝑋 (𝑄1), the algorithm simply removes the bindings for variables outside 𝑋 in each
answer obtained by evaluating𝑄1 in the context of 𝜎 . Finally, for𝑄 = DISTINCT(𝑄1), a substitution
produced by the evaluation of 𝑄1 is returned only the first time it is encountered. Note that the set
𝐷 used to remove duplicate substitutions is local to each invocation of eval𝐼 (𝑄, 𝜎).

Theorem 5.1 captures formally the relevant properties of Algorithm 1. A straightforward conse-
quence is that ans𝐼 (𝑄) = eval𝐼 (𝑄, ∅) for each database instance 𝐼 and query 𝑄 .

Theorem 5.1. For each database instance 𝐼 , query𝑄 , and substitution 𝜎 such that dom(𝜎) ⊆ v(𝑄),

eval𝐼 (𝑄, 𝜎) = {{𝜇 ∈ ans𝐼 (𝑄) | 𝜎 ∼ 𝜇}}. (8)

Proof Sketch. The claim can be proved by a straightforward induction on the structure of 𝑄 .
The induction base holds immediately from the definition of a matcher of 𝜎 (𝐴) to a fact 𝐹 ∈ 𝐼 . For
the induction step, we consider different forms of 𝑄 and an arbitrary 𝜎 such that dom(𝜎) ⊆ v(𝑄).
For 𝑄 =𝑄1 AND𝑄2, property (8) holds for 𝑄1 and 𝑄2. Thus, each substitution 𝜎1 in Algorithm 1
satisfies𝜎 ∼ 𝜎1, and each substitution𝜎2 in Algorithm 1 satisfies𝜎 ∪ 𝜎1 ∼ 𝜎2; hence,𝜎 ∼ 𝜎 ∪ 𝜎1 ∪ 𝜎2,
as required. Moreover, 𝜎 ∪ 𝜎1 ∪ 𝜎2 ∈ eval𝐼 (𝑄, 𝜎) clearly holds, and it should be obvious that the
multiset eval𝐼 (𝑄, 𝜎) contains all required substitutions with the corresponding multiplicities. Cases
for 𝑄 =𝑄1 UNION𝑄2 and 𝑄 = PROJECT𝑋 (𝑄1) are analogous. For 𝑄 = DISTINCT(𝑄1), the induction
assumption ensures that (8) holds for 𝑄1, which in turn ensures

{{𝜇 ∈ ans𝐼 (𝑄) | 𝜎 ∼ 𝜇}} = {𝜇 ∈ ans𝐼 (𝑄1) | 𝜎 ∼ 𝜇} = {𝜇 | 𝜇 ∈ eval𝐼 (𝑄1, 𝜎)} = eval𝐼 (𝑄, 𝜎).

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

12:18 Pan Hu and Boris Motik

The last equality is due to how the set 𝐷 is used in Algorithm 1 to eliminate duplicates. The cases
for𝑄 =𝑄1 FILTER 𝐸 and𝑄 =𝑄1 BIND 𝑥 := 𝐸 are straightforward. Finally, for𝑄 =𝑄1 MINUS𝑄2, the
induction assumption ensures that (8) holds for 𝑄1 and 𝑄2, which in turn ensures

{{𝜇1 ∈ ans𝐼 (𝑄) | 𝜎 ∼ 𝜇1}} = {{𝜇1 ∈ ans𝐼 (𝑄1) | 𝜎 ∼ 𝜇1 and �𝜇2 ∈ ans𝐼 (𝑄2) such that 𝜇1 ∼ 𝜇2}} =
= {{𝜇1 ∈ eval𝐼 (𝑄1, 𝜎) | eval𝐼 (𝑄2, 𝜇1 |𝑄2) = ∅}} = eval𝐼 (𝑄, 𝜎).

Again, the last equality is ensured by the structure of Algorithm 1. □

If matchers in line 3 can be computed using indexes, then the evaluation of 𝑄 = AND(𝐴1, . . . , 𝐴𝑛)
amounts to index nested loop joins, which are widely used in practice. Our algorithm processes one
tuple at a time in lines 6–8, which can incur a cost due to random access. However, in RAM-based
databases, this cost is often compensated by sideways information passing, which can significantly
reduce the overall number of processed tuples. Algorithm 1 can thus be practical in certain cases,
and it is used by the prototype implementation from Section 7 to evaluate queries exactly.

5.2 Principles for Estimating the Cardinality of ComplexQueries
The inspiration for our work comes from the WanderJoin algorithm (see Section 3.2), which can be
seen as ‘sampling the loops’ of Algorithm 1. Given 𝑄 = 𝐴1 AND𝐴2, Algorithm 1 enumerates each
matcher 𝜎1 of 𝜎 (𝐴1) to a fact in 𝐼 , and for each 𝜎1 it enumerates each matcher 𝜎2 of (𝜎 ∪ 𝜎1) (𝐴2)
to a fact in 𝐼 . In contrast, WanderJoin guesses just one such pair of 𝜎1 and 𝜎2, and this process can
be seen as using sideways information passing to compute just one answer to 𝑄 . We next present
several examples that illustrate how to extend these principles to other query types.

Example 5.2. Let 𝑄 and 𝐼 be the following query and database instance, respectively, so ans𝐼 (𝑄)
contains substitutions of the form {𝑥 ↦→ 𝑎𝑖 , 𝑦 ↦→ 𝑏, 𝑧 ↦→ 𝑐 𝑗 } for 1 ≤ 𝑖 ≤ 4 and 1 ≤ 𝑗 ≤ 2.

𝑄 =𝑄1 AND𝑇 (𝑦, 𝑧) 𝑄1 = 𝑅(𝑥,𝑦) UNION 𝑆 (𝑥,𝑦)
𝐼 = {𝑅(𝑎1, 𝑏), 𝑅(𝑎2, 𝑏), 𝑅(𝑎3, 𝑏), 𝑆 (𝑎4, 𝑏),𝑇 (𝑏, 𝑐1),𝑇 (𝑏, 𝑐2),𝑇 (𝑑, 𝑒)}

The UNION operator does not eliminate duplicates (cf. Section 2.1), so one might intuitively
estimate its cardinality as the sum of the cardinality of its disjuncts. However, to handle the
conjunction in 𝑄 , we would need to pass cardinality estimates for 𝑅(𝑥,𝑦) and 𝑆 (𝑥,𝑦) sideways to
𝑇 (𝑦, 𝑧), and it is unclear how to combine them into an unbiased estimate of the cardinality of 𝑄 .

Our solution is to ‘sample the loops’ of Algorithm 1. Instead of considering both 𝑖 = 1 and 𝑖 = 2
in line 10, we randomly select just one disjunct, we randomly produce one answer for the selected
disjunct, and we pass it sideways to 𝑇 (𝑦, 𝑧). For example, we could select 𝑖 = 1 and then randomly
select one matcher of 𝑅(𝑥,𝑦) to a fact in 𝐼 ; for example, 𝜎1 = {𝑥 ↦→ 𝑎1, 𝑦 ↦→ 𝑏}. There are three
candidate matchers, so we estimate the cardinality of 𝑅(𝑥,𝑦) as 3. To account for the two possible
choices for 𝑖 in line 10, we estimate the cardinality of𝑄1 as 3 · 2 = 6. We thus obtain a single answer
and estimate for 𝑄1, which we pass sideways to 𝑇 (𝑦, 𝑧) as in WanderJoin: we use sampling to find
one answer to 𝜎1 (𝑇 (𝑦, 𝑧)) =𝑇 (𝑏, 𝑧). For example, we can randomly select 𝜎2 = {𝑧 ↦→ 𝑐2}; there are
two candidates, so we estimate the cardinality of 𝑇 (𝑏, 𝑧) as 2, and we return the answer 𝜎1 ∪ 𝜎2
and the cardinality estimate 6 · 2 = 12. As in WanderJoin, we can ignore 𝑇 (𝑑, 𝑒) while processing
𝑇 (𝑏, 𝑧) (provided adequate indexes are available), which increases the likelihood of a match.

We overestimated the cardinality of 𝑄 since we explored just the first disjunct of 𝑄1. Choosing
𝑖 = 2 leads to an underestimation of 1 · 2 · 2 = 4. However, the expected value is 8, which is the
correct cardinality—that is, our estimator is unbiased.
The cardinality estimate of 𝑄 is thus produced from the data that Algorithm 1 uses to produce

just one answer, so individual estimates can vary considerably. However, by running the algorithm
several times, we explore a larger portion of such answers. As the number of runs increases, the

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

Accurate Sampling-Based Cardinality Estimation for Complex GraphQueries 12:19

estimate average converges to the exact cardinality, and the variance converges to zero. We discuss
how to select the number of runs in Section 5.5. ⊳

Example 5.3. Let 𝑄 and 𝐼 be the following query and database instance, respectively, so ans𝐼 (𝑄)
contains substitutions 𝜇1 = {𝑥 ↦→ 𝑎} and 𝜇2 = {𝑥 ↦→ 𝑏}.

𝑄 = 𝐴(𝑥) MINUS 𝑅(𝑥,𝑦) 𝐼 = {𝐴(𝑎), 𝐴(𝑏), 𝐴(𝑐), 𝑅(𝑐, 𝑑1), 𝑅(𝑐, 𝑑2)}

To estimate |ans𝐼 (𝑄) |, we again ‘sample the loops’ of Algorithm 1: we randomly select one substi-
tution 𝜎1 from line 14, and we check whether 𝜎1 (𝑅(𝑥,𝑦)) has any matches in 𝐼 . The latter check
uses sideways information passing, but it must be exact since we must produce only valid answers.
As in Algorithm 1, we can stop answering 𝜎1 (𝑅(𝑥,𝑦)) as soon as we find the first answer.

In our example, there are three ways to match 𝐴(𝑥). Thus, if we select 𝜇1 or 𝜇2, the estimate is 3;
and if we select 𝜇3 = {𝑥 ↦→ 𝑐}, the estimate is 0. Again, our estimator is unbiased. ⊳

Queries of the form𝑄 =𝑄1 FILTER 𝐸 can be estimated analogously to𝑄 =𝑄1 MINUS𝑄2: we filter
the answers of𝑄1 using 𝐸. Queries of the form𝑄 =𝑄1 BIND 𝑥 := 𝐸 can be handled in a similar way,
so we next focus on the much more challenging DISTINCT operator.

Example 5.4. Let 𝑄 and 𝐼 be the following query and database instance, respectively, so ans𝐼 (𝑄)
contains substitutions 𝜇1 = {𝑥 ↦→ 𝑎} and 𝜇2 = {𝑥 ↦→ 𝑐}.

𝑄 = DISTINCT(𝑄1) 𝑄1 = PROJECT{𝑥 } (𝑅(𝑥,𝑦))
𝐼 = {𝑅(𝑎, 𝑏1), . . . , 𝑅(𝑎, 𝑏𝑘), 𝑅(𝑐, 𝑑)}

Assume for the moment that we can ‘magically’ associate 𝜇1 and 𝜇2 with the representative
facts that produce these substitutions; for example, we can associate 𝜇1 with 𝑅(𝑎, 𝑏1) and 𝜇2 with
𝑅(𝑐, 𝑑). We can then ‘sample the loops’ of Algorithm 1 as follows: we guess a matcher 𝜎1 for 𝑅(𝑥,𝑦)
from 𝑘 + 1 candidates; however, the guess is successful and we return the estimate of 𝑘 + 1 only if
we choose a representative, and we return 0 otherwise. The expectation is (𝑘 + 1) 2

𝑘+1 = 2, so the
estimator is unbiased. Several difficulties need to be addressed to make this idea practical.

First, the projection operator of𝑄1 ‘erases’ an association between selected facts and the resulting
substitutions; for example, when sampling 𝑄1 returns substitution 𝜇1, we do not know whether
𝜇1 was obtained from 𝑅(𝑎, 𝑏1) or 𝑅(𝑎, 𝑏2). Analogously, in DISTINCT(𝑄1 UNION𝑄2), both 𝑄1 and
𝑄2 can produce the same substitution, but only one should count as a ‘success’. To address this
problem, our estimation algorithm returns an answer substitution for𝑄 , a cardinality estimate, and
an outcome—an object that uniquely encodes the choices that were used to obtain the answer. In
our example, the outcome is simply the fact chosen to satisfy 𝑅(𝑥,𝑦).

Second, the variance of the estimator can be large. A single run of this approach on 𝑄 and 𝐼 can
be modelled as an estimator 𝜃 = (𝑘 + 1) · 𝑋 , where𝑋 is a Bernoulli random variable with parameter
𝑝 = 2/(𝑘 + 1). It is known that E[𝑋] = 𝑝 and Var[𝑋] = 𝑝 (1 − 𝑝), so E[𝜃1] = (𝑘 + 1) · E[𝑋] = 2 and
Var[𝜃1] = (𝑘 + 1)2 · Var[𝑋] = 2𝑘 − 2. Thus, 𝜃1 is unbiased, but its variance grows with 𝑘 . We can
reduce the variance taking the average of 𝑛 runs, which realises an estimator 𝜃2 =

𝑘+1
𝑛

· 𝑌 , where 𝑌
is a binomial random variable with parameters 𝑛 and the same 𝑝 . It is known that E[𝑌] = 𝑛𝑝 and
Var[𝑌] = 𝑛𝑝 (1 − 𝑝), so E[𝜃2] = 2 and Var[𝜃2] = (2𝑘 − 2)/𝑛. The 95% confidence interval is thus
2 ± 1.96

√
2𝑘−2
𝑛

, so we need least 1.4
√
𝑘 − 1 runs to obtain the confidence interval that is at most as

wide as the estimate itself. This observation echos the formal result by Charikar et al. [15], who
have proved that no estimator for DISTINCT queries can guarantee low error on all inputs unless it
examines a large fraction of the input data. We show empirically in Section 7.3 that our approach
is both accurate and efficient in practice.

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

12:20 Pan Hu and Boris Motik

Third, it is unclear how to associate 𝜇1 and 𝜇2 with representative facts without actually evaluating
𝑄 . We address this problem by maintaining a global mapping 𝐷𝑄 of the answers to 𝑄1 to unique
outcomes. This mapping is initially empty, and it is updated in successive runs. In our example, if
the first run produces substitution 𝜇1 due to the outcome 𝜔 = 𝑅(𝑎, 𝑏1), then 𝐷𝑄 [𝜇1] is defined as 𝜔 .
Thus, whenever 𝜇1 is produced in subsequent runs, our algorithm can determine whether this was
achieved by 𝐷𝑄 [𝜇1] or in some other way. Due to this change, individual estimator runs are no
longer unbiased. For example, 𝐷𝑄 is initially empty so the first call of our estimator always returns
𝑘 + 1; hence, the expectation of the first call is 𝑘 + 1, rather than 2. Nevertheless, we prove that
the sequence of averages of repeated calls is a strongly consistent estimator of the true cardinality.
Hence, we can use our approach just like any unbiased estimator: as the number of runs increases,
the estimate average converges to the query cardinality, and the variance converges to zero. ⊳

5.3 The Basic Cardinality Estimation Approach
Algorithm 2 presents our cardinality estimation approach formally. Just like Algorithm 1, it takes
as input a database instance 𝐼 , a query 𝑄 , and a context substitution 𝜎 . The algorithm returns a
triple [𝜔, 𝛽, 𝑐] that can have two forms. If sampling succeeds, the triple is structured as follows.

• Component 𝜔 is an outcome object that describes all random choices made by all recursive
calls, as motivated by Example 5.4.

• Component 𝛽 is a substitution satisfying 𝛽 ∈ eval𝐼 (𝑄, 𝜎).
• Component 𝑐 is an estimate of |eval𝐼 (𝑄, 𝜎) |.

Furthermore, the algorithm can indicate that it failed to identity an answer to 𝑄 by returning
[⊥, ∅, 0] where ⊥ is a distinct failure outcome. If 𝑄 is a DISTINCT query, the algorithm uses an
initially empty global mapping 𝐷𝑄 of substitutions to outcomes. The structure of Algorithm 2 is
similar to Algorithm 1, and it realises the idea of ‘loop sampling’ from Section 5.2.
If 𝑄 is an atom 𝐴, the algorithm randomly selects a matcher 𝛽 of 𝐴 to a fact in 𝐼 . To capture

different ways to achieve this, the algorithm is parameterised by a function sspace determining the
sample space. Specifically, sspace𝐼 (𝜎 (𝐴)) should contain at least all facts of 𝐼 that can be matched to
𝜎 (𝐴), but it is allowed to contain other facts as well. In practice, the sample space will be determined
by the available indexes. For example, if 𝜎 (𝐴) = 𝑅(𝑐, 𝑥) and the facts of relation 𝑅 are indexed
on the first position, we can take sspace𝐼 (𝜎 (𝐴)) as all facts obtained by the index lookup for 𝑐 .
If, however, a precise index is unavailable, sspace𝐼 (𝜎 (𝐴)) can be any suitable overestimate. For
example, if no index can match 𝜎 (𝐴) = 𝑅(𝑥, 𝑥) directly, we can take sspace𝐼 (𝜎 (𝐴)) = 𝐼 (𝑅). If the
sample space is empty, substitution 𝛽 cannot be selected so the algorithm fails (line 3). Otherwise,
the algorithm randomly selects a fact 𝐹 ∈ sspace𝐼 (𝜎 (𝐴)) (line 4). Facts can be chosen according
to an arbitrary but fixed probability distribution P on the sample space, which provides possible
avenues for optimisation (e.g., selecting facts with frequently occurring constants more eagerly).
Our implementation, however, chooses facts uniformly at random, so P(𝐹) = 1/|sspace𝐼 (𝜎 (𝐴)) |.
Once 𝐹 is selected, the algorithm checks whether the selected fact 𝐹 indeed matches 𝜎 (𝐴) via
substitution 𝛽 (line 5). If not, the algorithm fails, which is analogous to the final check inWanderJoin
(see Example 3.1); otherwise, the algorithm returns substitution 𝜎 ∪ 𝛽 , unbiased estimate 1/P(𝐹),
and outcome 𝐹 indicating that 𝜎 ∪ 𝛽 was obtained by selecting 𝐹 .
The remaining operators are handled as outlined in Section 5.2: conjunctions use sideways

information passing in a way that mimics WanderJoin, and all operators can be seen as ‘sampling
the loops‘ of Algorithm 1. For the sake of generality, the two disjuncts of 𝑄 =𝑄1 UNION𝑄2 are
explored with arbitrary probabilities 𝑝1 and 𝑝2; however, 𝑝1 = 𝑝2 = 0.5 is likely to be sufficient
for practice. Sampling a subquery can produce a substitution that does not satisfy the relevant
conditions. For example, for𝑄 =𝑄1 FILTER 𝐸, line 19 can produce an answer 𝜎1 of𝑄1 that does not

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

Accurate Sampling-Based Cardinality Estimation for Complex GraphQueries 12:21

Algorithm 2 estimate𝐼 (𝑄, 𝜎)
Input: database instance 𝐼 , query 𝑄 , and substitution 𝜎 with dom(𝜎) ⊆ v(𝑄)
Output: a triple [𝜔, 𝛽, 𝑐] where either 𝜔 = ⊥, 𝛽 = ∅, and 𝑐 = 0, or

𝜔 is an outcome, 𝛽 ∈ eval𝐼 (𝑄, 𝜎), and 𝑐 is an unbiased estimate of |eval𝐼 (𝑄, 𝜎) |
Global: mapping 𝐷𝑄 of substitutions to outcomes unique for 𝑄 (initially empty)

1: switch 𝑄

2: case 𝑄 = 𝐴

3: if sspace𝐼 (𝜎 (𝐴)) ≠ ∅ then
4: Choose 𝐹 ∈ sspace𝐼 (𝜎 (𝐴)) with prob. P(𝐹)
5: if a matcher 𝛽 of 𝜎 (𝐴) to 𝐹 exists then
6: return [𝐹, 𝜎 ∪ 𝛽, 1/P(𝐹)]
7: case 𝑄 =𝑄1 AND𝑄2
8: [𝜔1, 𝜎1, 𝑐1] := estimate𝐼 (𝑄1, 𝜎 |𝑄1)
9: if 𝜔1 ≠ ⊥ then
10: [𝜔2, 𝜎2, 𝑐2] := estimate𝐼 (𝑄2, (𝜎 ∪ 𝜎1) |𝑄2)
11: if 𝜔2 ≠ ⊥ then
12: return [⟨𝜔1, 𝜔2⟩, 𝜎 ∪ 𝜎1 ∪ 𝜎2, 𝑐1 · 𝑐2]
13: case 𝑄 =𝑄1 UNION𝑄2
14: Choose 𝑖 ∈ {1, 2} with prob. 𝑝1 and 𝑝2
15: [𝜔𝑖 , 𝜎𝑖 , 𝑐𝑖] := estimate𝐼 (𝑄𝑖 , 𝜎)
16: if 𝜔𝑖 ≠ ⊥ then
17: return [⟨𝑖, 𝜔𝑖 ⟩, 𝜎𝑖 , 𝑐𝑖/𝑝𝑖]
18: case 𝑄 =𝑄1 MINUS𝑄2
19: [𝜔1, 𝜎1, 𝑐1] := estimate𝐼 (𝑄1, 𝜎)
20: if 𝜔1 ≠ ⊥ and eval𝐼 (𝑄2, 𝜎1 |𝑄2) = ∅ then
21: return [𝜔1, 𝜎1, 𝑐1]

22: case 𝑄 =𝑄1 FILTER 𝐸
23: [𝜔1, 𝜎1, 𝑐1] := estimate𝐼 (𝑄1, 𝜎)
24: if 𝜔1 ≠ ⊥ and 𝜎1 (𝐸) = true then
25: return [𝜔1, 𝜎1, 𝑐1]
26: case 𝑄 =𝑄1 BIND 𝑥 := 𝐸

27: [𝜔1, 𝜎1, 𝑐1] := estimate𝐼 (𝑄1, 𝜎 |𝑄1)
28: if 𝜔1 ≠ ⊥, 𝜎1 (𝐸) ≠ 𝜖 , and 𝜎 ∼ {𝑥 ↦→ 𝜎1 (𝐸)} then
29: return [𝜔1, 𝜎1 ∪ {𝑥 ↦→ 𝜎1 (𝐸)}, 𝑐1]
30: case 𝑄 = PROJECT𝑋 (𝑄1)
31: [𝜔1, 𝜎1, 𝑐1] := estimate𝐼 (𝑄1, 𝜎)
32: if 𝜔1 ≠ ⊥ then
33: return [𝜔1, 𝜎1 |𝑋 , 𝑐1]
34: case 𝑄 = DISTINCT(𝑄1)
35: [𝜔1, 𝜎1, 𝑐1] := estimate𝐼 (𝑄1, 𝜎)
36: if 𝜔1 ≠ ⊥ then
37: if 𝐷𝑄 [𝜎1] is undefined then
38: 𝐷𝑄 [𝜎1] := 𝜔1
39: if 𝐷𝑄 [𝜎1] = 𝜔1 then
40: return [𝜔1, 𝜎1, 𝑐1]
41: return [⊥, ∅, 0]

satisfy 𝐸. In all such cases, the algorithm indicates failure by returning in line 41, which prevents
any further sideways information passing. Just like in WanderJoin, when calling the algorithm
repeatedly, failures must be counted as estimates of zero cardinality.

Theorem 5.5 captures the formal properties of Algorithm 2, and it is proved in Appendix A. Since
ans𝐼 (𝑄) = eval𝐼 (𝑄, ∅), we can estimate the cardinality of𝑄 by using an empty context substitution.

Theorem 5.5. Let 𝜃1, 𝜃2, . . . be the sequence of random variables representing the third component
of the results of successive calls to estimate𝐼 (𝑄, 𝜎) for some 𝐼 , 𝑄 , and 𝜎 with dom(𝜎) ⊆ v(𝑄).

• The sequence of averages 1
𝑛
·∑𝑛

𝑖=1 𝜃𝑖 is a strongly consistent estimator of |eval𝐼 (𝑄, 𝜎) |.
• If 𝑄 does not contain DISTINCT, then each 𝜃𝑖 is an unbiased estimator of |eval𝐼 (𝑄, 𝜎) |.

To prove Theorem 5.5, we first show that, if mappings 𝐷𝑄 used to handle DISTINCT queries
are preinitialised so that the check in line 37 is never satisfied (i.e., 𝐷𝑄 [𝜎1] is always defined),
then all 𝜃𝑖 are unbiased. We prove the latter claim inductively, but conjunctions pose a problem
that we discuss next. Assume that Algorithm 2 is called for 𝑄 =𝑄1 AND𝑄2 and some 𝜎 , and that
the recursive call for each 𝑄𝑖 with 𝑖 ∈ {1, 2} produces 𝜎𝑖 and an unbiased estimate 𝐶𝑖 (𝜎𝑖) with
probability P𝑖 (𝜎𝑖). The expectation of the estimate 𝐶 (𝜎) of |eval𝐼 (𝑄, 𝜎) | can then be computed as
follows, where 𝜎1 and 𝜎2 range over eval𝐼 (𝑄1, 𝜎 |𝑄1) and eval𝐼 (𝑄2, (𝜎 ∪ 𝜎1) |𝑄2), respectively.

E[𝐶 (𝜎)] =
∑︁
𝜎1

∑︁
𝜎2

P1 (𝜎1) · P2 (𝜎2) ·𝐶1 (𝜎1) ·𝐶2 (𝜎2) = (9)

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

12:22 Pan Hu and Boris Motik

=
∑︁
𝜎1

P1 (𝜎1) ·𝐶1 (𝜎1) ·
∑︁
𝜎2

P2 (𝜎2) ·𝐶2 (𝜎2) = (10)

=
∑︁
𝜎1

P1 (𝜎1) ·𝐶1 (𝜎1) · E[𝐶2 ((𝜎 ∪ 𝜎1) |𝑄2)] = (11)

=
∑︁
𝜎1

P1 (𝜎1) ·𝐶1 (𝜎1) · |eval𝐼 (𝑄2, (𝜎 ∪ 𝜎1) |𝑄2) | (12)

Equality of (10) and (11) follows from the definition of the expectation, and the equality of (11)
and (12) follows from the inductive assumption that estimates for 𝑄2 and (𝜎 ∪ 𝜎1) |𝑄2 are unbiased.
However, |eval𝐼 (𝑄2, (𝜎 ∪𝜎1) |𝑄2) | depends on 𝜎1, so we cannot apply analogous reasoning to𝑄1. We
address this problem by showing that Algorithm 2 in fact realises a Horvitz–Thompson estimator:
its estimates are not only unbiased, but they also satisfy 𝐶 (𝜎) = 1/P(𝜎). Thus, terms P1 (𝜎1) and
𝐶1 (𝜎1) in (12) cancel out, so we can continue the calculation as follows.

E[𝐶 (𝜎)] =
∑︁
𝜎1

|eval𝐼 (𝑄2, (𝜎 ∪ 𝜎1) |𝑄2) | = |eval𝐼 (𝑄, 𝜎) | (13)

For the general case when mappings𝐷𝑄 are not preinitialised, we first show that, with probability
one, successive invocations populate each 𝐷𝑄 so that 𝐷𝑄 [𝜎1] is defined for all relevant 𝜎1. Thus,
after sufficiently many ‘warm-up’ runs, our estimator starts producing unbiased estimates as argued
in the previous paragraph, and so the average of all estimates obtained from this point onwards
converges to the actual cardinality with probability one. Moreover, the number of ‘warm-up’ runs
is finite, so the bias introduced by these runs converges to zero as the number of runs increases.
We finish this section by a brief discussion of how to extend Algorithm 2 to features of graph

query languages not included in our definition from Section 2.1. Example 5.6 shows that certain
forms of aggregation queries can be challenging.

Example 5.6. Consider a SPARQL query of the following form, where the result of aggregation is
joined with another subquery <Q2>. Whether the cardinality of this query can be estimated using
Algorithm 2 depends on whether variable ?Z occurs in <Q2>.

SELECT * WHERE { { SELECT ?X (SUM(?Y) AS ?Z) WHERE { ?X :hasTemp ?Y } GROUP BY ?X } . <Q2> }

If ?Z does not occur in <Q2>, this query returns the same number of answers as the following
query. Hence, the exact result of aggregation is irrelevant, so we can transform the query into one
that Algorithm 2 can handle.

SELECT * WHERE { { SELECT DISTINCT ?X WHERE { ?X :hasTemp ?Y } } . <Q2> }

In contrast, if ?Z occurs in <Q2>, then the value of ?Z must be computed exactly if it is to join
with <Q2>. This is analogous to 𝑄1 MINUS𝑄2, where eval𝐼 (𝑄2, 𝜎1 |𝑄2) = ∅ in line 20 of Algorithm 2
must be checked exactly. Our algorithm can still be used: we can fix the value of ?X by guessing a
match for atom ?X :hasTemp ?Y to some fact and then compute the corresponding value of ?Z by
evaluating the aggregation exactly for the fixed value of ?X. Depending on the size of the group for
?X, this may or may not introduce unacceptable overheads.
Moreover, if the aggregation function is changed to MIN, we can avoid evaluating one group in

its entirety: we randomly select a fact matching ?X :hasTemp ?Y, and we check whether the value
for ?Y is indeed minimal for ?X; if the database instance is indexed appropriately, this can be more
efficient than evaluating the aggregate subquery in full. The main risk is that the rate of failure (i.e.,
guesses that do not lead to a solution) of such an approach can be high.
To summarise, cardinality estimation for queries with nested aggregation can be hard, and it

remains to be seen whether any of the approaches outlined above are practical. We also point

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

Accurate Sampling-Based Cardinality Estimation for Complex GraphQueries 12:23

out that the WanderJoin algorithm by Li et al. [47] can handle GROUP BY queries, but, instead of
estimating the number of groups, its objective is to estimate the aggregation value for each group. ⊳

Graph query languages often support conjunctive regular path queries (CRPQs) [7], where atoms
can have the form re(𝑠, 𝑡) for re a regular expression over binary relations. A substitution 𝜎 is
an answer to re(𝑠, 𝑡) on 𝐼 if there exist a word 𝑅1 . . . 𝑅𝑛 in the regular language of re and facts
{𝑅1 (𝑐0, 𝑐1), . . . , 𝑅𝑛 (𝑐𝑛−1, 𝑐𝑛)} ⊆ 𝐼 such that 𝜎 (𝑠) = 𝑐0 and 𝜎 (𝑡) = 𝑐𝑛 . Atom re(𝑠, 𝑡) is semantically
equivalent to 𝑄 = DISTINCT(UNION(𝑤1 (𝑠, 𝑡),𝑤2 (𝑠, 𝑡), . . .)), where 𝑤1,𝑤2, . . . are all words of the
language of re. Now, even if this union is infinite, Algorithm 2 can be applied to 𝑄 provided that
disjuncts are selected using probabilities that add up to one. Hence, extending Algorithm 2 to
CRPQs seems feasible in principle, and we shall develop this idea further in our future work.
Finally, graph query languages often support sorting, but this does not affect query cardinality.

Sorting is sometimes combined with OFFSET/LIMIT operators to select a subset of query answers,
and we do not see how to incorporate such queries into our framework.

5.4 Optimising the Basic Approach
A closer look at Algorithm 2 reveals that substitutions produced by tail-recursive calls are not
used for sideways information passing. Moreover, the Horvitz–Thompson property is used to
transform (12) into (13), but not to transform (11) into (12): 𝐶2 (𝜎2) is only required to be unbiased.
Consequently, we can optimise tail-recursive calls to return unbiased, but not necessarily Horvitz–
Thompson, estimates. Examples 5.7 and 5.8 motivate such optimisations.

Example 5.7. Let 𝑄 = 𝑅(𝑥,𝑦) AND 𝑆 (𝑦, 𝑧) and 𝐼 = {𝑅(𝑎𝑖 , 𝑏𝑖) | 1 ≤ 𝑖 ≤ 𝑘} ∪ {𝑆 (𝑏1, 𝑐1)} for 𝑘 ≥ 1.
When Algorithm 2 is applied 𝑛 times to 𝑄 and 𝐼 , each run is independent, so the probability of
obtaining a nonzero estimate after 𝑛 runs is 𝑝1 = 1 − (1 − 1/𝑘)𝑛—that is, the complement of the
probability of not selecting 𝑅(𝑎1, 𝑏1) in any of the 𝑛 runs.

We can improve this by sampling 𝐼 (𝑅) without replacement and thus exploring a larger portion
of the sample space. For example, we can partition 𝐼 (𝑅) into 𝑛 blocks of 𝑘/𝑛 facts, sample each
block independently, and sum the resulting estimates. The probability of a nonzero estimate is then
𝑝2 = 𝑛/𝑘—that is, the probability of choosing 𝑅(𝑎1, 𝑏1) from 𝑘/𝑛 facts. One can verify that 𝑝2 ≥ 𝑝1
for all 𝑛 and 𝑘 , and that the difference between 𝑝1 and 𝑝2 is larger when 𝑘 and 𝑛 are of similar
orders of magnitude. ⊳

Example 5.8. Given𝑄 =𝑄1 UNION𝑄2, Algorithm 2 explores either𝑄1 or𝑄2, but never both. Now
assume that the algorithm can estimate the cardinality of𝑄1 and𝑄2 correctly. The space of possible
estimates after 𝑛 runs is 𝑛1

𝑛
|ans𝐼 (𝑄1) | + (1 − 𝑛1

𝑛
) |ans𝐼 (𝑄2) | for each 𝑛1 between 0 and 𝑛. However,

|ans𝐼 (𝑄) | = |ans𝐼 (𝑄1) | + |ans𝐼 (𝑄2) |, and the sum of unbiased estimators is an unbiased estimator
of the sum; hence, we can estimate 𝑄 correctly independently of 𝑛 by just adding the estimates of
𝑄1 and 𝑄2. Intuitively, eliminating the choice in line 14 of Algorithm 2 reduces randomness and
thus decreases the estimator’s variance. ⊳

Function estimate𝑜𝑝𝑡
𝐼

(𝑄, 𝜎) shown in Algorithm 3 uses this idea. Unlike Algorithm 2, it returns a
cardinality estimate, but not an outcome or a substitution. For 𝑄 = 𝐴1 AND𝑄2 where 𝐴1 is an atom,
the algorithm partitions the sampling space of 𝜎 (𝐴1) into nonempty disjoint subsets S1, . . . ,S𝑁

and samples each S𝑖 independently. The answers to𝑄 where𝐴1 is matched in S𝑖 and S𝑗 are disjoint
for all 𝑖 ≠ 𝑗 , so an unbiased cardinality estimate can be obtained by summing the estimates of 𝑄
over all partitions (line 8). For 𝑄 =𝑄1 AND𝑄2 where 𝑄1 is not an atom, the algorithm estimates 𝑄2
by calling itself (line 12); in contrast, 𝑄1 is estimated using the unoptimised algorithm (line 10) to
produce a substitution 𝜎1 that can be passed sideways to 𝑄2. For 𝑄 =𝑄1 UNION𝑄2, the algorithm
adds the optimised estimates of 𝑄1 and 𝑄2 (line 15). For 𝑄 = PROJECT𝑋 (𝑄1), the algorithm simply

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

12:24 Pan Hu and Boris Motik

Algorithm 3 estimate𝑜𝑝𝑡
𝐼

(𝑄, 𝜎)
Input: database instance 𝐼 , query 𝑄 , and substitution 𝜎 with dom(𝜎) ⊆ v(𝑄)
Output: an unbiased estimate of |eval𝐼 (𝑄, 𝜎) |

1: 𝐶 := 0
2: switch 𝑄

3: case 𝑄 =𝑄1 AND𝑄2 where 𝑄1 is an atom 𝐴1
4: Partition sspace𝐼 (𝜎 (𝐴1)) into nonempty subsets S1, . . . ,S𝑁

5: for 1 ≤ 𝑖 ≤ 𝑁 do
6: Choose 𝐹 ∈ S𝑖 with probability P(𝐹)
7: if a matcher 𝛽 of 𝜎 (𝐴1) to 𝐹 exists then
8: 𝐶 :=𝐶 + estimate𝑜𝑝𝑡

𝐼
(𝑄2, (𝜎 ∪ 𝛽) |𝑄2)/P(𝐹)

9: case 𝑄 =𝑄1 AND𝑄2 where 𝑄1 is not an atom
10: [𝜔1, 𝜎1, 𝑐1] := estimate𝐼 (𝑄1, 𝜎 |𝑄1)
11: if 𝜔1 ≠ ⊥ then
12: 𝐶 := 𝑐1 · estimate𝑜𝑝𝑡

𝐼
(𝑄2, (𝜎 ∪ 𝜎1) |𝑄2)

13: case 𝑄 =𝑄1 UNION𝑄2
14: for 1 ≤ 𝑖 ≤ 2 do
15: 𝐶 :=𝐶 + estimate𝑜𝑝𝑡

𝐼
(𝑄𝑖 , 𝜎)

16: case 𝑄 = PROJECT𝑋 (𝑄1)
17: 𝐶 := estimate𝑜𝑝𝑡

𝐼
(𝑄1, 𝜎)

18: otherwise
19: [𝜔, 𝜎′, 𝑐] := estimate𝐼 (𝑄, 𝜎)
20: 𝐶 := 𝑐

21: return 𝐶

returns the optimised estimate of 𝑄1 (line 17). Finally, if 𝑄 of of any other type, the algorithm
falls back to the original algorithm (line 19). For example, for 𝑄 =𝑄1 FILTER 𝐸, subquery 𝑄1 must
produce a single substitution where expression 𝐸 can be evaluated; for 𝑄 =𝑄1 MINUS𝑄2, subquery
𝑄1 must produce a substitution that can be passed sideways to 𝑄2, and so on.

Theorem 5.9 summarises the formal properties of Algorithm 3, and its proof is provided in full
in Appendix B.

Theorem 5.9. Let 𝜃1, 𝜃2, . . . be the sequence of random variables representing the results of successive
calls to estimate𝑜𝑝𝑡

𝐼
(𝑄, 𝜎) for some 𝐼 , 𝑄 , and 𝜎 with dom(𝜎) ⊆ v(𝑄).

• The sequence of averages 1
𝑛
·∑𝑛

𝑖=1 𝜃𝑖 is a strongly consistent estimator of |eval𝐼 (𝑄, 𝜎) |.
• If 𝑄 does not contain DISTINCT, then each 𝜃𝑖 is an unbiased estimator of |eval𝐼 (𝑄, 𝜎) |.

5.5 Practical Considerations
We next discuss several issues that must be addressed to make Algorithms 2 and 3 practical.
Enumeration of the Relevant Orders. As we explained in Section 3.2, the order of atoms in
a conjunction profoundly affects the estimate variance, which determines estimation accuracy.
However, identifying an optimal order in advance can be challenging. Given 𝑄 = AND(𝐴1, . . . , 𝐴𝑛),
the WanderJoin variant from the G-CARE framework takes NR independent estimates using all
permutations of the atoms of 𝑄 . Example 5.10 shows that this can be inefficient.
Example 5.10. Let 𝑄 = AND(𝑅1 (𝑥,𝑦1), . . . , 𝑅𝑛 (𝑥,𝑦𝑛)); such 𝑄 is commonly called a star query

since the atoms of 𝑄 connect variables 𝑦𝑖 to the central variable 𝑥 in a star-like fashion. There are
𝑛! different permutations of the atoms of 𝑄 , each of which is reasonable in the sense that it does
not introduce a cross-product into the join. The Yago benchmark from the G-CARE framework
contains 80 such queries where 𝑛 = 12, each giving rise to more than 479 million permutations.
However, only the choice of the first atom determines the variance of the resulting estimator.

Assume that 𝑄 is ordered as shown in the previous paragraph. Once we select a fact matching
𝑅1 (𝑥,𝑦1), this determines the value of variable 𝑥 in all remaining atoms; moreover, the remaining
atoms do not share other variables, so choosing a fact for atom 𝑅𝑖 (𝑥,𝑦𝑖) with 𝑖 ≥ 2 does not impact
the choices for any atom 𝑅 𝑗 (𝑥,𝑦 𝑗) with 𝑗 > 𝑖 . Thus, it only makes sense to consider 𝑛 orderings of
𝑄 , each starting with a distinct atom of 𝑄 , and to order the remaining atoms arbitrarily. ⊳

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

Accurate Sampling-Based Cardinality Estimation for Complex GraphQueries 12:25

Algorithm 4 order−by−fanout𝐼 (𝐴1, . . . , 𝐴𝑛)
Input: database instance 𝐼 and a conjunction of atoms 𝐴1, . . . , 𝐴𝑛

Output: a reordered conjunction computed using the fanout heuristic

1: BestOrder := nil, BestCost :=∞
2: for each 1 ≤ 𝑖 ≤ 𝑛 do
3: Order := [𝐴𝑖], Cost := cost−fanout(𝐴𝑖 , ∅), 𝑉 := v(𝐴𝑖)
4: while |Order | ≠ 𝑛 do
5: Choose 𝐴 𝑗 in {𝐴𝑘 | 𝐴𝑘 ∉ Order and v(𝐴𝑘) ∩𝑉 ≠ ∅} with least cost−fanout(𝐴 𝑗 ,𝑉)
6: Extend Order with 𝐴 𝑗 , Cost := Cost · cost−fanout(𝐴 𝑗 ,𝑉), and 𝑉 :=𝑉 ∪ v(𝐴 𝑗)
7: if OrderCost < BestCost then BestOrder := Order and BestCost := OrderCost
8: return BestOrder

9: function cost−fanout(𝑅(𝑡1, . . . , 𝑡𝑛),𝑉)
10: return 𝑅𝑆 where 𝑆 := {𝑖 | 1 ≤ 𝑖 ≤ 𝑛 and 𝑡𝑖 is a constant or 𝑡𝑖 ∈ 𝑉 }

We can apply this idea to an arbitrary conjunction as follows. When considering an order
𝑄 = AND(𝑄1, . . . , 𝑄𝑛), we annotate each 𝑄𝑖 with the set of variables that will be bound when 𝑄1 is
called. Moreover, whenever an order enumeration procedure produces orders 𝑄 ′ and 𝑄 ′′ where all
corresponding conjuncts are annotated with the same sets of variables, we keep either 𝑄 ′ or 𝑄 ′′.
Selecting a Single Order. We next describe a simple way to order the atoms of a conjunction that
is likely to reduce the estimator’s variance. Our idea is based on an observation that the variance is
usually related to the sample space size in line 3 of Algorithm 2: a larger sample space provides
more ways to constrain the rest of the query, so, unless the data distribution is symmetric, choosing
different facts usually leads to different cardinality estimates. One can thus expect to reduce the
estimator’s variance by minimising the number of choices available at each step.

To estimate the size of the sample spaces, our algorithm relies on very simple statistics about the
data. In particular, for each 𝑛-ary relation 𝑅 and each subset 𝑆 ⊆ {1, . . . , 𝑛}, we precompute

𝑅𝑆 =
|ans𝐼 (𝑅(𝑥1, . . . , 𝑥𝑛)) |

|ans𝐼 (DISTINCT(PROJECT{𝑥𝑖 |𝑖∈𝑆 } (𝑅(𝑥1, . . . , 𝑥𝑛)))) |
. (14)

In other words, 𝑅𝑆 is the average number of facts of 𝐼 (𝑅) when the values for the arguments with
indexes in 𝑆 are fixed. Algorithm 4 uses this information to order a set of atoms. We assume that
the atoms are connected; otherwise, we can apply the algorithm to each connected component
separately. The algorithm uses a simple greedy strategy. In lines 2–7, the algorithm considers each
𝐴𝑖 as a possible first atom. Set 𝑉 is used to keep track of bound variables and is initialised to v(𝐴𝑖)
in line 3. Next, the algorithm extends the candidate order in lines 4–6. At each step, the algorithm
selects an unprocessed atom 𝐴 𝑗 that does not introduce a cross-product. If there are several such
atoms, 𝐴 𝑗 is greedily selected to minimise the average number of matches for the variables in 𝑉 .
The cost of each candidate order is the product of the costs of all atoms. Finally, line 7 ensures that
the order for the starting atom with the least overall cost is returned.

Algorithm 4 is reminiscent of greedy join ordering algorithms, and the used cost can be seen as a
cardinality estimation obtained by ad hoc assumptions from Section 1. However, unlike the existing
approaches that require complex statistics about the database instance (e.g., for the approach by
Chen et al. [16], the cardinality of joins of pairs of relations must be known), Algorithm 4 requires
only limited information about each relation. The resulting cost can thus be vastly different from the
actual query cardinality, and the resulting orders can be suboptimal. This, however, is compensated
by Algorithms 2 and 3 that produce much more accurate cardinality estimates, as well as the query

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

12:26 Pan Hu and Boris Motik

planning algorithm we present in Section 6. We show empirically in Section 7 that the resulting
query plans can sometimes be significantly more efficient, particularly on complex queries, but
without incurring a substantial overhead for query planning on simpler queries.
Dynamic Stopping Condition. In Section 4 we argued that the number of runs of an estimation
algorithms should ideally not depend on the input size. Instead, we determine the number of runs
dynamically similarly to online aggregation algorithms. In particular, we fix the target q-error
(q-𝑒𝑟𝑟𝑡) and the minimum (𝑁𝑚𝑖𝑛) and maximum (𝑁𝑚𝑎𝑥) numbers of runs. After each run, we
compute the mean 𝑡 and the variance 𝑆 of the 𝑛 estimates collected thus far. We stop the process if
𝑛 = 𝑁𝑚𝑎𝑥 (which ensures termination on queries with zero cardinality), or if 𝑛 ≥ 𝑁𝑚𝑖𝑛 , 𝑡 > 0 (i.e.,
at least one run produced a nonzero estimate), and 𝑡 + 1.96 · 𝑆/

√
𝑛 ≤ 𝑡 · q-𝑒𝑟𝑟𝑡 (i.e., the upper end

of the 95% confidence interval falls within the target q-error range).
Partitioning the Sample Space in Line 4 of Algorithm 3. We partition the sample space into
blocks of fixed partition size 𝑝 . The number of partitions thus depends on the size of the sample
space, so the number of samples taken can, in some cases, depend on the input size.
Combining Algorithms 2 and 3. As we discuss in Section 7, Algorithm 2 sometimes returns zero
estimates on more complex queries. Partitioning in line 4 of Algorithm 3 can improve the likelihood
of finding a nonzero estimate, but it can also increase the running time. These observations
motivate the following combined approach. We first try to obtain a nonzero estimate using the basic
algorithm and the dynamic stopping condition for some 𝑁𝑏

𝑚𝑖𝑛 , 𝑁
𝑏
𝑚𝑎𝑥 , and q-𝑒𝑟𝑟𝑡 . If this produces a

zero estimate, we disregard all collected samples and we repeat the process using the optimised
algorithm for some 𝑁𝑜

𝑚𝑖𝑛 and 𝑁𝑜
𝑚𝑎𝑥 , and the same q-𝑒𝑟𝑟𝑡 . The estimation time thus depends on the

input graph size for complex queries only, which are hopefully rare. Moreover, since the optimised
algorithm examines substantially more facts, we use 𝑁𝑜

𝑚𝑖𝑛 and 𝑁𝑜
𝑚𝑎𝑥 different from 𝑁𝑏

𝑚𝑖𝑛 and 𝑁𝑏
𝑚𝑎𝑥

to limit the overall amount of work.
Dependency-Directed Backtracking. On query𝑄 = AND(𝑅1 (𝑥,𝑦1), 𝑅2 (𝑥,𝑦2), 𝑅3 (𝑥,𝑦3)) and data-
base instance 𝐼 = {𝑅1 (𝑎, 𝑏), 𝑅2 (𝑎, 𝑐1), . . . , 𝑅2 (𝑎, 𝑐𝑛), 𝑅3 (𝑑, 𝑒)}, Algorithms 1 and 3 match 𝑅1 (𝑥,𝑦1) to
𝑅1 (𝑎, 𝑏), and then match 𝑅2 (𝑥,𝑦2) to each 𝑅2 (𝑎, 𝑐𝑖) with 1 ≤ 𝑖 ≤ 𝑛, only to find that 𝑅3 (𝑥,𝑦3) cannot
be matched. However, exploring all 𝑅2 (𝑎, 𝑐𝑖) is superfluous: the value of variable 𝑥 in 𝑅3 (𝑥,𝑦3) is
determined by 𝑅1 (𝑥,𝑦1) and is independent from the match to 𝑅2 (𝑥,𝑦2). Thus, when matching
𝑅3 (𝑎,𝑦3) fails, we can backtrack to 𝑅1 (𝑥,𝑦1) and attempt to match this atom differently.
More generally, when atom 𝜎 (𝐴) has no matches in line 3 of Algorithm 1, we can backtrack

to the most recent atom in the conjunction that provided a binding for 𝜎 (𝐴); the case when
sspace𝐼 (𝜎 (𝐴1)) in line 4 of Algorithm 3 is empty is analogous. Similar techniques are widely used
to solve hard combinatorial problems such as propositional satisfiability.

6 Integrating Cardinality Estimation intoQuery Planning
An important question is whether, by providing accurate cardinality estimates, our algorithms can
improve query plans in ways that significantly reduce end-to-end query evaluation times. Most
query planners are based on variants of dynamic programming (DP). Thus, in Algorithm 5 we
present a simple DP-based planner for conjunctive queries whose plans can be evaluated using the
query evaluation approach from Algorithm 1. This algorithm follows closely the general principles
for DP-based planners, and we present it mainly to clarify all relevant details. In Section 7.4 we
then show empirically that such an approach can indeed significantly benefit end-to-end query
evaluation, particularly when queries are complex.

The algorithm takes a connected set of atoms, and it returns an ordering optimised for evaluation
using Algorithm 1 from Section 5.1. The algorithm follows a standard dynamic programming
approach. In particular, it maintains mappings 𝑃 and 𝑃 ′ of sets of atoms to pairs of an order and

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

Accurate Sampling-Based Cardinality Estimation for Complex GraphQueries 12:27

Algorithm 5 order−DP𝐼 (𝐴1, . . . , 𝐴𝑛)
Input: database instance 𝐼 and a conjunction of atoms 𝐴1, . . . , 𝐴𝑛

Output: a reordered conjunction where cost is computed using Algorithms 2 and 3

1: 𝑃 := ∅
2: for each 1 ≤ 𝑖 ≤ 𝑛 do
3: 𝑃 [{𝐴𝑖 }] = ⟨𝐴𝑖 , estimate𝐼 (𝐴𝑖 , ∅)⟩
4: for each 2 ≤ ℓ ≤ 𝑛 do
5: 𝑃 ′ := ∅
6: for each ⟨Atoms, ⟨Order,Cost⟩⟩ ∈ 𝑃 do
7: for each 1 ≤ 𝑗 ≤ 𝑛 such that 𝐴 𝑗 ∉ Atoms and v(𝐴 𝑗) ∩ v(Atoms) ≠ ∅ do
8: Atoms′ := Atoms ∪ {𝐴 𝑗 }
9: Order′ := Order extended with 𝐴 𝑗

10: Cost′ := Cost + cost𝐼 (Atoms′)
11: if 𝑃 ′ [Atoms′] is undefined or Cost′ < 𝑃 ′ [Atoms′] .Cost then
12: 𝑃 ′ [Atoms′] := ⟨Order′,Cost′⟩
13: 𝑃 := 𝑃 ′

14: Remove from 𝑃 all but 𝑘 orders with the least cost
15: return the order in 𝑃 with the least cost

16: function cost𝐼 (Atoms)
17: 𝑄 := AND(order−by−fanout𝐼 (Atoms))
18: return the estimate of |ans𝐼 (𝑄) | produced using the combination of Algorithms 2 and 3

from Section 5.5 parameterised by 𝑁𝑏
𝑚𝑖𝑛

, 𝑁𝑏
𝑚𝑎𝑥 , 𝑁𝑜

𝑚𝑖𝑛
, 𝑁𝑜

𝑚𝑎𝑥 , and q-𝑒𝑟𝑟𝑡

the corresponding cost. Mapping 𝑃 is initialised in lines 2 and 3 to all orders consisting of a single
atom. Then, the loop in lines 4–14 iteratively extends each Order in 𝑃 with one additional atom.
Condition v(𝐴 𝑗) ∩ v(Atoms) ≠ ∅ in line 7 ensures that extending Order with 𝐴 𝑗 does not result in
a cross-product. After extending Order with 𝐴 𝑗 in line 9, the cost of the new order is computed
in line 10 and, if the resulting combination of atoms has not been seen before or the new cost is
smaller (line 11), the new order is recorded in 𝑃 ′ (line 12). To further optimise the process, only the
best 𝑘 orders are kept after each iteration (line 14). Finally, the best order is returned in line 15.

Minimising the number of substitutions in lines 6 and 7 seems like an obvious way to optimise
the evaluation of conjunctions using Algorithm 1, so we define the cost of an order 𝐴1, . . . , 𝐴𝑚 as

𝑚∑︁
𝑖=1

|ans𝐼 (AND(𝐴1, . . . , 𝐴𝑖)) |. (15)

This is reflected in line 10 of Algorithm 5: the cost of Order′ is the sum of the cost of Order and the
estimate of the cardinality of Order′. The latter is computed by ordering the plan’s atoms using
Algorithm 4, and then estimating the cardinality using the combined approach from Section 5.5.

While reordering in line 17 can be seen as ‘query planning for query planning’, we found it
essential to obtaining accurate, nonzero cardinality estimates on the benchmarks from Section 7.
The results of our experiments show that Algorithm 5 incurs modest overheads on most queries,
and that, particularly on complex queries, it can produce plans that can be much more efficient
than the ones obtained by the simple reordering approach.

Finally, the number of query answers does not depend on the atom order so, in the last iteration
(i.e., when ℓ = 𝑛 in line 4), the cardinality of all Order′ in line 10 should be the same. Consequently,

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

12:28 Pan Hu and Boris Motik

without calling the estimation algorithm on the full query, we can identify the best plan after 𝑛 − 1
iterations and simply extend it to the full plan with one missing atom.

7 Experimental Evaluation
We now present the results of our empirical evaluation. In Section 7.1 we describe our test setting;
in Sections 7.2 and 7.3 we evaluate the accuracy and efficiency of our algorithms on conjunctive
and complex queries, respectively; in Section 7.4 we evaluate the algorithm from Section 6 end
to end by analysing total times that include both query planning and query evaluation; and in
Section 7.5 we compare our work to NeuroCard [71], an influential cardinality estimation approach
based on deep learning. All code, datasets, and experimental results are available online [37].

7.1 Test Setting
We used the six datasets from Section 4, which we extended with the IMDB dataset from the
NeuroCard study. IMDB consists of 74.2 M facts distributed over 21 relations of arity between two
and 12, as well as 70 job-light and 1000 job-light-ranges queries consisting of conjunctions of
atoms and FILTER conditions. The minimum and maximum cardinalities are 1 and 233,657,819,759,
respectively, and the cardinality of 462 queries is less or equal to 10,000.

We developed a prototype system that can load a database instance into RAM, evaluate a query
exactly using Algorithm 1, or estimate the query cardinality using one of the following variants.

• The Basic variant uses Algorithm 2 with the dynamic stopping condition from Section 5.5.
Conjunctive queries are reordered using Algorithm 4, while complex queries are processed
exactly as given in the input.

• The Opt variant uses Algorithm 3 with the same stopping condition and reordering. Partition
size is fixed to 𝑝 = 32.

• The Comb variants implements the combined approach from Section 5.5.
• The Ord-Fix variant optimises the WJ algorithm in the G-CARE framework: it enumerates
all orders as described in Section 5.5, computes NR using equation (5), and runs Algorithm 2
exactly NR times. All orders are considered in a round-robin fashion until one order produces
100 nonzero estimates, and the remaining runs are done with an order having the least
variance among orders that accumulated at least 50 nonzero estimates. Since the number of
runs is generally quite high, we do not repeat this process 30 times.

• Ord-Var variant is analogous to Ord-Fix, but, instead of taking a fixed number of samples,
it uses the dynamic stopping condition from Section 5.5.

The dynamic stopping condition uses q-𝑒𝑟𝑟𝑡 = 10, 𝑁𝑚𝑖𝑛 = 30, and 𝑁𝑚𝑎𝑥 = 10, 000 in most cases.
The only exception is Opt on conjunctive queries: partitioning the relation matching the first atom
can be seen as introducing additional runs, so in this case we use 𝑁𝑚𝑖𝑛 = 1 and 𝑁𝑚𝑎𝑥 = 100.
Our system was developed in C++20. It can read data from RDF Turtle files or from CSVs; in

the former case, RDF triples are transformed into a relational form using vertical partitioning (see
Section 2.1). Unary and binary relations are indexed exhaustively after loading; for example, for
a binary relation 𝑅, the system creates a hash table mapping each constant 𝑎 to a vector of all
facts of the form 𝑅(𝑎, 𝑏), an analogous hash table for the second argument, a hash table over both
arguments of 𝑅, and a vector of all facts of the form 𝑅(𝑎, 𝑎). For relations of arity higher than
two, only indexes needed to evaluate the benchmark queries are created. Our system can process
SPARQL queries that can be translated into the algebra from Section 2.1. We extended the syntax
of SPARQL with the ability to refer to 𝑛-ary atoms in queries.
We used the server described in Section 4. For each benchmark, we loaded the dataset and

computed the exact and the estimated cardinalities of all queries using the relevant algorithms.

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

Accurate Sampling-Based Cardinality Estimation for Complex GraphQueries 12:29

AIDS

of queries with nonzero cardinality: 780
Total time for exact evaluation: 22,252 ms

Basic Opt Comb Ord-Var Ord-Fix
Total time (ms) 29 221 43 70 485
> exact 0 1 0 3 120
q-𝑒𝑟𝑟 =∞ 11 3 1 26 27
q-𝑒𝑟𝑟 > 10 62 36 54 193 52
Max q-𝑒𝑟𝑟 ≠ ∞ 225.2 3,946.5 238.7 40,982.1 773.1

Human

of queries with nonzero cardinality: 49
Total time for exact evaluation: 3 ms

Basic Opt Comb Ord-Var Ord-Fix
Total time (ms) 0 0 0 0 4
> exact 0 0 0 0 4
q-𝑒𝑟𝑟 =∞ 1 2 1 6 3
q-𝑒𝑟𝑟 > 10 1 4 1 8 4
Max q-𝑒𝑟𝑟 ≠ ∞ 4.8 334.4 4.8 55.0 10.9

Yago

of queries with nonzero cardinality: 1,365
Total time for exact evaluation: 331,649 ms

Basic Opt Comb Ord-Var Ord-Fix
Total time (ms) 275 2,816 2,171 685 7,128
> exact 18 64 68 105 449
q-𝑒𝑟𝑟 =∞ 267 146 132 419 438
q-𝑒𝑟𝑟 > 10 385 228 280 597 490
Max q-𝑒𝑟𝑟 ≠ ∞ 5,086.0 10,846.5 5,086.0 67,127.3 10,073.3

LUBM-01K-mat

of queries with nonzero cardinality: 36
Total time for exact evaluation: 10,857 ms

Basic Opt Comb Ord-Var Ord-Fix
Total time (ms) 5 782 5 8 2,049
> exact 0 0 0 1 19
q-𝑒𝑟𝑟 =∞ 0 1 0 0 0
q-𝑒𝑟𝑟 > 10 1 1 1 0 1
Max q-𝑒𝑟𝑟 ≠ ∞ 42.8 8.9 42.8 8.0 12.0

WatDiv

of queries with nonzero cardinality: 86
Total time for exact evaluation: 301 ms

Basic Opt Comb Ord-Var Ord-Fix
Total time (ms) 7 96 76 10 166
> exact 0 1 1 3 37
q-𝑒𝑟𝑟 =∞ 1 3 1 6 6
q-𝑒𝑟𝑟 > 10 4 4 4 16 7
Max q-𝑒𝑟𝑟 ≠ ∞ 43.8 14.0 43.8 37.5 12.4

DBLP

of queries with nonzero cardinality: 15
Total time for exact evaluation: 511 ms

Basic Opt Comb Ord-Var Ord-Fix
Total time (ms) 1 8 1 5 162
> exact 0 0 0 1 11
q-𝑒𝑟𝑟 =∞ 1 0 1 2 2
q-𝑒𝑟𝑟 > 10 2 0 2 3 2
Max q-𝑒𝑟𝑟 ≠ ∞ 32.7 2.4 32.7 10.6 8.7

IMDB

of queries with nonzero cardinality: 1,070
Total time for exact evaluation: 4,189,495 ms

Basic Opt Comb Ord-Var Ord-Fix
Total time (ms) 69 713 116 87 59,790
> exact 1 0 1 26 789
q-𝑒𝑟𝑟 =∞ 27 141 21 38 17
q-𝑒𝑟𝑟 > 10 150 312 145 272 17
Max q-𝑒𝑟𝑟 ≠ ∞ 126,739.8 182,178.1 126,739.8 73,763.6 4.7

Fig. 3. Summary of the Results for ConjunctiveQueries

We recorded the wall-clock time of each task, as well as the number of runs of Algorithm 2 or 3.
Moreover, to compare the work performed by different algorithms, we also recorded the number of
matches—that is, the number of times a fact is matched to an atom in line 3 of Algorithm 1, line 5 of
Algorithm 2, or line 7 of Algorithm 3. For each query and algorithm, we computed the ratio of the
number of matches for exact evaluation and for estimation. Thus, a ratio larger than one indicates
that the estimation algorithm performs less work than the exact algorithm.

7.2 Cardinality Estimation of ConjunctiveQueries
Figure 3 summarises our results for conjunctive queries with nonzero cardinality. For each bench-
mark, we report the number of queries and the total time for exact query evaluation. For each
estimation algorithm, we report the total estimation time (‘Total time’), the number of queries
where estimation takes longer than exact evaluation (‘# > exact’), the numbers of queries on which
the Q-error is infinite (‘# q-𝑒𝑟𝑟 =∞’) and larger than 10 (‘# q-𝑒𝑟𝑟 > 10’), and the maximum q-error
different from ∞ (‘Max q-𝑒𝑟𝑟 ≠ ∞’). Figure 4 shows the distributions of the q-errors, estimation
times, and the match ratios. We discuss the 18 queries with zero cardinality separately.
Efficiency. In most cases, the total estimation time is considerably lower than the total exact
evaluation time: the only exception is Ord-Fix on Human, but that dataset is very small so all
queries are trivial. However, Ord-Fix is always slower than all other techniques, often by orders of
magnitude, and this difference is not limited to just the most complex queries: estimation times are
much higher for Ord-Fix even for the first quartile of queries of LUBM-01K-mat, DBLP, and IMDB.

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

12:30 Pan Hu and Boris Motik

Q-error Time (ms) Matches Ratio

A
ID
S

1
2
5

10

50
100

500

0.01

0.1

1

10

10−4
10−2

100
102
104
106

H
um

an

1
2

5
10

50

0.01

0.1

1

10−4

10−2

100

102

104

Ya
go

1
2
5

10

100

0.01
0.1

1
10

100
1,000

10−6
10−4
10−2

100
102
104
106
108

LU
BM

-0
1K

-m
at

1
2

5
10

50

0.01
0.1

1
10

100
1,000

10−2
100
102
104
106
108

W
at
D
iv

1

2

5

10

0.01

0.1

1

10

100

10−2

100

102

104

106

D
BL

P

1

2

5

10
15

0.01

0.1

1

10

100

10−4
10−2

100
102
104
106

IM
D
B

Ba
sic Op

t
Co
mb

Or
d-V

ar

Or
d-F
ix

1

5
10

50
100

500

Ba
sic Op

t
Co
mb

Or
d-V

ar

Or
d-F
ix

0.01
0.1

1
10

100
1,000

Ba
sic Op

t
Co
mb

Or
d-V

ar

Or
d-F
ix

10−4
10−2

100
102
104
106
108

1010

Fig. 4. Distribution of Q-Errors, Times, and Match Ratios for ConjunctiveQueries

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

Accurate Sampling-Based Cardinality Estimation for Complex GraphQueries 12:31

In fact, Ord-Fix seems to perform roughly like WJ from Section 4 if we take into account that WJ
repeats the estimation process 30 times. The matches ratio for Ord-Fix shows that the technique
performs more work than exact query evaluation for at least 25% of all queries on all benchmarks,
and even up to half of the queries of Human, WatDiv, DBLP, and IMDB.

Techniques other than Ord-Fix all use the dynamic stopping condition from Section 5.5. In fact,
Basic, Comb, and Ord-Var perform roughly the same amount of matches in roughly the same
amount of time, which we attribute to the fact that 𝑁𝑚𝑖𝑛 and 𝑁𝑚𝑎𝑥 are the same in all cases. The
Opt variant is generally between these three techniques and Ord-Fix, which is unsurprising: due
to partitioning, the work in Opt can depend on the size of the input graph. Nevertheless, all four
techniques produce q-errors comparable to Ord-Fix, but with considerably less work.

Accuracy. All five variants can accurately estimate the cardinality of most queries. On all bench-
marks apart from AIDS, Yago, and IMDB, the maximum finite q-error is below 43.8 for all variants.
Moreover, Basic, Opt, and Comb produce a q-error of at most 32.7 on 90% of the queries on all
benchmarks apart from Yago. These results echo the ones from Section 4 and show that WanderJoin-
based algorithms seem to be much more accurate than other methods from the G-CARE framework,
even the sampling-based ones. This is a direct consequence of sideways information passing: it
reduces the sampling space for each atom and thus increases the likelihood of a valid match.

Interestingly, doing more work does not always improve the accuracy of Ord-Fix: the algorithm
produced more zero estimates than Basic on AIDS, Human, Yago, WatDiv, and DBLP. Moreover,
Ord-Var seems to be less precise than Basic and Comb despite doing about the same amount of
work: the average and maximum q-errors of Ord-Var are larger in all cases apart from DBLP. As
we discussed in Section 3.2, the variance of the estimates produced by different orders can vary
significantly, which influences the rate of convergence of the estimate average. The simple ordering
from Algorithm 4 seems to achieve its objective of minimising estimation variance. This seems
particularly important on complex queries: Ord-Var and Ord-Fix were unable to produce nonzero
estimates for 25% of the Yago queries, unlike the three variants that use the optimised order.

Zero Estimates. Our results show that, whenever an estimate is not zero, it is often accurate.
However, all approaches sometimes incorrectly produce zero estimates, and queries with small
cardinalities seem most susceptible to this: on queries with at least 10,000 answers, Basic produces
zero estimates only on three queries of AIDS, 42 queries of Yago, and three queries of IMDB. Sample
space partitioning from Section 5.4 seems to alleviate this problem to some extent: the Opt variant
produced a valid estimate of all but 146 queries of Yago, compared to 267, 419, and 438 queries
for Basic, Ord-Var, and Ord-Fix. Furthermore, the Comb variant seems to mitigate some of the
drawbacks of Opt: it produced the largest number of nonzero estimates on all benchmarks, but
using the amount of work much closer to Basic than Opt. This is in fact the main motivation
behind Comb, and we found it indispensable in our end-to-end experiments.

Empty Queries. On queries with no answers, all variants produce correct estimates, but the
dynamic stopping condition always incurs the maximum number of runs. This is not a problem for
Basic and Ord-Var, whose running time is independent of the database instance size; for example,
Basic can process each empty query in under 1 ms. In contrast, the running time of Opt and Comb
depends on the instance size due to relation partitioning, which, combined with the large number
of runs, can be problematic. For example, the running time of Opt on the empty LUBM-01K-mat
query is 703 ms, which is just under 782 ms required to process all other queries. The Ord-Var and
Ord-Fix variants process this query in 2 ms and 18 ms, respectively, with match ratios of 204 and
17.7, respectively. On WatDiv, total estimation times for all 17 empty queries for Basic, Opt, Comb,
Ord-Var, and Ord-Fix are 2 ms, 14 ms, 16 ms, 7 ms, and 11 ms, respectively.

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

12:32 Pan Hu and Boris Motik

AIDS

of queries: 429
Total time for exact eval.: 126,107 ms

Basic Opt Comb
Total time (ms) 55 62 78
> exact 0 0 0
q-𝑒𝑟𝑟 =∞ 9 6 5
q-𝑒𝑟𝑟 > 10 127 160 125
Max q-𝑒𝑟𝑟 ≠ ∞ 2,205.8 2,117.2 2,205.8

Yago

of queries: 820
Total time for exact eval.: 136,706 ms

Basic Opt Comb
Total time (ms) 319 315 492
> exact 7 2 11
q-𝑒𝑟𝑟 =∞ 169 159 130
q-𝑒𝑟𝑟 > 10 311 341 291
Max q-𝑒𝑟𝑟 ≠ ∞ 15,017.0 11,610.4 15,017.0

LUBM-01K-mat

of queries: 19
Total time for exact eval.: 22,100 ms

Basic Opt Comb
Total time (ms) 8 4 8
> exact 0 0 0
q-𝑒𝑟𝑟 =∞ 0 0 0
q-𝑒𝑟𝑟 > 10 7 6 7
Max q-𝑒𝑟𝑟 ≠ ∞ 603.5 876.5 603.5

WatDiv

of queries: 41
Total time for exact eval.: 1,588 ms

Basic Opt Comb
Total time (ms) 10 9 14
> exact 0 1 0
q-𝑒𝑟𝑟 =∞ 1 1 1
q-𝑒𝑟𝑟 > 10 4 7 4
Max q-𝑒𝑟𝑟 ≠ ∞ 55.5 421.6 55.5

DBLP

of queries: 11
Total time for exact eval.: 751 ms

Basic Opt Comb
Total time (ms) 2 1 3
> exact 1 1 2
q-𝑒𝑟𝑟 =∞ 2 0 0
q-𝑒𝑟𝑟 > 10 3 3 2
Max q-𝑒𝑟𝑟 ≠ ∞ 10.2 178.8 178.8

IMDB

of queries: 103
Total time for exact eval.: 52,244 ms

Basic Opt Comb
Total time (ms) 6 1 6
> exact 1 0 1
q-𝑒𝑟𝑟 =∞ 0 1 0
q-𝑒𝑟𝑟 > 10 49 53 49
Max q-𝑒𝑟𝑟 ≠ ∞ 5,450.7 6,951,172.1 5,450.7

Fig. 5. Summary of the Results for ComplexQueries

Summary. The dynamic stopping condition seems very effective on nonempty queries, much
more so than the fixed number of samples approach from the G-CARE framework. On empty
queries, Basic and Ord-Var variants seem effective, whereas Opt and Comb can be slow. We
discuss in Section 7.4 how this can affect query planning. Furthermore, the simple reordering
algorithm decreases estimation variance, which seems particularly important for complex queries.
However, if 𝑅𝑆 used by Algorithm 4 are unavailable, the Ord-Var variant can provide accurate
and quick estimates in most cases. Finally, the Comb variant increases the likelihood of obtaining
nonzero estimates, but without a considerable overhead on many queries.

7.3 Cardinality Estimation of ComplexQueries
All benchmark queries are limited to simple conjunctions, and we are unaware of any publicly
available repositories of real-word complex queries over our datasets. We thus used the following
automated process to produce a collection of complex queries. For each nonempty query with at
least four atoms, we used Algorithm 4 to produce an order of the form AND(𝐴1, . . . , 𝐴𝑛). For 𝑖 = 𝑛/2,
we considered each atom 𝐴 𝑗 with 1 ≤ 𝑗 ≤ 𝑖 and tried to replace the relation of 𝐴 𝑗 with another
relation, resulting in atom 𝐴′

𝑗 , such that query AND(𝐴1, . . . , 𝐴 𝑗−1, 𝐴
′
𝑗 , 𝐴 𝑗+1, . . . , 𝐴𝑖) is not empty. If

one such 𝐴′
𝑗 could be found, we produced the following query of nonzero cardinality:

AND(DISTINCT(PROJECT𝑆 (AND(𝐴1, . . . , 𝐴𝑛) UNION AND(𝐴1, . . . , 𝐴 𝑗−1, 𝐴
′
𝑗 , 𝐴 𝑗+1, . . . , 𝐴𝑖))),

𝐴𝑖+1, . . . , 𝐴𝑛)

This transformation produced no query on the Human benchmark. On AIDS, Yago, LUBM-01K-mat,
WatDiv, DBLP, and IMDB, we obtained 429, 820, 19, 41, 11, and 103 queries, respectively.

We then estimated the cardinality of these queries using the Basic, Opt, and Comb variants.
We did not consider Ord-Var and Ord-Fix because it is unclear how to enumerate all orders of
complex queries. The results of our experiments are summarised in Figures 5 and 6 in the same
way as in Section 7.2, and we next discuss our results.
Efficiency. As one might expect, complex queries are generally more difficult: exact evaluation
takes considerably longer than for conjunctive queries on all benchmarks apart from Yago and
IMDB. The hardest benchmark is again Yago, mainly because it involves evaluating complex queries
over a graph of nontrivial size. Nevertheless, our estimation algorithms are still very efficient: total
estimation times are orders of magnitude lower than the times for exact query evaluation in all
cases. Moreover, the number of queries on which estimation takes longer than exact evaluation

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

Accurate Sampling-Based Cardinality Estimation for Complex GraphQueries 12:33

Q-error Time (ms) Matches Ratio

A
ID
S

1

10

100

0.01

0.1

1

10

10−2
100
102
104
106
108

Ya
go

1

10

100

1,000

0.01
0.1

1
10

100

10−2
100
102
104
106
108

LU
BM

-0
1K

-m
at

1

10

100

1,000

0.01

0.1

1

10

100
102
104
106
108

W
at
D
iv

1

10

100

0.01

0.1

1

10

10−2
100
102
104
106

D
BL

P

1

10

100

1,000

0.01

0.1

1

10−2
100
102
104
106

IM
D
B

Ba
sic Op

t
Co
mb

1
10

100
1,000

10,000

Ba
sic Op

t
Co
mb

0.01

0.1

1

Ba
sic Op

t
Co
mb

100
102
104
106
108

1010

Fig. 6. Distribution of Q-Errors, Times, and Match Ratios for ComplexQueries

Table 4. Results of the End-To-End Experiments

reorder−by−fanout reorder−DP
Time (ms) # Time (ms) #
Total Max. Δ Faster Total Plan. Eval. Max. Δ Faster

AIDS 22,252 49 207 3,226 687 2,539 11,151 241
Human 3 1 3 3 1 2 1 3
Yago 331,649 5,260 601 49,882 23,646 26,236 172,743 398
LUBM-01K-mat; nonempty𝑄 10,857 426 6 9,005 31 8,974 695 13
LUBM-01K-mat; empty𝑄 147 13,046 1 13,193 13,049 144 — 0
WatDiv; nonempty𝑄 301 18 27 318 150 168 32 20
WatDiv; empty𝑄 2 13 11 116 112 4 — 0
DBLP 511 10 5 443 5 438 79 6
IMDB 4,189,495 134,074 305 3,647,271 1,475 3,645,796 406,019 404

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

12:34 Pan Hu and Boris Motik

is also much lower: only 11 queries of Yago, one query of WatDiv, two queries of DBLP, and one
query of IMDB fall into this category.

Accuracy. We obtained accurate estimates on at least half of the queries of all benchmarks: the
median q-error is below 11 on IMDB, and below six on all other benchmarks. However, estimating
complex queries is more difficult: the third quartile and maximum q-errors seem above the ones
reported in Section 7.2. The large maximum q-error of Opt on IDMB is due to one query that was
underestimated due to an insufficient number of runs; Basic obtained the q-error of 22 for the same
query. Duplicate elimination seems to be the main source of difficulty: estimate accuracy increases
when the same substitution is encountered multiple times, but the latter can be unlikely when the
subquery of DISTINCT produces many answers. Nevertheless, our algorithms could handle well
many of the benchmark queries. Again, Comb was effective in dealing with zero estimates: only
five queries of AIDS, 130 queries of Yago, and one query of WatDiv could not be estimated.

7.4 End-to-End Experiments
We now explore whether our algorithms improve the end-to-end performance of query answering,
which comprises both query planning and evaluation times. This would ideally be achieved by
replacing the cardinality estimator of an existing graph database, but this is usually quite difficult:
state-of-the-art systems are typically not available in open source, and the effort of integrating an
algorithm into an existing, foreign code base is often significant. Thus, a common simplification is
to precompute cardinalities of subqueries offline and inject them into an existing query planner. As
part of their G-CARE study, Park et al. [55] have shown that injecting the cardinalities computed by
WJ into the query optimiser of RDF-3X [54], an influential RDF data store, considerably improves
plan quality. Our algorithms produce comparable estimates to WJ, and so injecting them into RDF-
3X is likely to produce the same conclusions. Moreover, achieving a true end-to-end comparison
would be hard due to various ‘impedance mismatches’; for example, RDF-3X is a disk-based system,
whereas our algorithms have been implemented in RAM.

We thus follow a different strategy and conduct an end-to-end evaluation using our prototype
system. Our query planner and query engine have been developed together, which removes any
‘impedance mismatches’ between the two. This makes our results much more indicative of the kind
of improvements one might expect in practice, at least for similar RAM-based systems.

We use the plans produced by the simple reordering approach from Algorithm 4 as the baseline
for our evaluation. These plans proved very effective in practice: query evaluation took longer
than 1 s only for three queries of AIDS, 17 queries of Yago, five queries of LUBM-01K-mat, and 57
queries of IMDB. We compare these plans with the ones obtained using dynamic programming, and
our objective is to see whether using more precise cardinality estimates produces more efficient
plans, but without unacceptable overheads. Table 4 summarises our results. The simple reordering
is near-instantaneous, so we ignore the planning time; in contrast, we report the planning time
(‘Plan.’), the evaluation time (‘Eval.’), and the sum of the two (‘Total’) for the dynamic programming
approach. We also report the number of queries (‘# Faster’) on which the respective approach was
faster in terms of total time, as well as the maximum difference (‘Max. Δ’) in total evaluation time
for any query. We report the results for empty and nonempty queries separately.
As one can see, evaluation of nonempty queries is generally faster on all benchmarks when

using plans produced by the dynamic programming approach. As shown in the ‘Max. Δ’ column,
evaluation can be significantly faster on some queries, showing that having access to precise
cardinality estimates can play a critical role in evaluation of complex queries. However, our results
also show that calling the cardinality estimator during query planning can be a considerable source
of overhead: repeated calls to Comb account for 21%, 47%, and 47% of the overall query evaluation

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

Accurate Sampling-Based Cardinality Estimation for Complex GraphQueries 12:35

time om AIDS, Yago, and WatDiv, respectively. Switching to the Basic variant does not seem to
help: we observed that planning times remain largely unaffected. As shown in Section 7.2, Basic
can produce nonzero estimates for almost all queries on benchmarks other than AIDS and Yago, so
Opt is called infrequently on these benchmarks anyway. Moreover, the AIDS dataset is small so
the overhead of sample space partitioning is manageable.
The results in Section 7.2 show that the difference between the running times of Basic and

Comb is most pronounced on Yago. However, when Basic is used instead of Comb, our dynamic
programming algorithms sometimes produces very poor plans. Yago queries are very complex, so
sometimes the cardinality of a candidate order AND(𝐴1, . . . , 𝐴𝑖) can be much larger than the cardi-
nality of a prefix AND(𝐴1, . . . , 𝐴𝑖′) for some 𝑖′ < 𝑖 . In other words, prefix AND(𝐴1, . . . , 𝐴𝑖′) acts like a
bottleneck that makes finding a valid sample for AND(𝐴1, . . . , 𝐴𝑖) difficult. This, in turn, introduces
‘blind spots’ for the planning algorithm: because of the high selectivity of AND(𝐴1, . . . , 𝐴𝑖′), the
algorithm does not ‘see’ that extending this order with further atoms leads to a massive increase in
evaluation cost. In other words, zero estimates should be interpreted as ‘no information available’
rather than ‘cardinality is small’, and they can have a considerable impact on the resulting plan
quality. This, in fact, is the main motivation for the Opt approach: the main objective of sample
space partitioning is to explore a bigger portion of the sample space and thus produce at least some
information about the distribution of the data over which a query is evaluated. Furthermore, the
main motivation behind Comb is to avoid a potentially high overhead of sample space partitioning
in cases when estimates can be produced easily using the Basic variant.

Table 4 also shows that the planning overhead can be significant on queries with zero cardinality.
On LUBM-01K-mat, computing the plan for the one empty query takes longer than the evaluation
of all remaining 35 nonempty queries combined. On WatDiv, the planning overheads on empty
queries are somewhat smaller, but still significant. The reason for this is simple: a run of Algorithm 5
on an empty query is likely to invoke the cardinality estimator many times on subqueries that are
likely to be empty as well; moreover, the algorithm uses the Comb variant, which always invokes
Opt on an empty input; thus, the overheads of Opt and Comb are compounded by the large number
of invocations. There are several heuristics that can be used to overcome this problem. For example,
one can install a budget for the number of calls to Comb variant and fall back to the Basic variant
after this budget is exhausted. Alternatively, one can initially check whether the input query is
empty using the Comb variant; if so, one can either resort to the simple ordering only, or use the
Basic variant instead of Comb in line 18 of Algorithm 5. On the one empty LUBM-01K-mat query,
the latter approach reduces the planning time to 53 ms, which seems reasonable.

To summarise, the results of our end-to-end experiments suggest that having access to accurate
cardinality estimates can dramatically improve the performance of query answering; however,
producing these estimates can incur a nontrivial overhead. In our future work, we shall explore
ways to further reduce this overhead. In particular, instead of sampling the data ‘from scratch’ each
time a subquery is encountered in line 10 of Algorithm 5, we shall explore ways to sample the data
incrementally (e.g., only for the atom added in line 8) while still producing unbiased estimates.

7.5 Comparison with NeuroCard
In this section, we compare our approach with NeuroCard [71], an influential cardinality estimation
approach based on machine learning. NeuroCard takes as input a join schema that specifies how to
construct a full outer join of the relevant database relations. This join is sampled and the resulting
tuples are used to train a deep neural model that approximates the distribution of the tuples in
the join. This model can be used to estimate the cardinality of any query whose joins are covered
by the join schema. The cardinality of a query covered by the join schema can be estimated by
adding up the relevant parts of the approximated distribution. However, computing this sum exactly

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

12:36 Pan Hu and Boris Motik

Q-error Time (ms)

S-5
12

S-8
00
0

L-5
12

L-8
00
0

Ba
sic

100
101
102
103
104

S-5
12

S-8
00
0

L-5
12

L-8
00
0

Ba
sic

100

101

102

103

S-512 S-8000 L-512 L-8000 Basic
Total time (ms) 6,119 16,549 33,988 792,159 69
q-𝑒𝑟𝑟 =∞ 0 0 0 0 27
q-𝑒𝑟𝑟 > 10 152 144 118 108 150
Max q-𝑒𝑟𝑟 ≠ ∞ 8,169.0 42.7 4,050.0 37.0 126,739.8
q-𝑒𝑟𝑟 > q-𝑒𝑟𝑟Basic 512 496 473 456 —

Fig. 7. Comparison with NeuroCard

would be computationally very costly, so NeuroCard only estimates the sum using Monte Carlo
integration—a technique that involves sampling the approximated distribution. NeuroCard was
shown to be highly accurate on the IMDB benchmark.

The code of NeuroCard is available on GitHub, but applying it to our benchmarks is not straight-
forward. First, it is unclear which join schema to use: a join schema of NeuroCard must be acyclic
and cover the entire query load, but our benchmarks contain many cyclic queries with self-joins
that violate these restrictions. Second, many aspects of the NeuroCard code seem to be hardwired
to IMDB. Therefore, we limit our comparison to the IMDB benchmark only.

The NeuroCard GitHub repository provides a small pretrained model for the job-light queries,
and a small and a large pretrained model for the job-light-ranges queries. Unfortunately, the join
schema of neither model covers all 1070 benchmark queries. Thus, we retrained a small and a large
model using a join schema that covers all queries. Then, for each query, we computed the estimate
on both models using the sampling rates of 512 and 8000 for Monte Carlo integration. The model
sizes, training parameters, and integration sampling rates were determined by the NeuroCard code.
We thus obtained four estimates and estimation times per query. Figure 7 summarises our results,
where S- and L- indicate the model size, and 512 and 8000 indicate the integration sampling rates.
The figure also recapitulates the results for Basic, and it shows the number of queries on which
Basic achieved a smaller q-error (‘# q-𝑒𝑟𝑟 > q-𝑒𝑟𝑟Basic’).

Overall, NeuroCard and Basic produced estimates of comparable accuracy: the third quartile of
the q-error is always within 4.5. NeuroCard produced no zero estimates and it was more accurate
in the tail end of the distribution, but it was also significantly slower: even in the S-512 variant,
the total time for processing all queries is almost two orders of magnitude larger than for Basic,
despite the fact that computation could use a specialised graphics card. Using considerably less
work, Basic achieved lower q-errors than NeuroCard on between 40% and 50% of queries.

Although NeuroCard and WanderJoin seem fundamentally different at first glance, a deeper
comparison actually reveals surprising similarities. To construct training examples for the neural
model, NeuroCard uses a variant of random join sampling by Zhao et al. [76], which shares many
similarities with WanderJoin. Moreover, sampling during Monte Carlo integration is again closely
related toWanderJoin-style sampling. The two techniques thus seem to use closely related principles,
which, we believe, explains why they achieve similar levels of accuracy.

A key difference between the two techniques is in how sampling is operationalised. In our case,
the data distribution is sampled directly, and the sampling process is guided by the query whose
cardinality is to be estimated. This can be very efficient if adequate indexes are available, as is the
case in our implementation. In contrast, NeuroCard approximates the data distribution using a
synopsis; furthermore, sampling is guided by a join schema, so the resulting synopsis is tailored
to the query workload captured by the join schema. Anticipating the query workload may be
difficult in graph databases since graph queries tend to explore the data in ad hoc ways. Moreover,
interpreting the synopsis in NeuroCard can require considerable resources. On the upside, the

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

Accurate Sampling-Based Cardinality Estimation for Complex GraphQueries 12:37

neural models used by NeuroCard are generally orders of magnitude smaller than the database
instance and can thus be kept in RAM, which can be beneficial in many use cases.

8 Conclusion
In this article we presented an in-depth study of sampling-based algorithms for estimating query
cardinality. Our work is based onWanderJoin [47]—an algorithm introduced in the context of online
aggregation. We reformulate the algorithm in light of sideways information passing, a family of
techniques used to optimise query evaluation, which allows us to extend the approach to complex
queries with arbitrary operator nesting. We present two variants of our approach and show that
the average of repeated estimates realises a strongly consistent estimator of query cardinality. We
show on an extensive set of benchmarks that our algorithms can accurately estimate conjunctive
and complex queries while using considerably less work than exact evaluation. In addition, we
show that a combination of our cardinality estimation algorithms with dynamic programming can
often produce join orders that are considerably more efficient than the orders produced by ad hoc
assumptions. Finally, we show that our approach can provide estimates of similar accuracy but
with much less work than the deep learning-based NeuroCard approach [71].

We see several exciting avenues for future work. On the conceptual side, we shall consider
extending our approach to different kinds of recursive queries. We are unaware of any estimation
approach that can handle recursive path queries, which is a key problem in CRPQ planing. Moreover,
database statistics are typically unavailable for relations defined by Datalog rules, which can prevent
successful planning of Datalog queries. On the practical side, we see two important problems. First,
it is currently unclear how to apply our approaches when database instances are stored in secondary
storage. Our evaluation results show that the number of facts matched to query atoms can be high in
some cases, which has the potential to introduce a nontrivial I/O cost. Second, we shall investigate
ways to reduce redundancy when our cardinality estimators are called repeatedly during query
planning. This could perhaps be achieved by caching samples collected in distinct estimator runs.

Acknowledgments
We thank Felix Pahl for his key insights that allowed us to prove Theorem 5.5. This work was
funded by the NSFC grant 62206169 and the EPSRC grant AnaLOG (EP/P025943/1). For the purpose
of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted
Manuscript (AAM) version arising from this submission.

References
[1] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach. 2007. Scalable Semantic Web Data Management Using Vertical

Partitioning. In Proc. of the 33rd Int. Conf. on Very Large Data Bases (VLDB 2007). VLDB Endowment, Vienna, Austria,
411–422.

[2] A. Aboulnaga and S. Chaudhuri. 1999. Self-tuning Histograms: Building Histograms Without Looking at Data. In Proc.
of the ACM SIGMOD Int. Conf. on Management of Data (SIGMOD 1999). ACM, Philadelphia, PA, USA, 181–192.

[3] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. 1999. Join Synopses for Approximate Query Answering. In
Proc. of the 1999 Int. Conf. on Management of Data (SIGMOD 1999). ACM Press, Philadelphia, PA, USA, 275–286.

[4] G. Aluç, O. Hartig, M. Tamer Özsu, and K. Daudjee. 2014. Diversified Stress Testing of RDF Data Management Systems.
In Proc. of the 13th Int. Semantic Web Conf. (ISWC 2014). Springer, Riva del Garda, Italy, 197–212.

[5] S. Álvarez-García, N. R. Brisaboa, J. D. Fernández, M. A. Martínez-Prieto, and G. Navarro. 2015. Compressed vertical
partitioning for efficient RDF management. Knowl. Inf. Syst. 44, 2 (2015), 439–474.

[6] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. L. Reutter, and D. Vrgoc. 2017. Foundations of Modern Query Languages
for Graph Databases. ACM Comput. Surv. 50, 5 (2017), 68:1–68:40.

[7] P. Barceló Baeza. 2013. Querying Graph Databases. In Proc. of the 32nd ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS 2013). ACM, New York, NY, USA, 175–188.

[8] C. Beeri and R. Ramakrishnan. 1991. On the Power of Magic. Journal of Logic Programming 10, 3&4 (1991), 255–299.

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

12:38 Pan Hu and Boris Motik

[9] D. P. Bertsekas and J. N. Tsitsiklis. 2008. Introduction to Probability (2nd ed.). Athena Scientific, Belmont, MA, USA.
[10] N. Bruno. 2003. Statistics on Query Expressions in Relational Database Management Systems. Ph. D. Dissertation.

Columbia University.
[11] N. Bruno and S. Chaudhuri. 2004. Conditional Selectivity for Statistics on Query Expressions. In Proc. of the ACM

SIGMOD Int. Conf. on Management of Data (SIGMOD 2004). ACM, Paris, France, 311–322.
[12] N. Bruno, S. Chaudhuri, and L. Gravano. 2001. STHoles: A Multidimensional Workload-aware Histogram. SIGMOD

Record 30, 2 (2001), 211–222.
[13] W. Cai, M. Balazinska, and D. Suciu. 2019. Pessimistic Cardinality Estimation: Tighter Upper Bounds for Intermediate

Join Cardinalities. In Proc. of the 40th Int. Conf. on Management of Data (SIGMOD 2019). ACM Press, Amsterdam, The
Netherlands, 18–35.

[14] K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim. 2001. Approximate query processing using wavelets. VLDB
Journal 10, 2 (2001), 199–223.

[15] M. Charikar, S. Chaudhuri, R. Motwani, and V. R. Narasayya. 2000. Towards Estimation Error Guarantees for Distinct
Values. In Proc. of the 19th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS 2000).
ACM, Dallas, TX, USA, 268–279.

[16] J. Chen, Y. Huang, M. Wang, S. Salihoglu, and K. Salem. 2022. Accurate Summary-based Cardinality Estimation
Through the Lens of Cardinality Estimation Graphs. Proc. VLDB Endow. 15, 8 (2022), 1533–1545.

[17] X. Chen and J. C. S. Lui. 2016. Mining Graphlet Counts in Online Social Networks. In Proc. of the 16th Int. IEEE Conf.
on Data Mining (ICDM 2016). IEEE Computer Society, Barcelona, Spain, 71–80.

[18] X. Chen and J. C. S. Lui. 2018. Mining graphlet counts in online social networks. ACM Trans. on Knowledge Discovery
from Data 12, 4 (2018), 1–38.

[19] C. A. Galindo-Legaria, M. Joshi, F. Waas, and M.-C. Wu. 2003. Statistics on Views. In Proc. of the 29th Int. Conf. on Very
Large Databases (VLDB 2003). Morgan Kaufmann, Berlin, Germany, 952–962.

[20] H. Garcia-Molina, J. D. Ullman, and J. Widom. 2000. Database System Implementation. Prentice-Hall, Upper Saddle
River, NJ, USA.

[21] M. Garofalakis and P. B. Gibbons. 2002. Wavelet Synopses with Error Guarantees. In Proc. of the ACM SIGMOD Int.
Conf. on Management of Data (SIGMOD 2002). ACM, Madison, WI, USA, 476–487.

[22] L. Getoor, B. Taskar, and D. Koller. 2001. Selectivity Estimation Using Probabilistic Models. In Proc. of the ACM SIGMOD
Int. Conf. on Management of Data (SIGMOD 2001). ACM, Santa Barbara, CA, USA, 461–472.

[23] D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi. 2000. Approximating Multi-dimensional Aggregate Range
Queries over Real Attributes. In Proc. of the ACM SIGMOD Int. Conf. on Management of Data (SIGMOD 2000). ACM,
Dallas, TX, USA, 463–474.

[24] D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi. 2005. Selectivity estimators for multidimensional range
queries over real attributes. VLDB Journal 14, 2 (2005), 137–154.

[25] Y. Guo, Z. Pan, and J. Heflin. 2005. LUBM: A benchmark for OWL knowledge base systems. Journal of Web Semantics
3, 2–3 (2005), 158–182.

[26] P. J. Haas. 1997. Large-Sample and Deterministic Confidence Intervals for Online Aggregation. In Proc. of the 9th Int.
Conf. on Scientific and Statistical Database Management (SSDBM 1997). IEEE Computer Society, Olympia, WA, USA,
51–63.

[27] P. J. Haas and J. M. Hellerstein. 1999. Ripple Joins for Online Aggregation. In Proc. of the 1999 ACM SIGMOD Int. Conf.
on Management of Data (SIGMOD 1999). ACM Press, Philadelphia, PA, USA, 287–298.

[28] P. J. Haas, J. F. Naughton, S. Seshadri, and A. N. Swami. 1996. Selectivity and Cost Estimation for Joins Based on
Random Sampling. J. Comput. Syst. Sci. 52, 3 (1996), 550–569.

[29] P. J. Haas and A. N. Swami. 1992. Sequential Sampling Procedures for Query Size Estimation. In Proc. of the 1992 ACM
SIGMOD Int. Conf. on Management of Data (SIGMOD 1992). ACM Press, San Diego, CA, USA, 341–350.

[30] S. Harris and A. Seaborne. 2013. SPARQL 1.1 Query Language, W3C Recommendation. https://www.w3.org/TR/
sparql11-query/. Accessed on 6/7/2023.

[31] S. Hasan, S. Thirumuruganathan, J. Augustine, N. Koudas, and G. Das. 2020. Deep Learning Models for Selectivity
Estimation of Multi-Attribute Queries. In Proc. of the the ACM SIGMOD Int. Conf. on Management of Data (SIGMOD
2020). ACM, Portland, OR, USA, 1035–1050.

[32] M. Heimel, M. Kiefer, and V. Markl. 2015. Self-Tuning, GPU-Accelerated Kernel Density Models for Multidimensional
Selectivity Estimation. In Proc. of the 2015 ACM SIGMOD Int. Conf. on Management of Data (SIGMOD 2015). ACM,
Melbourne, Australia, 1477–1492.

[33] J. M. Hellerstein, P. J. Haas, and H. J. Wang. 1997. Online Aggregation. In Proc. of the 1997 ACM SIGMOD Int. Conf. on
Management of Data (SIGMOD 1997). ACM Press, Tucson, AZ, USA, 171–182.

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/

Accurate Sampling-Based Cardinality Estimation for Complex GraphQueries 12:39

[34] A. Hertzschuch, G. Moerkotte, W. Lehner, N. May, F. Wolf, and L. Fricke. 2021. Small Selectivities Matter: Lifting the
Burden of Empty Samples. In Proc. of the 2021 Int. Conf. on Management of Data (SIGMOD 2021). ACM, Virtual Event,
China, 697–709.

[35] B. Hilprecht, A. Schmidt, M. Kulessa, A. Molina, K. Kersting, and C. Binnig. 2020. DeepDB: Learn from Data, not from
Queries! Proc. VLDB Endow. 13, 7 (2020), 992–1005.

[36] D. G. Horvitz and D. J. Thompson. 1952. A generalization of sampling without replacement from a finite universe. J.
Amer. Statist. Assoc. 47, 260 (1952), 663–685.

[37] Pan Hu and Boris Motik. 2024. Accurate Sampling-Based Cardinality Estimation for Complex Graph Queries: Code,
Datasets, and Experimental Results. https://krr-nas.cs.ox.ac.uk/2024/cardinality-sampling/

[38] Y. E. Ioannidis. 2003. The History of Histograms (abridged). In Proc. of the 29th Int. Conf. on Very Large Databases
(VLDB 2003). Morgan Kaufmann, Berlin, Germany, 19–30.

[39] Y. E. Ioannidis and S. Christodoulakis. 1991. On the Propagation of Errors in the Size of Join Results. In Proc. of the
ACM SIGMOD Int. Conf. on Management of Data (SIGMOD 1991). ACM, Denver, CO, USA, 268–277.

[40] Z. G. Ives and N. E. Taylor. 2008. Sideways Information Passing for Push-Style Query Processing. In Proc. of the 24th
Int. Conf. on Data Engineering (ICDE 2008). IEEE Computer Society, Cancún, Mexico, 774–783.

[41] C. Jin, S. S. Bhowmick, B. Choi, and S. Zhou. 2012. PRAGUE: Towards Blending Practical Visual Subgraph Query
Formulation and Query Processing. In Proc. of the 28th IEEE Int. Conf. on Data Engineering (ICDE 2012). IEEE Computer
Society, Washington, DC, USA, 222–233.

[42] M. A. Khamis, H. Q. Ngo, and D. Suciu. 2017. What Do Shannon-type Inequalities, Submodular Width, and Disjunctive
Datalog Have to Do with One Another?. In Proc. of the 36th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS 2017). ACM, Chicago, IL, USA, 429–444.

[43] A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins
with Deep Learning. In Proc. of the 9th Biennial Conf. on Innovative Data Systems Research (CIDR 2019). www.cidrdb.org,
Asilomar, CA, USA, 8 pages.

[44] G. Klyne, J. J. Carroll, and B. McBride. 2014. RDF 1.1 Concepts and Abstract Syntax. https://www.w3.org/TR/rdf11-
concepts/.

[45] J.-H. Lee, D.-H. Kim, and C.-W. Chung. 1999. Multi-dimensional Selectivity Estimation Using Compressed Histogram
Information. In Proc. of the ACM SIGMOD Int. Conf. on Management of Data (SIGMOD 1999). ACM, Philadelphia, PA,
USA, 205–214.

[46] V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz, A. Kemper, and T. Neumann. 2015. How Good Are Query Optimizers,
Really? Proc. VLDB Endow. 9, 3 (2015), 204–215.

[47] F. Li, B. Wu, K. Yi, and Z. Zhao. 2019. Wander Join and XDB: Online Aggregation via Random Walks. ACM Trans.
Database Syst. 44, 1 (2019), 2:1–2:41.

[48] R. J. Lipton and J. F. Naughton. 1990. Query Size Estimation by Adaptive Sampling. In Proc. of the 9th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (PODS 1990). ACM Press, Nashville, TN, USA, 40–46.

[49] Y. Liu, T. Safavi, A. Dighe, and D. Koutra. 2018. Graph Summarization Methods and Applications: A Survey. ACM
Comput. Surv. 51, 3 (2018), 62:1–62:34.

[50] Y. Matias, J. S. Vitter, and M. Wang. 1998. Wavelet-based Histograms for Selectivity Estimation. In Proc. of the ACM
SIGMOD Int. Conf. on Management of Data (SIGMOD 1998). ACM, Seattle, WA, USA, 448–459.

[51] M. Müller, L. Woltmann, and W. Lehner. 2023. Enhanced Featurization of Queries with Mixed Combinations of
Predicates for ML-based Cardinality Estimation. In Proc. of the 26th Int. Conf. on Extending Database Technology (EDBT
2023). OpenProceedings.org, Ioannina, Greece, 273–284.

[52] T. Neumann and G. Moerkotte. 2011. Characteristic Sets: Accurate Cardinality Estimation for RDF Queries with
Multiple Joins. In Proc. of the 27th Int. Conf on Data Engineering (ICDE 2011), Serge Abiteboul, Klemens Böhm, Christoph
Koch, and Kian-Lee Tan (Eds.). IEEE Computer Society, Hannover, Germany, 984–994.

[53] T. Neumann and G. Weikum. 2009. Scalable Join Processing on Very Large RDF Graphs. In Proc. of the ACM SIGMOD
Int. Conf. on Management of Data (SIGMOD 2009). ACM, Providence, RI, USA, 627–640.

[54] T. Neumann and G. Weikum. 2010. The RDF-3X engine for scalable management of RDF data. VLDB Journal 19, 1
(2010), 91–113.

[55] Y. Park, S. Ko, S. S. Bhowmick, K. Kim, K. Hong, and W.-S. Han. 2020. G-CARE: A Framework for Performance
Benchmarking of Cardinality Estimation Techniques for Subgraph Matching. In Proc. of the 41st ACM SIGMOD Int.
Conf. on Management of Data (SIGMOD 2020). ACM Press, Portland, OR, USA, 1099–1114.

[56] Y. Park, S. Zhong, and B. Mozafari. 2020. QuickSel: Quick Selectivity Learning with Mixture Models. In Proc. of the
ACM SIGMOD Int. Conf. on Management of Data (SIGMOD 2020). ACM, Portland, OR, USA, 1017–1033.

[57] J. Pérez, M. Arenas, and C. Gutierrez. 2009. Semantics and complexity of SPARQL. ACM Transactions on Database
Systems 34, 3 (2009), 1–45.

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

https://krr-nas.cs.ox.ac.uk/2024/cardinality-sampling/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/

12:40 Pan Hu and Boris Motik

[58] V. Poosala and Y. E. Ioannidis. 1997. Selectivity Estimation Without the Attribute Value Independence Assumption. In
Proc. of the 23rd Int. Conf. on Very Large Databases (VLDB 1997). Morgan Kaufmann, Athens, Greece, 486–495.

[59] V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J. Shekita. 1996. Improved Histograms for Selectivity Estimation of Range
Predicates. In Proc. of the ACM SIGMOD Int. Conf. on Management of Data (SIGMOD 1996). ACM, Montreal, QC, Canada,
294–305.

[60] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. 2008. Taming Verification Hardness: An Efficient Algorithm for Testing
Subgraph Isomorphism. Proc. VLDB Endow. 1, 1 (2008), 364–375.

[61] L. Shrinivas, S. Bodagala, R. Varadarajan, A. Cary, V. Bharathan, and C. Bear. 2013. Materialization Strategies in the
Vertica Analytic Database: Lessons Learned. In Proc. of the 29th IEEE Int. Conf. on Data Engineering (ICDE 2013). IEEE
Computer Society, Brisbane, Australia, 1196–1207.

[62] J. Spiegel and N. Polyzotis. 2009. TuG Synopses for Approximate Query Answering. ACM Transactions on Database
Systems 34, 1 (2009), 3:1–3:56.

[63] G. Stefanoni, B. Motik, and E. V. Kostylev. 2018. Estimating the Cardinality of Conjunctive Queries over RDF Data
Using Graph Summarisation. In Proc. of the 2018 World Wide Web Conf. (WWW 2018). ACM, Lyon, France, 1043–1052.

[64] F. M. Suchanek, G. Kasneci, and G. Weikum. 2008. YAGO: A Large Ontology from Wikipedia and WordNet. Journal of
Web Semantics 6, 3 (2008), 203–217.

[65] The Neo4j Team. 2023. Neo4j Cypher Manual. https://neo4j.com/docs/cypher-manual/current/introduction/. Accessed
on April 5.

[66] P. Terlecki, H. Bati, C. A. Galindo-Legaria, and P. Zabback. 2009. Filtered statistics. In Proc. of the ACM SIGMOD Int.
Conf. on Management of Data (SIGMOD 2009). ACM, Providence, RI, USA, 897–904.

[67] Apache TinkerPop. 2023. TikerPop Documentation. https://tinkerpop.apache.org/docs/current/reference/. Accessed
on April 5.

[68] K. Tzoumas, A. Deshpande, and C. S. Jensen. 2011. Lightweight Graphical Models for Selectivity Estimation Without
Independence Assumptions. Proc. VLDB Endow. 4, 11 (2011), 852–863.

[69] K. Tzoumas, A. Deshpande, and C. S. Jensen. 2013. Efficiently Adapting Graphical Models for Selectivity Estimation.
VLDB Journal 22, 1 (2013), 3–27.

[70] D. Vengerov, A. C. Menck, M. Zaït, and S. Chakkappen. 2015. Join Size Estimation Subject to Filter Conditions. Proc.
VLDB Endow. 8, 12 (2015), 1530–1541.

[71] Z. Yang, A. Kamsetty, S. Luan, E. Liang, Y. Duan, X. Chen, and I. Stoica. 2020. NeuroCard: One Cardinality Estimator
for All Tables. Proc. VLDB Endow. 14, 1 (2020), 61–73.

[72] Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel, J. M. Hellerstein, S. Krishnan, and I. Stoica. 2019.
Deep Unsupervised Cardinality Estimation. Proc. VLDB Endow. 13, 3 (2019), 279–292.

[73] F. Yu, W.-C. Hou, C. Luo, D. Che, and M. Zhu. 2013. CS2: A New Database Synopsis for Query Estimation. In Proc. of
the ACM SIGMOD Int. Conf. on Management of Data (SIGMOD 2013). ACM, New York, NY, USA, 469–480.

[74] P. Yuan, C. Xie, H. Jin, L. Liu, G. Yang, and X. Shi. 2014. Dynamic and fast processing of queries on large-scale RDF
data. Knowl. Inf. Syst. 41, 2 (2014), 311–334.

[75] S. Zhang, S. Li, and J. Yang. 2009. GADDI: Distance Index based Subgraph Matching in Biological Networks. In Proc. of
the 12th Int. Conf. on Extending Database Technology (EDBT 2009). ACM, Saint Petersburg, Russia, 192–203.

[76] Z. Zhao, R. Christensen, F. Li, X. Hu, and K. Yi. 2018. Random Sampling over Joins Revisited. In Proc. of the 39th ACM
SIGMOD Int. Conf. on Management of Data (SIGMOD 2018). ACM, Houston, TX, USA, 1525–1539.

[77] L. Zou, J. Mo, L. Chen, M. Tamer Özsu, and D. Zhao. 2011. gStore: Answering SPARQL Queries via Subgraph Matching.
Proc. VLDB Endow. 4, 8 (2011), 482–493.

A Proof of Theorem 5.5
To prove Theorem 5.5, we first relate invocations of Algorithm 2 on some 𝐼 , 𝑄 , and 𝜎 to the notion
of an estimator from Section 2.2. To this end, Definition A.1 introduces a set of outcomes Ω𝐼 ,𝑄,𝜎

representing the choices available to the algorithm, a probability distribution P𝐼 ,𝑄,𝜎 on Ω𝐼 ,𝑄,𝜎

describing how the algorithm makes these choices, a function 𝑆 𝐼 ,𝑄,𝜎 mapping each outcome to the
corresponding substitution, and a function 𝐶𝐼 ,𝑄,𝜎 mapping each outcome to a cardinality estimate.
For convenience, we first introduce the set Θ𝐼 ,𝑄,𝜎 of all successful outcomes, and then we extend it
to the set Ω𝐼 ,𝑄,𝜎 that also contains the failure outcome ⊥. These definitions are inductive in the
sense that Ω𝐼 ,𝑄,𝜎 , P𝐼 ,𝑄,𝜎 , 𝑆 𝐼 ,𝑄,𝜎 , and 𝐶𝐼 ,𝑄,𝜎 depend on the definitions of Ω𝐼 ,𝑄 ′,𝜎 ′ , P𝐼 ,𝑄 ′,𝜎 ′ , 𝑆 𝐼 ,𝑄 ′,𝜎 ′ , and
𝐶𝐼 ,𝑄,𝜎 for each subquery 𝑄 ′ of 𝑄 and each substitution 𝜎 ′ satisfying dom(𝜎 ′) ⊆ v(𝑄 ′).

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

https://neo4j.com/docs/cypher-manual/current/introduction/
https://tinkerpop.apache.org/docs/current/reference/

Accurate Sampling-Based Cardinality Estimation for Complex GraphQueries 12:41

Definition A.1. For each database instance 𝐼 , query 𝑄 , and substitution 𝜎 with dom(𝜎) ⊆ v(𝑄), let
Θ𝐼 ,𝑄,𝜎 be a set of outcomes, let P𝐼 ,𝑄,𝜎 and𝐶𝐼 ,𝑄,𝜎 be real-valued functions on Θ𝐼 ,𝑄,𝜎 , and let 𝑆 𝐼 ,𝑄,𝜎 (𝜔) be
a function mapping each 𝜔 ∈ Θ𝐼 ,𝑄,𝜎 to a substitution 𝑆 𝐼 ,𝑄,𝜎 (𝜔) as in Figure 8 subject to the following.

• In the case for 𝑄 = 𝐴, probability P(𝜔) is the sampling probability P(𝐹) from the corresponding
case in Algorithm 2. Analogously, in the case for 𝑄 =𝑄1 UNION𝑄2, probabilities 𝑝1 and 𝑝2 are
from the corresponding case in Algorithm 2.

• In the case for𝑄 = DISTINCT(𝑄1), function𝐷𝑄 : eval𝐼 (𝑄, 𝜎) → Θ𝐼 ,𝑄1,𝜎 is an arbitrary injective
mapping fixed for 𝑄 such that 𝑆 𝐼 ,𝑄1,𝜎 (𝐷𝑄 [𝜎1]) = 𝜎1 holds for each 𝜎1 ∈ eval𝐼 (𝑄, 𝜎).4

Moreover, let Ω𝐼 ,𝑄,𝜎 = Θ𝐼 ,𝑄,𝜎 ∪ {⊥} be the sample space that extends Θ𝐼 ,𝑄,𝜎 with a distinct failure
outcome ⊥, and let

P𝐼 ,𝑄,𝜎 (⊥) = 1 −
∑︁

𝜔∈Θ𝐼 ,𝑄,𝜎

P𝐼 ,𝑄,𝜎 (𝜔), 𝑆 𝐼 ,𝑄,𝜎 (⊥) = ∅, and 𝐶𝐼 ,𝑄,𝜎 (⊥) = 0. (16)

Lemma A.2 establishes certain important properties of Ω𝐼 ,𝑄,𝜎 , P𝐼 ,𝑄,𝜎 , 𝑆 𝐼 ,𝑄,𝜎 , and 𝐶𝐼 ,𝑄,𝜎 . In partic-
ular, property (P1) says that all usual probability axioms (e.g., that probabilities of all outcomes
add up to one) are satisfied, and so 𝐶𝐼 ,𝑄,𝜎 is an estimator on Ω𝐼 ,𝑄,𝜎 . Property (P2) says that 𝐶𝐼 ,𝑄,𝜎

satisfies the Horvitz–Thompson property on all successful outcomes. Finally, property (P3) shows
that the substitutions produced by all successful outcomes cover precisely eval𝐼 (𝑄, 𝜎).

Lemma A.2. Properties (P1)–(P3) are satisfied for each database instance 𝐼 , query𝑄 , and substitution
𝜎 with dom(𝜎) ⊆ v(𝑄).

(P1) Function P𝐼 ,𝑄,𝜎 is a probability distribution on the sample space Ω𝐼 ,𝑄,𝜎 .
(P2) 𝐶𝐼 ,𝑄,𝜎 (𝜔) · P𝐼 ,𝑄,𝜎 (𝜔) = 1 for each 𝜔 ∈ Θ𝐼 ,𝑄,𝜎 .
(P3) eval𝐼 (𝑄, 𝜎) = {{𝑆 𝐼 ,𝑄,𝜎 (𝜔) | 𝜔 ∈ Θ𝐼 ,𝑄,𝜎 }}.

Proof. For (P1), it suffices to show that
∑

𝜔∈Θ𝐼 ,𝑄,𝜎 P𝐼 ,𝑄,𝜎 (𝜔) ≤ 1; then, the definition of P𝐼 ,𝑄,𝜎 (⊥)
from equation (16) ensures that P𝐼 ,𝑄,𝜎 is a correctly defined probability distribution on Ω𝐼 ,𝑄,𝜎 . The
proof is by a straightforward induction on the structure of𝑄 . For the induction base𝑄 = 𝐴, probabil-
ity distribution P𝐼 ,𝑄,𝜎 is obtained from the probability distribution on the sample space which imme-
diately implies property (P1), and properties (P2) and (P3) follow directly from definitions in Figure 8.
For the induction step, consider 𝑄 =𝑄1 AND𝑄2. By the induction assumption, properties (P1)–(P3)
hold for𝑄1 and𝑄2 and appropriate substitutions. By the definition of ans𝐼 (𝑄), each substitution in
eval𝐼 (𝑄, 𝜎) can be written as 𝜎 ∪ 𝜎2 ∪ 𝜎2, where 𝜇1 = 𝜎 |𝑄1 , 𝜎1 = 𝑆 𝐼 ,𝑄1,𝜇1 (𝜔1), 𝜇2 = (𝜎 ∪ 𝜎1) |𝑄1 , and
𝜎2 = 𝑆 𝐼 ,𝑄2,𝜇2 (𝜔2) for some𝜔1 ∈ Θ𝐼 ,𝑄1,𝜇1 and and𝜔2 ∈ Θ𝐼 ,𝑄2,𝜇2 . But then, definitions in Figure 8 clearly
ensure properties (P1)–(P3). The cases for 𝑄 =𝑄1 UNION𝑄2, 𝑄 =𝑄1 MINUS𝑄2, 𝑄 =𝑄1 FILTER 𝐸,
𝑄 =𝑄1 BIND 𝑥 := 𝐸, and𝑄 = PROJECT𝑋 (𝑄1) are analogous, so we omit them for the sake of brevity.
For 𝑄 = DISTINCT(𝑄1), mapping 𝐷𝑄 associates each 𝜎1 ∈ eval𝐼 (𝑄, 𝜎) with a ‘representative’ out-
come𝐷𝑄 [𝜎1] ∈ Θ𝐼 ,𝑄1,𝜎 of the subquery𝑄1. But then, the definition ofΘ𝐼 ,𝑄,𝜎 clearly ensures property
(P3), and properties (P1) and (P2) hold by the inductive assumption. □

Properties (P2) and (P3) of Lemma A.2 allow us to prove the following lemma.

LemmaA.3. For each database instance 𝐼 , query𝑄 , and substitution𝜎 with dom(𝜎) ⊆ v(𝑄), random
variable 𝐶𝐼 ,𝑄,𝜎 is an unbiased estimator of |eval𝐼 (𝑄, 𝜎) |.

Proof. For arbitrary 𝐼 , 𝑄 , and 𝜎 as in the lemma, the expectation of 𝐶𝐼 ,𝑄,𝜎 is given by

E[𝐶𝐼 ,𝑄,𝜎] =
∑︁

𝜔∈Ω𝐼 ,𝑄,𝜎

P𝐼 ,𝑄,𝜎 (𝜔) ·𝐶𝐼 ,𝑄,𝜎 (𝜔) =
∑︁

𝜔∈Θ𝐼 ,𝑄,𝜎

P𝐼 ,𝑄,𝜎 (𝜔) ·𝐶𝐼 ,𝑄,𝜎 (𝜔) + P𝐼 ,𝑄,𝜎 (⊥) ·𝐶𝐼 ,𝑄,𝜎 (⊥) =

4Note that the domain of 𝐷𝑄 is correctly defined since eval𝐼 (𝑄,𝜎) is a set, rather than a multiset.

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

12:42 Pan Hu and Boris Motik

• For𝑄 =𝐴, let
Θ𝐼 ,𝑄,𝜎 = {𝐹 ∈ sspace𝐼 (𝜎 (𝐴)) | there exists a matcher of 𝜎 (𝐴) to 𝐹 },

and, for each 𝜔 ∈ Θ𝐼 ,𝑄,𝜎 , let

P𝐼 ,𝑄,𝜎 (𝜔) = P(𝜔), 𝑆𝐼 ,𝑄,𝜎 (𝜔) = the matcher of 𝜎 (𝐴) to 𝜔, and 𝐶𝐼 ,𝑄,𝜎 (𝜔) = 1/P(𝜔) .

• For𝑄 =𝑄1 AND𝑄2, let

Θ𝐼 ,𝑄,𝜎 = {⟨𝜔1, 𝜔2 ⟩ | 𝜔1 ∈ Θ𝐼 ,𝑄1,𝜎 |𝑄1 and 𝜔2 ∈ Θ𝐼 ,𝑄2,(𝜎∪𝜎1) |𝑄2 where 𝜎1 = 𝑆
𝐼 ,𝑄1,𝜎 |𝑄1 (𝜔1) },

and, for each ⟨𝜔1, 𝜔2 ⟩ ∈ Θ𝐼 ,𝑄,𝜎 , let
P𝐼 ,𝑄,𝜎 (⟨𝜔1, 𝜔2 ⟩) = P𝐼 ,𝑄1,𝜇1 (𝜔1) · P𝐼 ,𝑄2,𝜇2 (𝜔2),
𝑆𝐼 ,𝑄,𝜎 (⟨𝜔1, 𝜔2 ⟩) = 𝜎 ∪ 𝜎1 ∪ 𝜎2, and
𝐶𝐼 ,𝑄,𝜎 (⟨𝜔1, 𝜔2 ⟩) =𝐶𝐼 ,𝑄1,𝜇1 (𝜔1) · 𝐶𝐼 ,𝑄2,𝜇2 (𝜔2)

where 𝜇1 = 𝜎 |𝑄1 , 𝜎1 = 𝑆𝐼 ,𝑄1,𝜇1 (𝜔1) , 𝜇2 = (𝜎 ∪ 𝜎1) |𝑄1 , and 𝜎2 = 𝑆𝐼 ,𝑄2,𝜇2 (𝜔2) .

• For𝑄 =𝑄1 UNION𝑄2, let
Θ𝐼 ,𝑄,𝜎 = {⟨𝑖, 𝜔𝑖 ⟩ | 𝑖 ∈ {1, 2} and 𝜔𝑖 ∈ Θ𝐼 ,𝑄𝑖 ,𝜎 },

and, for each ⟨𝑖, 𝜔𝑖 ⟩ ∈ Θ𝐼 ,𝑄,𝜎 , let

P𝐼 ,𝑄,𝜎 (⟨𝑖, 𝜔𝑖 ⟩) = 𝑝𝑖 · P𝐼 ,𝑄,𝜎 (𝜔𝑖), 𝑆𝐼 ,𝑄,𝜎 (⟨𝑖, 𝜔𝑖 ⟩) = 𝑆𝐼 ,𝑄𝑖 ,𝜎 (𝜔𝑖), and 𝐶𝐼 ,𝑄,𝜎 (⟨𝑖, 𝜔𝑖 ⟩) =𝐶𝐼 ,𝑄𝑖 ,𝜎 (𝜔𝑖)/𝑝𝑖 .

• For𝑄 =𝑄1 MINUS𝑄2, let

Θ𝐼 ,𝑄,𝜎 = {𝜔 ∈ Θ𝐼 ,𝑄1,𝜎 | eval𝐼 (𝑄2, 𝜎1) (𝜔) = ∅ where 𝜎1 = 𝑆𝐼 ,𝑄1,𝜎 (𝜔) }
and, for each 𝜔 ∈ Θ𝐼 ,𝑄,𝜎 , let

P𝐼 ,𝑄,𝜎 (𝜔) = P𝐼 ,𝑄1,𝜎 (𝜔), 𝑆𝐼 ,𝑄,𝜎 (𝜔) = 𝑆𝐼 ,𝑄1,𝜎 (𝜔), and 𝐶𝐼 ,𝑄,𝜎 (𝜔) =𝐶𝐼 ,𝑄1,𝜎 (𝜔) .

• For𝑄 =𝑄1 FILTER 𝐸, let

Θ𝐼 ,𝑄,𝜎 = {𝜔 ∈ Θ𝐼 ,𝑄1,𝜎 | 𝜎1 (𝐸) = true where 𝜎1 = 𝑆𝐼 ,𝑄1,𝜎 (𝜔) }
and, for each 𝜔 ∈ Θ𝐼 ,𝑄,𝜎 , let

P𝐼 ,𝑄,𝜎 (𝜔) = P𝐼 ,𝑄1,𝜎 (𝜔), 𝑆𝐼 ,𝑄,𝜎 (𝜔) = 𝑆𝐼 ,𝑄1,𝜎 (𝜔), and 𝐶𝐼 ,𝑄,𝜎 (𝜔) =𝐶𝐼 ,𝑄1,𝜎 (𝜔) .

• For𝑄 =𝑄1 BIND 𝑥 := 𝐸, let

Θ𝐼 ,𝑄,𝜎 = {𝜔 ∈ Θ𝐼 ,𝑄1,𝜎 | 𝜎1 (𝐸) ≠ 𝜖 and 𝜎 ∼ {𝑥 ↦→ 𝜎1 (𝐸) } where 𝜎1 = 𝑆𝐼 ,𝑄1,𝜎 (𝜔) }
and, for each 𝜔 ∈ Θ𝐼 ,𝑄,𝜎 , let

P𝐼 ,𝑄,𝜎 (𝜔) = P𝐼 ,𝑄1,𝜎 (𝜔), 𝑆𝐼 ,𝑄,𝜎 (𝜔) = 𝜎1 ∪ {𝑥 ↦→ 𝜎1 (𝐸) }, and 𝐶𝐼 ,𝑄,𝜎 (𝜔) =𝐶𝐼 ,𝑄1,𝜎 (𝜔)
where 𝜎1 = 𝑆𝐼 ,𝑄1,𝜎 (𝜔) .

• For𝑄 = PROJECT𝑋 (𝑄1) , let
Θ𝐼 ,𝑄,𝜎 = Θ𝐼 ,𝑄1,𝜎 ,

and, for each 𝜔 ∈ Θ𝐼 ,𝑄,𝜎 , let

P𝐼 ,𝑄,𝜎 (𝜔) = P𝐼 ,𝑄1,𝜎 (𝜔), 𝑆𝐼 ,𝑄,𝜎 (𝜔) = 𝑆𝐼 ,𝑄1,𝜎 (𝜔) |𝑋 , and 𝐶𝐼 ,𝑄,𝜎 (𝜔) =𝐶𝐼 ,𝑄1,𝜎 (𝜔) .

• For𝑄 = DISTINCT(𝑄1) , let
Θ𝐼 ,𝑄,𝜎 = {𝜔 ∈ Θ𝐼 ,𝑄1,𝜎 | 𝐷𝑄 [𝑆𝐼 ,𝑄1,𝜎 (𝜔)] =𝜔 }

and, for each 𝜔 ∈ Θ𝐼 ,𝑄1,𝜎 , let

P𝐼 ,𝑄,𝜎 (𝜔) = P𝐼 ,𝑄1,𝜎 (𝜔), 𝑆𝐼 ,𝑄,𝜎 (𝜔) = 𝑆𝐼 ,𝑄1,𝜎 (𝜔), and 𝐶𝐼 ,𝑄,𝜎 (𝜔) =𝐶𝐼 ,𝑄1,𝜎 (𝜔) .

Fig. 8. Equations for Θ𝐼 ,𝑄,𝜎 , P𝐼 ,𝑄,𝜎 , 𝐶𝐼 ,𝑄,𝜎 , and 𝑆𝐼 ,𝑄,𝜎 (𝜔) from Definition A.1

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

Accurate Sampling-Based Cardinality Estimation for Complex GraphQueries 12:43

=
∑︁

𝜔∈Θ𝐼 ,𝑄,𝜎

1 = |Θ𝐼 ,𝑄,𝜎 | = |eval𝐼 (𝑄, 𝜎) |.

The last equality is ensured by property (P3). Hence, estimator 𝐶𝐼 ,𝑄,𝜎 is unbiased, as required. □

We are now ready to prove Theorem 5.5.

Theorem 5.5. Let 𝜃1, 𝜃2, . . . be the sequence of random variables representing the third component
of the results of successive calls to estimate𝐼 (𝑄, 𝜎) for some 𝐼 , 𝑄 , and 𝜎 with dom(𝜎) ⊆ v(𝑄).

• The sequence of averages 1
𝑛
·∑𝑛

𝑖=1 𝜃𝑖 is a strongly consistent estimator of |eval𝐼 (𝑄, 𝜎) |.
• If 𝑄 does not contain DISTINCT, then each 𝜃𝑖 is an unbiased estimator of |eval𝐼 (𝑄, 𝜎) |.

Proof. Fix a database instance 𝐼 , query 𝑄 , and substitution 𝜎 such that dom(𝜎) ⊆ v(𝑄) holds,
and let 𝜃1, 𝜃2, . . . be the sequence of random variables representing the third component of the
results of successive calls to estimate𝐼 (𝑄, 𝜎). Moreover, let Q be the (possibly empty) set of all
DISTINCT subqueries of 𝑄 , and, for each 𝑄 ′ ∈ Q, let S𝑄 ′ be the set of all substitutions produced
in line 30 when Algorithm 1 is applied to 𝑄 ′ and 𝐼 . We say that, for 𝑄 ′ ∈ Q, mapping 𝐷𝑄 ′ used in
Algorithm 2 is fully populated if 𝐷𝑄 ′ [𝜎 ′] is defined for each 𝜎 ′ ∈ S (and so the condition in line 37
of Algorithm 2 is never satisfied when the algorithm is applied to 𝑄 ′ and 𝐼).
Now consider any random variable 𝜃𝑖 representing a run of Algorithm 2 in which all map-

pings 𝐷𝑄 ′ are fully populated. Algorithm 2 then returns [𝜔, 𝑆 𝐼 ,𝑄,𝜎 (𝜔), 𝐶𝐼 ,𝑄,𝜎 (𝜔)] with probability
P𝐼 ,𝑄,𝜎 (𝜔) for some 𝜔 ∈ Ω𝐼 ,𝑄,𝜎 . This is because definitions in Figure 8 closely follow the structure
of Algorithm 2. For example, for 𝑄 =𝑄1 AND𝑄2, the recursive calls for 𝑄1 and 𝑄2 are made with
substitutions 𝜇1 = 𝜎 |𝑄1 and 𝜇1 = (𝜎 ∪ 𝜎1) |𝑄2 ; thus, if the recursive call for each 𝑖 ∈ {1, 2} returns
[𝜔𝑖 , 𝑆

𝐼 ,𝑄𝑖 ,𝜇𝑖 (𝜔𝑖), 𝐶𝐼 ,𝑄𝑖 ,𝜇𝑖 (𝜔𝑖)] with probability P𝐼 ,𝑄𝑖 ,𝜇𝑖 (𝜔𝑖) where 𝜎𝑖 = 𝑆 𝐼 ,𝑄𝑖 ,𝜇𝑖 (𝜔𝑖), then definitions
in Figure 8 clearly ensure the required property. The analysis is analogous for all other query
types and we omit the details for brevity. But then, 𝜃𝑖 is an unbiased estimator of |eval𝐼 (𝑄, 𝜎) | by
Lemma A.3. Moreover, the assumption that mappings 𝐷𝑄 ′ are fully populated is vacuously true
when Q = ∅, which implies the second claim of this theorem.
To prove the first claim, let 𝜇𝑛 = 1

𝑛
·∑𝑛

𝑖=1 𝜃𝑖 be the sequence of random variables of estimate
averages. We can define 𝜇𝑛 on a sample space Ω consisting of infinite words of the form 𝜔1, 𝜔2, . . .

where each 𝜔𝑖 reflects the random choices that Algorithm 2 makes in 𝑖-th run. We also identify the
following two events on this probability space, and our objective is to show that P(Ω1) = 1.

Ω1 = {𝜔 ∈ Ω | lim
𝑛→∞

𝜇 (𝜔) = |eval𝐼 (𝑄, 𝜎) |}

Ω2 = {𝜔 ∈ Ω | there exists a run𝑚 in 𝜔 at which all 𝐷𝑄 ′
become fully populated}

We first prove P(Ω \ Ω2) = 0. Consider any DISTINCT subquery𝑄 ′ ∈ Q of𝑄 and any substitution
𝜎 ′ ∈ S𝑄 ′ , and let Ψ𝑄 ′,𝜎 ′ be the event containing each 𝜔 ∈ Ω such that 𝐷𝑄 ′ [𝜎 ′] is never defined. Let
𝑝 be the smallest probability with which a run of Algorithm 2 produces 𝜎 ′. Clearly, 𝑝 > 0 since
producing 𝜎 ′ is possible. The probability that 𝜎 ′ is not produced after 𝑛 runs is then at most (1 − 𝑝)𝑛 ;
and, since lim𝑛→∞ (1 − 𝑝)𝑛 = 0, we have P(Ψ𝑄 ′,𝜎 ′) = 0. Thus, the probability of the intersection of
arbitrary sets Ψ𝑄 ′,𝜎 ′ is zero as well, and, by decomposing P(Ω \ Ω2) in terms of intersections of
Ψ𝑄 ′,𝜎 ′ using the inclusion–exclusion principle, we have P(Ω \ Ω2) = 0. Hence, P(Ω2) = 1.
Now, for each 𝜔 ∈ Ω2, step𝑚 at which all 𝐷𝑄 ′ become fully defined in 𝜔 , and 𝑘 > 𝑚, let 𝜌𝜔

𝑘
be

the random variable defined by

𝜌𝜔
𝑘
=

1
𝑘 −𝑚

𝑘∑︁
𝑖=𝑚+1

𝜃𝑖 ,

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

12:44 Pan Hu and Boris Motik

• For𝑄 =𝑄1 AND𝑄2, let

Ψ𝐼 ,𝑄,𝜎 = {⟨𝜔1, 𝜔2 ⟩ | 𝜔1 ∈ Ω𝐼 ,𝑄1,𝜎 |𝑄1 and 𝜔2 ∈ Ψ𝐼 ,𝑄2,(𝜎∪𝜎1) |𝑄2 where 𝜎1 = 𝑆
𝐼 ,𝑄1,𝜎 |𝑄1 (𝜔1) },

and, for each ⟨𝜔1, 𝜔2 ⟩ ∈ Ψ𝐼 ,𝑄,𝜎 , let

R𝐼 ,𝑄,𝜎 (⟨𝜔1, 𝜔2 ⟩) = P𝐼 ,𝑄1,𝜇1 (𝜔1) · R𝐼 ,𝑄2,𝜇2 (𝜔2) and 𝐷̂𝐼 ,𝑄,𝜎 (⟨𝜔1, 𝜔2 ⟩) =𝐶𝐼 ,𝑄1,𝜇1 (𝜔1) · 𝐷̂𝐼 ,𝑄2,𝜇2 (𝜔2),
where 𝜇1 = 𝜎 |𝑄1 and 𝜇2 = (𝜎 ∪ 𝑆𝐼 ,𝑄1,𝜇1 (𝜔1)) |𝑄1 .

• For𝑄 =𝑄1 UNION𝑄2, let
Ψ𝐼 ,𝑄,𝜎 = {⟨𝜔1, 𝜔2 ⟩ | 𝜔1 ∈ Ψ𝐼 ,𝑄1,𝜎 and 𝜔2 ∈ Ψ𝐼 ,𝑄1,𝜎 },

and, for each ⟨𝜔1, 𝜔2 ⟩ ∈ Ψ𝐼 ,𝑄,𝜎 , let

R𝐼 ,𝑄,𝜎 (⟨𝜔1, 𝜔2 ⟩) = R𝐼 ,𝑄1,𝜎 (𝜔1) · R𝐼 ,𝑄2,𝜎 (𝜔2) and 𝐷̂𝐼 ,𝑄,𝜎 (⟨𝜔1, 𝜔2 ⟩) = 𝐷̂𝐼 ,𝑄1,𝜎 (𝜔1) + 𝐷̂𝐼 ,𝑄2,𝜎 (𝜔2) .

• For𝑄 = PROJECT𝑋 (𝑄1) , let Ψ𝐼 ,𝑄,𝜎 = Ψ𝐼 ,𝑄1,𝜎 , R𝐼 ,𝑄,𝜎 = R𝐼 ,𝑄1,𝜎 , and 𝐷̂𝐼 ,𝑄,𝜎 = 𝐷̂𝐼 ,𝑄1,𝜎 .

• For𝑄 =𝐴, 𝑄 =𝑄1 MINUS𝑄2, 𝑄 =𝑄1 FILTER 𝐸, 𝑄 =𝑄1 BIND 𝑥 := 𝐸, and 𝑄 = DISTINCT(𝑄1) , let
Ψ𝐼 ,𝑄,𝜎 = Ω𝐼 ,𝑄,𝜎 , R𝐼 ,𝑄,𝜎 = P𝐼 ,𝑄,𝜎 , and 𝐷̂𝐼 ,𝑄,𝜎 =𝐶𝐼 ,𝑄,𝜎 .

Fig. 9. Equations for Ψ𝐼 ,𝑄,𝜎 , R𝐼 ,𝑄,𝜎 , and 𝐷̂𝐼 ,𝑄,𝜎 From Definition B.1

and let
Ω3 = {𝜔 ∈ Ω2 | lim

𝑖→∞
𝜌𝜔𝑚+𝑖 (𝜔) = |eval𝐼 (𝑄, 𝜎) |}.

Consider an arbitrary 𝜔 ∈ Ω3 and the corresponding𝑚. Then, for 𝑘 > 𝑚, we have

𝜇𝑘 (𝜔) =
1
𝑘

𝑘∑︁
𝑖=1

𝜃𝑖 (𝜔) =
1
𝑘

𝑚∑︁
𝑖=1

𝜃𝑖 (𝜔) +
𝑘 −𝑚

𝑘

1
𝑘 −𝑚

𝑘∑︁
𝑖=𝑚+1

𝜃𝑖 (𝜔) =
1
𝑘

𝑚∑︁
𝑖=1

𝜃𝑖 (𝜔) +
𝑘 −𝑚

𝑘
𝜌𝑘 (𝜔).

As 𝑘 approaches infinity, the first term approaches zero since
∑𝑘

𝑖=1 𝜃𝑖 (𝜔) is a constant, and 𝑘−𝑚
𝑘

approaches one. But then, 𝜔 ∈ Ω3 implies that 𝜌𝜔
𝑚+1 (𝜔) approaches |eval𝐼 (𝑄, 𝜎) |, and so 𝜇𝑘 (𝜔)

approaches |eval𝐼 (𝑄, 𝜎) | as well. Hence, we have 𝜔 ∈ Ω1, which implies Ω3 ⊆ Ω1.
Finally, we prove P(Ω3) = 1. Together with Ω3 ⊆ Ω1, this implies 1 = P(Ω3) ≤ P(Ω1) ≤ 1, which

proves our first claim. Let ℓ be the number of distinct ways in which mappings 𝐷𝑄 ′ can be fully
defined is finite. This ℓ is finite, so we can decompose Ω2 as Ω2 =

⋃ℓ
𝑖=1 Ω

𝑖
2 such that each Ω

𝑖
2 contains

precisely all 𝜔 ∈ Ω2 that instantiate mappings 𝐷𝑄 ′ in the same way. Clearly, we have Ω𝑖
2 ∩ Ω 𝑗

2 = ∅
for 1 ≤ 𝑖 < 𝑗 ≤ ℓ , which implies 1 = P(Ω2) =

∑ℓ
𝑖=1 P(Ω𝑖

2). Moreover, Ω3 =
⋃ℓ

𝑖=1 Ω3 ∩ Ω𝑖
2. Now, for

each 1 ≤ 𝑖 ≤ ℓ , Algorithm 1 instantiated as dictated by Ω𝑖
2 is an unbiased estimator of |eval𝐼 (𝑄, 𝜎) |

as argued at the beginning of this proof. By the Kolmogorov’s strong law of large numbers, the
sequence of averages of consecutive runs is a strongly consistent estimator of |eval𝐼 (𝑄, 𝜎) |, and so
P(Ω3 | Ω𝑖

2) = 1. But then, P(Ω3) =
∑ℓ

𝑖=1 P(Ω𝑖
2) · P(Ω3 | Ω𝑖

2) = 1, as required. □

B Proof of Theorem 5.9
Our proof strategy resembles the one in Appendix A: in Definition B.1, for each query𝑄 and context
substitution 𝜎 , we introduce the set of outcomes Ψ𝐼 ,𝑄,𝜎 , a corresponding probability distribution
R𝐼 ,𝑄,𝜎 , and the estimator 𝐷̂𝐼 ,𝑄,𝜎 . In Lemma B.2 we prove that 𝐷̂𝐼 ,𝑄,𝜎 is an unbiased estimator of
|eval𝐼 (𝑄, 𝜎) |. Finally, Theorem 5.9 show that these definitions describe the properties of Algorithm 3.

Definition B.1. For each database instance 𝐼 , query 𝑄 , and substitution 𝜎 with dom(𝜎) ⊆ v(𝑄), let
Ψ𝐼 ,𝑄,𝜎 be a set of outcomes, and let R𝐼 ,𝑄,𝜎 and 𝐷̂𝐼 ,𝑄,𝜎 be real-valued functions on Θ𝐼 ,𝑄,𝜎 in Figure 9.

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

Accurate Sampling-Based Cardinality Estimation for Complex GraphQueries 12:45

Lemma B.2. Properties (R1) and (R2) are satisfied for each database instance 𝐼 , query 𝑄 , and
substitution 𝜎 with dom(𝜎) ⊆ v(𝑄).
(R1) Function R𝐼 ,𝑄,𝜎 is a probability distribution on the sample space Ψ𝐼 ,𝑄,𝜎 .
(R2) Function 𝐷̂𝐼 ,𝑄,𝜎 is an unbiased estimator of |eval𝐼 (𝑄, 𝜎) |.

Proof. The proof is by induction on the structure of query 𝑄 . For 𝑄 = 𝐴, 𝑄 =𝑄1 MINUS𝑄2,
or 𝑄 = DISTINCT(𝑄1), Lemmas A.2 and A.3 and the definitions of Ψ𝐼 ,𝑄,𝜎 , R𝐼 ,𝑄,𝜎 , and 𝐷̂𝐼 ,𝑄,𝜎 clearly
ensure properties (R1) and (R2). For 𝑄 = PROJECT𝑋 (𝑄1), the inductive assumption ensures that
properties (R1) and (R2) hold for 𝑄1, so these properties clearly hold for 𝑄 as well.
Assume 𝑄 =𝑄1 AND𝑄2. Lemma A.2 ensures that P𝐼 ,𝑄1,𝜎 |𝑄1 is a probability distribution on the

sample space Ω𝐼 ,𝑄1,𝜎 |𝑄1 , and the inductive assumption for 𝑄2 ensures that R𝐼 ,𝑄2,(𝜎∪𝜎1) |𝑄2 is a proba-
bility distribution on the sample space Ψ𝐼 ,𝑄2,(𝜎∪𝜎𝑖

1) |𝑄2 ; but then, property (R1) obviously holds for
𝑄 . To prove property (R2), we compute the expectation of 𝐷̂𝐼 ,𝑄,𝜎 as follows, where 𝜇1 = 𝜎 |𝑄1 and
𝜇2 = (𝜎 ∪ 𝑆 𝐼 ,𝑄1,𝜇1 (𝜔1)) |𝑄2 for each 𝜔1.

E[𝐷̂𝐼 ,𝑄,𝜎] =
∑︁

𝜔1∈Ω𝐼 ,𝑄,𝜇1

∑︁
𝜔2∈Ψ𝐼 ,𝑄2,𝜇2

P𝐼 ,𝑄1,𝜇1 (𝜔1) · R𝐼 ,𝑄2,𝜇2 (𝜔2) ·𝐶𝐼 ,𝑄1,𝜇1 (𝜔1) · 𝐷̂𝐼 ,𝑄2,𝜇2 (𝜔2) =

=
∑︁

𝜔1∈Ω𝐼 ,𝑄,𝜇1

P𝐼 ,𝑄1,𝜇1 (𝜔1) ·𝐶𝐼 ,𝑄1,𝜇1 (𝜔1) ·
∑︁

𝜔2∈Ψ𝐼 ,𝑄2,𝜇2

R𝐼 ,𝑄2,𝜇2 (𝜔2) · 𝐷̂𝐼 ,𝑄2,𝜇2 (𝜔2) =

=
∑︁

𝜔1∈Ω𝐼 ,𝑄,𝜇1

1 · E[𝐷̂𝐼 ,𝑄2,𝜇2] =
∑︁

𝜔1∈Ω𝐼 ,𝑄,𝜇1

|eval𝐼 (𝑄2, 𝜇2) | = |eval𝐼 (𝑄, 𝜎) |

Lemma A.2 ensures P𝐼 ,𝑄1,𝜇1 (𝜔1) ·𝐶𝐼 ,𝑄1,𝜇1 (𝜔1) = 1, and E[𝐷̂𝐼 ,𝑄2,𝜇2] = |eval𝐼 (𝑄2, 𝜇2) | since 𝐷̂𝐼 ,𝑄2,𝜇2 is
unbiased by the induction assumption. Thus, 𝐷̂𝐼 ,𝑄,𝜎 is an unbiased estimator of |eval𝐼 (𝑄, 𝜎) |.
For 𝑄 =𝑄1 UNION𝑄2, Definition B.1 ensures 𝐷̂𝐼 ,𝑄,𝜎 = 𝐷̂𝐼 ,𝑄1,𝜎 + 𝐷̂𝐼 ,𝑄2,𝜎 , so property (R1) holds.

By the induction assumption, 𝐷̂𝐼 ,𝑄𝑖 ,𝜎 is an unbiased estimator of |eval𝐼 (𝑄𝑖 , 𝜎) | for 𝑖 ∈ {1, 2}. Since
eval𝐼 (𝑄, 𝜎) is the multiset union of eval𝐼 (𝑄1, 𝜎) and eval𝐼 (𝑄2, 𝜎), we have

|eval𝐼 (𝑄, 𝜎) | = |eval𝐼 (𝑄1, 𝜎) | + |eval𝐼 (𝑄2, 𝜎) | = E[𝐷̂𝐼 ,𝑄1,𝜎] + E[𝐷̂𝐼 ,𝑄2,𝜎] = E[𝐷̂𝐼 ,𝑄,𝜎],
where the last equality holds by the well-known properties of sums of random variables. Conse-
quently, property (R2) is satisfied. □

Theorem 5.9. Let 𝜃1, 𝜃2, . . . be the sequence of random variables representing the results of successive
calls to estimate𝑜𝑝𝑡

𝐼
(𝑄, 𝜎) for some 𝐼 , 𝑄 , and 𝜎 with dom(𝜎) ⊆ v(𝑄).

• The sequence of averages 1
𝑛
·∑𝑛

𝑖=1 𝜃𝑖 is a strongly consistent estimator of |eval𝐼 (𝑄, 𝜎) |.
• If 𝑄 does not contain DISTINCT, then each 𝜃𝑖 is an unbiased estimator of |eval𝐼 (𝑄, 𝜎) |.

Proof. Assume that all mappings 𝐷𝑄 ′ used to process DISTINCT subqueries of 𝑄 are fully
populated (see the proof of Theorem 5.9). Also, consider an arbitrary partition S1, . . . ,S𝑁 of
sspace𝐼 (𝜎 (𝐴1)) from line 4 of Algorithm 3. Since S𝑖 ∩ S𝑗 = ∅ for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑁 , we have

eval𝐼 (𝑄, 𝜎) =
𝑁⋃
𝑖=1

⋃
𝛽∈evalS𝑖 (𝐴1,𝜎)

eval𝐼 (𝑄2, (𝜎 ∪ 𝛽) |𝑄2).

By Lemma B.2, line 8 provides an unbiased estimator of the latter union for each 𝑖 with 1 ≤ 𝑖 ≤ 𝑁 .
All of these estimates are added in line 8 of Algorithm 3, so the resulting sum is an unbiased
estimator of |eval𝐼 (𝑄, 𝜎) |. With this observation in mind, the proof of both claims is completely
analogous to the proof of Theorem 5.5, so we omit the details for the sake of brevity. □

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

12:46 Pan Hu and Boris Motik

Received 25 July 2023; revised 4 March 2024; accepted 1 August 2024

ACM Trans. Datab. Syst., Vol. 49, No. 3, Article 12. Publication date: September 2024.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Data Model and Query Language
	2.2 Estimators
	2.3 Problem Statement

	3 Related Approaches to Query Cardinality Estimation
	3.1 Principles of Sampling-Based Cardinality Estimation
	3.2 The WanderJoin Algorithm
	3.3 Cardinality Estimation Methods Used in the G-CARE Framework

	4 Motivation
	5 Strongly Consistent Cardinality Estimator for Complex Queries
	5.1 Query Evaluation via Sideways Information Passing
	5.2 Principles for Estimating the Cardinality of Complex Queries
	5.3 The Basic Cardinality Estimation Approach
	5.4 Optimising the Basic Approach
	5.5 Practical Considerations

	6 Integrating Cardinality Estimation into Query Planning
	7 Experimental Evaluation
	7.1 Test Setting
	7.2 Cardinality Estimation of Conjunctive Queries
	7.3 Cardinality Estimation of Complex Queries
	7.4 End-to-End Experiments
	7.5 Comparison with NeuroCard

	8 Conclusion
	Acknowledgments
	References
	A Proof of Theorem 5.5
	B Proof of Theorem 5.9

