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Abstract

In turbulence applications, strongly imposed no-slip conditions often lead to inaccurate
mean flow quantities for coarse boundary-layer meshes. To circumvent this shortcoming,
weakly imposed Dirichlet boundary conditions for fluid dynamics were recently introduced
in [8]. In the present work, we propose a modification of the original weak boundary condi-
tion formulation that consistently incorporates the well-known “law of the wall”. To com-
pare the different methods, we conduct numerical experiments for turbulent channel flow
at Reynolds number 395 and 950. In the limit of vanishing mesh size in the wall-normal
direction, the weak boundary condition acts like a strong boundary condition. Accordingly,
strong and weak boundary conditions give essentially identical results on meshes that are
stretched to better capture boundary layers. However, on uniform meshes that are incapable
of resolving boundary layers, weakly imposed boundary conditions deliver significantly
more accurate mean flow quantities than their strong counterparts. Hence, weakly imposed
boundary conditions present a robust technique for flows of industrial interest, where op-
timal mesh design is usually not feasible and resolving boundary layers is prohibitively
expensive. Our numerical results show that the formulation that incorporates the law of the
wall yields an improvement over the original method.
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1 Introduction

In computational fluid dynamics formulations that employ continuous representa-
tion of the fields, Dirichlet boundary conditions are typically imposed by specifying
the nodal values of the solution. This amounts to so-called “strong satisfaction” of
the boundary conditions. In flow computations, strongly imposed no-slip conditions
often lead to inaccurate mean flow quantities for insufficiently fine boundary-layer
meshes. Recently, Bazilevs and Hughes [8] proposed to satisfy Dirichlet bound-
ary conditions in a weak sense rather than strongly. To this end, the variational
equations are augmented by terms that enforce the Dirichlet conditions weakly as
Euler-Lagrange conditions. Thus, the functions representing the discrete solution
are not required to satisfy the Dirichlet conditions explicitly. It was found that for
the linear advection-diffusion equation it is precisely the weak Dirichlet bound-
ary conditions that are able to mitigate or even entirely eliminate oscillations due
to unresolved boundary layers as well as to improve the accuracy in the regions
away from the layers. Moreover, numerical results for low Reynolds number flows
computed on coarse meshes demonstrated that weak no-slip boundary conditions
provide a significant increase in accuracy over their strong counterparts.

In the present work, we revisit the weak Dirichlet condition formulation. Although
the design of the boundary condition is based on numerical rather than physical
considerations, the weak treatment seems to behave like a wall function. To exploit
this link with wall modeling, we propose a modification of the original formula-
tion that consistently incorporates the well-known “law of the wall”, an empirical
relation between the near-wall fluid velocity and the distance from the wall that
is commonly assumed to hold for a broad range of Reynolds numbers [32]. We
combine the weakly imposed boundary condition formulation with residual-based
turbulence modeling, which is a new paradigm for computing turbulent flows intro-
duced in [10, 21] and further developed in [4]. To compare the different Dirichlet
boundary condition formulations, we assess their performance on turbulent chan-
nel flows at medium-to-high Reynolds numbers. These numerical test cases are
more challenging than the ones considered previously in [8] due to the increased
Reynolds number. In the limit of vanishing mesh size in the wall-normal direc-
tion, the weak formulation acts like a strong formulation. Accordingly, strong and
weak formulations give essentially identical results on stretched meshes that are de-
signed to better resolve the boundary layer. However, on meshes that are uniform
also in the wall-normal direction, weakly imposed Dirichlet boundary conditions
deliver significantly more accurate mean flow quantities than their strong counter-
parts. This fact makes the weakly enforced boundary condition formulations at-
tractive for computing flows of industrial interest, allowing one to avoid the costly
resolution of boundary layers without compromising the accuracy of large-scale
features. We also find that the weak formulation modified to incorporate the law of
the wall provides an improvement over the original formulation. Throughout this
work, the spatial discretization makes use of the Isogeometric Analysis approach
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[5, 7, 12, 22] that is based on NURBS (Non-uniform rational B-splines). Due to the
rectangular geometry used for our numerical examples, NURBS reduce to standard
B-splines.

The paper is organized as follows. In Section 2, we describe the weak formula-
tion of the continuous problem for the incompressible Navier-Stokes equations.
We then state the discrete, residual-based variational multiscale formulation of the
problem with no-slip Dirichlet boundary conditions imposed weakly. In Section 3,
we describe the new formulation with weakly imposed boundary conditions that
incorporates the law of the wall by appropriately modifying the boundary terms of
the original weak boundary condition formulation. In Section 4, we show numeri-
cal results for an equilibrium turbulent channel flow at Reynolds numbers 395 and
950 based on friction velocity. In all cases, we use meshes with orders of magnitude
fewer grid points for our computations than the ones employed in high-fidelity Di-
rect Numerical Simulation (DNS); see [13, 29]. In Section 5, we draw conclusions.

2 Weak Imposition of Dirichlet Boundary Conditions for Incompressible Navier-
Stokes Equations

2.1 Continuous problem

We begin by considering a weak formulation of the Incompressible Navier-Stokes
equations. Let V denote the trial and weighting function spaces, which are assumed
to be the same. We also assume u = 0 on Γ and

∫
Ω p(t) dΩ = 0 for all t ∈ ]0, T [.

The variational formulation is stated as follows: Find a velocity-pressure pair,U =
{u, p} ∈ V , such that for all weighting functionsW = {w, q} ∈ V

B(W ,U) = (W ,F ) , (1)

where

B(W ,U) =

(
w,

∂u

∂t

)

Ω

− (∇w,u⊗ u)Ω + (q,∇ · u)Ω − (∇ ·w, p)Ω (2)

+ (∇sw, 2ν∇su)Ω ,

and

(W ,F ) = (w,f)Ω. (3)

In (2), ν is the kinematic viscosity, p is the actual pressure divided by the fluid
density, and f is the body force.

Variational equations (1)-(3) imply satisfaction of the linear momentum equations
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and of the incompressibility constraint, namely

L(u, p)− f = 0 in Ω, (4)
∇ · u = 0 in Ω, (5)

where

L(u, p) =
∂u

∂t
+∇ · (u⊗ u) +∇p−∇ · (2ν∇su). (6)

We also introduce the “advective” form of the above operator

Ladv(u, p) =
∂u

∂t
+ u · ∇u+∇p− ν∆u , (7)

which is obtained from (6) by using the incompressibility constraint in the advective
term and in the viscous stress term.

2.2 Discrete formulation

Below, we recall the discrete variational formulation of the incompressible Navier-
Stokes equations with weakly imposed Dirichlet boundary conditions; see also [8].

Let Ω be decomposed into nel elements, which induces the decomposition of Γ into
neb boundary faces. We approximate (1)-(3) by the following variational problem
over the finite-element spaces: Find U h = {uh, ph} ∈ Vh, uh · n = 0 on Γ such
that ∀W h = {wh, qh} ∈ Vh, wh · n = 0 on Γ,

B(W h,Uh)− (wh,f)Ω (8)

+
nel∑

e=1

({uh · ∇wh +∇qh}τM ,Ladv(uh, ph)− f)Ωe

+
nel∑

e=1

({uh · (∇wh)T}τM ,Ladv(uh, ph)− f)Ωe

−
nel∑

e=1

(∇wh, τM{Ladv(uh, ph)− f} ⊗ τM{Ladv(uh, ph)− f})Ωe

+
nel∑

e=1

(∇ ·wh, τC∇ · uh)Ωe

−
neb∑

b=1

(wh, 2ν∇suh · n)Γb∩Γ

−
neb∑

b=1

(2ν∇swh · n,uh − 0)Γb∩Γ

+
neb∑

b=1

(whC
I
b ν

hb
,uh − 0)Γb∩Γ = 0 ,
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with the following definitions

τM := (
Ct

∆t2
+ uh ·Guh + CIν

2G : G)−1/2, (9)

and

τC := (g · τMg)−1 , (10)

whereG is a second-rank metric tensor

G =

(
∂ξ

∂x

)T
∂ξ

∂x
, (11)

∂ξ
∂x is the inverse Jacobian of the element mapping between the parent and the

physical domain, and g is a vector obtained by summing ∂ξ
∂x on its first index as

g = (g)i =
d∑

j=1

(
∂ξ

∂x

)

ji

. (12)

Moreover, in (8)-(9), hb is the wall-normal element mesh-size defined as

hb = 2
(
nTGn

)−1/2
, (13)

where n is a unit outward normal vector to the fluid domain boundary, and C b
I , Ct

and CI are positive constants. Note that for rectangular meshes equation (13) gives
the element length in the wall-normal direction.

Remarks

(1) The above formulation is a Residual-based Variational Multiscale Method for
incompressible Navier-Stokes equations (see e.g. [4, 10, 21]) that is based on
the variational multiscale methodology (VMS); see, e.g., [14, 17–20, 23]. In
VMS, an a-priori decomposition of the trial and weighting function spaces
into coarse and fine scales is employed. While the coarse scales are identified
with the numerical approximation, the fine scales are associated with subgrid
scales and thus need to be modeled. Here, a residual-based model is used for
representing the fine scales. In particular, the fine scales are assumed to be
proportional to the residuals of the large-scale equations with the proportion-
ality factors τM and τC . Thus, the modeling is confined to the definition of
the fine scales only. τM is designed by asymptotic scaling (see [3]) developed
within the theory of stabilized methods (see, e.g., [9, 16, 30, 33]). The def-
inition of τC derives from the fine-scale Schur complement operator for the
pressure (see [4] for details). Thus, the residual-based methods possess a dual
nature: on the one hand they are bona-fide LES-like turbulence models, and
on the other hand they may be thought of as stabilized methods extended to
the nonlinear realm.
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(2) The last three terms of (8) pertain to the weak enforcement of the no-slip
condition, as presented in [8], inspired by the SIPG Discontinuous Galerkin
method [34]. The third-to-last term in (8) is the so-called consistency term:
When deriving the Euler-Lagrange equations corresponding to (8), integration-
by-parts yields a term that is cancelled by the consistency term. The second-to-
last term in (8) is the so-called adjoint-consistency term: If the exact solution
of the adjoint problem is inserted into equation (8) in place of the test function,
(8) is satisfied identically; see [2] for details on adjoint consistency. The last
term of (8) penalizes the deviation of the discrete solution from the Dirichlet
boundary condition.

(3) We choose to enforce the normal component of the no-slip boundary condi-
tion, that is, the no-penetration condition, strongly on the trial and weighting
function spaces.

(4) In the case of strongly imposed no-slip conditions, the last three terms of (8)
vanish.

3 Weakly Imposed No-Slip Dirichlet Boundary Conditions Based on a Wall
Function Formulation

In this section, we revisit weakly imposed Dirichlet boundary conditions and pro-
pose a modification of the original formulation presented in the previous section.
This modification draws on the knowledge of the fluid behavior in the vicinity of
the wall in the regime of fully developed turbulence. In what follows, we reformu-
late the weakly imposed Dirichlet condition in a way that is consistent with the idea
of wall modeling.

In engineering practice it is often of interest to accurately resolve large-scale flow
features rather than fine-scale components. It is typically not the detailed features
of the boundary-layer turbulence that are relevant for the application, but their ef-
fect on the overall flow behavior. This fact can be accounted for by wall modeling,
in which the no-slip Dirichlet boundary condition is replaced by a traction Neu-
mann boundary condition; see for example [28, p. 47]. A wall-shear-stress bound-
ary condition is typically specified by adding the following term to the variational
formulation

neb∑

b=1

(wh, u∗2
uh

||uh||)Γb∩Γ , (14)

where u∗2 and uh
||uh|| are the magnitude and the direction of the applied traction

vector, respectively, and || · || denotes the Euclidean length. The magnitude of the
wall shear stress u∗2 is consistent with the so-called “law of the wall”. This “law”
is an empirical relation between the mean fluid speed and the normal distance to
the wall. Among the many available parameterizations we employ the one given by
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Spalding [32]

y+ = f(u+) = u+ + e−χB
(
eχu

+ − 1− χu+ − (χu+)
2

2
− (χu+)

3

6

)
, (15a)

where y+ and u+ denote the distance from the wall and the mean fluid speed, re-
spectively, expressed in non-dimensional wall units as

y+ :=
yu∗

ν
, (15b)

u+ :=
||uh||
u∗

. (15c)

In equations (15b) and (15c), u∗ is the friction velocity, y is the vertical distance to
the wall,uh is the velocity parallel to the wall, and χ = 0.4 andB = 5.5. Spalding’s
parameterization of the turbulent boundary layer (15a) is valid over the entire range
of y+, from the viscous sublayer all the way to the end of the logarithmic layer.

Upon rearranging terms in (14), and dropping the sum over the element boundaries
for brevity, the “penalty” structure of (14) becomes apparent, that is

(
wh, u∗2

uh

||uh||

)

Γb∩Γ

=

(
wh

[
u∗2

||uh||

]
,uh − 0

)

Γb∩Γ

=
(
whτB,u

h − 0
)

Γb∩Γ
,

(16)
with

τB :=
u∗2

||uh|| (17)

acting as a penalty parameter. Based on this observation, we propose to mod-
ify the original weak boundary condition formulation (8) as follows: Find U h =
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{uh, ph} ∈ Vh, uh·n = 0 on Γ such that ∀W h = {wh, qh} ∈ Vh, wh·n = 0 on Γ,

B(W h,Uh)− (wh,f)Ω (18)

+
nel∑

e=1

({uh · ∇wh +∇qh}τM ,Ladv(uh, ph)− f)Ωe

+
nel∑

e=1

({uh · (∇wh)T}τM ,Ladv(uh, ph)− f)Ωe

−
nel∑

e=1

(∇wh, τM{Ladv(uh, ph)− f} ⊗ τM{Ladv(uh, ph)− f})Ωe

+
nel∑

e=1

(∇ ·wh, τC∇ · uh)Ωe

−
neb∑

b=1

(wh, 2ν∇suh · n)Γb∩Γ

−
neb∑

b=1

(2ν∇swh · n,uh − 0)Γb∩Γ

+
neb∑

b=1

(whτB,u
h − 0)Γb∩Γ = 0 .

Variational equation (18) differs from (8) only in the last term on the left-hand side,
and it may be thought of as a generalization of (8). Selecting y to be proportional
to the wall-normal mesh size hb, that is, y = hb/C

I
b , and letting hb go to zero, the

Spalding equation (15a) reduces to y+ = u+, which is a well-known parameter-
ization of the viscous sublayer. In this limit, τB becomes independent of the slip
velocity uh and takes on the expression

τB =
ν

y
=
νCI

b

hb
. (19)

Thus, we recover the original weak formulation (8). This, in turn, implies that the
formulation (18) inherits all the attributes of the original formulation (8) in this
limit. Conversely, when the mesh size hb is large, τB deviates from (19).

Algorithm 1 outlines a Newton procedure to determine τB from given uh, hb and
ν in accordance with the law-of-the-wall equation (15a). This procedure is local
to each boundary-face integration point and, therefore, the cost associated with this
algorithm is only a small fraction of the overall computational expense. Expression
(19) with y = hb/C

I
b is used to initialize τB . In case uh, hb and ν correspond to

the viscous sublayer, the law-of-the-wall equation (15a) is satisfied by the initial
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values, and no iteration is necessary. Algorithm 1 makes use of the Jacobian

∂r

∂τB
=

hb
2νCI

b

τ
−1/2
B,i ||uh||1/2 (20)

+

(
1 + χe−χB

(
eχu

+ − 1− χu+ − (χu+)2

2

))
τ
−3/2
B,i

2
||uh||1/2 ,

where r := y+ − f(u+) is the residual of the Spalding equation (15a).

Alg. 1: Algorithm for computing τB .

1. Initialize iteration counter: i = 0
2. Initialize τB,i = CI

b
ν
hb

3. y+
i = u+

i = τ
−1/2
B,i ||uh||1/2

4. ri = y+
i − f(u+

i )
5. While (|ri| > TOL) Do
6. Build Jacobian: ∂r

∂τB
|i according to (20)

7. Solve for increment: ∆τB,i+1 = −
(
∂r
∂τB
|i
)−1

ri
8. Update: τB,i+1 = τB,i + ∆τB,i+1

9. y+
i+1 = hb

νCI
b
τ

1/2
B,i+1||uh||1/2

10. u+
i+1 = τ

−1/2
B,i+1||uh||1/2

11. ri+1 = y+
i+1 − f(u+

i+1)
12. i = i+ 1
13. Enddo

4 Numerical experiments for turbulent channel flow

4.1 Problem setup

To investigate the performance of the weak boundary condition formulations, we
conduct numerical experiments for turbulent channel flow at Reynolds numbers
Reτ = 395 andReτ = 950, withReτ based on the friction velocity and the channel
half width. We compare the results with the formulation that imposes the no-slip
condition strongly. To assess the accuracy of our methods, we compare our results
to the DNS results of [29] for Reτ = 395 and [13] for Reτ = 950.

The problem setup is shown in Figure 1. The flow is driven by a pressure gradient in
the stream-wise direction. At the computational domain boundary, periodic bound-
ary conditions are imposed in both stream-wise and span-wise directions, whereas a
homogeneous Dirichlet boundary condition is applied in the wall-normal direction.
Stream-wise and span-wise directions are commonly referred to as homogeneous
directions.
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      Wall

Flow driven by pressure gradient

Fig. 1. Setup of turbulent channel flow problem.

For the spatial discretization we employ NURBS-based isogeometric analysis [22].
Our basis is comprised of quadratic B-spline functions that are C1-continuous at
knots. This is in contract to standard quadratic finite-element functions that are
only C0-continuous across element boundaries. In recent studies we have found the
NURBS discretization to be superior to standard finite elements on a per-degree-of-
freedom basis for phenomena involving convection and diffusion, such as turbulent
flow; see [1, 6, 12]. We also would like to point out that B-spline functions have
been used for turbulence computations previously by [25–27, 31].

We employ meshes that are uniform in all directions and place the first knot in the
wall-normal direction at the very beginning of the logarithmic layer. For compar-
ison we also use meshes that are stretched in the wall-normal direction to cluster
points near the boundary layer. The stretching is obtained by distributing the knots
according to a hyperbolic tangent function such that the first knot lies at y+ ≈ 1.3,
which is typical of Large Eddy Simulation (LES) computations. Details of the com-
putational setup are shown in Table 1.

The semi-discrete equations are advanced in time using the generalized-α method
with ρ∞ = 0.5, where ρ∞ is the spectral radius of the amplification matrix as
∆t → ∞, which controls high-frequency dissipation; see [11, 15, 24]. In all cases
we use a time step of 0.025 based on the mean stream-wise flow velocity of unity.
Moreover, we set Ct = 4, CI = 36 and CI

b = 4.

As initial condition we use a randomly perturbed Poiseuille flow profile. We per-
form time-integration until a statistically stationary, fully developed turbulent flow
is reached. Further time-integration is carried out to collect statistics of the flow.
Defining as a “flow-through” the time that it takes for a fluid particle to traverse the
length of the channel, we collect data over ten flow-throughs, sampling twice per
flow-through. Numerical results for all cases are reported in the form of statistics
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of the mean velocity and root-mean-square of the velocity fluctuations. Statistics
are computed by sampling the velocity field at the mesh knots and averaging the
solution in time as well as in the stream-wise and span-wise directions. The mean
velocity is typically referred to as the primary statistic, while the fluctuations are
called secondary statistics. It is generally acknowledged that accuracy of the fluc-
tuations is more difficult to achieve than accuracy of the mean velocity. Results are
presented in non-dimensional wall units.

Table 1
Details of the computational setup. Lx,y,z denotes the length of the channel in the stream-
wise, wall-normal and span-wise direction, Nel is the number of elements in the domain,
Nx,y,z is the number of basis functions in the stream-wise, wall-normal and span-wise
direction, fx is the forcing in the stream-wise direction, and ν denotes kinematic viscosity.

Lx Ly Lz Nel Nx Ny Nz fx ν

Re = 395 2π 2 2
3π 323 32 34 32 3.372040 · 10−3 1.47200 · 10−4

Re = 950 4π 2 4
3π 643 64 66 64 2.630991 · 10−3 0.53992 · 10−4

4.2 Turbulent channel flow at Reτ = 395

Our computations are carried out on a mesh of 323 elements. This discretization
gives 32 basis functions in the homogeneous directions and 34 basis functions in
the wall-normal direction due to the open knot vector construction (see [22] for
details). In terms of the number of degrees-of-freedom, this type of resolution is
typical of LES at Reynolds number 395. The domain size is 2π, 2, and 2/3π in
the stream-wise, wall-normal, and span-wise directions, respectively. The corre-
sponding DNS computation was carried out on a domain of the size 2π × 2 × π,
and the discretization used 256× 193× 192 spectral functions in the stream-wise,
wall-normal and span-wise direction, respectively.

Figures 2 and 3 show statistics of the computations on the stretched and uniform
meshes, respectively.

On the stretched mesh, both the mean flow and the fluctuations are in very good
agreement with the DNS (see Figure 2). In fact, the quality of the results is virtually
that of an accurate spectral LES computation (see [19]), although simple quadratic
spline functions with local support are used instead of spectral basis functions.
Results obtained with strongly and weakly imposed no-slip conditions practically
coincide, which is consistent with the fact that the weak boundary condition for-
mulation reduces to the strong one in the limit of vanishing mesh size. The newly
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Fig. 2. Turbulent channel flow at Reτ = 395 computed on a stretched mesh. Formulation
with no-slip boundary conditions enforced strongly (Strong), weakly according to original
methodology (8) (Orig. Weak), and weakly based on the wall function (18) (Weak (Wall)).

proposed formulation that incorporates wall modeling gives slightly more accurate
stream-wise velocity fluctuations than the other formulations.

In contrast, on the uniform mesh, the methods perform differently (see Figure 3).
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Fig. 3. Turbulent channel flow at Reτ = 395 computed on a uniform mesh. Formulation
with no-slip boundary conditions enforced strongly (Strong), weakly according to original
methodology (8) (Orig. Weak), and weakly based on the wall function (18) (Weak(Wall)).

Using 32 equispaced elements in the wall normal direction places the first knot at
y+ ≈ 23. Thus, we intentionally sacrifice the resolution of the boundary layer. This
leads to a gross overestimation of the mean flow for the strongly enforced Dirichlet
boundary condition formulation. Note that, on the other hand, the mean velocity
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for both weak formulations agrees very well with the DNS result. This shows that
weak boundary conditions are capable of alleviating the gross inaccuracy induced
by insufficient near-wall resolution. This superior robustness despite “poor” mesh
design makes the new method attractive for industrial applications. We also note
that the wall function formulation is slightly more accurate for mean flow velocity
than the original weak boundary condition formulation. Despite the large differ-
ence in the mean flow, the secondary statistics in the core of the channel for the
uniform mesh cases are very similar for all formulations considered. In the near
wall region, the differences in the fluctuations obtained with the various methods
are more pronounced.

Comparing the results obtained on stretched and on uniform meshes, we observe
that the secondary statistics for the uniform mesh simulations are not quite as ac-
curate as those for the stretched grid case, although the quality of the results is
still good. One may thus conclude that in the core of the channel the effect of the
mesh design on the fluctuations is more pronounced than the effect of the boundary
conditions.

Figure 4 shows the stream-wise velocity contours at an instant in time, computed
on a uniform mesh with weak boundary conditions employing the wall function
formulation. Note the presence of velocity fluctuations of considerable magnitude
at the “no-slip” wall (see top surface of the box).

Fig. 4. Turbulent channel flow at Reτ = 395. Snapshot of stream-wise velocity contours.
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4.3 Turbulent channel flow at Reτ = 950

For the computations at Reτ = 950, a mesh of 643 elements is used with 64
basis functions in the homogeneous directions and 66 basis function in the wall-
normal direction due to the open knot vector construction. The domain size is 4π,
2, and 4/3π in the stream-wise, wall-normal and span-wise directions, respectively.
The corresponding DNS used a domain size of 8π × 2 × 3π with a resolution of
3072 × 385 × 2304 spectral functions in the stream-wise, wall-normal and span-
wise directions. Note that our resolution per unit domain length is a factor of about
24 coarser in the stream-wise direction, a factor of 6 coarser in the wall-normal
direction, and a factor of 16 coarser in the span-wise direction. Hence, the adopted
discretization is significantly coarser than what is typically used for an LES-type
computation.

Figures 5 and 6 show statistics of the computations on stretched and uniform meshes,
respectively.

On a stretched mesh, the differences between the weak and the strong boundary-
condition formulations are negligible due to the small near-wall mesh size in the
wall-normal direction (see Figure 5). All methods fail to accurately represent the
mean flow velocity. Moreover, the stream-wise velocity fluctuations are inaccurate
in the near-wall region but are quite accurate in the core of the channel. The ve-
locity fluctuations in the remaining directions are in very good agreement with the
DNS. The good agreement of the velocity fluctuations with the DNS despite the
discrepancy in the mean flow velocity is somewhat surprising. The inability to ac-
curately capture the mean velocity illustrates the limitations of the strong boundary-
condition method for high Reynolds number wall-bounded flows.

On the uniform mesh, with the first knot at y+ ≈ 30, the strong boundary condition
formulation gives an even greater over-prediction of the mean velocity than for
the stretched mesh computations; compare Figures 5 and 6. In contrast, both weak
boundary-condition formulations deliver a result of reasonable accuracy for such
a coarse discretization, similar to the case of Reτ = 395. The mean flow is only
slightly over-predicted when compared to the DNS. Also note that the uniform
discretization does not exhibit as severe an overshoot in the stream-wise velocity
fluctuations near the wall as for the stretched mesh. However, away from the wall,
the fluctuations are slightly less accurate on the uniform mesh than on the stretched
mesh. This is consistent with the results for the Reτ = 395 case.

Figure 7 shows the stream-wise velocity contours at an instant in time, computed on
a uniform mesh with weak boundary conditions employing the wall function for-
mulation. Note the presence of velocity fluctuations of considerable magnitude at
the “no-slip” wall (see top surface of the box). Also note that the turbulent structures
for the Reτ = 950 channel are more fine-grained than the ones for the Reτ = 395
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Fig. 5. Turbulent channel flow at Reτ = 950 computed on a stretched mesh. Formulation
with no-slip boundary conditions enforced strongly (Strong), weakly according to original
methodology (8) (Orig. Weak), and weakly based on the wall function (18) (Weak (Wall)).

channel due to the increased Reynolds number (compare Figures 4 and 7).
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Fig. 6. Turbulent channel flow at Reτ = 950 computed on a uniform mesh. Formulation
with no-slip boundary conditions enforced strongly (Strong), weakly according to original
methodology (8) (Orig. Weak), and weakly based on the wall function (18) (Weak (Wall)).

5 Conclusions

In this work, we proposed a new variational formulation of the incompressible
Navier-Stokes equations that enforces Dirichlet no-slip boundary conditions weakly.
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Fig. 7. Turbulent channel flow at Reτ = 950. Snapshot of stream-wise velocity contours.

Motivated by the observation that weak imposition of Dirichlet boundary condi-
tions generally seems to behave like a wall function, the proposed formulation is
based on the so-called law of the wall. We combined the weak boundary condi-
tion formulation with residual-based turbulence modeling. We compared the per-
formance of the different boundary condition formulations based on numerical re-
sults for turbulent channel flow at medium-to-high Reynolds number. We found
that the weakly imposed boundary condition formulation that incorporates the law
of the wall provides an improvement over the original weak boundary condition
formulation. In the limit of vanishing mesh size in the wall-normal direction, both
weak boundary condition formulations act like a strong formulation. Accordingly,
weak and strong boundary condition formulations give essentially identical results
on stretched meshes that are designed to better capture the boundary layer. How-
ever, on coarse, uniform meshes, weakly imposed boundary conditions deliver a
significantly more accurate mean flow velocity than their strong counterpart. In
this respect, the combination of residual-based turbulence modeling and weak im-
position of the no-slip condition acts like a RANS-type model in the sense that
it produces accurate mean flow quantities on meshes that are too coarse for con-
ventional LES simulations. This result makes weakly imposed Dirichlet boundary
condition formulations attractive for computing flows of industrial interest, avoid-
ing the costly resolution of boundary layers without compromising the accuracy of
large-scale flow features. Given that the weak boundary condition formulation be-
haves like its strong counterpart on fine meshes and delivers superior accuracy on
coarse meshes, this suggests the use of this method as a general strategy for enforc-
ing wall boundary conditions in finite-element flow computations. The additional
cost due to weak enforcement of the boundary conditions is negligible because the
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corresponding integrals are evaluated only over the Dirichlet portion of the domain
boundary.

Regarding the role of weak versus strong boundary condition formulation in the
context of residual-based turbulence modeling, our results for the Reτ = 395
channel flow show that the residual-based formulation with standard strongly im-
posed boundary conditions gives remarkably accurate results for a well designed,
stretched mesh with a resolution that is typical of LES. However, for flows at higher
Reynolds number, such as Reτ = 950 computed on a stretched mesh with a reso-
lution corresponding to coarse LES / fine RANS, the accuracy of the stand-alone
residual-based approach deteriorates. The lack of accuracy in predicting the mean
flow velocity derives from the inability to resolve the turbulent-boundary-layer flow
structures on a mesh that is insufficiently fine. Our results demonstrate that this dif-
ficulty can be elegantly circumvented by combining the residual-based formulation
with a weakly enforced no-slip boundary condition.
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