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Abstract

We study the non-linear extension of integer programming with greatest common divisor constraints of the
form gcd(f, g) ∼ d, where f and g are linear polynomials, d is a positive integer, and ∼ is a relation among
≤,=, 6= and ≥. We show that the feasibility problem for these systems is in NP, and that an optimal solution
minimizing a linear objective function, if it exists, has polynomial bit length. To show these results, we identify
an expressive fragment of the existential theory of the integers with addition and divisibility that admits
solutions of polynomial bit length. It was shown by Lipshitz [Trans. Am. Math. Soc., 235, pp. 271–283, 1978]
that this theory adheres to a local-to-global principle in the following sense: a formula Φ is equi-satisfiable
with a formula Ψ in this theory such that Ψ has a solution if and only if Ψ has a solution modulo every
prime p. We show that in our fragment, only a polynomial number of primes of polynomial bit length need
to be considered, and that the solutions modulo prime numbers can be combined to yield a solution to Φ of
polynomial bit length. As a technical by-product, we establish a Chinese-remainder-type theorem for systems
of congruences and non-congruences showing that solution sizes do not depend on the magnitude of the moduli
of non-congruences.
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1 Background and overview of main results
Integer programming, the problem of finding an (optimal) solution over the integers to a system of linear
inequalities A · x ≤ b, is a central problem in computer science and operations research. Feasibility of its
0-1 variant constituted one of Karp’s 21 seminal NP-complete problems [11]. In the 1970s, membership of the
unrestricted problem in NP was established independently by Borosh and Treybig [3], and von zur Gathen and
Sieveking [26]. To show membership in NP, both groups of authors established a small witness property: if an
instance of integer programming is feasible then there is a solution whose bit length is polynomially bounded in
the size of the instance. Reductions to integer programming have become a standard tool to show membership
of numerous problems in NP. In this paper, we study a non-linear generalization of integer programming which
additionally allows to constrain the numerical value of the greatest common divisor (GCD) of two linear terms.

Throughout this paper, denote by R the set of real numbers, by Z the set of integers, by N the set
of non-negative integers including zero, and by P the set of all prime numbers. For R ⊆ R, we define
R+ := {r ∈ R : r > 0}. We always assume numbers to be given in binary encoding. Formally, an instance
of integer programming with GCD constraints (IP-GCD) is a mathematical program of the following form:

minimize cᵀx

subject to A · x ≤ b
gcd(fi(x), gi(x)) ∼i di, 1 ≤ i ≤ k ,

where c ∈ Zn, A ∈ Zm×n, b ∈ Zm, di ∈ Z+, x = (x1, . . . , xn) is a vector of unknowns ranging over Z, the fi
and gi are linear polynomials (i.e., polynomials of degree 1) with integer coefficients, and ∼i ∈ {≤,=, 6=, ≥}. We
call a ∈ Zn a solution if setting x = a respects all constraints. Moreover, a is an optimal solution if the value
of cᵀa is minimal among all solutions. We will first and foremost focus on the feasibility problem of IP-GCD
and discuss finding optimal solutions later on in this paper. The main result of this paper is to establish a small
witness property for IP-GCD and consequently membership in NP for the related decision problem.

Theorem 1.1. If an instance of IP-GCD is feasible then it has a solution (and an optimal solution, if one exists)
of polynomial bit length. Hence, IP-GCD feasibility is NP-complete.

The IP-GCD feasibility problem is NP-hard even for a single variable, in contrast to classical integer programming,
which is polynomial-time decidable for any fixed number of variables [10]. It is shown in [1, Theorem 5.5.7] that
deciding a univariate system of non-congruences x 6≡ ai (mod mi), 1 ≤ i ≤ k, is an NP-hard problem. Hardness
of IP-GCD then follows from observing that x 6≡ a (mod m) is equivalent to the constraint gcd(x− a,m) 6= m.

1.1 The NP upper bound at a glance. Even decidability of the IP-GCD feasibility problem is far from
obvious, but can be approached by observing that deciding a GCD constraint is a “Diophantine problem ‘in
disguise’ ” [12]. It follows from Bézout’s identity that gcd(x, y) = d if and only if there are a, b, u, v ∈ Z
such that u · d = x, v · d = y, and d = a · x + b · y. While arbitrary systems of quadratic Diophantine
equations are undecidable [17], we see that the unknowns a, b, u, v are only used to express divisibility properties.
Hence, those equations can equivalently be expressed in the existential (first-order) theory of the structure
Ldiv = (Z, 0, 1,+,≤, |), where m | n holds whenever there exists a unique1 integer q such that n = q ·m:

(∃u, v, a, b : u · d = x ∧ v · d = y ∧ d = a · x+ b · y ) ⇐⇒ (∃s∃t : d | x ∧ d | y ∧ x | s ∧ y | t ∧ d = s+ t ).

We remind the reader that the existential theory of a structure L corresponds to the fragment of the first-
order theory of L made of those formulae in which every existential quantification occurs under the scope of
an even number of negations. The full first-order theory of Ldiv is easily seen to be undecidable [18]. However,
decidability of its existential theory was independently shown by Lipshitz [15, 16] and Bel’tyukov [2], and later also
studied by van den Dries and Wilkie [24], Lechner, Ouaknine and Worrell [13], and Starchak [22, 23]. The precise
complexity of this theory is a long-standing open problem. It is known to be NP-complete (and have a polynomial
small witness property) for a fixed number of variables or a fixed number of divisibility constraints [16, 13], and

1This definition implies that 0 | n does not hold for any n ∈ Z, 0 included. Throughout this paper, we assume wlog. that f 6= 0

for any divisibility f | g. For GCD, we instead use the standard interpretation where gcd(0, n) = n for any n ∈ N; this mismatch
between the interpretation of divisibility and GCD is for technical convenience only.



membership in NEXP has only more recently been established [13]. In particular, for arbitrary number of variables
and of divisibility constraints, the bit length of smallest solutions can be exponential [13], as demonstrated
by the family of formulae Φn := xn > 1 ∧

∧n−1
i=0 (xi > 1 ∧ xi | xi+1 ∧ xi + 1 | xi+1), for which any solution

satisfies xn ≥ 22n . From those results, it is possible to derive that IP-GCD feasibility is decidable in NEXP.
However, IP-GCD does not require the full expressive power of Ldiv. In fact, the existential theory of Ldiv

can be seen to be equivalent to the existential theory of (Z, 0, 1,+,≤, gcd) in which the divisibility predicate
is replaced by a full ternary relation gcd(x, y) = z. In contrast, IP-GCD only requires countably many binary
predicates (gcd(·, ·) = d)d∈Z+ and (gcd(·, ·) ≥ d)d∈Z+ with the obvious interpretation. Several expressiveness
results concerning (fragments of) the existential theory of the structure (Z, 0, 1,+,≤, (gcd(·, ·) = d)d∈Z+

) have
recently been provided by Starchak [21]. The question of whether this theory admits solutions of polynomial bit
length is explicitly stated as open in [21]. Theorem 1.1 answers this question positively.

Our starting point for establishing Theorem 1.1 is Lipshitz’ [15, 16] decision procedure for the existential
theory of Ldiv that was later refined by Lechner et al. in [13]. Given a system of divisibility constraints
Φ(x) :=

∧m
i=1 fi(x) | gi(x) for linear polynomials fi and gi, Lipshitz’ algorithm first computes from Φ an equi-

satisfiable formula Ψ in so-called increasing form. Informally speaking, Ψ is in increasing form whenever it is a
system of divisibility constraints augmented with constraints imposing a total (semantic) ordering on the values
of the variables in Ψ, and whenever the largest variable with respect to that ordering occurring in any non-trivial
divisibility f | g implied by Ψ only appears in the right-hand side g. For instance, the system x < y∧x+ 1 | y− 2
is in increasing form, but adding x+ 1 | x+ y results in a non-increasing system, since x+ 1 | y− 2 ∧ x+ 1 | x+ y
implies x+ 1 | x+ y− (y− 2), i.e., x+ 1 | x+ 2. Such implied divisibilities are captured in [13] by the notion of a
divisibility module that we later formalize in Section 1.3. One conceptual contribution of this paper is to identify a
weaker notion of increasing form that is syntactic in nature, as it does not explicitly enforce a particular ordering
among the values assigned to variables. Informally speaking, a system of divisibility constraints Ψ is r-increasing
whenever there exists a partial order ≺ over the free variables of Ψ whose longest chain is of length at most r− 1,
and for any non-trivial divisibility f | g implied by Ψ, the set of variables occurring in f | g has a ≺-maximal
variable that only appears in the right-hand side g. Referring to the previous example, we observe that x+1 | y−2
is 2-increasing, witnessed by the (total) order x ≺ y. This concept is fundamental for establishing Theorem 1.1,
since, as we discuss below, for fixed r, any satisfiable r-increasing formula Ψ from the existential theory of Ldiv

has a smallest solution of polynomial bit length, and formulae resulting from IP-GCD instances are 3-increasing.
Returning to Lipshitz’ approach, the key observation on the family of existential Ldiv formulae in increasing

form is that they enjoy a local-to-global property: Lipshitz shows that any Φ in increasing form has a solution
over Z if and only if Φ has a solution in the p-adic integers Zp for every prime p belonging to a finite set of difficult
primes P+(Φ), the other primes being “easy” in the sense that a p-adic solution for them always exists and that
they do not influence the bit length of the minimal solution of Φ. In order to combine the p-adic solutions to an
integer solution of Φ, Lipshitz invokes (a generalized version of) the Chinese Remainder Theorem (CRT):

Theorem 1.2. (CRT) Let M = {m1, . . . ,mk} ⊆ Z and b1, . . . , bk ∈ Z be such that mi and mj are coprime for
all 1 ≤ i 6= j ≤ k. The system of simultaneous congruences x ≡ bi mod mi, 1 ≤ i ≤ k, has a solution, and all
solutions lie on the shifted lattice a+ Z ·ΠM for some a ∈ Z.

Here and below, we denote by ΠM the product of all elements in a finite set M ⊆ Z. For a finite set S, we
write #S for its cardinality, and, given a, b ∈ Z, we define [a, b] := {a, a + 1, . . . , b}. From the CRT it follows
that the smallest non-negative solution of a univariate system of congruences is bounded by the product of all
moduli in the system. As a key technical contribution, required to establish Theorem 1.1, we develop the following
Chinese-remainder-style theorem that includes additional non-congruences and yields a bound for the smallest
solution that is, in certain settings, substantially better than the one achieved by the CRT.

Theorem 1.3. Let d ∈ Z+, M ⊆ Z+ finite, and Q ⊆ P be a non-empty finite set of primes such that the elements
of M ∪ Q are pairwise coprime, M ∩ Q = ∅, and min(Q) > d. Consider the univariate system of simultaneous
congruences and non-congruences S defined by

x ≡ bm (mod m) m ∈M
x 6≡ cq,i (mod q) q ∈ Q, 1 ≤ i ≤ d .

For every k ∈ Z, S has a solution in [k, k + ΠM · f(Q, d)], where f(Q, d) :=
(
(d+ 1) ·#Q

)4(d+1)2(3+ln ln(#Q+1))
.



The strength of Theorem 1.3 can be seen as follows. While it is possible to deduce from the classical CRT that
the solutions of S are periodic with period ΠQ · ΠM , we have ΠQ� f(Q, d) as the magnitude of the primes in
Q grows, as in particular f(Q, d) only depends on #Q and d. We further discuss some results used to establish
Theorem 1.3 in Section 1.2 below.

Another key technical contribution towards establishing Theorem 1.1 is to propose a refinement of the set of
difficult primes P+(Φ). The definition of this set was changed from [15] to [13] to decrease its bit length from
doubly to singly exponential. We refine the definition once more, obtaining a set of polynomially many primes
of polynomial bit length. This result is achieved by an in-depth analysis of how the integer solution for Φ is
constructed starting from the p-adic solutions. The bound on P+(Φ) also enables us to derive an NP algorithm
for increasing formulae. It is shown in [7] that, for every p ∈ P given in binary as part of the input, the feasibility
problem for formulae of the existential theory of the p-adic integers with linear p-adic valuation constraints is
in NP. Deciding an increasing Φ thus reduces to a polynomial number of independent queries to an NP algorithm
and is hence in NP. It is worth mentioning that the family of formulae Φn above is increasing only for the ordering
x1 ≺ x2 ≺ · · · ≺ xn (i.e., it is n-increasing but not (n − 1)-increasing). Hence, even though the smallest solution
of Φn has exponential bit length, our bound on P+(Φ) enables us to witness the existence of a solution in NP.

Moreover, this bound leads to a further main result of this paper, showing that we can construct an integer
solution for Φ from the relevant p-adic solutions that is asymptotically smaller when compared to the existing
local-to-global approaches [15, 13]. These improved bounds also crucially rely on Theorem 1.3. To formally state
this result, we require some further definitions. Given v ∈ Zd, denote by ||v|| the maximum absolute value of
the components of v, and by 〈·〉 the bit length of an object under some reasonable standard encoding in which
numbers are given in binary (see Section 3 for the formal definition). Furthermore, for a system of divisibility
constraints Φ :=

∧m
i=1 fi | gi in d variables, denote by P(Φ) the set of all primes that are less than or equal to m

or that divide some number occurring in some left-hand side fi. For p ∈ P and a ∈ Z \ {0}, we write vp(a) for
the largest k ∈ N such that a = pkb for some b ∈ Z, and vp(0) := ∞. We say that Φ has a solution modulo p if
there is some bp ∈ Zd such that fi(bp) 6= 0 and vp(fi(bp)) ≤ vp(gi(bp)) for all 1 ≤ i ≤ m. Note that every integer
solution is a solution modulo p for all p ∈ P, and therefore if Φ does not have a solution modulo some prime p,
then Φ is unsatisfiable over Z. The following theorem now gives bounds on the bit length of an integer solution
of Φ in terms of solutions modulo p for primes in P(Φ).

Theorem 1.4. Let Φ(x) be an r-increasing system of divisibility constraints such that Φ has a solution bp
modulo p for every prime p ∈ P(Φ). Then, Φ has infinitely many integer solutions, and a solution a over N
such that 〈||a||〉 ≤ (〈Φ〉+ max{〈||bp||〉 : p ∈ P(Φ)})O(r).

The bound achieved in Theorem 1.4 primarily improves upon existing upper bounds by being exponential only in r,
as opposed to exponential in poly(d) as established in [13], where d is the number of variables of Φ. In particular,
for r fixed, as is the case for systems of divisibility constraints resulting from IP-GCD systems, Theorem 1.4 yields
small solutions of polynomial bit length. Observe that Theorem 1.4 does not explicitly invoke the set of difficult
primes P+(Φ), but rather the set P(Φ). The latter is the subset of those primes p in P+(Φ) for which solutions
modulo p might not exist, and one of the initial steps in the proof of Theorem 1.4 is to compute solutions modulo
q for every prime q ∈ P+(Φ) \ P(Φ). We give further details on the proof of Theorem 1.4 in Section 1.3 and then
outline in Section 1.4 how it can be used to obtain the NP upper bound for Theorem 1.1. But first, we continue
with the promised discussion on some details on Theorem 1.3.

1.2 Small solutions to systems of congruences and non-congruences. Let us introduce some notation.
We write div(a) ⊆ N for the (positive) divisors of a and P(a) for P ∩ div(a). A function m : Z+ → R+ is said to
be multiplicative if m(a · b) = m(a) ·m(b) for all a, b ∈ N coprime (note that this implies m(1) = 1).

The proof of Theorem 1.3 is based on an abstract version of Brun’s pure sieve [4]. Similarly to other results
in sieve theory, Brun’s pure sieve considers a finite set A ⊆ Z and a finite set of primes Q, and (subject to some
conditions) derives bounds on the cardinality of the set A \

⋃
q∈QAq, where Aq is the subset of the elements

in A that are divisible by q. In other words, the sieve studies the number of x ∈ A satisfying x 6≡ 0 (mod q)
for every q ∈ Q. In comparison, Theorem 1.3 requires x to be non-congruent modulo q to multiple integers,
instead of non-congruent to just 0. The key insight in overcoming this difference is to notice that Brun’s result
can be established for arbitrary sets Aq, as long as a simple independence property holds together with Brun’s
density property (a formal statement is given below). A second technical issue concerns the bounds obtained



from Brun’s sieve. In its standard formulation (see e.g. [6, Ch. 6]), given an arbitrary u ∈ Z+, the sieve gives
an estimate on the cardinality of the set A \

⋃
q∈Q∩[2,u]Aq that depends on u; and to estimate #

(
A \

⋃
q∈QAq

)
one sets u as the largest prime in Q. The resulting bound is, however, inapplicable in our setting as we seek to
be independent of the bit length of the primes in Q. This issue is overcome by revisiting the analysis of Brun’s
pure sieve from [6], and by requiring an additional hypothesis: the multiplicative function m : Z+ → R+ used to
express Brun’s density property must satisfy m(q) ≤ q− 1 for all q ∈ Q. Those insights and requirements lead us
to the following sieve.

Lemma 1.1. Let A ⊆ Z and Q ⊆ P be non-empty finite sets, and let n := ΠQ and d ∈ Z+. Consider a
multiplicative function m : Z+ → R+ satisfying m(q) ≤ q − 1 on all q ∈ Q, and an (error) function σ : N → R.
Let (Ar)r∈div(n) be a family of subsets of A satisfying the following two properties:

independence: Ar·s = Ar ∩As, for every r, s ∈ div(n) coprime, and A1 = A;

density: #Ar = #A · m(r)
r + σ(r), for every r ∈ div(n).

Assume |σ(r)| ≤ m(r) for every r ∈ div(n), and m(q) ≤ d for every q ∈ Q. Then,

1

2
·#A ·Wm(Q)− g(Q, d) ≤ #

(
A \

⋃
q∈Q

Aq

)
≤ 3

2
·#A ·Wm(Q) + g(Q, d),

where Wm(Q) :=
∏
q∈Q

(
1− m(q)

q

)
and g(Q, d) := (d ·#Q)4(d+1)2(2+ln ln(#Q+1))+2.

Note that setting Ar = {a ∈ A : r | a} for every r ∈ div(n), as usually done in sieve theory, results in a family
of subsets of A satisfying the independence property. We defer the proof of Lemma 1.1 and only sketch here how
to establish Theorem 1.3. Both proofs are given in full details in Section 2.

Proof sketch of Theorem 1.3. Below, the set of primes Q and d ∈ Z+ defined in the statement of Theorem 1.3
coincide with their homonyms in Lemma 1.1. Let n := ΠQ. By the CRT, the system of congruences ∀m ∈M ,
x ≡ bm (mod m) has a solution set SM that is a shifted lattice with period ΠM . Fix some k ∈ Z. We consider
the parametric set B(z) := [k, k + z] ∩ SM , and find a small value for z ∈ N ensuring that B(z) contains at
least one solution to S. To do so we rely on Lemma 1.1: we set A := B(z), and for every q ∈ Q, define
Aq := {a ∈ A : there is i ∈ [1, d] s.t. a ≡ cq,i (mod q)}. By definition, the sieved set A \

⋃
q∈QAq corresponds to

the set of solutions of S that belong in [k, k+z]. The definition of Aq is extended to every r ∈ div(n) not prime as
Ar := A∩

⋂
q∈P(r)Aq. We establish that these sets satisfy the independence and density properties of Lemma 1.1,

subject to the following multiplicative function: m(r) :=
∏
q∈P(r) #{cq,i mod q : i ∈ [1, d]}, i.e., m(r) is the

product of the number of distinct values (cq,i mod q), for every q ∈ P(r). By hypothesis min(Q) > d, hence
m(q) ≤ d ≤ q− 1 for every q ∈ Q. Furthermore, we show that m and the error function σ(r) := #Ar −#A · m(r)

r
satisfy the assumption |σ(r)| ≤ m(r), for all r ∈ div(n). Hence, by Lemma 1.1, we obtain a lower bound on
the sieved set A \

⋃
q∈QAq. Lastly, we show that taking z = f(Q, d) makes the lower bound strictly positive,

concluding the proof.

1.3 Small solutions to r-increasing systems of divisibility constraints. We now provide an overview
on the technical machinery underlying Theorem 1.4. Our main goal here is to formalize the notion of difficult
primes P+(Φ) and to sketch the proof of Theorem 1.4. The full proof is given in Section 3. We first need
several key definitions and auxiliary notation. Subsequently, we write Z[x1, . . . , xd] to denote the set of all
linear polynomials f(x1, . . . , xd) = a1 · x1 + · · ·+ ad · xd + c, often written as f(x) = aᵀx + c. Observe that
we are here abusing the standard notation that sees Z[x1, . . . , xd] as a polynomial ring; where polynomials
have arbitrary degrees. Throughout the paper we only consider linear polynomials, thus this abuse of notation
should not cause any confusion. When clear from the context, we omit the vector of variables x and write
f instead of f(x). The integers a1, . . . , ad are the coefficients of f , and c is its constant. The polynomial f
is primitive if it is non-zero and gcd(f) = 1, where gcd(f) := gcd(a1, . . . , ad, c). For any b ∈ Z, we write
b · f := b · aᵀx + b · c, and Zf := {b · f : b ∈ Z}. The primitive part of a polynomial g is the unique primitive
polynomial f such that g = gcd(g) · f . Let Φ(x) :=

∧m
i=1 fi(x) | gi(x) be a system of divisibility constraints.

We let terms(Φ) := {fi, gi : 1 ≤ i ≤ m}, and, given a finite sequence {(ni, xi)}i∈I of integer-variable pairs, write
Φ[ni / xi : i ∈ I] for the system obtained from Φ by evaluating xi as ni, for all i ∈ I.



Divisibility modules and r-increasing form. As stated in Section 1.1, when dealing with a system of
divisibility constraints Φ(x) one has to consider all divisibility constraints that are implied by Φ. This is done by
relying on the notion of divisibility module. The divisibility module of a primitive polynomial f with respect to Φ,
denoted by Mf (Φ), is the smallest set such that (i) f ∈ Mf (Φ); (ii) Mf (Φ) is a Z-module, i.e., Mf (Φ) is closed
under integer linear combinations; and (iii) if g | h is a divisibility constraint in Φ and b · g ∈ Mf (Φ) for some
b ∈ Z, then b · h ∈ Mf (Φ). The following property holds: for every g ∈ Mf (Φ) and solution a to Φ, the integer
f(a) divides g(a). The divisibility module Mf (Φ) is a vector subspace, hence it is spanned by linear polynomials
h1, . . . , h` ∈ Z[x1, . . . , xd], that is Mf (Φ) = Zh1 + · · ·+ Zh`; where + is the Minkowski sum.

We can now formalize the key concept of r-increasing formula. Let ≺ be a syntactic order on the variables
x = (x1, . . . , xd). To be more precise, ≺ is a total strict order on the set of variables {x1, . . . , xd}. As already
explained in Section 1.1, ≺ should not be confused with <, as in particular ≺ does not enforce constraints on the
values that can be assigned to the variables in x, and it is instead merely an order on the “lexemes” x1, . . . , xd.
Given f ∈ Z[x1, . . . , xd], we write LV≺(f) for the leading variable of f , that is the variable with non-zero coefficient
in f that is maximal wrt. ≺. If f is constant then LV≺(f) := ⊥, and we postulate ⊥ ≺ xi for every 1 ≤ i ≤ d.
We omit the subscript ≺ when it is clear from the context. A system of divisibility constraints Φ is in increasing
form (wrt. ≺) whenever Mf (Φ) ∩ Z[x1, . . . , xk] = Zf for every primitive polynomial f with LV(f) = xk, for every
1 ≤ k ≤ d. Given a partition X1, . . . , Xr of the variables x, we write (X1 ≺ · · · ≺Xr) for the set of all orders ≺
on x with the property that x≺ x′, for every x ∈ Xi and x′ ∈ Xj with i < j.

Definition 1. A system of divisibility constraints Φ(x) is r-increasing if there exists a partition X1, . . . , Xr of x
such that Φ is in increasing form wrt. every ordering ≺ in (X1 ≺ · · · ≺Xr).

Observe that, given Φ r-increasing as above, for every ≺ from (X1≺· · ·≺Xr), every primitive linear polynomial f
and every g ∈ Mf (Φ), if g 6∈ Zf then LV≺(f) ∈ Xi and LV≺(g) ∈ Xj for some i < j.

The elimination property and S-terms. To handle systems in increasing form, two more concepts are required
in the context of the local-to-global property. First, to compute the “global” integer solution starting from the
“local” solutions modulo primes, the divisibility modules of all primitive parts of polynomials in a system of
divisibility constraints Φ need to be taken into account. One way to do this, introduced in [13], is to add bases for
these modules directly to Φ. This leads to the notion of elimination property: Φ(x) has the elimination property
for the order x1 ≺ · · · ≺ xd of the variables in x whenever for every primitive part f of a polynomial appearing in
the left-hand side of some divisibility in Φ, and for every 0 ≤ k ≤ d, {g : LV(g) � xk and f | g appears in Φ} is
a set of linearly independent polynomials that forms a basis for Mf (Φ) ∩ Z[x1, . . . , xk], where x0 := ⊥. We show
that closing a formula under the elimination property can be done in polynomial time.

Lemma 1.2. There is a polynomial-time algorithm that, given a system Φ(x) :=
∧m
i=1 fi | gi of divisibility

constraints in d variables and an order x1 ≺ · · · ≺ xd for x, computes Ψ(x) :=
∧n
i=1 f

′
i | g′i with the elimination

property for ≺ that is equivalent to Φ(x), both over Z and modulo each p ∈ P.

In a nutshell, for every primitive part f of a polynomial appearing in the left-hand side of a divisibility in Φ,
the algorithm first computes a finite set S spanning Mf (Φ). The algorithm then uses the Hermite normal form
of a matrix, whose entries are the coefficients and constant of the elements of S, to obtain linearly independent
polynomials h1, . . . , h` with different leading variables with respect to ≺. The system Ψ is then obtained by
replacing divisibility constraints of the form f | g appearing in Φ with the divisibilities f | h1, . . . , f | h`. Full
details are given in Appendix C.

The second concept is related to how Theorem 1.4 is proven. In a nutshell, in the proof we iteratively assign
values to the variables in a way that guarantees the system of divisibility constraints to stay in increasing form.
To ensure this property, additional polynomials need to be considered. For an example, consider the following
system of divisibility constraints Φ in increasing form for the order u ≺ v ≺ x ≺ y ≺ z, and with the elimination
property for that order:

Φ := v | u+ x+ y ∧ v | x ∧ y + 2 | z + 1 ∧ v | z .

From the first two divisibility constraints, we have (u+y) ∈ Mv(Φ); i.e., (u−2)+(y+2) ∈ Mv(Φ). Therefore, if u
were to be instantiated as 2, the resulting formula Φ′ would satisfy (y+ 2) ∈ Mv(Φ

′) and hence (z+ 1) ∈ Mv(Φ
′),

from the third divisibility constraint. Then, 1 ∈ Mv(Φ
′) would follow from the last divisibility, violating the



constraints of the increasing form. The reason why increasingness is lost when setting u = 2 stems from the fact
that in Φ′ we have an implied divisibility v | y+ 2, where y+ 2 is a left-hand side that was not present in Mv(Φ).
We can avoid this problem by considering the polynomial u − 2 and forcing it to be non-zero. The main issue
is then to identify all such problematic polynomials, which is done with the following notion of S-terms. Less
refined versions of this notion, as considered in [15, 13], result in exponentially larger sets of polynomials.

Given polynomials f(x) and g(x) with LV(f) = xl and LV(g) = xk, we define their S-polynomial
S(f, g) := bk · f − al · g, where al and bk are coefficients of xl in f and xk in g, respectively.2 For constant f
(resp. g), i.e., LV(f) = ⊥, above al := f (resp. bk := g). Note that if f and g are non-constant and LV(f) = LV(g)
then LV(S(f, g))≺LV(f). For any X ⊆ Z[x1, . . . , xd], we define S(X) := X ∪{S(f, g) : f, g ∈ X}. Given a system
of divisibility constraints Φ with the elimination property for ≺ and a primitive polynomial f , we define the set
of S-terms for f , denoted as Sf (Φ), to be the smallest set such that (i) terms(Φ) ⊆ Sf (Φ), and (ii) if f | g occurs
in Φ and h ∈ Sf (Φ) with LV(g) = LV(h), then S(g, h) ∈ Sf (Φ). We write ∆(Φ) for the union of all sets Sf (Φ)
across every f that is a primitive part of a polynomial occurring in terms(Φ).

The set of difficult primes. We now turn towards identifying a small set of difficult primes P+(Φ) of polynomial
bit length. There are two categories of difficult primes: those for which a solution to Φ modulo p is not always
guaranteed to exist (i.e., in this case computation is required to check for such a solution), and those for which
the solution is guaranteed to exist, but it still influences the size of the minimal integer solution for Φ. The former
category corresponds to the set P(Φ) defined in Section 1.1. The next lemma shows that Φ has a solution modulo
any prime not in P(Φ).

Lemma 1.3. Let Φ(x) :=
∧m
i=1 fi | gi be a system of divisibility constraints in d variables, and p ∈ P \ P(Φ).

Then, Φ has a solution b ∈ Nd modulo p such that vp(fi(b)) = 0 for every 1 ≤ i ≤ m, and ||b|| ≤ p− 1.

The proof of Lemma 1.3 is given in Appendix D. In a nutshell, vp(fi(b)) = 0 holds if and only if fi(b) 6≡ 0 (mod p),
meaning that the solution b can be computed by considering a system of at most m non-congruences; one for each
left-hand side of Φ. Consider an ordering ≺ of the variables in x. Since p 6∈ P(Φ), p does not divide any coefficient
or constant appearing in some fi. This means that if fi(x) = f ′i+a ·x, with x = LV≺(fi), we can rewrite fi(x) 6≡ 0
(mod p) as x 6≡ −a−1f ′i (mod p), where a−1 is the inverse of a modulo p. Then, since p > m, one can find b by
picking suitable residues in {0, . . . , p− 1}; this can be done inductively, starting from the ≺-minimal variable.

Extending P(Φ) into P+(Φ), hence capturing the second of the two categories above, is a delicate matter. In
fact, while P(Φ) is defined for an arbitrary system of divisibility constraints, the set P+(Φ) can only meaningfully
be defined on systems that have the elimination property for an order ≺. For systems without the elimination
property, one must first appeal to Lemma 1.2. Let Φ be a system of divisibility constraints with the elimination
property. The set of difficult primes P+(Φ) is the set of primes p ∈ P satisfying at least one the following conditions:

(P1) p ≤ #S(∆(Φ)),

(P2) p divides any non-zero coefficient or constant of a polynomial in S(∆(Φ)), or

(P3) p divides the smallest (in absolute value) non-zero λ ∈ Z such that λ · g ∈ Mf (Φ) for some primitive
polynomial f occurring in Φ and g ∈ Sf (Φ) (if such a λ exists).

Note that (P1) and (P2) imply P(Φ) ⊆ P+(Φ). Moreover, #∆(Φ) ≥ 2 by definition, and therefore P+(Φ) 6= ∅.
The following lemma establishes bounds on these two sets that are central to the proof of Theorem 1.4.

Lemma 1.4. Consider a system Φ(x) of m divisibility constraints in d variables. Then, the set of primes P(Φ)
satisfies log2(ΠP(Φ)) ≤ m2(d+ 2) · (〈||Φ||〉+ 2). Furthermore, if Φ has the elimination property for an order ≺ on
x, then the set of primes P+(Φ) satisfies log2(ΠP+(Φ)) ≤ 64 ·m5(d+ 2)4(〈||Φ||〉+ 2).

The proof of Lemma 1.4 is given in Appendix D. Note that 〈S〉 = O(log2(ΠS)) for any finite set S of positive
integers, and therefore the above lemma bounds 〈P(Φ)〉 and 〈P+(Φ)〉 polynomially.

2The term S-polynomial is taken from Buchberger’s work on the computation of Gröbner bases [5]. There, S refers to subtraction,
while for other authors it stands for syzygy (from the notion of syzygy module).



Proof sketch of Theorem 1.4. Recall that Theorem 1.4 establishes a local-to-global property for r-increasing
systems of divisibility constraints Φ(x): if such a system has a solution bp modulo p for every p ∈ P(Φ), then it
has infinitely many integer solutions, and a solution a ∈ Nd such that 〈||a||〉 ≤ (〈Φ〉+ max{〈||bp||〉 : p ∈ P(Φ)})O(r).
We give a high-level overview of the proof of this result, focusing on the part of the statement that constructs
a solution over N. The full proof is given in Section 3.2. Fix an order ≺ in X1 ≺ · · · ≺Xr. We compute a map
ν :
(⋃r

j=1Xj

)
→ Z+ assigning a positive integer ν(x) to every variable x in Φ, so that ν(x) is a solution for Φ;

where ν(x) stands for the image of ν under the elements in the entries of x. The map ν is computed iteratively
(by induction on r), populating it following the order ≺, starting from the smallest variable for that order.

If r = 1, the system of divisibility constraints Φ is of the form
∧`
i=1 ci | gi(x) ∧

∧m
j=`+1 fj(x) | aj · fj(x), with

ci ∈ Z\{0} and aj ∈ Z, and ν can be computed using the CRT. Given p ∈ P(Φ), one considers the natural number
µp := max

{
vp(f(bp)) : f(x) left-hand side of a divisibility in Φ}, which determines up to what power of p the

integer solution given by ν has to agree with the solution bp. Then, the CRT instance to be solved is xk ≡ bp,k
(mod pµp+1) for every p ∈ P(Φ) and 1 ≤ k ≤ d, where x1 ≺ · · · ≺ xd are the variables in Φ and bp,1, . . . , bp,d are
their related values in bp.

When r ≥ 2, the construction is much more involved. The goal is to define ν for the variables in X1 in such
a way that the formula Φ′ := Φ[ν(x) / x : x ∈ X1] is increasing for X2 ≺ · · · ≺ Xr, and has solutions modulo p
for every p ∈ P(Φ′). This allows us to invoke Theorem 1.4 inductively, obtaining a solution ξ :

(⋃r
j=2Xj

)
→ Z+

for Φ′. An integer solution for Φ is then given by the union ν t ξ of ν and ξ, i.e., the map defined as ν(x) for
x ∈ X1 and as ξ(y) for y ∈

⋃r
j=2Xj . To construct ν for X1, we first close Φ under the elimination property

following Lemma 1.2, obtaining an equivalent system Ψ, and extend the solutions bp to every p ∈ P+(Ψ) thanks
to Lemma 1.3. We then populate ν following the order ≺, starting from the smallest variable. In the proof, this
is done with a second induction. Values for the variables in X1 are found using Theorem 1.3. When a new value
ak ∈ Z+ for a variable xk ∈ X1 is found, new primes need to be taken into account, since substituting ak for
xk yields a complete evaluation of the polynomials in S(∆(Ψ)) with leading variable xk, i.e., these polynomials
become integers that may be divisible by primes not belonging to P+(Ψ). For subsequent variables in X1, we
make sure to pick values that keep the evaluated polynomials as “coprime as possible” with respect to these new
primes. This condition is necessary to obtain the new solutions bp for the formula Φ′, modulo every p ∈ P(Φ′).
The precise system of (non-)congruences considered when computing xk is{

xk ≡ bp,k (mod pµp+1) p ∈ P+(Ψ)

g(ν(y), xk) 6≡ 0 (mod q) q ∈ Q \P+(Ψ), g(y, xk) ∈ S(∆(Ψ)) with LV≺(g) = xk

where Q is the set of new primes obtained when fixing the variables y = (x1, . . . , xk−1), and µp := max
{
vp(f(bp)) :

f(x) left-hand side of a divisibility in Ψ}. Theorem 1.3 can be applied on the system above because primes in
Q \P+(Ψ) do not satisfy the properties (P1) and (P2).

To show that Theorem 1.4 can be applied inductively on Φ′, we rely on (P3) and the elimination property of Ψ
to show that Φ′ has solutions modulo every p ∈ P(Φ′), and on properties of S-terms and again on the elimination
property of Ψ to show that Φ′ is increasing for X2 ≺ · · · ≺Xr.

1.4 Solving an instance of IP-GCD. We now briefly discuss the proof of Theorem 1.1. Full details are
deferred to Section 4. In a nutshell, this result is shown by giving an algorithm that reduces an IP-GCD
system Φ(x) := A · x ≤ b∧

∧k
i=1 gcd(fi(x), gi(x)) ∼i ci into an equi-satisfiable disjunction of several 3-increasing

systems of divisibility constraints with coefficients and constants of polynomial bit length. We then study bounds
on the solutions of each of these systems modulo the primes required by the local-to-global property, and conclude
that IP-GCD has a small witness property over the integers directly from Theorem 1.4.

Our arguments heavily rely on syntactic properties of the systems of divisibility constraints we obtain when
translating an IP-GCD system Φ. These syntactic properties are captured in Section 4 with the notion of gcd-to-div
triple. The formal definition is rather lengthy, for this overview it suffices to know that a triple (Ψ,u, E) is a
gcd-to-div triple if Ψ is a system of divisibility constraints in which all numbers appearing are positive, and u
and E are a vector and a matrix that act as a change of variables between the variables in Ψ and the variables
in Φ. The following proposition formalizes the role of gcd-to-div triples.

Proposition 1.1. Let Φ be an IP-GCD system in d variables. There is a set C of gcd-to-div triples such that



the set of integer solutions to Φ is {u + E · λ : (Ψ,u, E) ∈ C and λ ∈ Nm solution to Ψ}. Every (Ψ,u, E) ∈ C
has bit length polynomial in 〈Φ〉 and is such that Ψ is in 3-increasing form.

Above, m is the number of free variables in Ψ, which is also the number of columns in E. The algorithm showing
this proposition, cf. Lemma 4.1 and Lemma 4.4 in Section 4, performs a series of equivalence-preserving syntactic
transformations of Φ that are mainly divided into two steps: we first compute from Φ a set of gcd-to-div triples B
satisfying {x ∈ Zd : x solution to Φ} = {u+ E · λ : (Ψ,u, E) ∈ B and λ ∈ Nm solution to Ψ}, and then obtains
C by manipulating every system of divisibility constraints in B to make it 3-increasing. Below we give a summary
of these two steps.

Step I: from IP-GCD to divisibility constraints. This step is split into three sub-steps:

1. Reduce the input IP-GCD system Φ into an equi-satisfiable disjunction of IP-GCD systems having GCDs of
the form gcd(f(x), g(x)) = c or gcd(f(x), g(x)) ≥ c and a system of inequalities A · x ≤ b fixing a sign for
every polynomial h(x) appearing in a GCD constraint, i.e., A · x ≤ b has h(x) ≤ −1 or h(x) ≥ 1 as a row.

2. Let G be the set of systems computed at the previous step. The algorithm erases the system of inequalities
A · x ≤ b from every IP-GCD system Ψ ∈ G by performing a change of variables. In particular, by
relying on a well-known result by von zur Gathen and Sieveking [26], the algorithm computes a finite set
{(ui, Ei) : i ∈ IΨ} such that {x ∈ Zd : A · x ≤ b} = {ui + Ei · λ : λ ∈ Nm, i ∈ IΨ}. For every i ∈ IΨ,
the algorithm constructs a system of GCD constraints Ψi by replacing x in all GCD constraints of Ψ with
ui + Ei · y, where y is a family of fresh variables. The latter transformation also ensures that all numbers
in the Ψi are positive.

3. The algorithm translates every GCD constraint in every Ψi into a divisibility constraint. Each constraint
gcd(f(y), g(y)) = c is replaced by ∃z ∈ N : c | f ∧ c | g ∧ f | z ∧ g | z + c , following Bézout’s identity,
whereas gcd(f(y), g(y)) ≥ c becomes ∃z ∈ N : z + c | f ∧ z + c | g. The triple (Ψi,ui, Ei) obtained after
these replacements is a gcd-to-div triple.

Step II: enforcing increasingness. The algorithm considers each gcd-to-div triple (Ψ,u, E) computed in the
previous step and further manipulates it, producing a set of gcd-to-div triples D having only systems of divisibility
constraints in 3-increasing form, and satisfying

(1.1) {u+ E · λ : λ ∈ Nm solution for Ψ} = {u′ + E′ · λ : (Ψ′,u′, E′) ∈ D, λ ∈ Nm
′
solution for Ψ′}.

The set D is computed as follows. If Ψ is already 3-increasing, then D := {(Ψ,u, E)}. Otherwise, properties of
gcd-to-div triples ensure that there is a non-constant primitive polynomial f with positive coefficients and constant
such that Mf (Ψ)∩Z 6= {0}. The algorithm computes the smallest positive integer c belonging to Mf (Ψ). We have
that Ψ entails f | c. Let λ1, . . . , λj be all the variables in f . Since the coefficients and constant of f are all positive
and variables are now interpreted over the natural numbers, such a divisibility constraint can only be satisfied by
assigning to each variable an integer in [0, c]. The algorithm iterates over each assignment ν : {λ1, . . . , λj} → [0, c]
satisfying f | c, computing from (Ψ,u, E) the gcd-to-div triple (Ψν ,uν , Eν) where Ψν := Ψ[ν(λi) / λi : i ∈ [1, j]],
and uν and Eν are obtained from u and E based on ν too. All such triples are added to D to replace (Ψ,u, E).
However, some newly added system Ψν may not be 3-increasing. If that is the case, Step II is iteratively performed
on (Ψν ,uν , Eν). Termination is guaranteed because Ψν has strictly fewer variables than Ψ, and the final set of
computed gcd-to-div triples is the set C from Proposition 1.1.

Bounds on the solutions modulo primes and proof sketch of Theorem 1.1. Following Proposition 1.1,
what is left in order to apply Theorem 1.4 is to compute the solutions modulo primes in P(Ψ), for all (Ψ,u, E) ∈ C.
In Section 4.2 we rely on properties of gcd-to-div triples to show the result below.

Lemma 1.5. Let (Ψ,u, E) be a gcd-to-div triple in which Ψ has d variables, and consider p ∈ P(Ψ). If Ψ has a
solution modulo p, then it has a solution bp ∈ Zd modulo p with ||bp|| ≤ (d+ 1) · ||Ψ||3p2.

Proposition 1.1, and Lemmas 1.4 and 1.5 imply the part of Theorem 1.1 not concerning optimization as
a corollary of Theorem 1.4. For optimization, consider a linear objective cᵀx to be minimized (the argument



is analogous for maximization) subject to an IP-GCD system Φ(x), and let C be the set of gcd-to-div triples
computed from Φ following Proposition 1.1. We show in Section 4.3 the following characterization that implies
the optimization part of Theorem 1.1: an optimal solution exists if and only if (i) there is (Ψ,u, E) ∈ C such
that Ψ satisfiable over N, and (ii) for every (Ψ,u, E) ∈ C with Ψ satisfiable over N, cᵀ(u+ E · λ) has no variable
with a strictly negative coefficient. Moreover, if there is an optimal solution, then there is one with polynomial
bit length with respect to 〈Φ〉 and 〈c〉. Briefly, the double implication comes from the fact that the construction
required to establish Theorem 1.4 also shows that for each variable in λ there are infinitely many values that
yield a solution to Ψ, both in the positive and negative direction, and therefore the existence of a variable
in cᵀ(u+ E · λ) having a negative coefficient entails the non-existence of an optimum. For the bound, one shows
that min{cᵀu : (Ψ,u, E) ∈ C} is a lower bound to every solution of Φ. Then, the polynomial bound follows
directly from Proposition 1.1.

1.5 Conclusion and future work. We have established a polynomial small witness property for integer
programming with additional GCD constraints over linear polynomials. Our work also sheds new light on the
feasibility problem for systems of divisibility constraints between linear polynomials over the integers, and more
broadly on the existential theory of the structure Ldiv = (Z, 0, 1,+,≤, |). The complexity of the feasibility
problem of this existential theory is a long-standing open problem; it is known to be NP-hard and decidable in
NEXP [16, 13]. As a by-product of our work, we are able to conclude that the feasibility problem for systems of
divisibility constraints in increasing form is decidable in NP (see Proposition 3.1). This means that, in order to
improve the known NEXP upper bound for the feasibility problem of existential Ldiv, it now suffices to provide an
algorithm that translates an arbitrary existential Ldiv formula in increasing form without the exponential blow-up
that existing algorithms incur [15, 13].

Our work may also enable obtaining improved complexity results for other problems that reduce to the
existential theory of Ldiv. For instance, [14] Lin and Majumdar reduce deciding a special class of word equations
with length constraints and regular constraints to the feasibility of existential Ldiv formulae, hence obtaining
an NEXP upper bound for their problem. The formulas resulting from their reduction are of a special shape,
and showing them to be r-increasing for some fixed r would directly yield a PSPACE decision procedure for the
aforementioned class of word equations.

2 A Chinese remainder theorem with non-congruences
In this section, we prove our Chinese-remainder-style theorem for simultaneous congruences and non-congruences
(Theorem 1.3) as well as the abstract version of Brun’s pure sieve (Lemma 1.1). We start by providing the proof
of Lemma 1.1, which, following the original proof by Brun, is established by analyzing a truncated inclusion-
exclusion principle. Throughout this paper, e is reserved for Euler’s number, and exp(x) := ex.

Lemma 1.1. Let A ⊆ Z and Q ⊆ P be non-empty finite sets, and let n := ΠQ and d ∈ Z+. Consider a
multiplicative function m : Z+ → R+ satisfying m(q) ≤ q − 1 on all q ∈ Q, and an (error) function σ : N → R.
Let (Ar)r∈div(n) be a family of subsets of A satisfying the following two properties:

independence: Ar·s = Ar ∩As, for every r, s ∈ div(n) coprime, and A1 = A;

density: #Ar = #A · m(r)
r + σ(r), for every r ∈ div(n).

Assume |σ(r)| ≤ m(r) for every r ∈ div(n), and m(q) ≤ d for every q ∈ Q. Then,

1

2
·#A ·Wm(Q)− g(Q, d) ≤ #

(
A \

⋃
q∈Q

Aq

)
≤ 3

2
·#A ·Wm(Q) + g(Q, d),

where Wm(Q) :=
∏
q∈Q

(
1− m(q)

q

)
and g(Q, d) := (d ·#Q)4(d+1)2(2+ln ln(#Q+1))+2.

Proof. We define S(A,Q) := #
(
A\
⋃
q∈QAq

)
. By definition of S(A,Q) we have:

S(A,Q) = #A−
∑
q∈Q

#Aq +
∑

s6=r∈Q

#(As ∩Ar)− · · · ±#
( ⋂
p∈Q

Ap

)
= #A1 −

∑
q∈Q

#Aq +
∑

s6=r∈Q

#As·r − · · · ±#AΠQ by the independence property.



Truncating the inclusion-exclusion sequence above, after an even (resp. odd) number of terms results in a lower
bound (resp. upper bound) for S(A,Q). Truncating the sequence too early would result in a useless bound;
e.g., stopping at the second term might result in a negative lower bound for Q sufficiently large. Conversely,
truncating it too late would make the hypotheses of the lemma too weak. To emphasize better this point,
let us first clarify the truncation. Let ω(r) := #P(r) be the prime omega function and, given k ∈ N, define
Q(k) := {r ∈ div(ΠQ) : ω(r) ≤ k}. Fix ` ∈ N+. We consider the (truncated) sequence T (`, A,Q) given by

T (`, A,Q) := #A1 −
∑
q∈Q

#Aq +
∑

s6=r∈Q

#As·r − · · · ±
∑

r product of
` distinct primes in Q

#Ar

which can be also written as
∑
r∈Q(`)(−1)ω(r)#Ar. From the density property, T (`, A,Q) equals

(2.2) #A ·
∑

r∈Q(`)

(−1)ω(r)m(r)

r
+

∑
r∈Q(`)

(−1)ω(r)σ(r).

Note that µ(x) := (−1)ω(x) is the Möbius function [8], which is multiplicative. Let us look at the two
sides of the sum above. Note that for ` = #Q the left term #A ·

∑
r∈Q(`)

(−1)ω(r)m(r)
r can be factorized as

#A ·
∏
q∈Q

(
1 + µ(q)·m(q)

q

)
, because both µ and m are multiplicative. This is equal to #A ·Wm(Q), by definition

of Wm(Q) and using the fact that µ(q) = −1 for q prime. In practice, the higher the `, the closer the left term of
the sum in (2.2) becomes to #A ·Wm(Q). However, increasing ` comes at the cost of increasing the error term
given by the right term in the sum. Indeed, note that for ` = #Q the sum

∑
r∈Q(`)(−1)ω(r)σ(r) can a priori be

larger than σ(ΠQ), which from the hypotheses can at best be bounded as |σ(ΠQ)| ≤ m(ΠQ) ≤ d#Q. Hence, to
obtain the bounds in the statement of Lemma 1.1, we need to find a value of ` making the left term in (2.2) close
enough to #A ·Wm(Q) while keeping the error term small (in absolute value). Below, we first analyze the two
terms of the sum in (2.2), and then optimize the value of `. For brevity, we focus on computing the lower bound
of S(A,Q) (which is all we need for Theorem 1.3); thus setting ` to be odd, so that S(A,Q) ≥ T (`, A,Q). The
computation of the upper bound is analogous.

Lower bound on the error term of (2.2): Since |σ(r)| ≤ m(r) ≤ dω(r) ≤ d` when ω(r) ≤ `,

(2.3)
∑

r∈Q(`)

µ(r) · σ(r) ≥
∑

r∈Q(`)

−|σ(r)| ≥
∑

r∈Q(`)

−d` ≥ −
(e ·#Q

`

)`
d`,

where the rightmost inequality is derived by applying a well-known upper bound on the partial sums of binomial
coefficients: #Q(`) =

∑`
i=0

(
#Q
i

)
≤
(
e·#Q
`

)`.
Lower bound on the left term of (2.2): Correctly computing a lower bound for this term requires a long
manipulation using properties of the Möbius function and bounds on prime numbers. The following claim (proven
in Appendix A) summarizes this computation.

Claim 1.
∑

r∈Q(`)

µ(r) ·m(r)

r
≥Wm(Q)

(
1−

(e · α
`

)`
α · eα

)
, with α := (d+ 1)2(2 + ln ln(#Q+ 1)).

Optimizing the value of `: To obtain the lower bound for S(A,Q) presented in the statement of the lemma,
we want ` to be chosen so that

#A ·
∑

r∈Q(`)

µ(r) ·m(r)

r
≥ 1

2
·#A ·Wm(Q).

Following Claim 1, it suffices to pick an ` making the inequality
(
e·α
`

)`
α · eα ≤ 1

2 true. Note that, since d ≥ 1
and #Q ≥ 1, we have α > 6.5 . Then, we see that ` ≥ 1.44 · e · α does the job:(e · α

`

)`
α · eα ≤

(
1

1.44

)1.44·e·α

· eα+lnα ≤ eα+lnα

1.441.44·e·α ≤
e1.3·α

1.441.44·e·α ≤
(

e1.3

1.441.44·e

)6.5

≤ 1

2
.



Hence, we pick ` to be an odd number in [1.44 · e · α, 1.44 · e · α+ 2]. From Equation (2.3) we obtain∑
r∈Q(`)

µ(r) · σ(r) ≥ −
( e ·#Q

1.44 · e · α+ 2

)1.44·e·α+2

· d1.44·e·α+2 ≥ −
(
d ·#Q

)4(d+1)2(2+ln ln(#Q+1))+2
.

As S(A,Q) ≥ T (`, A,Q) = #A ·
∑
r∈Q(`)

µ(r)·m(r)
r +

∑
r∈Q(`) µ(r) · σ(r), that completes the proof.

We now move to the proof of Theorem 1.3.

Theorem 1.3. theorem]thm:mixed-crt Let d ∈ Z+, M ⊆ Z+ finite, and Q ⊆ P be a non-empty finite set of primes
such that the elements of M ∪ Q are pairwise coprime, M ∩ Q = ∅, and min(Q) > d. Consider the univariate
system of simultaneous congruences and non-congruences S defined by

x ≡ bm (mod m) m ∈M
x 6≡ cq,i (mod q) q ∈ Q, 1 ≤ i ≤ d .

For every k ∈ Z, S has a solution in [k, k + ΠM · f(Q, d)], where f(Q, d) :=
(
(d+ 1) ·#Q

)4(d+1)2(3+ln ln(#Q+1))
.

Proof. Expanding on the sketch of the proof given in Section 1.2, recall that the set of primes Q and d ∈ Z+

defined in the statement of Theorem 1.3 coincide with their homonyms in Lemma 1.1. Furthermore, we let
n := ΠQ, and define:

• SM to be the solution set to the system of congruences ∀m ∈M , x ≡ bm (mod m), which is a shifted lattice
with period ΠM by the CRT,

• B(z) := [k, k + z] ∩ SM , where k is the integer in the statement of the theorem,

• some integer z to be optimized. We will show that z = f(Q, d) yields the theorem,

• A := B(z), and given q ∈ Q, Aq := {a ∈ A : there is i ∈ [1, d] s.t. a ≡ cq,i (mod q)},

• for r ∈ div(n) not prime, Ar := A ∩
⋂
q∈P(r)Aq,

• for r ∈ div(n), m(r) :=
∏
q∈P(r) #{cq,i mod q : i ∈ [1, d]}, which is a multiplicative function,

• and we take σ(r) := #Ar −#A · m(r)
r as an error function.

Note that, by definition, A \
⋃
q∈QAq corresponds to the set of solutions of S that belong to [k, k + z]. We show

that the objects above satisfy the hypothesis of Lemma 1.1, and that taking z = f(Q, d) makes the cardinality of
A \

⋃
q∈QAq strictly positive, yielding Theorem 1.3.

The assumptions of Lemma 1.1 hold: By hypothesis min(Q) > d, hence m(q) ≤ d ≤ q − 1 for every q ∈ Q.
Below, we show that the independence and density properties are satisfied, and that |σ(r)| ≤ m(r) for every
r ∈ div(n). This allows us to apply Lemma 1.1 in the second part of the proof. The independence property is
trivially satisfied: given r, s ∈ div(n) coprime, we have

Ar·s = A ∩
⋂

q∈P(r·s)

Aq =
(
A ∩

⋂
q∈P(r)

Aq

)
∩
(
A ∩

⋂
p∈P(s)

Ap

)
= Ar ∩As.

Below, fix r ∈ div(n). The density property and the condition |σ(r)| ≤ m(r) are proved together. By definition
of Ar,

Ar =
⋃

α : P(r)→[1,d]

(A ∩ Sα,r) , where Sα,r := {` ∈ Z : for every q ∈ P(r), ` ≡ cq,α(q) (mod q)}.

The following claim bounds the cardinality of each (A ∩ Sα,r). It is proven in Appendix B.



Claim 2.
#A

r
− 1 ≤ #(A ∩ Sα,r) ≤

#A

r
+ 1.

Directly from their definition, given two functions α1, α2 : P(r)→ [1, d], the sets Sα1,r and Sα2,r satisfy one of the
two following properties:

• Sα1,r ∩ Sα2,r = ∅ (this occurs when cq,α1(q) 6≡ cq,α2(q) (mod q) for some q ∈ P(r)), or

• Sα1,r = Sα2,r (this occurs when cq,α1(q) ≡ cq,α2(q) (mod q), for every q ∈ P(r)).

With this in mind, we note that the number of disjoint sets in {Sα,r : α : P(r)→ [1, d]} corresponds to the value
of the multiplicative function m(r). Then, by Claim 2, (#A

r − 1) ·m(r) ≤ #Ar ≤ (#A
r + 1) ·m(r). This implies

that σ(r) = #Ar −#A · m(r)
r is such that |σ(r)| ≤ m(r), as required, and shows that the density property holds.

Applying Lemma 1.1: The previous part of the proof shows that we can apply Lemma 1.1, from which we
obtain #

(
A \

⋃
q∈QAq

)
≥ 1

2 ·#A ·Wm(Q)− g(Q, d). Remember that A = [k, k + z] ∩ SM and that A \
⋃
q∈QAq

corresponds to the set of solutions of S that belong to [k, k + z]. To conclude the proof it suffices to make
1
2 ·#A ·Wm(Q) − g(Q, d) greater than or equal to 1 by opportunely selecting the value of the parameter z. We
want #([k, k + z] ∩ SM ) ≥ 2 ·Wm(Q)−1(1 + g(Q, d)) which, from the fact that SM is periodic in ΠM , holds as
soon as z ≥ 2 ·Wm(Q)−1(1 + g(Q, d)) ·ΠM .

The following claim on an upper bound for Wm(Q)−1 is proven in Appendix B.

Claim 3. Wm(Q)−1 ≤ (d+ 1)10d ln(#Q+ 1)3d.

Claim 3 and the definition of g show that setting z :=
(
(d+ 1) ·#Q

)4(d+1)2(3+ln ln(#Q+1)) ·ΠM suffices to satisfy
z ≥ 2 ·Wm(Q)−1(1 + g(Q, d)) ·ΠM , concluding the proof.

3 A novel strategy for Lipshitz’s local-to-global property
In this section we establish Theorem 1.4, providing an asymptotical improvement over the local-to-global
properties for systems of divisibility constraints discovered by Lipshitz [15] and later refined by Lechner et al. [13].
Most of the definitions and some intermediate lemmas required for this result were already formally presented
in Section 1.3. To avoid repeating them, we refer the reader to that section, and consider here only concepts for
which further details are required in order to give the proof of Theorem 1.4. On a high-level, recall that the main
concepts discussed in Section 1.3 are:

• The notions of divisibility module and r-increasing form. In general, only systems of divisibility constraints
in increasing form can be solved via the local-to-global property.

• The notions of elimination property, S-polynomials and S-terms. The first notion relies on divisibility
modules to close a system under a finite representation of all its entailed divisibilities. The latter two
concepts are required to establish Theorem 1.4 inductively; we will use them to ensure that increasingness
is not lost after fixing the value of a variable.

• The notion of difficult primes P+(Φ), that is primes p for which either the system of divisibility constraints Φ
might not have a solution modulo p, or the solution surely exists (accordingly to Lemma 1.3) but still
influences the minimal integer solution for Φ.

Except for Theorem 1.4, we defer all proofs of intermediate results to Appendices C and D.

Assumptions and further basic definitions. Let Φ(x) :=
∧m
i=1 fi(x) | gi(x) be a system of divisibility

constraints. Throughout the section, we tacitly assume the systems to have at least two divisibility constraints
(m ≥ 2). This assumption is wlog.: the fact that Theorem 1.4 holds for m = 1 follows from [16], in which a
polynomial small-model property for every fixed m is shown; and besides, in these cases it suffices to repeat the
same divisibility constraint twice in order to have m ≥ 2. The main reason for this assumption is to force the
set P(Φ) to be non-empty (in fact, we could have equivalently assumed 2 ∈ P(Φ)). Wlog., we also assume Φ to



be reduced, that is such that the GCD of all coefficients and constants appearing in divisibilities f | g is 1, i.e.,
gcd(gcd(f), gcd(g)) = 1. Lastly, recall that we assume that fi 6= 0 (syntactically) for all 1 ≤ i ≤ m.

Given b ∈ Zi and a polynomial f(x1, . . . , xd), we write f(b, xi+1, . . . , xd) for the polynomial in variables
(xi+1, . . . , xd) obtained from f by evaluating xj as the j-th entry of b, for all j ∈ [1, i].

Given v = (v1, . . . , vn) ∈ Zd, ||v|| := max{|vi| : i ∈ [1, n]} stands for the (infinity) norm of v. We define
||S|| := max{||s|| : s ∈ S}, for every finite set S of objects having a defined notion of infinity norm. The norm ||A||
of a matrix A is the norm of the set of its columns. Given a polynomial f = aᵀx+ c, ||f || := max(||a||, |c|). For a
system of divisibility constraints Φ, ||Φ|| := ||terms(Φ)||.

We write 〈a〉 := 1 + dlog2(|a|+ 1)e for the bit length of a ∈ Z. The bit length of a set (or vector) S of n
objects s1, . . . , sn having a defined notion of bit length 〈.〉 is itself defined as 〈S〉 := n +

∑n
i=1〈si〉. We define

〈f〉 := 〈a〉 + 〈c〉 + 1 and 〈Φ〉 := 〈terms(Φ)〉 for the bit length of a polynomial f = aᵀx + c and of a system of
divisibility constraints Φ, respectively. By definition, 〈f〉 and 〈Φ〉 are at least 2. Note that 〈||S||〉 is simply the bit
length of the infinity norm of S; where S is any object having a defined notion of infinity norm.

3.1 Bounds on divisibility modules, elimination property, S-terms, and P+(Φ). For the proof
of Theorem 1.4 we need to refine some of the bounds given in Section 1.3. In that section we have briefly
discussed the existence of an algorithm to close a system of divisibility constraints under the elimination property
(Lemma 1.2). This algorithm relies on a procedure computing a span for the divisibility module Mf (Φ) of a
primitive polynomial f with respect to a system of divisibility constraints Φ. Recall that Mf (Φ) is a vector
subspace encoding all the divisibilities of the form f | g implied by Φ. From the formal definition of divisibility
module, it is simple to convince ourselves that a set spanning Mf (Φ) can be found by taking f together with a
subset of the right-hand sides of the divisibilities in Φ, possibly scaled. In Appendix C we show that computing
such a span can be done in polynomial-time by a fix-point algorithm chaining computations of integer kernels.

Lemma 3.1. There is a polynomial-time algorithm that, given a system Φ(x) :=
∧m
i=1 fi | gi of divisibility

constraints and a primitive polynomial f , computes c1, . . . , cm ∈ N such that the set {f, c1 · g1, . . . , cm · gm}
spans Mf (Φ), and ci ≤ ((m+ 3) · (||Φ||+ 2))(m+3)3

for all 1 ≤ i ≤ m.

Regarding the computation of formulae with the elimination property, Lemma 1.2 is not precise enough for our
purposes to establish Theorem 1.4. We restate it, tracking the growth of constants and coefficients, as well as
structural properties of the output system of divisibility constraints.

Lemma 3.2. There is a polynomial-time algorithm that, given a system Φ(x) :=
∧m
i=1 fi | gi of divisibility

constraints in d variables and an order x1 ≺ · · · ≺ xd for x, computes Ψ(x) :=
∧n
i=1 f

′
i | g′i with the elimination

property for ≺ that is equivalent to Φ(x), both over Z and modulo each p ∈ P. The algorithm ensures that:

1. For any divisibility constraint f | g such that f is not primitive, f | g occurs in Φ if and only if f | g occurs
in Ψ. Moreover, for every f ′i | g′i in Ψ such that f ′i is primitive, there is some fj | gj in Φ such that f ′i is
the primitive part of fj.

2. For every primitive polynomial f , Mf (Φ) = Mf (Ψ) (in particular, if Φ is increasing for some order ≺′ then
so is Ψ, and vice versa).

3. ||Ψ|| ≤ (d+ 1)O(d)(m+ ||Φ||+ 2)O(m3d) and n ≤ m · (d+ 2).

Let us sketch this algorithm. For every primitive part f of a polynomial appearing in the left-hand side of a
divisibility constraint in Φ, the algorithm first computes the set S := {f, c1 · g1, . . . , cm · gm} spanning Mf (Φ),
using the algorithm of Lemma 3.1. The set S can be represented as the matrix A ∈ Z(d+1)×(m+1) in which
each column (ad, . . . , a1, c) contains the coefficients and the constant of a distinct element of S, with ai being
the coefficient of xi for i ∈ [1, d], and c being the constant of the polynomial. The algorithm puts A in column-
style Hermite normal form, obtaining linearly independent polynomials h1, . . . , h` with different leading variables
with respect to ≺. Because of how the coefficients and constants are arranged in A, we can obtain the system
Ψ by simply replacing divisibility constraints of the form f | g appearing in Φ with the divisibility constraints
f | h1, . . . , f | h`. Items 1 and 2 are then easily seen to be satisfied, whereas Item 3 follows from the bound
on c1, . . . , cm given in Lemma 3.1 together with known bounds for putting an integer matrix in Hermite normal
form [25]. Full details are given in Appendix C, together with the proof of the following lemma.



Lemma 3.3. Let Φ(x,y) and Ψ(x,y) be input and output of the algorithm in Lemma 3.2, respectively. For
every ν : x→ Z and primitive polynomial f , Mf (Φ(ν(x),y)) ⊆ Mf (Ψ(ν(x),y)).

This lemma, established by relying on the definition of divisibility module together with Items 1 and 2
of Lemma 3.2, is used in the proof of Theorem 1.4 to establish that if Ψ(ν(x),y) is in increasing form for
some order, then so is Φ(ν(x),y).

To prove Theorem 1.4 we also need a bound on the number of S-terms of a system of divisibility constraints.
We have already claimed in Section 1.3 that systems with the elimination property only have polynomially
many S-terms. The precise bound, computed following the relevant definitions, is given in the following lemma
(see Appendix D for the complete proof).

Lemma 3.4. Let Φ :=
∧m
i=1 fi | gi be a system of divisibility constraints in d variables with the elimination

property for ≺. Then, (i) #∆(Φ) ≤ 2 ·m2(d+ 2) and (ii) 〈||∆(Φ)||〉 ≤ (d+ 2) · (〈||Φ||〉+ 1).

Lastly, let us restate the two lemmas from Section 1.3 analyzing properties of P+(Φ) and P(Φ); they are
proven in Appendix D and are fundamental to obtain the upper bound in the statement of Theorem 1.4. Recall
that P(Φ) := {p ∈ P : p ≤ m or p divides a coefficient or constant appearing in some left-hand side of Φ} is the
set of primes p for which Φ may not have a solution modulo p. For primes that lie outside P(Φ) we always have
a small solution:

Lemma 1.3. Let Φ(x) :=
∧m
i=1 fi | gi be a system of divisibility constraints in d variables, and p ∈ P \ P(Φ).

Then, Φ has a solution b ∈ Nd modulo p such that vp(fi(b)) = 0 for every 1 ≤ i ≤ m, and ||b|| ≤ p− 1.

Following the next lemma, the bit lengths of P(Φ) and P+(Φ) are polynomially bounded:

Lemma 1.4. Consider a system Φ(x) of m divisibility constraints in d variables. Then, the set of primes P(Φ)
satisfies log2(ΠP(Φ)) ≤ m2(d+ 2) · (〈||Φ||〉+ 2). Furthermore, if Φ has the elimination property for an order ≺ on
x, then the set of primes P+(Φ) satisfies log2(ΠP+(Φ)) ≤ 64 ·m5(d+ 2)4(〈||Φ||〉+ 2).

3.2 Proof of Theorem 1.4: the local-to-global property. We are now ready to formalize the local-to-
global property (Theorem 1.4). Similarly to Lipshitz’ approach [15], the proof of this property is constructive and
yields a procedure that given an r-increasing system of divisibility constraints Φ and solutions for Φ modulo p
for every p ∈ P(Φ), constructs an integer solution for Φ. Algorithm 1 provides the pseudocode of this procedure,
which we mainly give as a way of summarizing the various steps of the proof of Theorem 1.4.

Theorem 1.4. theorem]theorem:local-to-global Let Φ(x) be an r-increasing system of divisibility constraints such
that Φ has a solution bp modulo p for every prime p ∈ P(Φ). Then, Φ has infinitely many integer solutions, and
a solution a over N such that 〈||a||〉 ≤ (〈Φ〉+ max{〈||bp||〉 : p ∈ P(Φ)})O(r).

Proof. Throughout the proof, fix an order (≺) ∈ (X1 ≺ · · · ≺ Xr). For simplicity, we focus on the part of the
statement that builds a solution over N (in fact, we will build a solution over Z+). The fact that there are infinitely
many solutions follows from the fact that the solution is built by solely relying on systems of (non-)congruences
over the integers.

Let us first expand on the overview of the proof given in Section 1.3 by referring to the pseudocode
in Algorithm 1. The goal is to compute a map ν :

(⋃r
j=1Xj

)
→ Z+ such that ν(x) is a solution for Φ. The proof

proceeds by induction on r, populating the map ν according the order ≺.
When r = 1 (line 4 in Algorithm 1) ν can be computed using the (standard) Chinese remainder theorem,

with little to no problem (line 8). The main ingredient here is given by the natural number µp := max
{
vp(f(bp)) :

f(x) left-hand side of a divisibility in Φ} (line 5), that given p ∈ P(Φ) tells us up to what power of p should the
integer solution given by ν agree with the solution bp.

When r ≥ 2, the goal is to define ν for the variables in X1 in such a way that the formula Φ′ := Φ[ν(x) / x :
x ∈ X1] is increasing for X2 ≺ · · · ≺Xr, and has solutions modulo p for every p ∈ P(Φ′). This allows us to call
for Theorem 1.4 inductively (line 25), obtaining a solution ξ :

(⋃r
j=2Xj

)
→ Z+ for Φ′. An integer solution for Φ

is then given by the union ν t ξ of ν and ξ, i.e., the map defined as ν(x) for x ∈ X1 and as ξ(y) for y ∈
⋃r
j=2Xj ,

(line 26). To construct ν for X1, we first close Φ under the elimination property following Lemma 3.2 (line 12),



Algorithm 1 An algorithmic summary of the local-to-global property

Input: A system of (at least two) divisibility constraints Φ(x) increasing for X1 ≺ · · · ≺Xr,
and a solution bp for Φ modulo p for every p ∈ P(Φ).

Output: A solution ν : x→ Z+ for Φ.

1: ν := ε . empty map
2: let ≺ be an ordering in (X1 ≺ · · · ≺Xr)
3: (x1, . . . , xd) := variables in X1, in increasing order for ≺
4: if r = 1 then . base case
5: for p ∈ P(Φ) do µp := max

{
vp(f(bp)) : f(x) left-hand side of a divisibility in Φ}

6: for ` from 1 to d do
7: for p ∈ P(Φ) do bp,` := value of bp for the variable x`
8: insert (x` 7→ a) in ν where a ∈ Z+ is a solution for the system . CRT
9:

{
x` ≡ bp,` (mod pµp+1) p ∈ P(Φ)

10: return ν
11: else . r ≥ 2, recursive case
12: Ψ ← closure of Φ for the elimination property for the order ≺ . Lemma 3.2
13: for p ∈ P+(Ψ) \ P(Φ) do
14: bp := solution for Φ modulo p satisfying vp(f(bp)) = 0 for every
15: f(x) in the left-hand side of a divisibility in Φ . Lemma 1.3
16: for p ∈ P+(Ψ) do µp := max

{
vp(f(bp)) : f(x) left-hand side of a divisibility in Ψ}

17: Q := {q} where q ∈ P is the smallest prime not in P+(Ψ)
18: for ` from 1 to d do
19: for p ∈ P+(Ψ) do bp,` := value of bp for the variable x`
20: insert (x` 7→ a) in ν where a ∈ Z+ is a solution for the system . Theorem 1.3

21:

{
x` ≡ bp,` (mod pµp+1) p ∈ P+(Ψ)

g(ν(y), x`) 6≡ 0 (mod q) q ∈ Q \P+(Ψ), g(y, x`) ∈ S(∆(Ψ)) with LV≺(g) = x`

22: Q← Q ∪ {p ∈ P : there is h(y) ∈ S(∆(Ψ)) such that LV≺(h) = x` and p | h(ν(y))}
23: Φ′ := Φ[ν(x) / x : x ∈ X1]
24: for p ∈ P(Φ′) do b′p := solution for Φ′ modulo p . Claim 7

25: ξ := result of calling Algorithm 1 on Φ′, X2 ≺ · · · ≺Xr and {b′p : p ∈ P(Φ′)}
26: return ν t ξ . union of disjoint functions

and extend the solutions bp to every p ∈ P+(Ψ) thanks to Lemma 1.3 (line 13). We then populate ν following the
order ≺, starting from the smallest variable (line 18). In the proof, this is done with a second induction. Values
for the variables in X1 are found using Theorem 1.3 (line 20). When a new value a ∈ Z+ for a variable x ∈ X1 is
found, new primes need to be taken into account (line 22), since substituting a for x yields a complete evaluation
of the polynomials in S(∆(Φ)) with leading variable x, and the resulting integers might be divisible by primes
not belonging to P+(Ψ). For subsequent variables in X1, we make sure to pick values that keep the evaluated
polynomials as “coprime as possible” with respect to these new primes (see the induction hypothesis (IH2) below,
as well as the system of (non-)congruences in line 20). This condition is necessary to obtain the new solutions bp
for the formula Φ′, modulo every p ∈ P(Φ′) (line 24).

We now formalize the proof. To ease the presentation, we postpone the analysis on the bound of the minimal
positive solution to after the main induction showing the existence of such a solution. In a nutshell, the bound
fundamentally comes from repeated applications of Theorem 1.3.

base case r = 1: As Φ is 1-increasing, it is of the form
∧`
i=1 ci | gi(x) ∧

∧m
j=`+1 fj(x) | aj · fj(x), where

every ci and aj are in Z. By hypothesis, every ci and fj is non-zero. Moreover, since we are assuming Φ



with at least two divisibility constraints, P(Φ) is non-empty. Let x = (x1, . . . , xd) and, given p ∈ P(Φ), let
µp := max{vp(f(bp)) : f is in the left-hand side of a divisibility of Φ}. Note that since bp is a solution for Φ
modulo p, we have fj(bp) 6= 0 for every j ∈ [` + 1,m], and thus vp(f(bp)) ∈ N. Denote with bp,k the value of bp
for the variable xk, with p ∈ P(Φ) and k ∈ [1, d]. Consider the system of congruences

xk ≡ bp,k (mod pµp+1) p ∈ P(Φ), 1 ≤ k ≤ d.(3.4)

Equivalently, we can see this system as d many univariate systems of congruences, one for each k ∈ [1, d],
consisting of the constraints xk ≡ bp,k (mod pµp+1) for every p ∈ P(Φ). Then, according to the Chinese remainder
theorem, Equation (3.4) has a positive solution a = (a1, . . . , ad). To conclude the base case, it suffices to show
that fj(a) 6= 0 for every j ∈ [` + 1,m], and that ci | gi(a) for every i ∈ [1, `]. First, consider j ∈ [` + 1,m] and
pick a prime p ∈ P(Φ). From the system of congruences in Equation (3.4) we have fj(a) ≡ fj(bp) (mod pµp+1),
and by definition of µp, fj(bp) 6≡ 0 (mod pµp+1). We conclude that fj(a) 6≡ 0 (mod pµp+1), and so fj(a) 6= 0.

Consider now i ∈ [1, `]. To prove that ci | gi(a), concluding the base case, we show that for every prime p
dividing ci, vp(ci) ≤ vp(gi(a)). By definition, any such prime p satisfies p ∈ P(Φ) and moreover vp(ci) ≤ µp. We
distinguish two cases:

• if vp(gi(bp)) ≤ µp, then according to Equation (3.4) we have vp(gi(bp)) = vp(gi(a)). Since bp is a solution
for Φ modulo p, this implies vp(ci) ≤ vp(gi(a)).

• If vp(gi(bp)) > µp, then gi(bp) ≡ 0 (mod pµp+1) and so gi(a) ≡ 0 (mod pµp+1) by Equation (3.4).
Therefore, vp(gi(a)) > µp and by definition of µp we get vp(ci) ≤ vp(gi(a)).

induction step r ≥ 2: by induction hypothesis, we assume the theorem to be true for every s-increasing system
with s < r. By Lemma 1.3, for every prime p ∈ P \ P(Φ) there is a solution bp for Φ modulo p such that
max{vp(f(bp)) : f in the left-hand side of a divisibility of Φ} = 0. Together with the solutions bp for primes
p ∈ P(Φ), this means that Φ has solutions modulo every prime. We apply Lemma 3.2 in order to obtain
from Φ a system Ψ with the elimination property for ≺. The system Ψ is used to produce the map ν for
the variables in X1. Adding the elimination property does not change the set of solutions (neither over the
integers nor modulo a prime), and therefore the above solutions bp are still solutions for Ψ modulo p. Below,
among these solutions we only consider the ones for primes p ∈ P+(Ψ). Given such a prime p ∈ P+(Ψ), define
µp := max{vp(f(bp)) : f is in the left-hand side of a divisibility of Ψ}. As already observed in the base case, given
f left-hand side of a divisibility in Ψ, f(bp) 6= 0 and so vp(f(bp)) ∈ N. Moreover, from Item 1 in Lemma 3.2 we
conclude that, for every p ∈ P+(Ψ)\P(Φ), µp = max{vp(f(bp)) : f in the left-hand side of a divisibility of Φ} = 0.

As Ψ is r-increasing (see Item 1 in Lemma 3.2), it is of the form

(3.5)

(∧̀
i=1

ci | gi(x)

)
∧

(
n∧

i=`+1

fi(x) | gi(x) + g′i(y)

)
∧

(
t∧

i=n+1

fi(x) + f ′i(y) | gi(x) + g′i(y)

)
,

where x are the variables appearing in X1, y are the variables appearing in
⋃r
j=2Xj , ` ≤ n ≤ t, and for every

i ∈ [n+1, t], both f ′i(y) and g′i(y) have 0 as a constant, and f ′i is non-constant. Moreover, since Ψ is increasing, for
every i ∈ [`+ 1, n] gi(x) and g′i(y) are such that either g′i = 0 and gi = a · fi for some a ∈ Z, or g′i is non-constant.
Let X1 = {x1, . . . , xd}, with x1 ≺ · · · ≺ xd. Denote by bp,k the value of bp for the variable xk, with p ∈ P+(Ψ)
and k ∈ [1, d]. We build the map ν defined on the variables in X1, inductively starting from x1. In the induction
step, when searching for a value to the variable xk+1, the following induction hypotheses hold:

IH1: For every p ∈ P+(Ψ) and j ∈ [1, k], ν(xj) ≡ bp,j (mod pµp+1),

IH2: For every prime p /∈ P+(Ψ), for every h, h′ ∈ ∆(Ψ) with leading variable at most xk, if S(h, h′) is not
identically zero, then p does not divide both h(ν(x1, . . . , xk)) and h′(ν(x1, . . . , xk)).

IH3: h(ν(x1, . . . , xk)) 6= 0 for every h ∈ ∆(Ψ) that is non-zero and with LV(h) � xk.

base case k = 0: In this case, (IH1) and (IH3) trivially hold (for (IH3) note that h is constant). In (IH2) we
only consider constant polynomials h, h′, hence S(h, h′) = 0 by definition.



induction step: Let us assume that ν is defined for the variables x1, . . . , xk with k ∈ [0, d − 1], so that the
induction hypotheses hold. Let us provide a value for xk+1 so that ν still fulfils the induction hypotheses.
We define the following set of primes:

Pk := {p ∈ P : p ∈ P+(Ψ) or p | h(ν(x1, . . . , xk)) for h ∈ S(∆(Ψ))\{0} with LV(h) � xk} .

In the hypothesis that Pk = P+(Ψ), we add to Pk the smallest prime not in P+(Ψ). Hence, below, assume
Pk 6= P+(Ψ). We consider the following system of (non-)congruences:

xk+1 ≡ bp,k+1 (mod pµp+1) p ∈ P+(Ψ)

h(ν(x1, . . . , xk), xk+1) 6≡ 0 (mod q) q ∈ Pk \P+(Ψ) and
h ∈ S(∆(Ψ)) s.t. LV(h) = xk+1.

With respect to the h above, let us write h(ν(x1, . . . , xk), xk+1) = ch + ah · xk+1, where ch is the constant
term obtained by partially evaluating h with respect to ν(x1, . . . , xk), and ah is the coefficient of xk+1 in h.
Since q ∈ Pk \ P+(Ψ), then q - ah from Condition (P2) in the definition of P+(Ψ). Then ah has an inverse
a−1
h modulo q, and the system of (non-)congruences above is equivalent to

(3.6)
xk+1 ≡ bp,k+1 (mod pµp+1) p ∈ P+(Ψ)

xk+1 6≡ −a−1
h ch (mod q) q ∈ Pk \P+(Ψ) and h ∈ S(∆(Ψ)) s.t. LV(h) = xk+1.

In this system of (non-)congruences, elements in P+(Ψ) and Pk \P+(Ψ) are pairwise coprime, Pk \P+(Ψ) is
a set of primes, and moreover min(Pk \P+(Ψ)) > #S(∆(Ψ)) by Condition (P1) in the definition of P+(Ψ).
Hence, we can apply Theorem 1.3 and conclude that Equation (3.6) has a solution w ∈ Z+. Let us update
ν so that ν(xk+1) = w. We show that ν satisfies the induction hypotheses.

1. By the congruences in Equation (3.6), ν(xk+1) ≡ bp,k+1 (mod pµp+1), hence (IH1) holds.
2. Consider h, h′ ∈ ∆(Ψ) such that LV(h) � LV(h′) = xk+1 and S(h, h′) is not identically zero. Note that

the case where LV(h′) � LV(h) = xk+1 is analogous, whereas if both LV(h) and LV(h′) are at most xk
then (IH2) holds by induction hypothesis. We divide the proof into two cases, depending on LV(h).

• If LV(h) ≺ xk+1, consider p 6∈ P+(Ψ) such that p | h(ν(x1, . . . , xk)). By definition, p ∈ Pk, and
thus from the non-congruences in Equation (3.6), p - h(ν(x1, . . . , xk+1)).

• If LV(h) = LV(h′) = xk+1, assume ad absurdum that there is a prime p 6∈ P+(Ψ) such that
p | h(ν(x1, . . . , xk+1)) and p | h′(ν(x1, . . . , xk+1)). Then, p | S(h, h′) by definition of S.
However, S(h, h′) ∈ S(∆(Ψ)) \ {0} and LV(S(h, h′)) � xk, from which we conclude that p ∈ Pk.
Again from the non-congruences in Equation (3.6), this implies p - h(ν(x1, . . . , xk+1)) and
p - h′(ν(x1, . . . , xk+1)), a contradiction.

In both cases, we conclude that (IH2) holds.
3. Let h ∈ ∆(Ψ) with LV(h) = xk+1 (else (IH3) directly holds by induction hypothesis). As there is a

prime p ∈ Pk \P+(Ψ), from the non-congruences of Equation (3.6) we conclude p - h(ν(x1, . . . , xk+1)),
and thus h(ν(x1, . . . , xk+1)) cannot be 0. Hence, (IH3) holds.

The innermost induction we have just completed yields a map ν defined for the variables in X1 and
satisfying (IH1)–(IH3) for every k ∈ [1, d]. Consider the system Ψ′(y) := Ψ[ν(x) / x : x ∈ X1] obtained from
Ψ by evaluating as ν(x) every variable x in X1. With reference to Equation (3.5), we note that the subsystem∧`
i=1 ci | gi(ν(x)) evaluates to true (proof as in the base case r = 1 of the induction and by using (IH1)). Then,

Ψ′(y) is of the form

(3.7)

(
n∧

i=`+1

αi | βi + g′i(y)

)
∧

(
t∧

i=n+1

αi + f ′i(y) | βi + g′i(y)

)
,

where αi = fi(ν(x)) ∈ Z and βi = gi(ν(x)) ∈ Z, for every i ∈ [`+ 1, t]. Note that αi 6= 0 for every i ∈ [`+ 1, n],
thanks to (IH3), so ν satisfies all trivial divisibilities of the form f(x) | a · f(x).



The next step is to show that Ψ′ is increasing for (X2 ≺ · · · ≺ Xr) and to provide solutions modulo p for
every p ∈ P+(Ψ′). These two properties, formalized below in Claim 4 and Claim 5, follow from the induction
hypotheses (IH1)–(IH3) we kept during the construction of ν, together with the fact that the system Ψ has the
elimination property. Their proofs are very technical and lengthy, and we therefore defer them to Appendix E.
Observe that Condition (P3) in the definition of the difficult primes is required to establish Claim 5, but otherwise
does not appear anywhere else in this proof.

Claim 4. The system Ψ′ is increasing for (X2 ≺ · · · ≺Xr).

Claim 5. For every p ∈ P+(Ψ), the solution bp for Ψ modulo p is, when restricted to y, a solution for Ψ′(y)
modulo p. For every prime p 6∈ P+(Ψ), there is a solution bp for Ψ′ modulo p such that (i) every entry of bp belongs
to [0, pu+1 − 1], where u := max{vp(αi) : i ∈ [`+ 1, n]}, and (ii) vp(g(bp)) ∈ {0, u}, for every g ∈ terms(Ψ′).

Thanks to Claim 4 and Claim 5, we can inductively apply the statement of Theorem 1.4 on Ψ′ in order to
obtain an integer solution for Ψ, and thus a solution for the original system Φ. While this would prove the local-
to-global property, it is not enough to obtain the upper bound on the size of the minimal positive solution stated
in Theorem 1.4. Instead, we wish to apply the induction hypothesis on the system Φ′(y) := Φ[ν(x) / x : x ∈ X1],
hence disregarding the work done to close Φ under the elimination property. The main point in favour of this
strategy is that the subsequent applications of Lemma 3.2, required to inductively construct the integer solutions
for the remaining variables y, yield smaller systems of divisibility constraints (for instance, note that Φ′ has at
most m divisibilities, whereas Ψ′ can have close to m · (d+ 2) divisibilities).

To prove that we can apply the induction hypothesis on Φ′, we need to show that this system satisfies
properties analogous to the ones in Claim 4 and Claim 5. While the proofs of these claims require the elimination
property to be established, we can transfer them to Φ′ thanks to the fact that Ψ is defined from Φ following the
algorithm of Lemma 3.2.

Claim 6. The system Φ′ is increasing for (X2 ≺ · · · ≺Xr).

Proof. Ad absurdum, assume that Φ′(y) is not increasing for some order (≺′) ∈ (X2≺· · ·≺Xr). Let y = (y1, . . . , yj)
with y1≺′ · · ·≺′yj . There is i ∈ [1, j] and a primitive term f with LV(f) = yi such that Zf  Mf (Φ′)∩Z[y1, . . . , yi].
By Lemma 3.3 we get Zf  Mf (Ψ′) ∩ Z[y1, . . . , yi]. However, this implies that Ψ′ is not increasing for ≺′,
contradicting Claim 4.

Claim 7. For every p ∈ P, the solution bp for Ψ′ modulo p ensured in Claim 5 is also a solution for Φ′ modulo
p. If p 6∈ P+(Ψ), then for every polynomial f ′ appearing in the left-hand side of a divisibility of Φ′, we have either
vp(f

′(bp)) = 0 or vp(f ′(bp)) = max{vp(αi) : i ∈ [`+ 1, n]}.

Proof. For the first statement of the claim, consider a solution bp for Ψ′(y) modulo p (such as the one ensured
by Claim 5). From the definition of Ψ′, the tuple (ν(x), bp) is a solution for Ψ(x,y) modulo p. Then,
by Lemma 3.2, (ν(x), bp) is a solution for Φ(x,y) modulo p; and so by definition of Φ′, bp is a solution for
Φ′(y) modulo p.

The second statement of this claim follows from Claim 5 together with the property (1) of Lemma 3.2, and
by definitions of Ψ′ and Φ′. In particular, for every polynomial f ′(y) occurring in a left-hand side of a divisibility
of Φ′, there is a polynomial f(x,y) occurring in a left-hand side of Φ such that f ′(y) = f(ν(x),y). From (1) of
Lemma 3.2, f occurs in a left-hand side of Ψ and thus f ′ occurs in a left-hand side of Ψ′. The statement then
follows by Claim 5.

From Claim 6 and Claim 7, and by induction hypothesis, there is a map ξ :
(⋃r

j=2Xj

)
→ Z+ such that ξ(y)

is a solution for Φ′. Note that in constructing ξ we can rely on the order ≺ restricted to
⋃r
j=2Xj ; since Φ′ is

increasing for that order. Then, by definition of Φ′, a positive integer solution for Φ is given by the union ν t ξ
of ν and ξ. This concludes the proof of existence of a solution. We now study its bit length.

In what follows, let O ∈ Z+ be the minimal positive integer greater or equal than 4 such that the map
x 7→ O(x+ 1) upper bounds the linear functions hidden in the O(.) appearing in Lemma 3.2. More precisely,
consider two absolute constants c1, c2 ∈ N minimizing max(c1, c2) subject to the fact that the system of divisibility



constraints denoted with Ψ in Lemma 3.2 satisfies ||Ψ|| ≤ (d+1)c1·(d+1)(m+||Φ||+2)c2·(m
3d+1), accordingly to Item 3

of Lemma 3.2. Then, we define O := max(4, c1, c2).
We write Γ(r, `, w,m, d), with r, `, w,m, d ∈ Z+ and r ≤ d, for the maximum bit length (variable-wise) of the

minimal positive solution of any system of divisibility constraints Φ such that:

• Φ is r-increasing.

• The maximum bit length of a coefficient or constant appearing in Φ, i.e., 〈||Φ||〉, is at most `.

• For every p ∈ P(Φ), consider a solution bp of Φ modulo p minimizing

µp := max{vp(f(bp)) : f is in the left-hand side of a divisibility in Φ}.

Then, log2

(∏
p∈P(Φ) p

µp+1
)
≤ w.

• Φ has at most m divisibilities.

• Φ has at most d variables.

The constraint r ≤ d is without loss of generality, as every increasing formula is d-increasing.
Since we want to find an upper bound for Γ, assume without loss of generality that Γ(r, `, w,m, d) is always

at least min(`, w). In Appendix F we study the growth of Γ and prove the following claim.

Claim 8.



Γ(1, `, w,m, d) ≤ w + 3

Γ(r + 1, `, w,m, d) ≤ Γ(r,

2105m27(d+ 2)38O · log2(O)6(`+ w) · (log2(`+ w))6,

2109m29(d+ 2)39O · log2(O)6(`+ w) · (log2(`+ w))6,

m,

d).

Let us show that the recurrence system above yields the bound in the statement of the theorem. Remark that Γ
is monotonous by definition. By induction on k ∈ [0, r − 1] we show that

Γ(r, `, w,m, d) ≤ Γ(r − k, δk, δk,m, d) where δk :=
1

2
· (2110m29(d+ 2)39O · log2(O)6(`+ w))2(k+1).

base case k = 0: Directly follows from δ0 ≥ max(`, w) and the fact that Γ is monotonous.

induction case k ≥ 1: We define C := 2110m29(d+ 2)39O · log2(O)6. By induction hypothesis, Γ(r, `, w,m, d) ≤
Γ(r − (k − 1), δk−1, δk−1,m, d). By Claim 8 and the monotonicity of Γ:

Γ(r − (k − 1), δk−1, δk−1,m, d)

≤Γ(r − k, C
2
· (2 · δk−1) · (log2(2 · δk−1))6,

C

2
· (2 · δk−1) · (log2(2 · δk−1))6, m, d)

≤Γ(r − k, δk, δk m, d),

as indeed
C

2
· (2 · δk−1) · (log2(2 · δk−1))6

≤ C

2
·
(
C · (`+ w)

)2k(
log2((C · (`+ w))2k)

)6
≤ C

2
·
(
C · (`+ w)

)2k
(2 · k)6 log2(C · (`+ w))6

≤ C

2
·
(
C · (`+ w)

)2k · √C · log2(C · (`+ w))6 from k < r ≤ d and (2 · d)6 ≤
√
C

≤ C

2
·
(
C · (`+ w)

)2k · √C ·√C · (`+ w) from log2(x)6 ≤
√
x for x ≥ 275

≤ 1

2
·
(
C · (`+ w)

)2(k+1)
= δk.



The inequality we just showed, together with the base case of the recurrence system, entails

(3.8) Γ(r, `, w,m, d) ≤ (2110m29(d+ 2)39O · log2(O)6(`+ w))2·r.

Take now the formula Φ in the statement of the theorem. This formula is taken into account when bounding
Γ(r, `, w,m, d) where ` := 〈||Φ||〉 and w := log2

(∏
p∈P(Φ) p

µp+1
)
. We have

w ≤ max{1 + vp(f(bp)) : f is in a left-hand side of Φ, p ∈ P(Φ)} · log2

( ∏
p∈P(Φ)

p
)

≤ max{〈f(bp)〉 : f is in a left-hand side of Φ, p ∈ P(Φ)} · log2

( ∏
p∈P(Φ)

p
)

≤ (max{〈||bp||〉 : p ∈ P(Φ)}+ 〈||Φ||〉+ d+ 1) · log2

( ∏
p∈P(Φ)

p
)

≤ (max{〈||bp||〉 : p ∈ P(Φ)}+ 〈||Φ||〉+ d+ 1) ·m2(d+ 2) · (〈||Φ||〉+ 2) Lemma 1.4

≤ (max{〈||bp||〉 : p ∈ P(Φ)}+ 1) ·m2(d+ 2)2(〈||Φ||〉+ 2)2.

Then, following Equation (3.8) and by definition of Γ(r, `, w,m, d), the minimal positive solution a of Φ satisfies

〈||a||〉 ≤
(
2111O · log2(O)6m31(d+ 2)41(〈||Φ||〉+ 2)2(max{〈||bp||〉 : p ∈ P(Φ)}+ 2)

)2r
,

that is, 〈||a||〉 ≤ (〈Φ〉+ max{〈||bp||〉 : p ∈ P(Φ)})O(r).

Remark 1. Let us briefly discuss how do the infinitely many solutions of Φ ensured by Theorem 1.4 look. Since
solutions are constructed by solving the systems of (non-)congruences in Equations (3.4) and (3.6) (see Algorithm 1
for a summary), Theorem 1.3 ensures that Φ has infinitely many solutions. More precisely, the following property
holds: let (≺) ∈ (X1 ≺ · · · ≺Xr), x ∈

⋃r
j=1Xj, and ν :

⋃r
j=1Xj → Z be a solution of Φ (e.g., the one computed

by Algorithm 1). Let Ψ := Φ[ν(y) / y : y ≺ x]. There are infinitely many positive integers (and infinitely many
negative integers) a ∈ Z such that the system Ψ[a / x] has a solution.

3.3 Deciding systems of divisibility constraints in increasing form in NP. Theorem 1.4 provides a way
of constructing integer solutions of bit length exponential in r for r-increasing systems of divisibility constraints.
A different approach not relying on constructing integer solutions shows that the feasibility problem for systems
of divisibility constraints in increasing form is in NP.

Let Φ(x) :=
∧m
i=1 fi | gi be a formula in increasing form for an order ≺. According to Theorem 1.4, Φ

is satisfiable over the integers if and only if there are solutions bp for Φ modulo p for every prime p belonging
to P(Φ). From Lemma 1.4, the bit length of P(Φ) is polynomial in 〈Φ〉, and therefore only polynomially many
primes of polynomial bit length need to be considered. Recall that Φ has a solution modulo p whenever the
system

∧m
i=1 vp(fi(x)) ≤ vp(gi(x)) ∧ fi(x) 6= 0 has a solution. In [7] it is shown that the feasibility problem for

these constraint systems is in NP (this result holds for solutions over the integers, p-adic integers, and p-adic
numbers), and therefore there are certificates of feasibility having size polynomial in 〈p〉 and 〈Φ〉. The set of these
certificates, one for each prime in P(Φ), is a polynomial size certificate for the feasibility of Φ.

Proposition 3.1. Feasibility for systems of divisibility constraints in increasing form is in NP.

Of course, we know from the family of formulae Φn introduced in Section 1.1 (and the one after Theorem 1.4) that
systems in increasing form might have minimal solutions of exponential bit length. Therefore, Proposition 3.1 is
of no use when establishing Theorem 1.1. However, it still has an interesting implication: if the feasibility problem
for systems of divisibility constraints lies outside NP, then there is no polynomial time non-deterministic Turing
machine for finding an equisatisfiable system in increasing form.

4 IP-GCD systems have polynomial size solutions
In this section we expand the summary provided in Section 1.4 and establish Theorem 1.1, i.e., that every feasible
IP-GCD system has solutions of polynomial bit length, and that this polynomial bound still holds when looking



at minimization or maximization of linear objectives. As explained in Section 1.4, we prove Theorem 1.1 by
designing an algorithm that reduces an IP-GCD system into a disjunction of (exponentially many) 3-increasing
systems of divisibility constraints with coefficients and constants of polynomial size, to then study bounds on
their solutions modulo primes. Then, the polynomial small witness property follows from Theorem 1.4.

Without loss of generality, throughout the section we consider IP-GCD systems of the form

A · x ≤ b ∧
k∧
i=1

gcd(yi, zi) ∼i ci ,

where, A ∈ Zm×d, b ∈ Zm, ci ∈ Z+, x = (x1, . . . , xd) is a vector of variables, ∼i ∈ {≤,=, 6=, ≥}, and the yi and
zi are variables occurring in x. Systems with GCD constraints gcd(f(w), g(w)) ∼ c can be put into this form by
replacing gcd(f(w), g(w)) ∼ c with y = f(w) ∧ z = g(w) ∧ gcd(y, z) ∼ c, where y and z are fresh variables.

4.1 Translation into 3-increasing systems. The procedure generating the 3-increasing systems of divisibility
constraints starting from an IP-GCD system Φ is divided into two steps. The first step (Algorithm 2), computes
several systems of divisibility constraints whose disjunction is equivalent to Φ (under some changes of variables).
The second step (Algorithm 3), further manipulates these systems in order to produce systems of divisibilities
in 3-increasing form. We now describe these two steps in detail, and study bounds on the obtained 3-increasing
systems (Lemma 4.4). Both steps rely on the following notion of gcd-to-div triple, which highlights properties of
the system of divisibility constraints obtained by translation from IP-GCD systems. A triple (Ψ,u, E) is said to
be a gcd-to-div triple whenever there are d,m ∈ N and three disjoint families of variables z, y and w for which
the following properties hold:

1. Ψ(z,y,w) is a system of divisibility constraints in m variables, u ∈ Zd and E ∈ Zd×m, where each column
of E (implicitly) corresponds to a variable in Ψ.

2. Each divisibility in Ψ is of the form h(z) | f(y) or of the form f(y) | g(w), with g being a non-constant
polynomial. Each polynomial only features non-negative coefficients and constants, and each left-hand side
of a divisibility has a (strictly) positive constant.

3. In Ψ, each variable in z appears in a single polynomial h(z), where h(z) is of the form z + c, for some
c ∈ Z+, and occurs in precisely two divisibilities (as left-hand side).

4. In Ψ, each variable in w appears in exactly two polynomials g1(w) and g2(w), each occurring in Ψ exactly
once (as right-hand sides). They have the form g1(w) = w and g2(w) = w + c, for some c ∈ Z+.

5. Every column in E corresponding to a variable in z or w is zero (see line 11 of Algorithm 2).

For a set of gcd-to-div triples B, let JBK := {u+ E · λ : (Ψ,u, E) ∈ B and λ ∈ Nm solution to Ψ}.

Step I: from IP-GCD to systems of divisibility constraints. This step is implemented by Algorithm 2. As
highlighted in its signature, given as input an IP-GCD system Φ(x) having d variables and k GCD constraints,
this procedure returns a set B of gcd-to-div triples satisfying the equivalence {a ∈ Zd : a solution to Φ} = JBK.
This equivalence clarifies the role of the vector u and matrix E of a gcd-to-div triple (Ψ,u, E): they are used to
perform a change of variables between the variables (z,y,w) in Ψ and the variables x in Φ. Note that, according
to the definition of JBK, the values of (z,y,w) range over N instead of Z. This discrepancy stems from the use of
the forthcoming Proposition 4.1.

Let us discuss how Algorithm 2 computes B. As a preliminary step, the procedure computes the formula∨`
i=1 Ψi in line 1. The role of this formula is to reduce the problem of translating IP-GCD systems into systems

of divisibility constraints to only those systems in which the GCD constraints gcd(y, z) ≤ c and gcd(y, z) 6= c do
not appear, and given a GCD constraint gcd(y, z) ∼ c (with ∼ either = or ≥), the variables y and z are forced to
be positive or negative (in particular, non-zero). The formula

∨`
i=1 Ψi can be computed from Φ by opportunely



Algorithm 2 Translate a IP-GCD system into gcd-to-div triples

Input: An IP-GCD system Φ(x) = A · x ≤ b ∧
∧k
i=1 gcd(yi, zi) ∼i ci with x = (x1, . . . , xd).

Output: A finite set B of gcd-to-div triples satisfying {a ∈ Zd : a solution to Φ} = JBK.

1: G := {Ψ1(x), . . . ,Ψ`(x)} such that Φ is equivalent to
∨`
i=1 Ψi and every Ψ ∈ G is a IP-GCD

system in which every GCD constraint gcd(y, z) ∼ c is such that (i) for both w ∈ {y, z}
either w ≤ −1 or w ≥ 1 appear in Ψ, and (ii) the relation ∼ is either = or ≥

2: B := ∅ . Set to be returned by the procedure
3: for Ψ in G do
4: Ψ′ := linear inequalities in Ψ
5: S := {(ui, Ei) : i ∈ I} s.t.

⋃
i∈I{ui + Ei · y : y ∈ N`} solutions set of Ψ′ . Proposition 4.1

6: for (u, E) in S do
7: Ψ′′ := system of GCD constraints obtained from Ψ by performing the change of

variables x← u+ E · y, where y is a vector of fresh variables (over N)
8: replace every polynomial f in Ψ′′ having only negative coefficients or constant with −f
9: replace every constraint gcd(f, g) = c in Ψ′′ with (c | f) ∧ (c | g) ∧ (f | w) ∧ (g | w + c),

where w is a fresh variable (distinct GCD constraints gets distinct fresh variables)
10: replace every constraint gcd(f, g) ≥ c in Ψ′′ with (z + c | f) ∧ (z + c | g),

where z is a fresh variable (distinct GCD constraints gets distinct fresh variables)
11: add to B the triple (Ψ′′,u, E′) where E′ is obtained form E by adding a zero column for each

auxiliary variable z and w added in lines 9 and 10
12: return B

applying the following tautologies:

y ≤ −1 ∨ y = 0 ∨ y ≥ 1 , gcd(y, z) 6= c+ 2 ⇐⇒ gcd(y, z) ≤ c+ 1 ∨ gcd(y, z) ≥ c+ 3 (c ∈ N) ,

gcd(y, z) 6= 1 ⇐⇒ y = z = 0 ∨ gcd(y, z) ≥ 2 , gcd(y, z) ≤ c ⇐⇒
c∨
j=1

gcd(y, z) = j ,

y = 0 =⇒ (gcd(y, z) ∼ c ⇐⇒ |z| ∼ c) , y 6= 0 ∧ z = 0 =⇒ (gcd(y, z) ∼ c ⇐⇒ |y| ∼ c) ,

where in the last two tautologies ∼ is = or ≥, and |x| ∼ c := (x ≥ 0 ∧ x ∼ c) ∨ (x < 0 ∧ −x ∼ c). Let
G := {Ψ1, . . . ,Ψ`} (as defined in line 1). The next step of the algorithm is to remove the system of inequalities
from every formula Ψ ∈ G via changes of variables (lines 4–7). This can be done thanks to a fundamental result
by von zur Gathen and Sieveking [26] that characterizes the set of solutions of linear inequalities as a union of
discrete shifted cones. The following formulation of this result is from [13, Theorem 3].

Proposition 4.1. ([26]) Consider matrices A ∈ Zm×d, C ∈ Zn×d, and vectors b ∈ Zm, d ∈ Zn. Let
r := rank(A) and s := rank(AC ). Then,

{x ∈ Zd : A · x = b ∧ C · x ≤ d} =
⋃
i∈I
{ui + Ei · y : y ∈ Nd−r} ,

where I is a finite set, ui ∈ Zd, Ei ∈ Zd×(d−r) and ||ui||, ||Ei|| ≤ (d+ 1)(s ·max(2, ||A||, ||C||, ||b||, ||d||))s.

Let S = {(ui, Ei) : i ∈ I} be the set of pairs given by Proposition 4.1 on the linear inequalities of Ψ, as written in
line 5, and given (u, E) ∈ S consider the system Ψ′′ defined in line 7. Following Proposition 4.1, Ψ′′ is interpreted
over N. By definition of G, in Ψ, every variable x appearing in a GCD constraint also appears in a (non-zero)
sign constraint x ≤ −1 or x ≥ 1. This means that in the system x = u + E · y, the row corresponding to x is
of the form x = f(y) where f is a linear polynomial having coefficients and constant with the same sign, i.e.,
they are all negatives (if x ≤ −1) or positives (if x ≥ 1). Therefore, all GCD constraints in Ψ′′ are of the form
gcd(f, g) ∼ c where f and g are polynomials with coefficients and constant having the same sign. Line 8 modifies
Ψ′′ so that all these coefficients and constants become positive, thanks to the equalities gcd(f, g) = gcd(−f, g)



and gcd(f, g) = gcd(g, f). What is left is to translate Ψ′′ into a system of divisibilities. This is done in lines 9
and 10 by simply relying on the following two tautologies:

(4.9)
gcd(f, g) = c ∧ f 6= 0 ∧ g 6= 0 ⇐⇒ ∃w ∈ N : c | f ∧ c | g ∧ f | w ∧ g | w + c ,

gcd(f, g) ≥ c ⇐⇒ ∃z ∈ N : z + c | f ∧ z + c | g.

Above, note that we can assume f 6= 0∧g 6= 0 in Ψ′′, again because of the sign constraints appearing in Ψ. While
the second tautology should be self-explanatory, the first one merits a formal proof:

gcd(f, g) = c ∧ f 6= 0 ∧ g 6= 0

⇐⇒ ∃a, b ∈ Z : c | f ∧ c | g ∧ a · f + b · g = c Bézout’s identity
⇐⇒ ∃w, z ∈ Z : w ≤ 0 ∧ c | f ∧ c | g ∧ f | w ∧ g | z ∧ w + z = c set w = a · f and z = b · g

Bézout’s identity allows picking w ≤ 0

⇐⇒ ∃w ∈ Z : w ≤ 0 ∧ c | f ∧ c | g ∧ f | −w ∧ g | c− w eliminate z, and f | w ⇔ f | −w
⇐⇒ ∃w ∈ N : c | f ∧ c | g ∧ f | w ∧ g | w + c change of variable −w ← w.

Note that the divisibilities in (4.9) ensure that Ψ′′ satisfies the constraints required by gcd-to-div triples. After
translating GCDs into divisibilities, the procedure computes a matrix E′ by enriching E with zero columns
corresponding to the new variables z and w, and adds the resulting triple (Ψ′′,u, E′) to B (line 11). We obtain
the following result:

Lemma 4.1. Algorithm 2 respects its specification. Given as input a system Φ with d variables and k
GCD constraints, every triple (Ψ,u, E) in the output set B is such that Ψ has at most d + k variables and
4k divisibilities, E has at most d non-zero columns, and ||Ψ||, ||u||, ||E|| ≤ (d+ 1)d+2(||Φ||+ 1)d+1.

Proof. The fact that Algorithm 2 respects its specification follows from the discussion given above. In particular,
{a ∈ Zd : a solution of Φ} = JBK stems from the fact that the procedure treats the original formula Φ by only
relying on tautologies and on Proposition 4.1.

Let us study the bounds on (Ψ,u, E). For the bound on the number of variables in Ψ and non-zero columns
in E, note that by Proposition 4.1, the change of variables of line 7 does not increase the number of variables,
and therefore the only lines where the number of variables increases are lines 9 and 10. Overall, these two lines
introduce k many variables, one for each GCD constraint; so the number of variables in Ψ is bounded by d + k.
Each new variable introduces a zero column in E, which has thus at most d non-zero columns (line 11). For the
bound on the number of divisibilities, only lines 9 and 10 matter, and they introduce at most 4 divisibilities per
GCD constraint; hence Ψ has at most 4k divisibilities. Lastly, let us derive the bound on the infinity norm of Ψ,
u and E. The rewritings done in line 1 increase the infinity norm by at most 1; this occurs when relying on the
tautology gcd(y, z) 6= c+ 2 ⇐⇒ gcd(y, z) ≤ c+ 1∨ gcd(y, z) ≥ c+ 3. The bound on u and E then follows from a
simple application of Proposition 4.1: ||u||, ||E|| ≤ (d+ 1) · (d · (||Φ||+ 1))d. The change of variables in line 7 yields
||Ψ′′|| ≤ (d+ 1) ·max(||u||, ||E||) · (||Φ||+ 1). Lines 8–11 do not change the infinity norm, and therefore we obtain
the bound in the statement of the lemma.

Step II: force increasingness. We now move to Algorithm 3, whose role is to translate the systems of divisibility
constraints computed by Algorithm 2 into 3-increasing systems. As such, the procedure takes as input a set B
of gcd-to-div triples. We first need the following result:

Lemma 4.2. Let (Ψ,u, E) be a gcd-to-div triple. If the system Ψ is not in increasing form, then there is a non-
constant polynomial f primitive part of a left-hand side in Ψ such that Mf (Ψ) ∩ Z 6= {0}. If Ψ is in increasing
form, then it is increasing for z≺y≺w, where z, y and w are the families of variables appearing in the definition
of gcd-to-div triple.

Proof. For the first statement, we prove a stronger result: if Ψ is not increasing for z ≺ y ≺ w, then there is a
non-constant polynomial f primitive part of a left-hand side in Ψ s.t. Mf (Ψ) ∩ Z 6= {0}. Observe that then, by
definition of divisibility module and increasing form, Ψ cannot be in increasing form for any order; which shows
the second statement in the lemma by contraposition.



Algorithm 3 Translates the systems in gcd-to-div triples into 3-increasing form

Input: A finite set B of gcd-to-div triples.
Output: A finite set C of gcd-to-div triples such that JBK = JCK

and for every (Ψ,u, E) ∈ C, Ψ is a 3-increasing system of divisibility constraints.

1: C := ∅ . Set to be returned by the procedure
2: while (Ψ,u, E)← pop(B) do . exits when B becomes empty
3: if Mf (Ψ) ∩ Z = {0} for every non-constant f primitive part of some l.h.s. in Ψ then
4: add to C the triple (Ψ,u, E) . Ψ in increasing form
5: else
6: f := non-constant primitive part of some l.h.s. in Ψ, satisfying Mf (Ψ) ∩ Z 6= {0}
7: λ1, . . . , λj := the variables appearing in f
8: c := minimum positive integer in Mf (Ψ)
9: for ν : {λ1, . . . , λj} → [0, c] such that f(ν(λ1), . . . ,ν(λj)) divides c do

10: Ψν := Ψ[ν(λi) / λi : i ∈ [1, j]] . Ψν has fewer variables than Ψ

11: uν := u+
∑j
i=1 ν(λi) · pi where pi is the column of E corresponding to the variable λi

12: Eν := E without the columns corresponding to λ1, . . . , λj
13: add to B the triple (Ψν ,uν , Eν) . triple to be considered again in line 2
14: return C

Consider an order x1≺ · · · ≺ xd of the variables in Ψ that belongs to z≺ y≺w, and suppose that Ψ is not in
increasing form for this order. Therefore, there is a primitive part f of a left-hand side of a divisibility in Ψ such
that Mf (Ψ) ∩ Z[x1, . . . , xj ] 6= Zf , where xj = LV(f). Let g ∈ Mf (Ψ) ∩ Z[x1, . . . , xj ] \ Zf . We show that g must
be a constant polynomial. We distinguish two cases, depending on whether the leading variable of f belongs to
z or to y (note that it cannot belong to w, as no left-hand side with variables from this family exists).

case LV(f) is in z: Since LV(g) � LV(f), all variables in g are from z. By Property 2 of gcd-to-div triple, each
divisibility in Ψ is of the form h(z) | h′(y) or of the form h(y) | h′(w). By Lemma 3.1, a set spanning
Mf (Ψ) is given by {f, c1 · g1, . . . , cm · gm} where ci ∈ N and gi is a right-hand side of a divisibility in Ψ, for
every i ∈ [1,m]. This means that every gi has variables from y or w. Since g does not have any variable
from y or w and belongs to Zf , we conclude that it must be a constant polynomial.

case LV(f) is in y: Again from Property 2 of gcd-to-div triple, f only appears as left-hand side in divisibilities
of the form a · f(y) | h(w), with a ∈ Z \ {0}. Since no non-constant polynomial h(w) appears in a left-hand
side of Ψ, the set {f, c1 ·g1, . . . , cm ·gm} spanning Mf (Ψ) computed via Lemma 3.1 is such that ci 6= 0 if and
only if gi only has variables from w, for every i ∈ [1,m]. Since ≺ belongs to z≺y≺w, from LV(g)≺LV(f)
we then conclude that g must be a constant polynomial.

This concludes the proof of the lemma.

Consider (Ψ,u, E) ∈ B. Algorithm 3 relies on Lemma 4.2 to test whether Ψ is increasing (line 3). If it is
not, it computes the minimum positive integer c ∈ Mf (Ψ), for some f non-constant (line 8). By definition of
divisibility module, for every primitive polynomial f and polynomial g ∈ Mf (Ψ), we have that Ψ entails f | g,
that is for every a ∈ Zm solution to Ψ, f(a) divides g(a); and therefore Ψ entails f | c. We can now eliminate all
variables that occur in f : by definition of gcd-to-div triple, f has coefficients and constant that are all positive,
and Ψ is interpreted over N. We conclude that every solution of Ψ is such that it assigns an integer in [0, c] to
every variable in f . The for loop in line 9 iterates over the subset of these (partial) assignments satisfying f | c.
Each of these assignments ν yields a new triple (Ψν ,uν , Eν), defined as in lines 10–12, which is a gcd-to-div triple
thanks to the lemma below (that follows directly from the definition of gcd-to-div triple).

Lemma 4.3. Let (Ψ,u, E) be a gcd-to-div triple, with u ∈ Zd. Consider a map ν : X → Z, where X is a subset
of the variables appearing in left-hand sides of Ψ. Let Ψ′ := Ψ[ν(x) / x : x ∈ X], u′ ∈ Zd, and E′ be the matrix
obtained from E by removing the columns corresponding to variables in X. Then, (Ψ′,u′, E′) is a gcd-to-div triple.



The key equivalence, from which the correctness of the algorithm directly stems, is:

(4.10) {u+ E · λ : λ ∈ Nm solution for Ψ} =
⋃

ν substitution
considered in line 9

{uν + Eν · λ : λ ∈ Nm−j solution for Ψν},

where j ≥ 1 is the number of variables in f . The procedure adds each triple (Ψν ,uν , Eν) to the set B (line 13), so
that it will be tested for increasingness in a later iteration of the while loop of line 2. Termination is guaranteed
from the fact that f is non-constant and so each Ψν has strictly fewer variables than Ψ.

Lemma 4.4. Algorithm 3 respects its specification. On input B such that, for every (Ψ,u, E) ∈ B, Ψ has
at most d variables and k GCD constraints, and E has at most ` non-zero columns, each output triple
(Ψ′,u′, E′) ∈ C is such that Ψ′ has at most d variables and k GCD constraints, E′ has at most ` non-zero
columns, ||Ψ′|| ≤ 215(d+ 1) · (||B||+ 1)7, ||u′|| ≤ (`+ 1) · ||B||2, and ||E′|| ≤ ||B||.

Above, ||B|| is the maximum among ||Ψ||, ||u||, and ||E||, over all gcd-to-div triples (Ψ,u, E) ∈ B. The most difficult
parts of the proof are the bounds on Ψ′ and u′. These, however, follow from the properties of gcd-to-div triples
and, in particular, from the special shape of the divisibility constraints that they allow. Together, Lemmas 4.1
and 4.4 imply Proposition 1.1 in Section 1.4.

Proof. The fact that Algorithm 3 respects its specification follows from the discussion given above, and in
particular from Lemma 4.2 and Equation (4.10). Let us then focus on the bounds on an output triple (Ψ′,u′, E′).
Note that ||B|| ≥ 1, if B contains at least one divisibility. Following the while loop of Algorithm 3, there is a
sequence of triples

(Ψ1,u1, E1) → (Ψ2,u2, E2) → . . . → (Ψk,uk, Ek) = (Ψ′,u′, E′),

where (Ψ1,u1, E1) ∈ B and for every i ∈ [1, k − 1], the triple (Ψi+1,ui+1, Ei+1) is computed from (Ψi,ui, Ei)
following lines 6–13. In particular, given i ∈ [1, k − 1]:

• there is a non-constant polynomial f̂i that is the part of a left-hand side in Ψi satisfying Mf̂i
(Ψi) ∩ Z 6={0}

and with variables λ̂i := (λi,1, . . . , λi,ji), and

• there is a map νi : {λi,1, . . . , λi,ji} → [0, ĉi] such that f̂i(νi(λ̂i)) divides ĉi, where ĉi is the minimum positive
integer in Mf̂i

(Ψi),

such that Ψi+1 = Ψi[νi(λi,r) / λi,r : r ∈ [1, ji]], ui+1 = ui +
∑j
r=1 νi(λi,r) · pr, where pr is the column of

Ei corresponding to the variable λi,r, and Ei+1 is obtained from Ei by removing the columns corresponding to
variables in λ̂i. Note that this implies that ||E′|| ≤ ||Ei|| ≤ ||B|| and that E′ and Ei have at most ` non-zero
columns, as required by the lemma.

We show the remaining bounds in the statement of the lemma by induction on i ∈ [1, k], with the induction
hypothesis stating that (Ψi,ui, Ei) is a gcd-to-div triple where:

(A) Ψi is a system with at most d variables and k GCD constraints, having the form

Ψi =

l∧
j=1

cj | fj(y) ∧
n∧

j=l+1

(
zj + cj | fj(y) ∧ zj + cj | gj(y)

)
∧

m∧
j=n+1

(
fj(y) | wj ∧ gj(y) | wj + cj

)
,

where y, z = (zl+1, . . . , zn) and w = (wn+1, . . . , wm) are disjoint families of variables (according to the
definition of gcd-to-div triple), cj ∈ Z+ for every j ∈ [1,m], and

(B) for every j ∈ [1, l], cj ≤ 215 · (2 + ||B||)7, and for every j ∈ [l + 1,m], cj ≤ ||B||, and

(C) for every j ∈ [l + 1,m], h(y) ∈ {fj(y), gj(y)} has variable coefficients bounded by ||B||, and constant
bounded by (d+ 1− d′) · ||B||2, where d′ is the number of variables in h, and



(D) if i ∈ [2, k], then for every r ∈ [1, ji−1], if λi−1,r belongs to y then νi(λi−1,r) ≤ ||B||, and if λi−1,r belongs
to z then νi(λi−1,r) ≤ 214(2 + ||B||)7.

Note that Item (D) implies ||u′|| ≤ (` + 1) · ||B||2, since all non-zero columns of E1 correspond to variables in y,
by definition of gcd-to-div triple. Items (B) and (C) imply ||Ψ′|| ≤ 215(d+ 1) · (||B||+ 1)7.

base case i = 1: In this case (Ψ1,u1, E1) ∈ B and the hypothesis above trivially holds since (Ψ1,u1, E1) is
a gcd-to-div triple and Properties 2–4 ensure that Ψ1 has the form in Item (A).

induction step i+ 1 ≥ 2: We assume the properties in the induction hypothesis to hold for (Ψi,ui, Ei),
and establish them for (Ψi+1,ui+1, Ei+1). By Lemma 4.3, (Ψi+1,ui+1, Ei+1) is a gcd-to-div triple,
hence Item (A) follows. So, let us focus on establishing the part of the induction hypothesis related to
the infinity norm of Ψi+1 and νi (Items (B) to (D)). Let z, y and w be the families of variables witnessing
that (Ψi,ui, Ei) is a gcd-to-div triple, according to the definition of such triples. By Property 2, f̂i has
variables from either z or y (not both). We divide the proof depending on these two cases.

case f̂i has only variables from y: From Property 2 of gcd-to-div triples, f̂i only appears as a left-hand
side in divisibilities of the form a · f̂i(y) | h(w), with a ∈ Z \ {0}. From Property 4 of gcd-to-div triples
together with the fact that Mf̂i

(Ψi) ∩ Z 6= {0}, we conclude that there must be a variable w in w and
c ∈ Z+ such that a1 · f̂i | w and a2 · f̂i | w + c are divisibilities in Ψi, for some a1, a2 ∈ Z \ {0}. Then,
c ∈ Mf̂i

(Ψi) and by definition ĉi ≤ c. By induction hypothesis (Item (B)), ĉi ≤ ||B||, which shows
Item (D) directly by definition of νi. Item (B) is also trivially satisfied: since we are replacing only
variables in y, all polynomials in Ψi+1 with variables from z or w are polynomials in Ψi, and no new
coefficient c′ can appear in divisibilities of the form c′ | f(y).
To prove Item (C), let h′ be a polynomial obtained from some h(y) in Ψi by evaluating each λi,r as
νi(λi,r) (r ∈ [1, j]). By induction hypothesis (Item (C)), h has variable coefficients bounded by ||B||, and
constants bounded by (d+1−d′) · ||B||2, where d′ is the number of variables in h. Let d′′ be the number
of variables in h′. Because of the substitutions done by νi, we conclude that the coefficients of h′ are
bounded by ||B||, whereas its constant is bounded by (d+1−d′)·||B||2+(d′−d′′)·||B||2 = (d+1−d′′)·||B||2.

case f̂i has only variables from z: In this case, f̂i is of the form z+c for some c ∈ Z+, and by Property 3
of gcd-to-div triple it appears in exactly two divisibilities z + c | f(y) and z + c | g(y). In order to
upper bound ĉi, we divide the proof in two cases, depending on whether (Zf + Zg) ∩ Z = {0}.

case (Zf + Zg) ∩ Z = {0}: Since Mf̂i
(Ψi)∩Z 6= {0}, by Properties 2 and 4 of gcd-to-div triples there

must be two polynomials f ′(y) and g′(y), a variable w in w and a′, b′, c′ ∈ Z+ such that f ′(y) | w,
g′(y) | w + c′ and {a′ · f ′, b′ · g′} ⊆ (Zf + Zg). Then, by definition of divisibility module,
a′ · b′ · c′ ∈ Mf̂i

(Ψi). By induction hypothesis c′ ≤ ||B|| (Item (B)), and therefore to find a bound
on ĉi is suffices to bound a′ and b′. Let us study the case of a′ (the bound is the same for b′). The
set S := {−f ′, f, g} can be represented as a matrix A ∈ Z(d+1)×3 in which each column contains
the coefficients and the constant of a distinct element of S. We apply Proposition 4.1 on the system
A · (x1, x2, x3) = 0, and conclude that a′ is bounded by 4 · (3 ·max(2, ||A||))3 ≤ 108 · (||B|| + 1)3.
Therefore, ĉi ≤ 214(||B||+ 1)7.

case (Zf + Zg) ∩ Z 6= {0}: In this case, we consider the set S := {f, g} and the matrix A ∈ Z(d+1)×2

in which each column contains the coefficients and the constant of a distinct element in S, with the
constant being places in the last row. To find a non-zero value c′ ∈ (Zf+Zg)∩Z, we solve the system
A · (x1, x2) +x3 · (0, 1) = 0. By Proposition 4.1, ĉi ≤ |c′| ≤ 4 · (3 ·max(2, ||A||))3 ≤ 108 · (||B||+ 1)3.

Therefore, νi(z) ≤ ĉi ≤ 214(||B||+ 1)7, which shows Item (D) of the induction hypothesis. Item (C) is
trivially satisfied, since νi replaces only the variable z, which does not belong to y. Item (B) follows
from the fact that in the polynomial z + c the integer c is bounded by ||B|| by induction hypothesis,
and therefore ν(z) + c ≤ 215(||B||+ 1)7.

This concludes the induction and thus the proof of the lemma.



4.2 Bound on the solutions modulo primes. Through Algorithms 2 and 3 we are able to compute from
an IP-GCD system Φ a set of gcd-to-div triples C such that {a ∈ Zd : a is a solution to Φ} = JCK. To
apply Theorem 1.4, what is left is to study bounds on the solutions modulo primes in P(Ψ), for every (Ψ,u, E) ∈ C.

Lemma 1.5. Let (Ψ,u, E) be a gcd-to-div triple in which Ψ has d variables, and consider p ∈ P(Ψ). If Ψ has a
solution modulo p, then it has a solution bp ∈ Zd modulo p with ||bp|| ≤ (d+ 1) · ||Ψ||3p2.

Proof. Let us assume there exists a solution ν : λ→ Z to Ψ(λ) modulo p. We build another solution ν′ : λ→ Z
to Ψ(λ) modulo p such that ||ν′(λ)|| ≤ (d + 1) · ||Ψ||3p2. According to Properties 2–4 of gcd-to-div triples, the
formula Ψ is of the form:

Ψ =

l∧
i=1

ci | fi(y) ∧
n∧

i=l+1

(
zi + ci | fi(y) ∧ zi + ci | gi(y)

)
∧

m∧
i=n+1

(
fi(y) | wi ∧ gi(y) | wi + ci

)
,

where y, z = (zl+1, . . . , zn) and w = (wn+1, . . . , wm) are disjoint families of variables, and ci ∈ Z+ for every
i ∈ [1,m]. Recall that the variables zi (i ∈ [l+ 1, n]) are all distinct, and the same holds true for the variables wi
(i ∈ [n+ 1,m]). We define µi := vp(ci), µ := maxmi=1 µi, and ν′ as:

ν′(x) :=



(ν(x) modulo pµ) if x belongs to y,
1 if x = zi for some i ∈ [l + 1, n] and p divides ci,
0 if x = zi for some i ∈ [l + 1, n] and p does not divide ci,
pµ+1gi(ν

′(y))− ci if x = wi for some i∈ [n+ 1,m] and pµi+1 does not divide fi(ν(y)),

pµ+1fi(ν
′(y)) otherwise (x = wi for some i ∈ [n+ 1,m]).

Note that ν′ is defined recursively in the last two cases; this recursion is on variables from y and thus ν′ is
well-defined. By definition, pµ+1 ≤ ||Ψ|| · p, and therefore ||ν′(x)|| ≤ (d + 1) · ||Ψ||3p2 for every variable x in λ.
To conclude the proof, let us show that ν′ is a solution for Ψ modulo p. The fact that f(ν′(λ)) 6= 0 for every
polynomial f in the left-hand side of a divisibility in Ψ stems from ν′ being defined to be non-negative for every
variable in z and y, and f having a positive constant by Property 2 of gcd-to-div triples. So, we focus on showing
that vp(f(ν′(λ))) ≤ vp(g(ν′(λ))) for every divisibility f | g in Ψ.

Let i ∈ [1, l], and consider ci | fi(y). By definition of ν′, fi(ν′(y)) ≡ fi(ν(y)) (mod pµ+1), and therefore
vp(fi(ν

′(y))) = min(µ+ 1, vp(fi(ν(y)))). By definition of µ, we have ci 6≡ 0 (mod pµ+1), i.e., vp(ci) < µ+ 1. We
conclude that vp(ci) ≤ vp(fi(ν′(y))).

Let i ∈ [l + 1, n], and consider the divisibilities zi + ci | fi(y) and zi + ci | gi(y). By definition of ν′ we have
vp(ν

′(zi) + ci) = 0, and so vp(ν′(zi) + ci) ≤ vp(fi(ν′(y))) and vp(ν′(zi) + ci) ≤ vp(fi(ν′(y))).
Let i ∈ [n + 1,m]. Assume first that pµi+1 does not divide fi(ν(y)), and so ν′ is defined so that ν′(wi) =

pµ+1gi(ν
′(y))−ci. The divisibility gi(y) | wi+c is trivially satisfied by ν′ over the integers, and thus also modulo

p. By definition of ν′ we have fi(ν′(y)) ≡ fi(ν(y)) (mod pµ+1) and therefore pµi+1 does not divide fi(ν′(y)).
By definition of µi, this implies vp(fi(ν′(y))) ≤ vp(ci). From the definition of µ, vp(pµ+1gi(ν

′(y))) > vp(ci)
and therefore vp(ν

′(wi)) = vp(ci), which yield vp(fi(ν
′(y))) ≤ vp(ν

′(wi)). Let us now assume that pµi+1

divides fi(ν(y)), and so ν′ is defined so that ν′(wi) = pµ+1fi(ν
′(y)). Clearly, the divisibility fi(y) | wi is

satisfied by ν′ over the integers, and thus also modulo p. Since ν is a solution for Ψ modulo p, and pµ+1

divides fi(ν(y)), we conclude that pµ+1 divides ν(wi). Then, by definition of µ, vp(ν(wi)) > vp(ci) and
therefore vp(gi(ν(y))) ≤ vp(ν(wi) + ci) = vp(ci). By definition of ν′, gi(ν′(y)) ≡ gi(ν(y)) (mod pµ+1) and
vp(ν

′(wi) + ci) = vp(ci). We conclude that vp(gi(ν′(y))) ≤ vp(ν′(wi) + ci).

4.3 Proof of Theorem 1.1. Thanks to Lemmas 1.4, 1.5, 4.1 and 4.4, we obtain the part of Theorem 1.1 not
concerning optimization as a corollary of Theorem 1.4.

Corollary 4.1. Each feasible IP-GCD system has a solution of polynomial bit length.

Let us now discuss the related integer programming optimization problem. Consider an IP-GCD system Φ(x)
and the problem of minimizing (or maximizing) a linear objective cᵀx subject to Φ(x). We apply Lemmas 4.1



and 4.4 on Φ(x) to obtain a set C of gcd-to-div triples only featuring 3-increasing systems of divisibility constraints,
and with {a ∈ Zd : a solution to Φ} = JCK. We show the following characterization that implies the optimization
part of Theorem 1.1:

I. if for every (Ψ,u, E) ∈ C, Ψ is unsatisfiable over N, then Φ is unsatisfiable;

II. else, if there is (Ψ,u, E) ∈ C such that Ψ is satisfiable over N and the linear polynomial cᵀ(u+ E · λ)
has a variable in λ with strictly negative (resp. positive) coefficient, then an optimal solution minimizing
(resp. maximizing) cᵀx subject to Φ(x) does not exist;

III. else, an optimal solution does exist, and in particular one with bit length polynomial in 〈Φ〉 and 〈c〉.

Item I. follows directly from the equivalence {a ∈ Zd : a solution to Φ} = JCK. Let us focus on Item II., which
we show for the case of minimization (the case of maximization being analogous). Consider a triple (Ψ,u, E) ∈ C
such that Ψ is satisfiable and the linear polynomial f(λ) := cᵀ(u+E ·λ) has a variable in λ with strictly negative
coefficient. Let z, y and w be the disjoint families of variable witnessing the fact that (Ψ,u, E) is a gcd-to-div
triple, according to the definition of such triples. By Lemma 4.2, Ψ is increasing for z≺y≺w, and from Property 5
of gcd-to-div triples, all variables appearing in f(λ) with a non-zero coefficient are from y. Let ŷ be a variable
appearing in f with a negative coefficient, and consider an order (≺) ∈ (z ≺ y ≺ w) for which ŷ is the largest
of the variables appearing in y. Since Ψ is satisfiable over N, it is satisfiable modulo every prime in P(Ψ), and
we can apply Algorithm 1 to compute a solution ν over N satisfying the property highlighted in Remark 1: the
formula Ψ[ν(x) / x : x ≺ ŷ ] has a solution for infinitely many positive values of ŷ. Since ŷ is the largest (for ≺)
variable appearing in f , and its coefficient in f is negative, we conclude that min{f(λ) ∈ Z : λ is a solution to Ψ}
is undefined, which in turn implies that an optimal solution minimizing cᵀx subject to Φ(x) does not exist.

Lastly, let us consider Item III.. Again we focus on the case of minimization. Below, let C ′ := {(Ψ,u, E) ∈ C :
Ψ is satisfiable over N} and note that {x ∈ Zd : Φ(x)} = JC ′K. As Items I. and II. do not hold, C ′ 6= ∅ and every
gcd-to-div triple (Ψ,u, E) ∈ C ′ is such that the linear polynomial cᵀ(u+E ·λ) only has non-negative coefficients.
Since the variables λ are interpreted over N, this means that ` := min{cᵀu : (Ψ,u, E) ∈ C ′} is a lower bound
to the values that cᵀx can take when x is a solution to Φ; i.e., the optimal solution exists. Lemmas 4.1 and 4.4
ensure that the lower bound ` has polynomial bit length with respect to 〈Φ〉 and 〈c〉. We also have an upper
bound u to the optimal solution: it suffices to take the minimum of the values (u+ E · λ), where (Ψ,u, E) ∈ C ′
and λ is the positive integer solution to Ψ computed with Algorithm 1 using the solutions modulo p ∈ P(Ψ)
of Lemma 1.5. Again, u has polynomial bit length with respect to 〈Φ〉 and 〈c〉, thanks to Lemmas 1.4, 4.1
and 4.4, and Theorem 1.4. Item III. then follows by reduction from the feasibility problem of IP-GCD systems: it
suffices to find the minimal v ∈ [`, u] such that the IP-GCD system Φv(x) := Φ(x) ∧ (cᵀx ≤ v) is feasible. Since
every v ∈ [`, u] is of polynomial bit length, by Corollary 4.1 if Φv(x) is satisfiable, then it has a solution x ∈ Zd
such that 〈x〉 ≤ poly(〈Φ〉, 〈c〉).



A Lemma 1.1: proof of Claim 1
In this appendix, we present the technical manipulations yielding Claim 1, thereby completing»ß the proof
of Lemma 1.1. Below, µ and ω stand for the Möbius function and the prime omega function, respectively.
Recall that µ(n) = (−1)ω(n) and ω(n) = #P(n), for every n ∈ Z+.

Proposition A.1. (Möbius inversion [8, Theorem 266]) Consider two functions f, g : Z+ → R such that
for every n ∈ Z+, f(n) =

∑
d∈div(n) g(d). For every m ∈ Z+, g(m) =

∑
d∈div(m) f(d) · µ(md ).

Proposition A.2. (Möbius sums [8, Theorem 263]) For n ∈ Z+ greater than 1,
∑
s∈div(n) µ(s) = 0.

The following lemma tells us what to expect when we truncate the sum of the previous proposition so that it
only considers elements with at most ` divisors.

Lemma A.1. Let n, `∈N with n square-free. If ω(n) > ` then
∑
r∈div(n), ω(r)≤` µ(r) = (−1)`

(
ω(n)−1

`

)
.

Proof. We write LHS (resp. RHS) for the left-hand (resp. right-hand) side of the equivalence in the statement.
Note that ω(n) > ` implies n ≥ 1. The proof is by induction on `.

base case: ` = 0: In this case, LHS = µ(1) = 1 = (−1)0
(
ω(n)−1

0

)
= RHS.

induction step: ` ≥ 1: We have,

LHS =
∑

r∈div(n), ω(r)<`

µ(r) +
∑

s∈div(n), ω(r)=`

µ(s)

= (−1)`−1

(
ω(n)− 1

`− 1

)
+

∑
s∈div(n), ω(r)=`

µ(s)
by the induction hypothesis;

recall ω(n) > `

= (−1)`−1

(ω(n)− 1

`− 1

)
−

∑
r∈div(n), ω(r)=`

1

 since µ(r) = (−1)` iff ω(r) = `

= (−1)`−1

((
ω(n)− 1

`− 1

)
−
(
ω(n)

`

))
from n square-free

= (−1)`
(
ω(n)− 1

`

)
= RHS Pascal’s rule.

This concludes the proof of the lemma.

We are now ready to prove Claim 1:

Claim 1.
∑

r∈Q(`)

µ(r) ·m(r)

r
≥Wm(Q)

(
1−

(e · α
`

)`
α · eα

)
, with α := (d+ 1)2(2 + ln ln(#Q+ 1)).

Let us recall the hypothesis under which this claim must be proved: ` ∈ N+ is odd, d ≥ 1, Q is a non-empty
finite set of primes, Q(`) := {r ∈ div(ΠQ) : ω(r) ≤ `}, m is a multiplicative function such that m(q) ≤ q − 1 and
m(q) ≤ d on all q ∈ Q, and Wm(Q) :=

∏
q∈Q

(
1− m(q)

q

)
.

Proof. We start by defining the truncated Möbius function µ` and its companion function ψ`:

µ`(x) :=

{
µ(x) if ω(x) ≤ `
0 otherwise

and ψ`(x) :=
∑

r∈div(x)

µ`(x).

The proof proceeds by performing two term manipulations. In the first one, we use the fact thatm is multiplicative,
together with properties of the Möbius function (e.g. Proposition A.1), to show that

(A.1)
∑

r∈Q(`)

µ(r) ·m(r)

r
= Wm(Q) ·

1 +
∑

s∈div(ΠQ)
ω(s)>`

ψ`(s) ·m(s)

s ·Wm(P(s))

 .



In the second manipulation, we look at the sum
∑
s∈div(ΠQ)\{1}

ψ`(s)·m(s)
s·Wm(P(s)) from the equation above, and (also

thanks to Lemma A.1) bound it in absolute terms as follows:

(A.2)

∣∣∣∣∣∣∣∣
∑

s∈div(ΠQ)
ω(s)>`

ψ`(s) ·m(s)

s ·Wm(P(s))

∣∣∣∣∣∣∣∣ ≤
(e · α

`

)`
· α · eα, where α := (d+ 1)2(2 + ln ln(#Q+ 1)).

Claim 1 follows directly from Equation (A.1) and Equation (A.2). Note that these equations can also be used to
establish the upper bound of

∑
r∈Q(`)

µ(r)·m(r)
r required for the bound in Lemma 1.1.

Manipulation resulting in Equation (A.1):

∑
r∈Q(`)

µ(r) ·m(r)

r

=
∑

r∈div(ΠQ)

µ`(r) ·m(r)

r
by def. of µ`

=
∑

r∈div(ΠQ)

(∑
s∈div(r) ψ`(s) · µ

(
r
s

))
·m(r)

r
by Proposition A.1

=
∑

r∈div(ΠQ)

∑
s∈div(r)

ψ`(s) · µ
(
r
s

)
·m(r)

r

=
∑

s∈div(ΠQ)

∑
r∈div( ΠQ

s )

ψ`(s) · µ(r) ·m(r · s)
r · s

invert summations using the
change of variable r ← r · s

=
∑

s∈div(ΠQ)

ψ`(s) ·m(s)

s
·

∑
r∈div( ΠQ

s )

µ(r) ·m(r)

r
multiplicity of m

=
∑

s∈div(ΠQ)

ψ`(s) ·m(s)

s
·

∏
q∈Q\div(s)

(
1 +

µ(q) ·m(q)

q

) multiplicity of µ and m;
factorization thanks to r being

square-free, for all r ∈ div
(

ΠQ
s

)
=

∑
s∈div(ΠQ)

ψ`(s) ·m(s)

s
·

∏
q∈Q

(
1− m(q)

q

)
∏
q∈P(s)

(
1− m(q)

q

) µ(q) = −1 for q prime
and simple manipulation

=
∑

s∈div(ΠQ)

ψ`(s) ·m(s)

s
· Wm(Q)

Wm(P(s))
by def. of Wm

= Wm(Q) ·
∑

s∈div(ΠQ)

ψ`(s) ·m(s)

s ·Wm(P(s))

= Wm(Q) ·

 ∑
s∈Q(`)

ψ`(s) ·m(s)

s ·Wm(P(s))
+

∑
s∈div(ΠQ)
ω(s)>`

ψ`(s) ·m(s)

s ·Wm(P(s))

 split depending on ω(s) ≤ `,
and by def. of Q(`)

= Wm(Q) ·

 ∑
s∈Q(`)

(∑
r∈div(s) µ(r)

)
·m(s)

s ·Wm(P(s))
+

∑
s∈div(ΠQ)
ω(s)>`

ψ`(s) ·m(s)

s ·Wm(P(s))

 def. of ψ`



= Wm(Q) ·

1 +
∑

s∈div(ΠQ)
ω(s)>`

ψ`(s) ·m(s)

s ·Wm(P(s))


in the left summation:

for s = 1 the addend is 1,
and for s > 1 the addend is 0

by Proposition A.2.

Manipulation resulting in Equation (A.2):∣∣∣∣∣∣∣∣
∑

s∈div(ΠQ)
ω(s)>`

ψ`(s) ·m(s)

s ·Wm(P(s))

∣∣∣∣∣∣∣∣ ≤
∑

s∈div(ΠQ)
ω(s)>`

(
ω(s)− 1

`

)
· m(s)

s ·Wm(P(s))
by Lemma A.1 and def. of ψ`

=

#Q∑
k=`+1

(k − 1

`

)
·

∑
s∈div(ΠQ)
ω(s)=k

m(s)

s ·Wm(P(s))

 split on the value of ω(s).

We focus on the summation
∑
s∈div(ΠQ), ω(s)=k

m(s)
s·Wm(P(s)) . Since the function m is multiplicative, and simi-

larly Wm(A ∪ B) = Wm(A) ·Wm(B) for A,B disjoint finite sets of primes (and Wm(∅) = 1 by definition), for
k ≥ 1 we have:∑

s∈div(ΠQ)
ω(s)=k

m(s)

s ·Wm(P(s))
=

∑
q1<...<qk∈Q

(
k∏
i=1

m(qi)

qi ·Wm({qi})

)
≤ 1

k!

∑
q1,...,qk∈Q

(
k∏
i=1

m(qi)

qi ·Wm({qi})

)

=
1

k!

∑
q∈Q

m(q)

q ·Wm({q})

k

=
1

k!

∑
q∈Q

m(q)

q −m(q)

k

.

We further analyze the summation
∑
q∈Q

m(q)
q−m(q) . Below, we write Qd+1 for the set of the first min(#Q, d + 1)

many primes in Q (recall d ≥ 1), and denote by pi the i-th prime.∑
q∈Q

m(q)

q −m(q)
=

∑
q∈Qd+1

m(q)

q −m(q)
+

∑
q∈Q\Qd+1

m(q)

q −m(q)

≤
∑

q∈Qd+1

d+
∑

q∈Q\Qd+1

m(q)

q −m(q)

since m(q) ≤ d
and q −m(q) ≥ 1

≤ d · (d+ 1) +
∑

q∈Q\Qd+1

d

q − d
m(q) ≤ d < q, for all q ∈ Q \Qd+1

≤ d · (d+ 1) +

#Q∑
i=d+2

d

pi − d
def. of Q \Qd+1

and pi > d for i ≥ d+ 2

≤ d · (d+ 1) + d ·
#Q∑
i=d+2

1

(i ln i)− d
pi ≥ i ln i [19]

and i ln i > d for i ≥ d+ 2

≤ d · (d+ 1) + d · (d+ 1)

#Q∑
i=d+2

1

i ln i

since
1

x lnx− y
≤ y + 1

x lnx

for all x ≥ 3 and 0 ≤ y ≤ x− 1

≤ d · (d+ 1) ·
(

1 +

#Q∑
i=3

1

i ln i

)
≤ d · (d+ 1) ·

(
1 +

∫ #Q+1

2

1

x lnx
dx
) Riemann over-approximation

note: #Q+ 1 ≥ 2



≤ d · (d+ 1) · (1 + ln ln(#Q+ 1)− ln ln 2)

≤ (d+ 1)2(2 + ln ln(#Q+ 1)) = α.

We combine this bound with the previous two in order to complete the proof of Equation (A.2):∣∣∣∣∣∣∣∣
∑

s∈div(ΠQ)
ω(s)>`

ψ`(s) ·m(s)

s ·Wm(P(s))

∣∣∣∣∣∣∣∣ ≤
#Q∑

k=`+1

((
k − 1

`

)
· 1

k!
· αk

)

=

#Q−`−1∑
j=0

((
`+ j

`

)
· 1

(`+ 1 + j)!
· α`+1+j

)
change of variable

k ← `+ 1 + j

=

#Q−`−1∑
j=0

(
(`+ j)!

`! · j! · (`+ 1 + j)!
· α`+1+j

)

≤ α`+1

`!
·
∞∑
j=0

αj

j!

note: all terms in the
summation are non-negative

≤ α`+1

`!
· eα

def. of ex as a series

i.e., ex =
∑∞
i=0

xi

i!

≤
(e · α

`

)`
· α · eα from x! ≥ xx

ex
.

This completes the proof of Claim 1.

B Theorem 1.3: proofs of Claim 2 and Claim 3
The mathematical objects appearing in the statements of the two claims below are defined in the proof
of Theorem 1.3 and the statement of Lemma 1.1; see Section 2.

Claim 2.
#A

r
− 1 ≤ #(A ∩ Sα,r) ≤

#A

r
+ 1.

Proof. Recall that A = [k, k+ z]∩SM , and so A∩Sα,r = [k, k+ z]∩SM ∩Sα,r. Since that elements in M ∪Q are
pairwise coprime andM ∩Q = ∅, we can apply the CRT and conclude that SM ∩Sα,r is an arithmetic progression
with period r ·ΠM . Let u be the largest element of SM ∩Sα,r that is strictly smaller than k. By definition of u and
from the fact that SM ∩Sα,r has period r ·ΠM , we get #(A∩Sα,r) =

⌊
k+z−u
r·ΠM

⌋
. Similarly, because SM is periodic

in ΠM ,
⌊
k+z−u

ΠM

⌋
is larger than #A by at most r− 1, i.e., there is τα,r ∈ [0, r− 1] such that #A =

⌊
k+z−u

ΠM

⌋
− τα,r.

Since
⌊
a
b

⌋
=
⌊
bac
b

⌋
for every a ∈ R and b ∈ Z+, we get #(A ∩ Sα,r) =

⌊
1
r · (#A+ τα,r)

⌋
. A simple manipulation

using bac+ bbc ≤ ba+ bc ≤ bac+ bbc+ 1 and
⌊ τα,r

r

⌋
= 0 then shows #A

r − 1 ≤ #(A ∩ Sα,r) ≤ #A
r + 1.

Claim 3. Wm(Q)−1 ≤ (d+ 1)10d ln(#Q+ 1)3d.

Proof. Let Qd be the set containing the min(#Q, d) smallest primes in Q. Recall that by definition m(q) ≤ d ≤
q − 1 for every q ∈ Q. We have,

Wm(Q)−1 =
∏
q∈Q

q

q −m(q)
≤
∏
q∈Q

q

q − d
≤

∏
q∈Qd

q

q − d
·
∏

q∈Q\Qd

q

q − d
≤ (d+ 1)d ·

∏
q∈Q\Qd

q

q − d
,

where the last inequality holds because x
x−c ≤ c + 1 for every x ≥ c + 1 and c ∈ Z+. Below, let us denote by pi

the i-th prime. We further inspect the product
∏
q∈Q\Qd

q
q−d :



∏
q∈Q\Qd

q

q − d
≤

#Q∏
i=d+1

pi
pi − d

≤
#Q∏
i=d+1

i · ln i
i · ln i− d

pi ≥ i · ln i for all i ∈ Z+, see [19];

x 7→ x

x− d
decreasing for x > 1

≤ exp

(
#Q∑
i=d+1

ln
( i · ln i
i · ln i− d

))
= exp

(
−

#Q∑
i=d+1

ln
(

1− d

i · ln i

))

≤ exp

(
#Q∑
i=d+1

3 · d
i · ln i

)
≤ exp

(
#Q∑
i=2

3 · d
i · ln i

)
first term from ln

(
1− 1

x

)
≥ − 3

x
for all x ≥ ln 3;

for corner case d = 1 and i = 2, note 2 ln 2 > ln 3

≤ exp

(
3 · d

2 · ln 2
+

#Q∑
i=3

3 · d
i · ln i

)
≤ exp

(
3 · d

2 · ln 2
+

∫ #Q+1

2

3 · d
x lnx

dx

)
Riemann over-approximation

note: #Q+ 1 ≥ 2

≤ exp

(
3 · d

2 · ln 2
+ 3 · d ·

(
ln ln(#Q+ 1)− ln ln 2

))
≤ exp

(
3 · d ·

(
2 + ln ln(#Q+ 1)

))
.

We plug this bound on the previously derived bound for Wm(Q)−1:

Wm(Q)−1 ≤ (d+ 1)d exp
(
3 · d ·

(
2 + ln ln(#Q+ 1)

))
≤ (d+ 1)d · e6·d ln(#Q+ 1)3·d

≤ (d+ 1)d · 29·d ln(#Q+ 1)3·d ≤ (d+ 1)10·d ln(#Q+ 1)3·d.

This completes the proof of Claim 3.

C Algorithms related to the elimination property
In this appendix, we establish Lemma 3.1 and Lemma 3.2. Proving these lemmas requires the standard notion of
kernel and Hermite normal form of a matrix, which we now recall for completeness. Consider a matrix A ∈ Zn×d.
The kernel of A is the vector space ker(A) := {v ∈ Zd : A · v = 0}. We represent bases of ker(A) as
matrices K ∈ Zd×(d−r), where r is the rank of A and ker(A) = {K · v : v ∈ Zd−r}. A matrix H ∈ Zn×d is
said to be the column-style Hermite normal form of A (HNF, in short) if there is a square unimodular matrix
U ∈ Zd×d such that H = A · U and

1. H is lower triangular,

2. the pivot (i.e., the first non-zero entry in a column, from the top) of a non-zero column is positive, and it
is strictly below the pivot of the column before it, and

3. elements to the right of pivots are 0 and elements to the left are non-negative and smaller than the pivot.

Recall that U being unimodular means that it is invertible over the integers.
Given a vector v, we write v[i] for the i-th entry of v, starting at i = 1. Similarly, for a matrix A, we write

A[i] for its i-th row, again starting at i = 1.

Proposition C.1. ([20, Section 4.2]) The HNF H of a matrix A ∈ Zn×d always exists, it is unique, and A
and H generate the same lattice, i.e., {A · λ : λ ∈ Zd} = {H · λ : λ ∈ Zd}.

The following proposition refers to the LLL-based algorithm for the HNF in [9]. A basis for the integer kernel
can be retrieved from the HNF together with the associated unimodular matrix.

Proposition C.2. ([25]) There is a polynomial time algorithm computing a basis K of the integer kernel and
the HNF H of an input matrix A ∈ Zn×d. The algorithm yields ||K||, ||H|| ≤ (n · ||A||+ 1)O(n).

Note that we can also upper bound the GCDs of the rows of the integer kernel K in terms of the rank of A
by appealing to Proposition 4.1.

Corollary C.1. Consider a basis K of the integer kernel of a matrix A ∈ Zn×d. Let r := rank(A). For every
i ∈ [1, d], || gcd(K[i])|| ≤ (d+ 1) · (r ·max(2, ||A||))r.



C.1 Computing a set spanning the divisibility module

Lemma 3.1. There is a polynomial-time algorithm that, given a system Φ(x) :=
∧m
i=1 fi | gi of divisibility

constraints and a primitive polynomial f , computes c1, . . . , cm ∈ N such that the set {f, c1 · g1, . . . , cm · gm}
spans Mf (Φ), and ci ≤ ((m+ 3) · (||Φ||+ 2))(m+3)3

for all 1 ≤ i ≤ m.

This lemma follows from the forthcoming Proposition C.3 and Proposition C.4.
For the whole section, let Φ :=

∧m
i=1 fi | gi and f be a primitive polynomial. As already discussed in Section 3,

the algorithm Lemma 3.1 refers to performs a fix-point computation where, at the `-th iteration, the values
contained in v characterize a spanning set of a particular submodule M`

f (Φ) of Mf (Φ). More precisely, we define
M0
f (Φ) ⊆ M1

f (Φ) ⊆ · · · ⊆ M`
f (Φ) ⊆ . . . to be the sequence of sets given by

1. M0
f (Φ) := Zf , and

2. for ` ∈ N, M`+1
f (Φ) := M`

f (Φ) +
{∑m

j=1 aj · gj : for all i ∈ [1,m], ai ∈ Z and ai · fi ∈ M`
f (Φ)

}
.

Let ` ∈ N. Note that, by definition, M`
f (Φ) is a Z-module and moreover if Zfi ∩M`

f (Φ) = {0} for some i ∈ [1,m],
then ai in the definition of M`+1

f (Φ) equals 0. We define the canonical representation of M`
f (Φ) as the vector

(v1, . . . , vm) ∈ Nm such that for every i ∈ [1,m],

• if ` = 0 then vi := 0,

• if ` ≥ 1 then vi := gcd{λ ∈ N : λ · fi ∈ M`−1
f (Φ)}.

Lemma C.2 shows that this vector represents a spanning set of M`
f (Φ), but first we need an auxiliary lemma.

Lemma C.1. Let ` ∈ N. Let (v1, . . . , vm) and (v′1, . . . , v
′
m) be the canonical representations of M`

f (Φ) and
M`+1
f (Φ), respectively. For every i ∈ [1,m], vi = v′i = 0 or v′i divides vi (so, v′i 6= 0 if vi 6= 0).

Proof. Let i ∈ [1,m]. If vi = 0 then either v′i is 0 or it divides vi, hence the statement is trivially satisfied for that
particular i. Suppose that vi 6= 0. By definition of canonical representation, ` ≥ 1 and vi · fi ∈ M `−1

f (Φ). From
the definition of M`

f (Φ), we conclude that vi · fi ∈ M `
f (Φ). Lastly, from definition of canonical representation,

v′i = gcd{λ ∈ N : λ · fi ∈ M`
f (Φ)}, and therefore v′i divides vi.

Lemma C.2. Let ` ∈ N and let (v1, . . . , vm) ∈ Nm be the canonical representation of M`
f (Φ). Then, the set of

linear polynomials {f, v1 · g1, . . . , vm · gm} spans M `
f (Φ).

Proof. The statement follows by induction on ` ∈ N.

base case ` = 0: From M0
f (Φ) = Zf we have (v1, . . . , vm) = (0, . . . , 0) and {f} spans M0

f (Φ).

induction step ` ≥ 1: From the induction hypothesis, the set {f, v∗1 · g1, . . . , v
∗
m · gm} spans M `−1

f (Φ); with
(v∗1 , . . . , v

∗
m) being the canonical representation of M `−1

f (Φ). We consider the two inclusions of the
equivalence Zf + Z(v1 · g1) + · · ·+ Z(vm · gm) = M `

f (Φ).

(⊆) : This direction follows directly by definition of M `
f (Φ).

(⊇) : Let h ∈ M`
f (Φ). By definition, h = h1 + h2 where h1 ∈ Zf + Z(v∗1 · g1) + · · ·+ Z(v∗m · gm) and

h2 =
∑m
i=1 ai ·gi ∈ M`

f (Φ) satisfying ai · fi ∈ M`−1
f (Φ) for every i ∈ [1,m]. Applying Lemma C.1, Z(v∗i ·gi) ⊆

Z(vi ·gi) and therefore h1 ∈ Zf+Z(v1 ·g1)+· · ·+Z(vm ·gm). By definition vi = gcd{λ ∈ N : λ·fi ∈ M`−1
f (Φ)}

and thus vi | ai. So, h ∈ Zf + Z(v1 · g1) + · · ·+ Z(vm · gm).

This concludes the induction and thus the proof of the lemma.

Lemma C.3. (A) For every ` ∈ N, M`
f ⊆ M`+1

f ⊆ Mf (Φ).
(B) There is ` ∈ N such that M`

f (Φ) = M`+1
f (Φ).

(C) For every ` ∈ N, if M`
f (Φ) = M`+1

f (Φ) then M`
f (Φ) = Mf (Φ).



Algorithm 4 Computes a set spanning a divisibility module
Input: A system of divisibility constraints Φ(x) =

∧m
i=1 fi(x) | gi(x) and a primitive polynomial f .

Output: A tuple (c1, . . . , cm) ∈ Nm such that {f, c1 · g1, . . . , cm · gm} spans Mf (Φ).
1: v := (0, . . . , 0) ∈ Nm
2: while true do
3: u := v
4: for i in [1,m] do
5: Fi := {−fi, f, u[1] · g1, . . . , u[m] · gm}
6: Ki := basis of the integer kernel of the matrix representing Fi
7: v[i]← gcd(row of Ki corresponding to −fi)
8: if v = u then return v

Proof. We prove each part of the lemma in turn below.
Proof of (A): By definition, M`

f ⊆ M`+1
f . An induction on ` ∈ N shows M `

f (Φ) ⊆ Mf (Φ):

base case ` = 0: By definition of M`
f (Φ) and of divisibility module, M0

f (Φ) = Zf ⊆ Mf (Φ).

induction case ` ≥ 1: From the induction hypothesis, M `−1
f (Φ) ⊆ Mf (Φ). By definition, M `

f (Φ) is defined from
M `−1
f (Φ) by taking linear combinations of elements in M `−1

f (Φ) together with elements b · h such that
b ·g ∈M `−1

f (Φ) and g | h is a divisibility constraints of Φ. From the definition of divisibility module, Mf (Φ)
is closed under such combinations, since for every b · g ∈ Mf (Φ) and g | h divisibility of Φ, b · h ∈ Mf (Φ)
(see Property (iii) in the definition of divisibility module). From M `−1

f (Φ) ⊆ Mf (Φ) we then conclude that
M `
f (Φ) ⊆ Mf (Φ).

Proof of (B): This statement follows from Lemma C.1. Indeed, for a given ` ∈ N, consider the canonical
representations (v1, . . . , vm) and (v′1, . . . , v

′
m) of M`

f (Φ) and M`+1
f (Φ), respectively. By Lemma C.1, if M`

f (Φ) 6=
M`+1
f (Φ) then one of the following holds:

1. there is i ∈ [1,m] such that vi = 0 and v′i 6= 0, or

2. there is i ∈ [1,m] such that vi 6= 0, v′i 6= vi and v′i divides vi.

Again from Lemma C.1, for every j ∈ [1,m], if vj 6= 0 then v′j divides vj . This implies that both Items (1) and (2)
cannot occur infinitely often, and therefore Mr

f (Φ) = Mr+1
f (Φ) for some r ∈ N.

Proof of (C): From Part (A), M`
f (Φ) ⊆ Mf (Φ). We show that M`

f (Φ) satisfies the Properties (i)–(iii) of divisibility
modules. Then, Mf (Φ) ⊆ M`

f (Φ) follows from the minimality condition required by these modules. Properties (i)
and (ii) are trivially satisfied. To establish Property (iii), consider b · g ∈ M`

f (Φ) and a divisibility constraint g | h
of Φ. By definition b · h ∈ M`+1

f (Φ), and from M`
f = M`+1

f (Φ) we get b · h ∈ M`
f (Φ). Therefore, M`

f (Φ) satisfies
Property (iii).

In view of Lemmas C.2 and C.3, the algorithm required by Lemma 3.1 presents itself: it suffices to
iteratively compute canonical representations of every M`

f (Φ) until reaching a fix-point. Algorithm 4 performs this
computation. In a nutshell, during the `-th iteration (` ≥ 1) of the while loop of line 2, the variable u contains the
canonical representation of M`−1

f (Φ), and the algorithm updates the vector v with the canonical representation of
M`
f (Φ). To update the value v[i] associated to gi the algorithm needs to compute gcd{λ ∈ N : λ · fi ∈ M`−1

f (Φ)}
(line 7). This is done by finding a finite representation for all the scalars λ, which is given by those entries
corresponding to −fi in a basis of the integer kernel of the matrix for the set Fi defined in line 5. As explained
in Section 3.1, a set of polynomials F := {h1, . . . , h`} in variables x1 ≺ · · · ≺ xd (where ≺ is an arbitrary order)
can be represented as the matrix A ∈ Z(d+1)×` in which each column (ad, . . . , a1, c) contains the coefficients and
the constant of a distinct element h of F , with ai being the coefficient of xi for i ∈ [1, d], and c being the constant
of h. This matrix is unique up-to permutation of columns.



It is not immediate that Algorithm 4 runs in polynomial time: in every iteration, the integer kernel
computation performed in line 6 might a priori increase the bit length of the entries in the canonical representation
by a polynomial factor, yielding entries of exponential bit length after polynomially many iterations – an effect
similar to naïve implementations of Gaussian elimination or kernel computations via suboptimal algorithms for
the Hermite normal form of a matrix. We show later that the GCD computed in line 7 actually prevents this
blow-up. For the moment, let us formally argue on the correctness of Algorithm 4.

Proposition C.3. Algorithm 4 respects its specification.

Proof. We write u` for the value that the tuple u declared in line 3 of Algorithm 4 takes during the (` + 1)-th
iterations of the while loop of line 2, with ` ∈ N and assuming that the while loop is iterated at least `+1 times.
We show the following claim:

Claim 9. For every ` ∈ N, the tuple u` is the canonical representation of M`
f (Φ).

Since Algorithm 4 terminates when u`−1 is found to be equal to u` for some ` ≥ 1, its correctness follows directly
from Lemma C.2 and Lemma C.3. The proof of this claim is by induction on `.

base case: We have u0 = (0, . . . , 0) ∈ Nm, which is the canonical representation of M0
f (Φ).

induction step: By induction hypothesis, let us assume that u` = (v1, . . . , vm) is the canonical representation
of M`

f (Φ). We show that when exiting the for loop of line 4, for every i ∈ [1,m], v[i] equals
v′i := gcd{λ ∈ N : λ · fi ∈ M`

f (Φ)}. Thanks to the declaration of line 3, this implies that u`+1 is the
canonical representation of M`+1

f (Φ). Since u` = (v1, . . . , vm) is the canonical representation of M`
f (Φ),

by Lemma C.2 we have M`
f (Φ) = Zf + Z(v1 · g1) + · · · + Z(vm · gm). Therefore, v′i = gcd{λ ∈ N : λ · fi =

µ0 ·f+
∑m
i=1 µi ·(vi ·gi) for some µ0, . . . , µm ∈ Z}. The set of tuples (λ, µ0, . . . , µm) ∈ Zm+2 such that λ·fi =

µ0 · f +
∑m
i=1 µi · (vi · gi) corresponds to the solutions to the system of equations A · (λ, µ0, . . . , µm) = 0 over

the integers, where A is the matrix representing the set {−fi, f, vi · g1, . . . , vm · gm}, i.e., Fi in line 5. This
set corresponds to ker(A), and so can be finitely represented with an integer kernel basis, i.e., Ki in line 6.
Computing v′i only requires to compute the GCD of the row of Ki corresponding to the variable λ of −fi.
This is exactly how v[i] is defined in line 7.

This concludes our argument for the claim and the lemma thus holds.

We move to the runtime analysis of Algorithm 4. We need the following lemma studying the growth of the
GCDs of the rows of bases K of ker(A) when columns of A are scaled by positive integers. In the lemma below,
diag(c1, . . . , cd) stands for the d× d diagonal matrix having c1, . . . , cd in the main diagonal.

Lemma C.4. Consider a matrix A ∈ Zn×d of rank r, integers c1, . . . , cd > 0, and let K,K ′ ∈ Zd×(d−r) be bases
of the integer kernels of A and A′ := A · diag(c1, . . . , cd), respectively. For every i ∈ [1, d],

1. if gcd(K[i]) = 0 then gcd(K ′[i]) = 0, and

2. if gcd(K[i]) > 0 then gcd(K ′[i]) 6= 0 and gcd(K ′[i]) divides lcm(c1, . . . , cd) · gcd(K[i]).

Proof. Note that A′ is the matrix obtained from A by scaling the j-th column of A by cj (j ∈ [1, d]). Let i ∈ [1, d]
and (M,J) ∈ {(A,K), (A′,K ′)}. By definition of kernel, {J · λ : λ ∈ Zm} = {x ∈ Zd : M · x = 0}. This fact has
three direct consequences:

(A) if gcd(J [i]) = 0, then no vector x = (x1, . . . , xd) ∈ Zd satisfies both xi 6= 0 and M · x = 0,

(B) if gcd(J [i]) > 0, then there is x = (x1, . . . , xd) ∈ Zd such that xi = gcd(J [i]) and M · x = 0,

(C) if gcd(J [i]) > 0, then for every x = (x1, . . . , xd) ∈ Zd satisfying M · x = 0 we have gcd(J [i]) | xi.

Items 1 and 2 in the statement of the lemma are derived from these three properties.

Proof of (1): To the contrary, assume that gcd(K ′[i]) 6= 0. Hence, gcd(K ′[i]) > 0 and by Item (B) there is



x = (x1, . . . , xd) ∈ Zd such that xi = gcd(K ′[i]) and A′ · x = 0. Let y := (c1 · x1, . . . , cd · xd). We have
A · y = A · (diag(c1, . . . , cd) · x) = (A · diag(c1, . . . , cd)) · x = A′ · x = 0. Since ci > 0 we have ci · xi 6= 0, which
together with A · y = 0 implies gcd(K[i]) 6= 0 by Item (A).

Proof of (2): Suppose gcd(K[i]) > 0. By Item (B), there is x = (x1, . . . , xd) ∈ Zd with A · x = 0 and
xi = gcd(K[i]). Define C := lcm(c1, . . . , cd) and y := ( Cc1 · x1, . . . ,

C
cd
· xd). Note that y ∈ Zd is well-defined, since

c1, . . . , cd > 0. Moreover, Cci · xi = C
ci
· gcd(K[i]) > 0. We have,

A′ · y = A′ · (diag( Cc1 , . . . ,
C
cd

) · x) = (A · diag(c1, . . . , cd)) · (diag( Cc1 , . . . ,
C
cd

) · x)

= A · (diag(c1, . . . , cd) · diag( Cc1 , . . . ,
C
cd

)) · x = C ·A · x = 0.

Then, by Item (A), gcd(K ′[i]) > 0, which in turn implies that gcd(K ′[i]) | Cci ·xi, directly from Item (C). Therefore,
gcd(K ′[i]) divides lcm(c1, . . . , cd) · gcd(K[i]).

We are now ready to discuss the runtime of Algorithm 4.

Proposition C.4. Algorithm 4 runs in polynomial time, and on an input (Φ, f) such that Φ =
∧m
i=1 fi | gi it

returns a vector v satisfying ||v|| ≤ ((m+ 3) · (||Φ||+ 2))(m+3)3

.

Proof. As done in the proof of Proposition C.3, let u` ∈ Zm be the value that the tuple u declared in line 3 takes
during the (` + 1)-th iteration of the while of line 2, with ` ∈ N and assuming that the while loop is iterated
at least ` + 1 times. Similarly, given j ∈ [1,m], let F`,j and K`,j be the set of polynomial and matrix declared
in lines 5 and 6, respectively, during the (` + 1)-th iteration of the while loop and at the end of the iteration
of the for loop of line 4 where the index variable i takes value j. Lastly, following the code in line 7, we define
v`,j := gcd(row of K`,j corresponding to −fj). A few simple observations:

• the body of the while loop is iterated at least once, hence u0 is defined and equals (0, . . . , 0).

• If the body of the while loop is iterated at least `+ 1 times with ` ≥ 1, then u` 6= u`−1; and if the body of
the loop the while loop is iterated exactly ` times, then the algorithm returns u`−1.

• Note that F`,j and K`,j depend on Φ, f and u`, but are independent on the current value of the tuple v,
which changed throughout the iterations of the for loop.

• The integer kernel K`,j is solely used in line 7 in order to update v[j].

• If the while loop is iterated at least `+ 1 times, with ` > 1, then for every i ∈ [1,m], u`[i] = v`−1,i.

For the runtime of the algorithm, first consider the case where Mf (Φ)∩Zfj = {0} for every j ∈ [1,m], which
implies Mf (Φ) = Zf , by definition of divisibility module. Focus on the first execution of the body of the while
loop. Since u0 = (0, . . . , 0), for every j ∈ [1,m], F0,j = {−fj , f}. Since Mf (Φ) ∩ Zfj = {0}, the row of K0,j

corresponding to −fj contains only zeros. This implies v = (0, . . . , 0) = u0 in line 8, and Algorithm 4 returns
(0, . . . , 0) after a single iteration of the while.

Consider now the case where Mf (Φ)∩Zfj 6= ∅ for some j ∈ [1,m]. Note that this implies fj = a · f for some
a ∈ Z \ {0} and j ∈ [1,m], hence 〈f〉 ≤ poly(〈Φ〉). This allows us to bound the size of the output of Algorithm 4
in terms of Φ, hiding factors that depend on f (as done in the statement of the proposition). A few auxiliary
definitions are handy (` ∈ N and j ∈ [1,m]):

• We associate to u` the vector û` ∈ {0, 1}m given by û`[i] = 1 iff u`[i] 6= 0, for every i ∈ [1,m].

• We associate to F`,j the set F̂`,j := {−fj , f, û`[1] · g1, . . . , û`[m] · gm}.

• We associate to K`,j a basis K̂`,j for the integer kernel of the matrix representing F̂`,j .

• We associate to v`,j the integer v̂`,j := gcd(row of K̂`,j corresponding to −fj).



In a nutshell, û` “forgets” the magnitude of the integers stored in u`, keeping only whether their value was 0
or not. The other objects defined above reflect this change at the level of matrices, kernels and GCDs. Up to
permutation of columns, the matrix representing F`,j can be obtained by multiplying the matrix of F̂`,j by a
diagonal matrix having in the main diagonal (a permutation of) (1, 1,u`[1], . . . ,u`[m]). From the definition of
K̂`,j and by Lemma C.4, we conclude that

(†) if v̂`,j = 0 then v`,j = 0, and if v̂`,j 6= 0 then v`,j 6= 0 and v`,j divides lcm(u`) · v̂`,j .

Recall that the matrix representing F̂`,j has d + 1 rows and m + 2 columns. Since ||F̂`,j || ≤ ||Φ|| for every
` ∈ N and j ∈ [1,m], by Corollary C.1 there an integer N ∈ [2, ((m+ 3) · (||Φ||+ 2))(m+3)] such that N is greater
than v̂`,j , for every ` ∈ N and j ∈ [1,m]. We use (†) above to bound the number of iterations and magnitude of
the entries of u` during the procedure. We show that

1. max`∈N(lcm(u`)) = maxm`=0(lcm(u`)) ≤ Nm3

and for every j ∈ [1,m], um[j] ≤ Nm2

, and

2. the while loop of line 2 is iterated at most m3 · log2(N) +m many times.

In Item (1) above, we slightly abused our notation, as u` is undefined for ` ∈ N greater or equal than the number
of iterations of the while loop performed by the algorithm. In these cases, we postulate lcm(u`) = 0 in order to
make the equivalence in Item (1) well-defined. From the bound N ≤ ((m+ 3) · (||Φ||+ 2))(m+3), Items (1) and (2)
imply that Algorithm 4 runs in polynomial time and outputs a vector v with ||v|| ≤ ((m+ 3) · (||Φ||+ 2))(m+3)3

;
proving the proposition.

Proof of (1): Informally, Item (1) states that lcm(u) is always bounded by Nm2

, and that lcm(u) achieves its
maximum at most after the firstm iterations of thewhile loop. We start by proving that maxm`=0(lcm(u`)) ≤ Nm3

and that for every j ∈ [1,m], um[j] ≤ Nm2

This is done by induction on ` ∈ [1,m], by showing that
(whenever defined) u` is such that, for every j ∈ [1,m], if u`[j] 6= 0 then v̂`−1,j 6= 0 and u`[j] divides(
v̂`−1,j ·

∏`−2
i=0 lcm(v̂i,1, . . . , v̂i,m)

)
. Note that then u`[j] ≤ Nm(`−1)+1, since N is an upper bound on every

v̂`,j , and thus for ` = m we get um[j] ≤ Nm2

and lcm(um) ≤ Nm3

, as required. Below, let u` = (c1, . . . , cm).
Note that, from line 7 of the algorithm, if ` ≥ 1, then cj = v`−1,j for every j ∈ [1,m].

base case ` = 1: From u0 = (0, . . . , 0) we have F0,j = F̂0,j = {−fj , f} for every j ∈ [1,m]. This implies
v̂0,j = v0,j . From cj = v0,j , we conclude that cj = v̂0,j , completing the base case.

induction step ` ≥ 2: Let j ∈ [1,m] such that cj 6= 0. From (†) and cj = v`−1,j , we get v̂`−1,j 6= 0 and
cj | (lcm(u`−1) · v̂`−1,j). Let u`−1 = (c∗1, . . . , c

∗
m). From the induction hypothesis, for every k ∈ [1,m], if

c∗k 6= 0 then v̂`−2,k 6= 0 and c∗k |
(
v̂`−2,k ·

∏`−3
i=0 lcm(v̂i,1, . . . , v̂i,m)

)
. Therefore,

lcm(u`−1) | lcm
(
(v̂`−2,1 ·

`−3∏
i=0

lcm(v̂i,1, . . . , v̂i,m)), . . . , (v̂`−2,m ·
`−3∏
i=0

lcm(v̂i,1, . . . , v̂i,m))
)
.

From the equivalence lcm(a · b, c · b) = lcm(a, c) · b, the right-hand side of the divisibility constraint above
equals

∏`−2
i=0 lcm(v̂i,1, . . . , v̂i,m). Then, the fact that cj divides

(
v̂`−1,j ·

∏`−2
i=0 lcm(v̂i,1, . . . , v̂i,m)

)
follows

directly from cj | (lcm(u`−1) · v̂`−1,j).

To complete the proof of (1), we now show that max`∈N(lcm(u`)) = maxm`=0(lcm(u`)). Directly from Claim 9
in the proof of Proposition C.3, we have that for every ` ≥ 1, the vector u` is the canonical representation of
M`
f (Φ). We have,

(A) for every j ∈ [1,m], if u`[j] 6= 0 then u`+1[j] divides u`[j] (assuming both u` and u`+1 defined).
This follows directly from Lemma C.1.

(B) If u`, u`+1 and u`+2 are defined, and u` and u`+1 have the same zero entries, then also u` and u`+2 have
the same zero entries.
Indeed, in this case û` = û`+1 which implies v̂`,j = v̂`+1,j for every j ∈ [1,m]. Now, if u`+2[j] 6= 0 then
v`+1,j 6= 0 and so v̂`+1,j 6= 0 by (†). Then v̂`,j 6= 0, and again by (†) we get v`,j 6= 0. If instead u`+2[j] = 0,
then u`[j] = 0 follows from Lemma C.1.



Since u is a tuple with m entries, Item (B) above ensures that every u` and ur with `, r ≥ m share the same
zero entries. Item (A) states instead that every non-zero entry of u` upper bounds the corresponding entry of
u`+r, for every r ∈ N, and that this latter entry is always non-zero. Together, Items (A) and (B) imply that
max`∈N(lcm(u`)) = maxm`=0(lcm(u`)).

Proof of (2): Assume that thewhile loop iterates at leastm+1 times (otherwise (2) is trivially satisfied). From (2),
the vector um such that um[j] ≤ Nm2

for every j ∈ [1,m]. As we have just discussed above, by Item (B),
every subsequent um+r with r ∈ N has the same zero entries as um. Whenever um+r and um+r+1 are both
defined (meaning in particular that um+r 6= um+r+1), there must be j ∈ [1,m] such that um+r[j] 6= um+r+1[j],
and moreover by Item (A), um+r+1[i] divides um+r[i] for every i ∈ [1,m], which in particular implies that
um+r+1[j] ≤ um+r[j]

2 . Therefore, the product of all non-zero entries of u (at least) halves at each iteration of the
while loop after the m-th one. By (1), for every j ∈ [1,m] we have um[j] ≤ Nm2

, so the product of all non-zero
entries in um is bounded by Nm3

. We conclude that the number of iterations of the while loop after the m-th
one is bounded by log2(Nm3

) = m3 · log2(N); i.e., m3 · log2(N) +m many iterations overall.

C.2 Closing a system of divisibility constraints under the elimination property

Lemma 3.2. There is a polynomial-time algorithm that, given a system Φ(x) :=
∧m
i=1 fi | gi of divisibility

constraints in d variables and an order x1 ≺ · · · ≺ xd for x, computes Ψ(x) :=
∧n
i=1 f

′
i | g′i with the elimination

property for ≺ that is equivalent to Φ(x), both over Z and modulo each p ∈ P. The algorithm ensures that:

1. For any divisibility constraint f | g such that f is not primitive, f | g occurs in Φ if and only if f | g occurs
in Ψ. Moreover, for every f ′i | g′i in Ψ such that f ′i is primitive, there is some fj | gj in Φ such that f ′i is
the primitive part of fj.

2. For every primitive polynomial f , Mf (Φ) = Mf (Ψ) (in particular, if Φ is increasing for some order ≺′ then
so is Ψ, and vice versa).

3. ||Ψ|| ≤ (d+ 1)O(d)(m+ ||Φ||+ 2)O(m3d) and n ≤ m · (d+ 2).

Proof. The algorithm is simple to state:
1: F := {f primitive : a · f is in the left-hand side of a divisibility constraint of Φ, for some a ∈ Z \ {0}}
2: for f ∈ F do
3: v := (c1, . . . , cm) ∈ Zm s.t. {f, c1 · g1, . . . , cm · gm} spans Mf (Φ) . Lemma 3.1
4: H := HNF of the matrix representing {f, c1 · g1, . . . , cm · gm} . Proposition C.2
5: Φ ← Φ purged of all divisibility constraints of the form f | g for some polynomial g
6: for (ad, . . . , a1, a0) non-zero column of H do
7: Φ ← Φ ∧ (f | ad · xd + · · ·+ a1 · x1 + a0)

8: return Φ

Below, let Ψ be the system returned by the algorithm on input Φ. The fact that Ψ has the elimination
property follows from properties of the Hermite normal form. Consider F defined as in line 1, and f ∈ F .
Starting from the matrix A ∈ Z(d+1)×(m+1) representing the spanning set S := {f, c1 · g1, . . . , cm · gm} computed
in line 3, by Proposition C.1 we conclude that H in line 4 spans Mf (Φ). Moreover, by the properties of the HNF,
all non-zero columns of H are linearly independent, hence the for loop in line 6 is adding divisibility constraints
f | h1, . . . , f | h`, where h1, . . . , h` is a basis of Mf (Φ); and ` ≤ m + 1. Note that line 5 has previously removed
all divisibility constraints of the form f | g. Hence, in Ψ only the divisibility constraints f | h1, . . . , f | h` have f
as a left-hand side. Recall now that each column (ad, . . . , a1, c) of the matrix A contains the coefficients and the
constant of a distinct element h ∈ S, with ai being the coefficient of xi for i ∈ [1, d], and c being the constant
of h. Again since H is in HNF, it is lower triangular, and the pivot of each non-zero column is strictly below
the pivot of the column before it. Following the order x1 ≺ · · · ≺ xd, this allows us to conclude that, for every
k ∈ [0, d], the family {g1, . . . , gj} := {g : LV(g) � xk and f | g appears in Ψ} is such that g1, . . . , gj are linearly
independent polynomials forming a basis for Mf (Φ)∩Z[x1, . . . , xk]; i.e., Ψ has the elimination property. We also
note that, by virtue of the updates done in 7, Items 1 and 2 in the statement of Lemma 3.2 directly follow.

The fact that Ψ and Φ are equivalent both over Z and for solutions modulo a prime follows from Items 1
and 2 together with the following property of divisibility modules: given a system of divisibility constraints Φ′

and a primitive term f ,



• for every a integer solution of Φ′ and every g ∈ Mf (Φ′), f(a) divides g(a),

• for every p ∈ P, b solution of Φ′ modulo p and every g ∈ Mf (Φ′), vp(f(b)) ≤ vp(g(b)).

Here, note that given polynomials g1 and g2 with vp(f(b)) ≤ vp(g1(b)) and vp(f(b)) ≤ vp(g2(b)) we have
vp(f(b)) ≤ vp(a1·g1(b)+a2·g2(b)) for every a1, a2 ∈ Z, as the p-adic valuation satisfies vp(x·y) = vp(x)+vp(y)
and min(vp(x), vp(y)) ≤ vp(x+ y), for all x, y ∈ Z.

Let us now move to the bounds on Ψ stated in Item 3. Directly from #F ≤ m and the fact that H is
lower triangular we conclude that at most m · (d + 1) divisibility constraints are added, and so Ψ has at most
m · (d+ 2) divisibility constraints. We analyze the norm of Ψ. It suffices to consider a single f ∈ F . By definition,
||f || ≤ ||Φ||, and from Lemma 3.1, the infinity norm of the matrix A representing {f, c1 ·g1, . . . , cm ·gm} is bounded
by ((m + 3) · (||Φ|| + 2))(m+3)3 · ||Φ||. Note that A has d + 1 many rows. By Proposition C.2, the matrix H in
line 4 is such that

||H|| ≤ ((d+ 1) · ||A||+ 1)O(d)

≤
(

(d+ 1) ·
(
((m+ 3) · (||Φ||+ 2))(m+3)3

· ||Φ||
)

+ 1
)O(d)

≤ (d+ 1)O(d)(m+ ||Φ||+ 2)O(m3d).

From the updates done in line 7, we conclude that ||Ψ|| ≤ (d+ 1)O(d)(m+ ||Φ||+ 2)O(m3d).

Lemma 3.3. Let Φ(x,y) and Ψ(x,y) be input and output of the algorithm in Lemma 3.2, respectively. For
every ν : x→ Z and primitive polynomial f , Mf (Φ(ν(x),y)) ⊆ Mf (Ψ(ν(x),y)).

Proof. Let f be a primitive polynomial. By definition of divisibility module, the lemma is true as soon as we
prove (i) f ∈ Mf (Ψ(ν(x),y)), (ii) Mf (Ψ(ν(x),y)) is a Z-module, and (iii) for every divisibility constraint g′ | h′
(with g′ non-zero) appearing in Φ(ν(x),y), if b ·g′ ∈ Mf (Ψ(ν(x),y)) for some b ∈ Z, then b ·h′ ∈ Mf (Ψ(ν(x),y)).
Indeed, by definition Mf (Φ(ν(x),y)) is the smallest set fulfilling these three properties, and therefore it must
then be included in Mf (Ψ(ν(x),y)).

The first two properties trivially follow by definition of Mf (Ψ(ν(x),y)), hence let us focus on Property (iii).
Consider a divisibility constraint g′ | h′ appearing in Φ(ν(x),y) and such that b · g′ ∈ Mf (Ψ(ν(x),y)). By
definition of Φ(ν(x),y), there is a divisibility constraint g | h appearing in Φ such that (g | h)[ν(x) / x] = (g′ | h′).
We split the proof depending on whether g is a primitive polynomial.

g is not a primitive polynomial: By Item 1 in Lemma 3.2 the divisibility constraint g | h occurs in Ψ. So,
g′ | h′ is in Ψ(ν(x),y) and directly by definition of divisibility module, b · h′ ∈ Mf (Ψ(ν(x),y)).

g is a primitive polynomial: Let g̃ and c′ ∈ Z \ {0} be such that g′ = c′ · g̃. By Item 2 in Lemma 3.2, since
g | h appears in Φ, h ∈ Mg(Ψ). By the elimination property of Ψ, there are divisibility constraints
g | h1, . . . , g | hk such that h = λ1 · h1 + · · · + λk · hk for some λ1, . . . , λk ∈ Z \ {0}. Every
divisibility constraint (g | hi)[ν(x) / x] with i ∈ [1, k] appears in Ψ(ν(x),y). Since g′ = g(ν(x),y)
and b · g′ ∈ Mf (Ψ(ν(x),y)) we have b · hi(ν(x),y) ∈ Mf (Ψ(ν(x),y)) for every i ∈ [1, k]. Note that
h′ = h(ν(x),y) = λ1 · h1(ν(x),y) + · · · + λk · hk(ν(x),y), and therefore since the divisibility module is a
Z-module, b · h′ ∈ Mf (Ψ(ν(x),y)).

This concludes the proof.

D Bounding the number of difficult primes
In this appendix, we establish Lemmas 1.3, 1.4 and 3.4.

Lemma 1.3. Let Φ(x) :=
∧m
i=1 fi | gi be a system of divisibility constraints in d variables, and p ∈ P \ P(Φ).

Then, Φ has a solution b ∈ Nd modulo p such that vp(fi(b)) = 0 for every 1 ≤ i ≤ m, and ||b|| ≤ p− 1.

Proof. We remark that p not dividing any coefficients nor constants appearing in the left-hand sides of Φ implies
that all the left-hand sides are non-zero. We show that the system of non-congruences defined by fi 6≡ 0 (mod p)



for every i ∈ [1,m], admits a solution b. This solution can clearly be taken with entries in [0, p− 1]. Furthermore,
vp(fi(b)) = 0 and fi(b) 6= 0 for every i ∈ [1,m], and therefore b is a solution for Φ modulo p no matter the values
of vp(gi(b)) (i ∈ [1,m]).

Consider an arbitrary ordering x1 ≺ · · · ≺ xd on the variables in x. We construct b by induction on k ∈ [0, d].
At the k-th step of the induction we deal with the linear terms h having LV(h) = xk. Below, we write F0 for the
set of the left-hand sides in Φ that are constant polynomials, and Fk with k ∈ [1, d] for the set of the left-hand
sides f in Φ such that LV(f) � xk.

base case k = 0: Every f ∈ F0 is a non-zero integer. Then, f 6≡ 0 (mod p) directly follows from the hypothesis
that p does not divide any constant appearing in the left-hand sides of Φ.

induction step k ≥ 1: From the induction hypothesis, there is bk−1 = (b1, . . . , bk−1) ∈ Zk−1 such that for every
f ∈ Fk−1, f(bk−1) 6≡ 0 (mod p). We find a value bk for xk satisfying the following system of non-congruences

f(bk−1, xk) 6≡ 0 (mod p) f ∈ Fk \ Fk−1.

Linear polynomials f in Fk\Fk−1 are of the form f(x) = f ′(x1, . . . , xk−1)+cf ·xk. Since by hypothesis p - cf ,
we consider the multiplicative inverse c−1

f of cf modulo p, and rewrite the above system as xk 6≡ −c−1
f · f ′

for every f ∈ Fk \ Fk−1. This system as a solution directly from the fact that p > m ≥ #(Fk \ Fk−1).

This concludes the induction.

Before proving Lemmas 1.4 and 3.4, we need the following result on systems of divisibility constraints with
the elimination property. It will, later, also be used in the proof of Claim 4.

Lemma D.1. Let Φ(x1, . . . , xd) be a system of divisibility constraints with the elimination property for the order
x1 ≺ · · · ≺ xd. For every primitive term f and j ∈ [1, d], the set F := {g : (f | g) appears in Φ} has at most one
element with leading variable xj.

Proof. If f does not appear in the left-hand side of a divisibility of Φ, then F = ∅ and the lemma holds.
Suppose f in a left-hand side. For simplicity, let us define x0 := ⊥. By definition, for every k ∈ [0, d], the
elimination property forces {g1, . . . , g`} := {g : LV(g) � xk and f | g appears in Φ} to be such that g1, . . . , g`
are linearly independent polynomials forming a basis for Mf (Φ) ∩ Z[x1, . . . , xk]. Given k ∈ [0, d], let us write
Fk := {g : LV(g) � xk and (f | g) appear in Φ}. For j ∈ [1, d], by the elimination property, Fj−1 and Fj are sets
of linearly independent vectors, that respectively generates Mf (Φ)∩Z[x1, . . . , xj−1] and Mf (Φ)∩Z[x1, . . . , xj ]. To
conclude the proof, we show by induction on j that the set Fj has at most one element with leading variable xj .

base case j = 0: In this case F0 only contains constant polynomials (and might be empty, in that case it generates
the subspace {0}). By elimination property, F is a set of linearly independent vectors, hence F0 contains
at most one element.

induction step j ≥ 1: Ad absurdum, suppose there are two distinct g1, g2 ∈ Fj \ Fj−1 such that LV(g1) =
LV(g2) = xj . By definition of S-polynomial, S(g1, g2) ∈ Mf (Φ) ∩ Z[x1, . . . , xj−1]. Since Fj−1 generates
Mf (Φ) ∩ Z[x1, . . . , xj−1], there is a sequence of integers (λh)h∈Fj−1

such that
∑
h∈Fj−1

λh · h = S(g1, g2).
However, Fj−1∪{g1, g2} ⊆ Fj (by definition) and Fj is a set of linearly independent vectors. Therefore, every
λh above must be 0, and we obtain S(g1, g2) = 0, i.e., g1 and g2 are linearly dependent, in contradiction
with g1, g2 ∈ Fj .

This concludes the proof.

Lemma 3.4. Let Φ :=
∧m
i=1 fi | gi be a system of divisibility constraints in d variables with the elimination

property for ≺. Then, (i) #∆(Φ) ≤ 2 ·m2(d+ 2) and (ii) 〈||∆(Φ)||〉 ≤ (d+ 2) · (〈||Φ||〉+ 1).

Proof. Consider a primitive term f . If f is not a primitive part of any fi, with i ∈ [1,m], then Sf (Φ) = terms(Φ)
and so Sf (Φ) is included in any Sf ′(Φ) where f ′ is a primitive part of a left-hand side of Φ. Hence, we can upper
bound #∆(Φ) and 〈||Φ||〉 by only looking at these primitive parts.



Proof of (i): For f primitive part of some polynomials in a left-hand side of Φ, the elements of Sf (Φ) have
the form S

(
gk, S(gk−1, . . . S(g1, h))

)
where h ∈ terms(Φ) and f | gi is a divisibility in Φ, for all i ∈ [1, k].

Moreover, each gi has the same leading variable as hi := S(gi−1, S(gi−2, . . . , S(g1, h))). Since Φ has the elimination
property, by Lemma D.1, given hi there is at most one g such that f | g and LV(g) = LV(hi); that is gi.
Therefore, each element of Sf (Φ) can be characterized by a pair (k, h) where h ∈ terms(Φ) and k ∈ [0, d+ 1], i.e.,
#Sf (Φ) ≤ #terms(Φ) · (d + 2) ≤ 2 ·m · (d + 2), since #terms(Φ) ≤ 2 ·m. The number of f to be considered is
bounded by m, i.e., the number of left-hand sides, which means #∆(Φ) ≤ 2 ·m2(d+ 2).

Proof of (ii): Recall that 〈||f ||〉 is the maximum bit length of a coefficient or constant of a polynomial f , and that
〈||R||〉 = maxf∈R〈||f ||〉 for a finite set R of polynomials. By examining the definition of S-polynomial, we get that
for every f and g, 〈||S(f, g)||〉 ≤ 〈||f ||〉 + 〈||g||〉 + 1. Let f be a primitive polynomial. As discussed in the proof
of ((i)), an element of Sf (Φ) is of the form S

(
gk, S(gk−1, . . . S(g1, h))

)
, where h ∈ terms(Φ), f | gi is a divisibility

in Φ, for all i ∈ [1, k], and k ≤ d + 1. Then, 〈||S
(
gk, S(gk−1, . . . S(g1, h))

)
||〉 ≤ 〈||h||〉 +

(∑k
i=1〈||gi||〉

)
+ k. We

conclude that 〈||∆(Φ)||〉 ≤ (d+ 2) · (〈||Φ||〉+ 1).

Lemma 1.4. Consider a system Φ(x) of m divisibility constraints in d variables. Then, the set of primes P(Φ)
satisfies log2(ΠP(Φ)) ≤ m2(d+ 2) · (〈||Φ||〉+ 2). Furthermore, if Φ has the elimination property for an order ≺ on
x, then the set of primes P+(Φ) satisfies log2(ΠP+(Φ)) ≤ 64 ·m5(d+ 2)4(〈||Φ||〉+ 2).

Proof. We first analyse log2(ΠP(Φ)). Recall that P(Φ) is the set of those primes p such that either (i) p ≤ m
or (ii) p divide a coefficient or a constant of a left-hand side of Φ. The product of the primes satisfying (i) is
bounded by m! ≤ mm. The product of the primes satisfying (ii) is bounded by the product of the coefficients
or the constants in the left-hand sides of Φ, which is at most ||Φ||m·(d+1). From these two bounds, we obtain the
bound on log2(ΠP(Φ)) stated in the lemma.

Let us analyse log2(ΠP+(Φ)). Without loss of generality, assume that the order ≺ is such that x1 ≺ · · · ≺ xd.
We consider the three conditions defining P+(Φ) separately, and establish upper bounds for each of them.
Recall that the number of primes dividing n ∈ Z is bounded by log2(n), and that Lemma 3.4 implies
#S(∆(Φ)) ≤ 8 ·m4(d+ 2)2 and 〈||S(∆(Φ))||〉 ≤ 2 · (d+ 2) · (〈||Φ||〉+ 1) + 1.

(P1): Directly from the bounds above, the primes satisfying (P1) are at most 8 ·m4(d+ 2)2, and thus the log2

of their product is at most 8 ·m4(d+ 2)2 log2(8 ·m4(d+ 2)2), which is bounded by 64 ·m5(d+ 2)3.

(P2): The product of the primes dividing a coefficient or constant of a polynomial f in S(∆(Φ)) is bounded by
the product of these coefficients and constants. There are at most (d+ 1) ·#S(∆(Φ)) such coefficients and
constants. Therefore, the log2 of this product is bounded by (d + 1) · #S(∆(Φ)) · 〈||S(∆(Φ))||〉, which is
bounded by 16 ·m4(d+ 2)4(〈||Φ||〉+ 2).

(P3): If f is a primitive term such that a · f does not occur in the left-hand sides of Φ, for any a ∈ Z \ {0}, then
Sf (Φ) = terms(Φ) and Mf (Φ) = Zf , and therefore λ, if it exists, equals to 1. Consider f primitive such
that a · f ∈ terms(Φ) appears on the left-hand side of a divisibility in Φ, for some a ∈ Z \ {0}, and consider
g ∈ Sf (Φ). We first compute a bound on the minimal positive λ such that λ · g ∈ Mf (Φ), if such a λ exists.
Let xj := LV(g), with j ∈ [0, d] and x0 := ⊥. Consider the set {h1, . . . , h`} := {h : LV(h) ≤ LV(g) and f |
h is in Φ}; where ` ≤ m. From the elimination property, this set is a basis for Mf (Φ) ∩ Z[x1, . . . , xj ], and
therefore λ exists if and only if Zg ∩ Zh1 + · · ·+ Zh` 6= {0}. Then let K be a basis for the kernel of the
matrix representing the set {−g, h1, . . . , h`}. As observed in the context of Algorithm 4, if λ exists then it
is the GCD of the row of K corresponding to −g. From Corollary C.1, λ ≤

(
m+ 3)m+3 max(2, ||Φ||)m+2. In

the proof of Lemma 3.4 we have shown #Sf (Φ) ≤ 2 ·m · (d+ 2), hence the number of pairs (f, g) to consider
is bounded by 2 ·m2 · (d + 2). Similarly to (P2), the product of the primes dividing all λs is bounded by

the product of these λs, which is at most
(
(m + 3)m+3 max(2, ||Φ||)m+2

)2·m2·(d+2). Therefore, the log2 of
the product of the primes satisfying (P3) is at most 32 ·m4(d+ 2) · (〈||Φ||〉+ 1).

Summing up the bounds we have just obtained yields the bound stated in the lemma.

E Theorem 1.4: proofs of Claim 4 and Claim 5
In this section, we prove Claim 4 and Claim 5, which are required to establish Theorem 1.4. In the context of this
theorem, recall that Ψ(x,y) is a formula that is increasing for (X1≺· · ·≺Xr) and has the elimination property for



an order (≺) ∈ (X1≺· · ·≺Xr). Here, x = (x1, . . . , xd) are the variables appearing in X1, ordered as x1≺· · ·≺xd,
and y are the variables appearing in

⋃r
j=2Xj . We also have solutions bp for Ψ modulo p, for every p ∈ P+(Ψ),

and we have inductively computed a map ν : X1 → Z satisfying the following three properties:

IH1: For every p ∈ P+(Ψ) and x ∈ X1, ν(x) ≡ bp,x (mod pµp+1), where bp,x is the entry of bp corresponding to
x, and µp := max{vp(f(bp)) ∈ N : f is in the left-hand side of a divisibility of Ψ}.

IH2: For every prime p /∈ P+(Ψ) and for every h, h′ ∈ ∆(Ψ) with leading variable in X1, if S(h, h′) is not
identically zero, then p does not divide both h(ν(x)) and h′(ν(x)).

IH3: h(ν(x)) 6= 0, for every h ∈ ∆(Ψ) that is non-zero and with LV(h) ∈ X1.

The formula Ψ′(y) considered in Claim 4 and Claim 5 is defined as Ψ′ := Ψ[ν(x) / x : x ∈ X1].

Claim 4. The system Ψ′ is increasing for (X2 ≺ · · · ≺Xr).

At first glance, Claim 4 might appear intuitively true: since the notion of r-increasing form is mainly a
property on sets X1 ≺ · · · ≺ Xr of orders of variables, and during the proof of Theorem 1.4 we are inductively
handling the smallest setX1, it might seem trivial that instantiating the variables inX1 preserve increasingness for
X2≺· · ·≺Xr. However, in general, this is not the case. To see this, we repurpose the example given in Section 1.3.
Consider the system of divisibility constraints Ψ in increasing form for the order u≺ v ≺ x≺ y ≺ z and with the
elimination property for that order:

v | u+ x+ y

v | x
y + 2 | z + 1

v | z .

From the first two divisibilities, we have (u + y) ∈ Mv(Ψ); i.e., (u − 2) + (y + 2) ∈ Mv(Ψ). Therefore, if u were
to be instantiated as 2, the resulting formula Ψ′ would satisfy (y + 2) ∈ Mv(Ψ

′) and hence (z + 1) ∈ Mv(Ψ
′),

from the third divisibility. Then, 1 ∈ Mv(Ψ
′) would follow from the last divisibility, violating the constraints

of the increasing form. Fortunately, due to the definition of Sf (Ψ), u = 2 contradicts the property (IH3) kept
during the proof of Theorem 1.4, meaning that the above issue does not occur in our setting. Indeed, note that
S(y + 2, u + x + y) = 2 − u − x is in Sv(Ψ), and so is S(2 − u − x, x) = 2 − u. Then, (IH3) forces 2 − u 6= 0,
excluding u = 2 as a possible solution. This observation is the key to establish Claim 4.

Given a set A of polynomials, an integer a ∈ Z and a variable x occurring in those polynomials, we define
A[a / x] := {f(a,y) : f(x,y) ∈ A}, that is the set obtained by partially evaluating x as a in all polynomials in A.
This notion is extended to sequences of value-variable pairs as A[ai / xi : i ∈ I].

We now prove Claim 4.

Proof. To show the statement, we consider an order ≺′ in (X1≺· · ·≺Xr). Note that any order in (X2≺· · ·≺Xr)
can be constructed from elements in (X1 ≺ · · · ≺ Xr) by simply forgetting X1. Let y = (y1, . . . , yj), with
y1 ≺′ · · · ≺′ yj , be the variables in

⋃r
i=2Xi. To simplify the presentation, we denote by a′, b′, . . . and f ′, g′, . . .

integers and polynomials related to Ψ′, and by a, b, . . . and f, g, . . . integers and polynomials related to Ψ. By
definition of increasing form, we need to establish that for every k ∈ [1, j] and primitive polynomial f ′(y) such
that a′ · f ′ appears in the left-hand side of a divisibility in Ψ′, for some a′ ∈ Z \ {0}, and LV(f ′) = yk, we have
Mf ′(Ψ

′)∩Z[y1, . . . , yk] = Zf ′. By definition of Ψ′ and since a′ · f ′ appears in a left-hand side, there is a primitive
polynomial f(x,y) and a scalar a ∈ Z \ {0} such that a · f is in the left-hand side of some divisibility in Ψ, and
a′ · f ′(y) = a · f(ν(x),y). Note that this implies a | a′ and LV(f) 6∈ X1.

We prove that a′

a ·Mf ′(Ψ
′) ⊆ Mf (Ψ)[ν(x) / x : x ∈ X1]. Note that this inclusion implies Ψ′ in increasing

form. To see this, take g′ ∈ Mf ′(Ψ
′)∩Z[y1, . . . , yk]. We have a′

a · g
′ ∈ Mf (Ψ)[ν(x) / x : x ∈ X1], and thus there is

g(x,y) ∈ Mf (Ψ) such that a′

a · g
′ = g(ν(x),y). Since LV(g′) �′ yk, we have LV(g) �′ yk, and thus from Ψ being

increasing for ≺′ we conclude that g ∈ Zf . Note that (Zf)[ν(x) / x ∈ X1] ⊆ Zf ′. Then a′

a · g
′ ∈ Zf ′. Since f ′

is primitive, we get g′ ∈ Zf ′. This shows Mf ′(Ψ
′) ∩ Z[y1, . . . , yk] ⊆ Zf ′. The other inclusion directly follows by

definition of Mf ′(Ψ
′), and so we conclude that Ψ′ is increasing.



To conclude the proof of Claim 4, let us show that a′

a ·Mf ′(Ψ
′) ⊆ Mf (Ψ)[ν(x) / x : x ∈ X1]. By definition of

Mf ′(Ψ
′), this follows as soon as we prove the following three properties:

(A) a′

a · f
′ belongs to Mf (Ψ)[ν(x) / x : x ∈ X1],

(B) Mf (Ψ)[ν(x) / x : x ∈ X1] is a Z-module, and

(C) If g′ | h′ is a divisibility in Ψ′ and b′ · g′ ∈ Mf (Ψ)[ν(x) / x : x ∈ X1] for some b′ ∈ Z \ {0}, then
b′ · h′ ∈ Mf (Ψ)[ν(x) / x : x ∈ X1].

By definition of divisibility module, a
′

a ·Mf ′(Ψ
′) is the smallest set that satisfies the three properties above, and

therefore it must be included in Mf (Ψ)[ν(x) / x : x ∈ X1].

Proof of (A): By definition of f , a′ · f ′ = a · f(ν(x),y) and a | a′, hence a′

a · f
′ = f(ν(x),y), and by definition of

divisibility module f(ν(x),y) ∈ Mf (Ψ)[ν(x) / x : x ∈ X1].

Proof of (B): This follows directly from the definition of divisibility module being a Z-module. Indeed,
substitutions preserve the notion of Z-module.

Proof of (C): This property follows from our definition of Sf (Ψ) together with the property (IH3) and the fact
that Ψ has the elimination property for the order ≺ (not to be confused with the order ≺′, which does not
guarantee the elimination property). Consider a divisibility g′(y) | h′(y) occurring in Ψ′ and b′ ∈ Z \ {0} such
that b′ · g′ ∈ Mf (Ψ)[ν(x) / x : x ∈ X1]. By definition of Ψ′, there is a divisibility g(x,y) | h(x,y) in Ψ such
that g′ = g(ν(x),y) and h′ = h(ν(x),y). Also, by definition of Mf (Ψ)[ν(x) / x : x ∈ X1], there is a polynomial
ĝ(x,y) ∈ Mf (Ψ) such that b′ · g′ = ĝ(ν(x),y).

To conclude the proof, it suffices to show that b′ · g = ĝ. Indeed, since g | h appears in Ψ and ĝ ∈ Mf (Ψ), we
then get b′ · h ∈ Mf (Ψ) by the definition of divisibility module, which implies b′ · h′ ∈ Mf (Ψ)[ν(x) / x : x ∈ X1]
by definition of h; concluding the proof.

Since ĝ ∈ Mf (Ψ) and Ψ has the elimination property for ≺, there are linearly independent polynomials
h1, . . . , h` such that the divisibilities f | hi appear in Ψ and there are λ1, . . . , λ` ∈ Z \ {0} such that ĝ =

∑`
i=1 λi·hi.

Thanks to Lemma D.1, we can arrange these polynomials so that LV(h1) ≺ · · · ≺ LV(h`). We write ci for the
coefficient corresponding to the leading variable of hi (ci is thus non-zero). Since LV(f) 6∈ X1 (as stated earlier)
and Ψ is increasing, LV(hi) ∈

⋃r
k=2Xk holds for every i ∈ [1, `]. From g′ = g(ν(x),y) and b′ · g′ = ĝ(ν(x),y)

we directly get b′ · g(ν(x),y) = ĝ(ν(x),y). Therefore, (b′ · g − ĝ)(ν(x),y) = 0, implying that b′ · g − ĝ is either
constant or has its leading variable in X1. This implies that b′ ·g−

∑`
i=1 λi ·hi is either constant or has its leading

variable in X1. Since the λi are non-zero, and moreover LV(hi) is not in X1 and LV(h1)≺ · · · ≺ LV(h`), we have
LV(b′ · g −

∑`
i=k+1 λi · hi) = LV(hk) for every k ∈ [1, `], and the coefficient corresponding to the leading variable

of b′ · g −
∑`
i=k+1 λi · hi is exactly λk · ck.

We show by induction on k ∈ [1, `+1], with base case k = `+1, that αk·(b′·g−
∑`
i=k λi·hi) = b′·S(g, h`, . . . , hk),

where αk :=
∏`
i=k ci, and S(f1, . . . , fn) is short for S(. . . (S(f1, f2), . . . ), fn); e.g., S(f1, f2, f3) = S(S(f1, f2), f3).

base case k = `+ 1: For the base case, α`+1 = 1 and the equivalence becomes b′ · g = b′ · g.

induction step k ≤ `: we have αk+1(b′ · g −
∑`
i=k+1 λi · hi) = b′ · S(g, h`, . . . , hk+1) by induction hypothesis.

Note that, from the left-hand side of this equation, the coefficient corresponding to the leading variable
of b′ · S(g, h`, . . . , hk+1) is ck · αk+1 · λk. Then,

αk · (b′ · g −
∑̀
i=k

λi · hi)

= ck · αk+1(b′ · g −
∑̀
i=k

λi · hi) definition of αk

= ck · αk+1(b′ · g −
∑̀
i=k+1

λi · hi)− ck · αk+1 · λk · hk



= ck · (b′ · S(g, h`, . . . , hk+1))− (ck · αk+1 · λk) · hk induction hypothesis
=S(b′ · S(g, h`, . . . , hk+1), hk) coeff. leading var. hk is ck

coeff. leading var. (b′ · S(g, h`, . . . , hk+1)) is ck · αk+1 · λk
= b′ · S(g, h`, . . . , hk) S(b′ · f1, f2) = b′ · S(f1, f2), by definition of S-polynomial.

Thanks to the equality αk · (b′ · g −
∑`
i=k λi · hi) = b′ · S(g, h`, . . . , hk) we just established, we conclude that

α1 · (b′ · g − ĝ) = b′ · S(g, h`, . . . , h1). Moreover, from LV(b′ · g −
∑`
i=k+1 λi · hi) = LV(hk) we conclude

that LV(S(g, h`, . . . , hk+1)) = LV(hk), for every k ∈ [1, `]. Then, since g ∈ terms(Ψ) and the divisibilities
f | h1, . . . , f | h` appear in Ψ, by definition of Sf (Ψ), we conclude that S(g, h`, . . . , h1) ∈ Sf (Ψ). Recall that
b′ · g − ĝ is either constant or has its leading variable in X1. The same is true for S(g, h`, . . . , h1), and we have
(α1 · (b′ · g − ĝ))(ν(x)) = b′ · S(g, h`, . . . , h1)(ν(x)). From (b′ · g − ĝ)(ν(x)) = (b′ · g − ĝ)(ν(x),y) = 0 and b′ 6= 0
we get S(g, h`, . . . , h1)(ν(x)) = 0. From the property (IH3), this can only occur when S(g, h`, . . . , h1) = 0, and
so α1 · (b′ · g − ĝ) = 0. By definition α1 6= 0, and therefore b′ · g = ĝ, concluding the proof of (C).

Claim 5. For every p ∈ P+(Ψ), the solution bp for Ψ modulo p is, when restricted to y, a solution for Ψ′(y)
modulo p. For every prime p 6∈ P+(Ψ), there is a solution bp for Ψ′ modulo p such that (i) every entry of bp belongs
to [0, pu+1 − 1], where u := max{vp(αi) : i ∈ [`+ 1, n]}, and (ii) vp(g(bp)) ∈ {0, u}, for every g ∈ terms(Ψ′).

Proof. The first statement of the claim follows from (IH1) and the definition of µp (the reasoning is analogous
to the one in the base case r = 1 of the induction of Theorem 1.4). For the second statement, consider a
prime p not belonging to P+(Ψ). We construct a solution bp for Ψ′(y) modulo p. Let y = (y1, . . . , yj) with
y1 ≺ · · · ≺ yj . To compute bp = (bp,1, . . . , bp,j), where bp,k is the value assigned to yk, we consider two cases that
depend on whether p divides some αi appearing in the first block of divisibilities of Equation (3.7) (i.e., these are
the αi with i ∈ [`+ 1, n]).

case p - αi for all i ∈ [`+ 1, n]: This case is relatively simple. Starting from y1 and proceeding in increasing
order of variables, we compute bp,k+1 (k ∈ N) by solving the system

h(bp,1, . . . , bp,k, yk+1) 6≡ 0 (mod p) h ∈ terms(Ψ′) s.t. LV(h) = yk+1.(E.3)

With respect to the h above, let us write h(bp,1, . . . , bp,k yk+1) = ch + ah · yk+1 where ch is the constant
term obtained by partially evaluating h with respect to (bp,1, . . . , bp,k) and ah is the coefficient of yk+1 in
h. By definition of Ψ′, the term h is obtained by substituting x for ν(x) in a polynomial of Ψ, and in that
polynomial yk+1 has coefficient ah. Since p 6∈ P+(Ψ), from Condition (P2) we conclude that p - ah, and so
ah has an inverse a−1

h modulo p. The system of non-congruences above is equivalent to the system Sk+1

given by

yk+1 6≡ −a−1
h · ch (mod p) h ∈ terms(Ψ′) s.t. LV(h) = yk+1.

From Condition (P1) and since terms(Ψ) ⊆ ∆(Ψ), we have p > #terms(Ψ) ≥ #terms(Ψ′), and so it suffices
to take bp,k+1 to be an element in [0, p− 1] that differs from every −a−1

h · ch appearing in the rows of Sk+1.

The solution bp resulting from the systems of non-congruences S1, . . . ,Sj is such that, for every h ∈
terms(Ψ′), vp(h(bp)) = 0. Therefore, bp is a solution for Ψ′ modulo p.

case p | αi for some i ∈ [`+ 1, n]: This case is involved. Since p divides some αi = fi(ν(x)), and p 6∈ P+(Ψ),
by Condition (P2) we have p | f(ν(x)), where f is the primitive polynomial obtained by dividing every
coefficient and constant of fi by gcd(fi). Recall that x = (x1, . . . , xd) with x1≺ · · ·≺xd≺ y1≺ · · ·≺ yj , and
note that LV(f) � xd. Below, let us define u := vp(f(ν(x))). The idea is to use f to iteratively construct
the solution bp for y = (y1, . . . , yj). We rely on the following induction hypotheses (k ∈ [0, j]):

IH1′: for every non-zero polynomial g(x, y1, . . . , yt) ∈ terms(Ψ) such that t ≤ k,
if Zg ∩Mf (Ψ) 6= {0} then vp(g(ν(x), bp,1, . . . , bp,t)) = u, and

IH2′: for every non-zero polynomial h(x, y1, . . . , yt) ∈ Sf (Ψ) such that t ≤ k,
if Zh ∩Mf (Ψ) = {0} then vp(h(ν(x), bp,1, . . . , bp,t)) = 0.



Let us first show that by constructing bp so that it satisfies the hypotheses above for k = j implies that bp
is a solution for Ψ′ modulo p. Consider a divisibility αw + f ′w(y) | βw + g′w(y) in Ψ′, with w ∈ [`+ 1,m] and
f ′w = 0 if w ≤ n. Recall that αw = fw(ν(x)) and βw = gw(ν(x)), and given h := fw +f ′w and h′ := gw + g′w,
the divisibility h | h′ occurs in Ψ. We have two cases:

• Zh ∩ Mf (Ψ) 6= {0}. In this case, by definition of Mf (Ψ) we have Zh′ ∩ Mf (Ψ) 6= {0}. According
to (IH1′), vp(h(ν(x), bp)) = vp(h

′(ν(x), bp)) = u. By definition of h and h′, we get vp(αw + f ′w(bp)) =
vp(βw + g′w(bp)) = u. Note that f(ν(x)) is non-zero by (IH3), hence its p-adic evaluation u belongs to
N, which forces αw + f ′w(bp) to be non-zero.

• Zh ∩ Mf (Ψ) = {0}. Recall that terms(Ψ) ⊆ Sf (Ψ), by definition. Hence, directly from (IH2′)
we get vp(h(ν(x), bp)) = vp(αw + f ′w(bp)) = 0. This implies αw + f ′w(bp) non-zero, and moreover
vp(αw + f ′w(bp)) ≤ vp(βw + g′w(bp)) no matter what is the value of vp(βw + g′w(bp)).

Note moreover that (IH1′) and (IH2′) directly imply max{vp(g(bp)) ∈ N : g ∈ terms(Ψ′)} ≤ u.
To conclude the proof, we show how to construct bp satisfying (IH1′) and (IH2′).

base case k = 0: We establish (IH1′) and (IH2′) for polynomials with variables in x, by showing the three
properties below, for every non-zero polynomial h ∈ ∆(Ψ) with LV(h) � xd.
(A) Either Zf ∩ Zh 6= {0} or p - h(ν(x)).
(B) If Zf ∩ Zh 6= {0}, then vp(h(ν(x))) = vp(f(ν(x))).
(C) If p - h(ν(x)) then vp(h(ν(x))) = 0 and Zh ∩Mf (Ψ) = {0}.
These three items imply (IH1′) and (IH2′). To establish (IH1′), take g(x) ∈ terms(Ψ) such that
Zg ∩Mf (Ψ) 6= {0}. From (C) we must have p | g(ν(x)). Hence, Zf ∩ Zh 6= {0} by (A), and from (B)
we get vp(h(ν(x))) = vp(f(ν(x))). For (IH2′), take h(x) ∈ Sf (Ψ) such that Zh ∩Mf (Ψ) = {0}. By
definition of Mf (Ψ), Zh ∩ Zf = {0} and so p - h(ν(x)) by (A). From (C), vp(h(ν(x))) = 0. We
conclude the base case by establishing (A)–(C).

Proof of (A): Since Ψ has the elimination property, f ∈ terms(Ψ). Then, (A) follows directly
from (IH2); remark that S(f, h) = 0 is equivalent to Zf ∩ Zh 6= {0}.

Proof of (B): By Zf ∩ Zh 6= {0} there are λ1, λ2 ∈ Z \ {0} such that λ1 · f = λ2 · h. Without loss
of generality, gcd(λ1, λ2) = 1, and thus gcd(λ2, gcd(f)) = λ2. The polynomial f is primitive, hence
λ2 = 1 and we get h = λ1 · f . Since p 6∈ P+(Ψ), from Condition (P2) and λ1 | gcd(h) we derive p - λ1.
Therefore, vp(h(ν(x))) = vp(λ1 · f(ν(x))) = vp(f(ν(x))).

Proof of (C): Trivially, p - h(ν(x)) equals vp(h(ν(x))) = 0. To show Zh ∩Mf (Ψ) = {0}, first note
that Zh ∩ Zf = {0}, directly from p | f(ν(x)) and (B). Ad absurdum, assume Zh ∩ Mf (Ψ) 6= {0}.
Since Ψ is increasing for χ := (X1 ≺ · · · ≺ Xr), and LV(h) and LV(f) are both in X1, Ψ is
increasing no matter the order of the variables imposed on X1. Take an order (≺′) ∈ χ for which
LV≺′(h) �′ LV≺′(f), and let x′1 ≺′ · · · ≺′ x′d be the order for the variables x1, . . . , xd. Since Ψ is
increasing for ≺′, Mf (Ψ) ∩ Z[x′1, . . . , x

′
LV≺′ (f)] = Zf . However, Zh ⊆ Z[x′1, . . . , x

′
LV≺′ (f)] by definition

of ≺′, hence from Zh ∩Mf (Ψ) 6= {0} we obtain Zh ∩ Zf 6= {0}, a contradiction. This proves (C).
induction step: Let us assume that bp,1, . . . , bp,k are defined for the variables y1, . . . , yk with k ∈ [0, j−1],

so that the induction hypotheses hold. We provide the value bp,k+1 for yk+1 while keeping (IH1′)
and (IH2′) satisfied. We divide the proof into two cases, depending on whether there is a term
g ∈ terms(Ψ) with LV(g) = yk+1 such that Zg ∩Mf (Ψ) 6= {0}.
case g does not exist: In this case, (IH1′) is fulfilled no matter the value of bp,k+1, so we focus on

finding such a value satisfying (IH2′). It suffices to consider the system

h(bp,1, . . . , bp,k, yk+1) 6≡ 0 (mod p) h ∈ Sf (Ψ) s.t. LV(h) = yk+1.

Similarly to the system in Equation (E.3), writing ch + ah · yk+1 for h(bp,1, . . . , bp,k, yk+1), we
obtain the equivalent system of non-congruences

yk+1 6≡ −a−1
h · ch (mod p) h ∈ Sf (Ψ) s.t. LV(h) = yk+1.



Since p 6∈ P+(Ψ) and from (P1), this system admits a solution bp,k+1 in [0, p−1]. Note that (IH2′) is
satisfied, since every polynomial in that hypothesis is considered in these non-congruence systems.

case g exists: Recall that g is a polynomial in terms(Ψ) such that LV(g) = yk+1 and Zg ∩Mf (Ψ) 6=
{0}. Let u := vp(f(ν(x))). In order to satisfy (IH1′) it suffices to find bp,k+1 ∈ Z satisfying the
following (non-empty) system of non-congruences

∀g ∈ terms(Ψ) s.t. LV(g) = yk+1 and Zg ∩Mf (Ψ) 6= {0},
g(bp,1, . . . , bp,k, yk+1) ≡ 0 (mod pu)

g(bp,1, . . . , bp,k, yk+1) 6≡ 0 (mod pu+1).

Similarly to the system in Equation (E.3), writing cg+ag ·yk+1 for g(bp,1, . . . , bp,k, yk+1), we obtain
the equivalent system of non-congruences

∀g ∈ terms(Ψ) s.t. LV(g) = yk+1 and Zg ∩Mf (Ψ) 6= {0},(E.4)

yk+1 ≡ −a−1
g · cg (mod pu)

yk+1 6≡ −a−1
g · cg (mod pu+1).

Focus on the congruences yk+1 ≡ −a−1
g · cg (mod pu) of this system. These only have a solution

if the right-hand side is the same modulo pu for every g ∈ terms(Ψ) with LV(g) = yk+1 and
Zg ∩ Mf (Ψ) 6= {0}. We prove that this is indeed the case. Consider g1 and g2 such that gi ∈
terms(Ψ) with LV(gi) = yk+1 and Zgi ∩Mf (Ψ) 6= {0}, for i ∈ {1, 2}. Let λ1 and λ2 be the smallest
positive integers such that both λ1 · g1 and λ2 · g2 belong to Mf (Ψ). By definition of divisibility
module and S-polynomial, S(λ1 · g1, λ2 · g2) ∈ Mf (Ψ) ∩ Z[x1, . . . , xd, y1, . . . , yk]. According to the
elimination property of Ψ, there is a (finite) basis B for Mf (Ψ) ∩ Z[x1, . . . , xd, y1, . . . , yk] such
that for every h ∈ B, f | h is a divisibility in Ψ. Moreover, LV(h) � yk and thus by (IH1′) we get
vp(h(ν(x), bp,1, . . . , bp,k)) = u. Now, since S(λ1 ·g1, λ2 ·g2) is a linear combination of elements in B,
we conclude that pu | S(λ1 ·g1, λ2 ·g2). By writing gi(x, y1, . . . , yk+1) as g′i(x, y1, . . . , yk)+ai ·yk+1,
for i ∈ {1, 2}, this divisibility can be rewritten as the congruence:

(λ2 · a2) · (λ1 · g′1) ≡ (λ1 · a1) · (λ2 · g′2) (mod pu).

From p 6∈ P+(Ψ), (P2) and (P3), we conclude that p - λ1 · λ2 · a1 · a2. By multiplying both sides of
the above congruence by the inverse (λ1 · λ2 · a1 · a2)−1 of λ1 · λ2 · a1 · a2 modulo pu, we conclude
that a−1

1 · g′1 ≡ a−1
2 · g′2 (mod pu). This shows that the right-hand side is the same across all the

congruences and non-congruences of the system in Equation (E.4). Moreover, p > #terms(Ψ)
by (P1), and therefore this system is feasible, and more precisely has a solution bp,k+1 of the form
bp,k+1 := pu · γ for some γ ∈ [1, p− 1]. Pick such a solution, which by construction satisfies (IH1′).
We show that bp,k+1 also satisfies (IH2′). Here is where the existence of the polynomial
g ∈ terms(Ψ) satisfying LV(g) = yk+1 and Zg∩Mf (Ψ) 6= {0} plays a role. From Zg∩Mf (Ψ) 6= {0}
and since Ψ has the elimination property, we can find a polynomial g0 such that f | g0 is in
Ψ, and LV(g0) = yk+1. We prove (IH2′) arguing by contraposition. Let h ∈ Sf (Ψ) such that
LV(h) = yk+1 and p | h(ν(x), bp,1, . . . , bp,k+1). If S(h, g0) is zero, i.e., h and g0 are linearly
dependent, then Zh ∩Mf (Ψ) 6= {0} follows by definition of g0, and (IH2′) holds for h. Suppose
that S(h, g0) is non-zero. From the construction of bp,k+1 and since g0 is a polynomial considered
in Equation (E.4), we have p | g0(ν(x), bp,1, . . . , bp,k+1). Then, by definition of S-polynomial,
p | S(h, g0)(ν(x), bp,1, . . . , bp,k). By definition of Sf (Ψ), note that h ∈ Sf (Ψ) and g0 ∈ terms(Ψ)
implies S(h, g0) ∈ Sf (Ψ). Since S(h, g0) is non-zero, the induction hypothesis (IH2′) implies that
ZS(h, g0) ∩ Mf (Ψ) 6= {0}. Then, Zh ∩ Mf (Ψ) 6= {0} follows directly from the fact that f | g0

appears in Ψ (and so Zg0 ∩Mf (Ψ)). Once more, we conclude that (IH2′) holds for h.

Following the case analysis above, we construct solutions bp for Ψ′(y) modulo p, for every p ∈ P+(Ψ′). This
concludes the proof of Claim 5.



F Theorem 1.4: proof of Claim 8
We recall that O ∈ Z+ is the minimal positive integer greater or equal than 4 such that the map x 7→ O(x+ 1)
upper bounds the linear functions hidden in the O(.) appearing in Lemma 3.2. The integer Γ(r, `, w,m, d), with
r, `, w,m, d ∈ Z+ and r ≤ d, is the maximum bit length of the minimal positive solution of any system of
divisibility constraints Φ such that:

• Φ is r-increasing.

• The maximum bit length of a coefficient or constant appearing in Φ, i.e., 〈||Φ||〉, is at most `.

• For every p ∈ P(Φ), consider a solution bp of Φ modulo p minimizing µp := max{vp(f(bp)) :

f is in the left-hand side of a divisibility in Φ}. Then, log2

(∏
p∈P(Φ) p

µp+1
)
≤ w.

• Φ has at most m divisibilities.

• Φ has at most d variables.

Since we want to find an upper bound for Γ, assume without loss of generality that Γ(r, `, w,m, d) is always at
least min(`, w). Let us prove Claim 8.

Claim 8.



Γ(1, `, w,m, d) ≤ w + 3

Γ(r + 1, `, w,m, d) ≤ Γ(r,

2105m27(d+ 2)38O · log2(O)6(`+ w) · (log2(`+ w))6,

2109m29(d+ 2)39O · log2(O)6(`+ w) · (log2(`+ w))6,

m,

d).

Analysis on Γ(1, `, w,m, d): This case corresponds to the base case of the main induction, where the solutions
are found thanks to the system of congruences in Equation (3.4), where for p ∈ P(Φ), µp := max{vp(f(bp)) :
f is in the left-hand side of a divisibility of Φ}. From the Chinese remainder theorem, this system of congruences
has a solution where every variable is in [1,

∏
p∈P(Φ) p

µp+1]. Therefore, every variable is bounded by 2w by definition
of w, and therefore its bit length is bounded by w+3, since 〈x〉 = 1+dlog2(|x|+ 1)e ≤ dlog2(|x|)e+2 ≤ log2(|x|)+3,
and w is positive.

Analysis on Γ(r, `, w,m, d) with r ≥ 2: This case corresponds to the induction step of the main induction,
where the solutions are found thanks to the system of (non)congruences in Equation (3.6). At the start of
the induction, we add the elimination property to Φ. According to Lemma 3.2, we obtain a system Ψ with
n ≤ m · (d + 2) divisibilities and 〈||Ψ||〉 ≤ O(m3d + 1) · log2((d + 1)(m + ||Φ|| + 2)) + 3. We find solutions
bp for Ψ modulo p, for every p ∈ P+(Ψ). For p ∈ P(Φ), these are the solutions bp for Φ modulo p stated in
the hypothesis of the theorem. For p ∈ P+(Ψ) \ P(Φ), we compute bp as a solution for Φ modulo p, taken
such that for every f left-hand side of a divisibility in Φ, vp(f(bp)) = 0. The existence of such a solution is
guaranteed by Lemma 1.3, and as discussed when presenting the procedure the vector bp is a solution for Ψ
modulo p such that for every f left-hand side of a divisibility in Ψ, vp(f(bp)) = 0. As usual, given p ∈ P+(Ψ), let
µp := max{vp(f(bp)) : f is in the left-hand side of a divisibility of Ψ}.

Suppose that the set X1 = {x1, . . . , xd′} of variables considered in this step is ordered as x1 ≺ · · · ≺ xd′ (with
d′ ≤ d). Recall that the values assigned to these variables are chosen inductively, starting with x1 and following
the order ≺. Let ν be the map computed in this way. Given k ∈ [0, d− 1], at the (k + 1)-th iteration we defined
the set Pk as

Pk := {p ∈ P : p ∈ P+(Ψ) or there is h ∈ S(∆(Ψ))\{0} s.t. LV(h) � xk and p | h(ν(x1, . . . , xk))} ,

and added to it the smallest prime not in P+(Ψ), if the above definition yields Pk = P+(Ψ).
For simplicity, below let s := #S(∆(Ψ)), t := ||S(∆(Ψ))|| and w1 := log2(

∏
p∈P+(Ψ) p

µp+1), which are all at
least 1. Inductively on k ∈ [0, d− 1], we show that log2(ν(xk+1)) ≤ B where

B := C · (log2(C))3 and C := 24 · w1 · s3 ·
(
5 + log2 log2(t · (d+ 1))

)2
.



Therefore, 〈ν(xk+1)〉 ≤ B+ 3 ≤ 218 · s4 ·
(
5 + log2 log2(t · (d+ 1))

)3 ·w1 · (log2(w1) + 2)3, where this last inequality
follows from a straightforward computation together with the fact that (log2(x))3 ≤ 5 · x for every x ≥ 1. Note
that we do not simplify (log2(w1) + 2)3 into, e.g., 26 · w1, as this would yield an exponentially worse bound for
Γ(r, `, η,m, d) later on. In particular, it is important here to obtain a bound that is quasi-linear with respect to
the quantity w1, that is, it is in w1 · poly(log(w1)) when the other parameters are considered fixed.

base case k = 0: In this case, P0 = P+(Ψ) ∪ {p} where p is the smallest prime not in P+(Ψ). Then,
#P0 = #P+(Ψ) + 1. We bound ν(x1) ∈ Z+ by applying Theorem 1.3 to the system of (non)congruences
in Equation (3.6). We get:

ν(x1) ≤
( ∏
p∈P+(Ψ)

pµp+1
)
·
(
(s+ 1) ·#(P0 \P+(Ψ))

)4·(s+1)2(3+ln ln(#(P0\P+(Ψ))+1))

≤
( ∏
p∈P+(Ψ)

pµp+1
)
· (s+ 1)12·(s+1)2

Therefore, log2(ν(x1)) ≤ w1 + 12 · (s+ 1)2 log(s+ 1).

induction step k ≥ 1: Let us first bound #(Pk \P+(Ψ)). By definition,

Pk \P+(Ψ) = {p ∈ P \P+(Ψ) : LV(h) � xk and p | h(ν(x1, . . . , xk)) for some h ∈ S(∆(Ψ)) \ {0}}.

By induction hypothesis, for every h ∈ S(∆(Ψ)), |h(ν(x1, . . . , xk))| ≤ (k · 2B + 1) · t, and therefore
#(Pk \ P+(Ψ)) ≤ s · log2((k · 2B + 1) · t) ≤ s · log2(2B · t · (d + 1)). Note that s · log2(2B · t · (d + 1)) ≥ 1,
hence this bound on #(Pk \ P+(Ψ)) already captures the case where one prime had to be added to Pk in
order to make this set different form P+(Ψ). We bound ν(x1) ∈ Z+ by applying Theorem 1.3 to the system
of (non)congruences in Equation (3.6):

ν(xk+1) ≤
( ∏
p∈P+(Ψ)

pµp+1
)
·
(
(s+ 1) ·#(Pk \P+(Ψ))

)4·(s+1)2(3+ln ln(#(Pk\P+(Ψ))+1))

≤
( ∏
p∈P+(Ψ)

pµp+1
)
·
(
(s+ 1)2 · log2(2Bt · (d+ 1))

)4·(s+1)2(3+ln ln(1+s·log2(2Bt·(d+1))))
.

Then, a simple analysis using properties of logarithms shows that log2(ν(xk+1)) is at most

24 · w1 · s3 ·
(
5 + log2 log2(t · (d+ 1))

)2 · (log2(B))2

=C · (log2(B))2 definition of C.
≤B,

where the latter inequality holds from the fact that, whenever C ≥ 45, every element xi of the recurrence
relation

(
x0 = C, xi+1 = C · (log2(xi))

2
)
is bounded by C · (log2(C))3, i.e., B.

We have established that the bit length of the solutions for the variables in X1 can be bounded with B + 3.
Next, we want to bound B + 3 using the arguments of Γ. To do so, we first derive upper bounds for s, t and w1.
For s and t, by Lemma 3.4 we obtain s ≤ 8 ·m4 · (d+ 2)6 and log2(t) ≤ 2 · (d+ 2) · (〈||Φ||〉+ 1) + 1. For w1, we have

w1 ≤ log2

( ∏
p∈P+(Ψ)

pµp+1
)

≤ log2

( ∏
p∈P+(Ψ)\P(Φ)

pµp+1 ·
∏

p∈P(Φ)

pµp+1
)

≤ log2

( ∏
p∈P+(Ψ)\P(Φ)

pµp+1
)

+ w



≤ log2

( ∏
p∈P+(Ψ)\P(Φ)

p
)

+ w µp = 0 for all p 6∈ P(Φ)

≤ log2

( ∏
p∈P+(Ψ)

p
)

+ w

≤ 64 ·m5(d+ 2)4(〈||Ψ||〉+ 2) + w by Lemma 1.4

≤ 64 · (m · (d+ 2))5(d+ 2)4(O(m3d+ 1) · log2((d+ 1)(m+ ||Φ||+ 2)) + 5) + w

≤ 128 ·O ·m9(d+ 2)11 · (`+ w).

Then, B + 3 is bounded as follows:

B + 3 ≤ 218 · s4 ·
(
5 + log2 log2(t · (d+ 1))

)3 · w1 · (log2(w1) + 2)3

≤ 230 ·m16(d+ 2)24
(
5 + log2 log2(t · (d+ 1))

)3 · w1 · (log2(w1) + 2)3 bound on s

≤ 238 ·m16(d+ 2)25(1 + log2(〈||Ψ||〉+ 1))3 · w1 · (log2(w1) + 2)3 bound on log2(t)

≤ 254 ·m17(d+ 2)26 log2(O)3 · (2 + log2(`))3 · w1 · (log2(w1) + 2)3 bound on 〈||Ψ||〉
≤ 2104 ·m27(d+ 2)38O · log2(O)6 · (`+ w) · (log2(`+ w))6 bound on w1.

The procedure continues by recursively computing a positive integer solution for the formula Φ′(y) :=
Φ[ν(x)/x : x ∈ X1], which is s-increasing for some s ≤ r−1. In the recursion, the procedure uses solutions bp for
Φ′ modulo p for every p ∈ P(Φ′), computed according to Claim 7. Hence, to conclude the analysis on Γ, it suffices
to find positive integers `′, w′,m′, d′ such that Φ′ is one of the formulae considered for Γ(r − 1, `′, w′,m′, d′). Let
us bound these integers:

• Φ′ has fewer variables and divisibilities than Φ, therefore we can choose m′ = m and d′ = d.

• The coefficients of the variables in the polynomials of Φ′ are all from Φ, therefore their bit-length is bounded
by `. Let us bound the constants of the polynomials in Φ′. These constants have the form f(ν(x)) with f
being a polynomial with coefficients and constant bounded from Φ. So, 〈||f(ν(x))||〉 ≤ 〈2B · ||Φ|| · d+ ||Φ||〉,
and from the bounds on B + 3 we can set

`′ = 2105 ·m27(d+ 2)38O · log2(O)6 · (`+ w) · (log2(`+ w))6.

• Let µp := max{vp(f(bp)) : f is in the left-hand side of a divisibility in Φ′}. Thanks to Claim 7, if
p ∈ P+(Ψ), then µp = max{vp(f(bp)) : f is in the left-hand side of a divisibility in Ψ}, and otherwise if
p 6∈ P+(Ψ), then µp is the p-adic valuation of a constant left-hand side of Φ′. We derive the following bound
on log2

(∏
p∈P(Φ′) p

µp+1
)
, which yields a value for w′:

log2

( ∏
p∈P(Φ′)

pµp+1
)

= log2

( ∏
p∈P(Φ′)\P+(Ψ)

pµp+1
)

+ log2

( ∏
p∈P(Φ′)∩P+(Ψ)

pµp+1
)

≤ log2

( ∏
p∈P(Φ′)\P+(Ψ)

pµp
)

+ log2

( ∏
p∈P(Φ′)\P+(Ψ)

p
)

+ log2

( ∏
p∈P+(Ψ)

pµp+1
)

≤ log2

( ∏
α constant and

left-hand side in Φ′

α
)

+ log2

( ∏
p∈P(Φ′)

p
)

+ w1 from Claim 7

≤m · 〈||Φ′||〉+ log2

( ∏
p∈P(Φ′)

p
)

+ w1

≤m · 〈||Φ′||〉+m2(d+ 2)(〈||Φ′||〉+ 2) + w1 from Lemma 1.4

≤ 2109 ·m29(d+ 2)39O · log2(O)6 · (`+ w) · (log2(`+ w))6 = w′.



Note that since the bound we obtained for `′ is greater than B + 3, the value

Γ(r − 1, 2104 ·m27(d+ 2)38O · log2(O)6 · (`+ w) · (log2(`+ w))6, w′, m, d)

bounds not only the bit length of the minimal positive solution of Φ′, but also of the solutions assigned to variables
in X1. This concludes the proof of Claim 8.
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