
Reachability in Fixed VASS:
Expressiveness and Lower Bounds

Andrei Draghici[0009−0000−9308−1169], Christoph Haase[0000−0002−5452−936X],
and Andrew Ryzhikov[0000−0002−2031−2488]

Department of Computer Science, University of Oxford, Oxford, UK

Abstract. The recent years have seen remarkable progress in estab-
lishing the complexity of the reachability problem for vector addition
systems with states (VASS), equivalently known as Petri nets. Existing
work primarily considers the case in which both the VASS as well as
the initial and target configurations are part of the input. In this paper,
we investigate the reachability problem in the setting where the VASS
and the final configuration are fixed and only the initial configuration is
variable. We show that fixed VASS fully express arithmetic with count-
ing on initial segments of the natural numbers. It follows that there is
a very weak reduction from any fixed such number-theoretic predicate
(e.g. square-freeness or “N1 is the number of primes smaller than N2”) to
reachability in fixed VASS where configurations are presented in unary.
If configurations are given in binary, we show that there is a fixed VASS
with five counters whose reachability problem is PSPACE-hard.

1 Introduction

Vector addition systems with states (VASS), equivalently known as Petri nets,
are a fundamental model of computation. A VASS comprises a finite-state con-
troller with a finite number of counters ranging over the non-negative integers.
When a transition is taken, counters can be updated by adding an integer,
provided that the resulting counter values are all non-negative; otherwise the
transition blocks. Given two configurations of a VASS, each consisting of a con-
trol state and an assignment of values to the counters, the reachability problem
asks whether there is a path connecting the two configurations in the infinite
transition system induced by the VASS. The VASS reachability problem has
been one of the most intriguing problems in theoretical computer science and
studied for more than fifty years. In the 1970s, Lipton showed this problem
EXPSPACE-hard [18]. Ever since the 1980s [19, 14, 16], the reachability prob-
lem has been known to be decidable, albeit with non-elementary complexity.
This wide gap between the EXPSPACE lower bound and a non-elementary up-
per bound persisted for many years, until a recent series of papers established
various non-elementary lower bounds [5, 6, 15], and resulted in matching a re-
cently established upper bound [17], showing the VASS reachability problem
Ackermann-complete. The lower bounds for this result require an unbounded
number of counters, but even for a fixed number of counters, the Petri net
reachability problem requires non-elementary time [6, 7, 15].

2 Andrei Draghici, Christoph Haase, Andrew Ryzhikov

Main results. The main focus of this paper is to investigate the reachability
problem for fixed VASS, where the VASS under consideration and the final
configuration are fixed and only the initial configuration forms the input to
a reachability query. Here, it is crucial to distinguish between the encoding of
numbers used to represent counter values in configurations: in unary encoding,
the representation length of a natural number n ∈ N is its magnitude n whereas
in binary encoding the bit length of n ∈ N is ⌈log n⌉ + 1. It turns out that
establishing meaningful lower bounds under unary encoding of configurations is
a rather delicate issue; a full discussion is deferred to Section 4. As a first step,
we establish a tight correspondence between reachability in VASS and the first-
order theory of initial segments of N with the arithmetical relations addition
(+), multiplication (×) and counting quantifiers. An initial segment in N is a set
N = {0, . . . , N} for some arbitrary but fixed N ∈ N \ {0}. Relations definable
in this family of structures are known as rudimentary relations and contain
many important number-theoretic relations, cf. [9] and the references therein.
For instance, the fixed formula PRIME(x) ≡ ¬(x = 0)∧¬(x = 1)∧∀y < x ∀z <
x¬(x = y × z) evaluates to true in N precisely for all prime numbers up to N .
The formula ∃=zy (y < x) ∧ PRIME(y) evaluates to true if and only if there
exist exactly z prime numbers smaller than x.

Given a fixed rudimentary relation Φ(x1, . . . , xk), we show how to construct a
fixed VASS V and fixed polynomials p1, . . . , pm such that Φ(n1, . . . , nk) evaluates
to true in N if and only if there is a run in V starting in (p1(N,n1, . . . , nk), . . . ,
pm(N,n1, . . . , nk)) and ending in a zero vector. It thus follows that reachability
in fixed VASS under unary encoding of configurations is at least as hard as
evaluating any rudimentary relation under unary encoding of numbers. Hence,
reachability queries in fixed VASS can, e.g., determine primality and square-
freeness of a number given in unary. From those developments, it is already
possible to infer that reachability in fixed VASS with configurations encoded in
binary is hard for every level of the polynomial hierarchy by a reduction from the
validity problem for short Presburger arithmetic [21]. In fact, we can establish a
PSPACE lower bound for reachability in a fixed VASS with five counters with
configurations encoded in binary, by a generic reduction allowing to simulate
space-bounded computations of arbitrary Turing machines encoded as natural
numbers. A recent conjecture of Jecker [13] states that for every VASS V, there
exists a fixed constant C such that if a target configuration is reachable from an
initial configuration, then there exists a witnessing path whose length is bounded
by C ·m, where m is the maximum constant appearing in the initial and final
configurations. Thus, assuming Jecker’s conjecture, reachability in fixed VASS
under binary encoding of configurations would be PSPACE-complete. In the
course of our work, we were not able to find any evidence that this conjecture
is false. It is also worth noting that while all our results assume that the final
configuration is fixed to a zero vector, we did not find any stronger lower bounds
for the case where the final configuration is variable, and only the VASS is fixed.

Related work. To the best of our knowledge, the reachability problem for fixed
VASS has not yet been systematically explored. Closest to the topics of this paper

Reachability in Fixed VASS: Expressiveness and Lower Bounds 3

is the work by Rosier and Yen [22], who conducted a multi-parameter analysis
of the complexity of the boundedness and coverability problems for VASS.

However, the study of the computation power of other fixed machines has a
long history in the theory of computation. The two classical decision problems
for a computation model are membership (also called the word problem) and
reachability. Membership asks whether a given machine accepts a given input;
the (generic) reachability problem asks whether given an initial and a target
configuration, there is a path in the transition system induced by a given machine
from the initial configuration to the target configuration. The most prominent
example of a reachability problem is the halting problem for different kinds of
machines. Classically, the computational complexity of such problems assumes
that both the computational model and its input word (for membership) or
configurations (for reachability) are part of the input. However, these are two
separate parameters. For example, in database theory, the database size and the
query size are often considered separately, since the complexity of algorithms
may depend very differently on these two parameters, and the sizes of these two
parameters in applications can also vary a lot [26]. One approach to study such
phenomena is to fix either the database or the query. More generally, the field
of parameterised complexity studies the computational difficulty of a problem
with respect to multiple parameters of the input.

Returning to our setting, this means fixing either the machine or its input. In
this paper, we concentrate on the former. The question can then be seen as fol-
lows: in relation to a problem such as membership or reachability, which machine
is the hardest one in the given computation model? For some models, the answer
easily follows from the existence of universal machines, i.e., machines which are
able to simulate any other machine from their class. A classical example here is a
universal Turing machine. Sometimes the ability to simulate all other machines
has to be relaxed, for example as for Greibach’s hardest context-free language
[11]. Greibach showed that there exists a fixed context-free grammar such that a
membership query for any other context-free grammar can be efficiently reduced
to a membership query for this grammar. Similar results are known for two-way
non-deterministic pushdown languages [23, 4].

2 Preliminaries

We denote by Z and N the set of integers and non-negative integers, respectively.
For N ∈ N we write N to denote the set {0, . . . , N}. By [n,m] we define the set
of integers between n and m: [n,m] = {k ∈ Z | n ≤ k ≤ m}. By 0 we denote the
zero vector (0, 0 . . . , 0) whose dimension is clear from the context.

Counter automata. A d-counter automaton is a tupleA = (Q,∆, ζ, q0, qf), where
Q is a finite set of states, ∆ ⊆ Q × Zd × Q is the transition relation, ζ : ∆ →
[1, d] ∪ {⊤} is a function indicating which counter is tested for zero along a
transition (⊤ meaning no counter is tested), q0 ∈ Q is the initial state, and
qf ∈ Q is the final state. We assume that qf does not have outgoing transitions.

4 Andrei Draghici, Christoph Haase, Andrew Ryzhikov

The set of configurations of A is C(A) := {(q, n1, . . . , nd) : q ∈ Q,ni ∈ N, 1 ≤
i ≤ n}. A run ϱ of a counter automaton A from a configuration c1 ∈ C(A) to
cn+1 ∈ C(A) is a sequence of configurations interleaved with transitions

ϱ = c1
t1−→ c2

t2−→ . . .
tn−→ cn+1

such that for all 1 ≤ i ≤ n, ci = (q,m1, . . . ,md) and ci+1 = (r,m′
1, . . . ,m

′
d),

– ti = (q, (z1, . . . , zd), r) with m′
j = mj + zj for all 1 ≤ j ≤ d; and

– mj = 0 if ζ(ti) = j.

Observe that we can without loss of generality assume that each transition
t ∈ ∆ is of one of the two types:

– either no counter is tested for zero along t, that is, ζ(t) = ⊤, in which case
we call it an update transition;

– or t does not change the values of the counters, that is, ζ(t) = j for some
1 ≤ j ≤ d and t = (q,0, r), in which case we call it a zero-test transition.

We say that A is a vector addition system with states of dimension d (d-
VASS) if A cannot perform any zero tests, i.e., ζ is the constant function assign-
ing ⊤ to all transitions. We can now formally define the main decision problem
we study in this paper.

Problem 1. Fixed VASS zero-reachability
Fixed: d-VASS A.
Input: A vector x ∈ Nd of initial values of the counters.
Output: YES if and only if A has a run from (q0,x) to (qf ,0).

1: goto 2 or 4
2: x −= 3
3: goto 1
4: x += 1
5: halt

Fig. 1. Example of a
counter program.

Counter programs. For ease of presentation, we use the no-
tion of counter programs presented e.g. in [5], which are
equivalent to VASS, and allow for presenting VASS (and
counter automata) in a serialised way. A counter program
is a primitive imperative program that executes arith-
metic operations on a finite number of counter variables.
Formally, a counter program consists of a finite set X of
global counter variables (called counters subsequently for
brevity) ranging over the natural numbers, and a finite
sequence 1, . . . ,m of line numbers (subsequently lines for
brevity), each associated with an instruction manipulat-
ing the values of the counters or a control flow operation.
Each instruction is in of one the following forms:

– x += c (increment counter x by constant c ∈ N),
– x −= c (decrement counter x by constant c ∈ N),
– goto L1 or L2 (non-deterministically jump to the instruction labelled by L1

or L2),
– skip (no operation).

Reachability in Fixed VASS: Expressiveness and Lower Bounds 5

We write goto L as an abbreviation for goto L or L, and also allow state-
ments of the form goto L1 or L2 or . . . or Lk. Moreover, the line with the largest
number is a special instruction halt. In our examples of counter programs, we
usually omit this last line if it is not referenced explicitly.

An example of a counter program is given in Figure 1. This counter program
uses a single counter x and consists of five lines. Starting in line 1, the program
non-deterministically loops and decrements the counter x by three every time,
until it increments x by one and terminates.

To be able to compose counter programs, we describe the operation of sub-
stitution, which substitutes a given line (which we always assume to have a skip
instruction) of a counter program with the “code” of another counter program.
Formally, let C1, C2 be counter programs with m1 and m2 lines respectively. The
result of substituting line k, 1 ≤ k ≤ m1−1, of C1 with C2 is a counter program
C ′

1 with m1+m2−1 lines obtained, intuitively, by calling C2 as a sub-routine in
this line and when it halts returning control back to C1. Formally, the instruction
corresponding to a line L, 1 ≤ L < m1 +m2, is defined as follows:

– if L < k, it is the instruction of line L in C1,
– if k ≤ L < m2 + k − 1, it is the instruction of line L− k + 1 in C2,
– if L = m2 + k − 1, it is the instruction skip,
– if m2 + k ≤ L, it is the instruction of line L−m2 in C1.

The line numbers in goto instructions are changed accordingly. We also con-
sider a substitution of several counter programs. When specifying counter pro-
grams, to denote substitution of another counter program we just write its name
instead of an instruction in a line. Also, we write C1;C2 for

1: C1

2: C2

and C1 or C2 as syntactic sugar for the counter program:

1: goto 2 or 4
2: C1

3: goto 5
4: C2

When C is a counter program, we write loop C as an abbreviation for the
counter program

1: goto 2 or 4
2: C
3: goto 1

Hence, the counter program in Figure 1 corresponds to

1: loop
2: x −= 3

3: x += 1

We use indentation to mark the scope of the loop instruction. We also assume
that if several instructions share the same line and are separated by a semicolon,
they all belong to the scope of a loop.

6 Andrei Draghici, Christoph Haase, Andrew Ryzhikov

Runs of counter programs. Exactly as in the case of VASS, a configuration of
a counter program is an element (L, f) ∈ N × NX , where L ∈ N is a program
line with a corresponding instruction, and f :X → N is a counter valuation.
The semantics of counter programs are defined in a natural way: after executing
the instructions on the line L, we either non-deterministically go to one of the
specified lines (if the instruction on line L is a goto instruction), or, otherwise,
we go to the line L+ 1. After executing the last line, we stop.

One can view a counter program as a VASS by treating line numbers as states
and defining transitions as specified by the counter program, each labelled with
the respective instruction. It is also easy to see how to convert a VASS into a
counter program.

A run of a counter program is a sequence ϱ: (L1, f1) −→ (L2, f2) −→ . . . −→
(Ln, fn) of configurations defined naturally according to the described semantics.
For example, (1, {x 7→ 7}) −→ (4, {x 7→ 7}) −→ (5, {x 7→ 8}) is a run of the counter
program in Figure 1. Given a run ϱ: (L1, f1) −→ (L2, f2) −→ . . . −→ (Ln, fn), we
say that ϱ is terminating if L1 = 1 and the instruction on line Ln is halt,
and zero-terminating if additionally fn(x) = 0 for all x ∈ X . We denote by
valend(ϱ, x) := fn(x) the value of the counter x at the end of a terminating
run. Sometimes, we also want to talk about the value of a counter at a specific
point during the execution of a run and define vali(ϱ, x) to be the value of
the counter x right before we execute the instruction on line i in the run ϱ
for the first time, i.e. vali(ϱ, x) := fk(x), where k is the smallest index such
that Lk = i. For instance, in the example above, we have valend(ϱ, x) = 8 and
val4(ϱ, x) = 7. We often construct counter programs that admit exactly one run ϱ
from a given initial configuration to a target configuration. In such a setting, we
may omit the reference to ϱ and simply write valend(x) and vali(x). The effect
eff(ϱ):X → Z of a run ϱ starting in (1, f1) and ending in (n, fn) is a map such
that eff(ϱ, x) = fn(x)− f1(x) for all x ∈ X .

For counter programs, the zero-reachability problem is as follows.

Problem 2. Fixed counter program zero-reachability
Fixed: Counter program C.
Input: A vector x ∈ Nd of initial values of the counters.
Output: YES if and only if C has a zero-terminating run from x.

3 Implementation of zero tests

The structure of runs in arbitrary counter programs is very complicated and
hard to analyse, and hence it is difficult to force a counter program to have
a prescribed behaviour. One of the common ways to deal with this issue is to
introduce some restricted zero tests, that is, some gadgets that guarantee that
if a run reaches a certain configuration, then along this run, the values of some
counters are zero at prescribed positions. In this section, summarising [5], we
describe such a gadget in the case where the values of counters are bounded by
a given number. The number of zero tests that can be performed this way is also
bounded. For a counter v, we call this gadget zero-test(v), and later on we will

Reachability in Fixed VASS: Expressiveness and Lower Bounds 7

use it as a single instruction to test that the value of v is zero before executing
it.

In Section 4, the assumption that the values of the counters are bounded
comes from the the fact that the corresponding values of the variables in rudi-
mentary arithmetic are bounded. In Section 5, we enforce this property for more
powerful models of computation and show how to simulate them with VASS.

Let N ∈ N be an upper bound on the value of a counter v. Then, we can
introduce a counter v̂ and enforce the invariant f(v)+f(v̂) = N to hold in all the
configurations of any run of our counter program. We achieve this by ensuring
that every line containing an instruction of type v += c must be followed by
a line with a v̂ −= c instruction. From now on, we make the convention that
the instruction v += c is an abbreviation for v += c; v̂ −= c. This allows us
to remove the hatted counters from our future counter programs whenever it is
convenient for us, which will ease readability. So, if we choose an initial config-
uration in which f(v) + f(v̂) = N , we have that this invariant holds whenever
the zero-test gadget is invoked.

We introduce auxiliary counters u1, u2 that will be tested for zero only in
the final configuration, and hence have no hat counterpart. In the following, the
instruction zero-test(v) denotes the following gadget:

1: loop
2: v += 1; v̂ −= 1;u2 −= 1

3: loop
4: v −= 1; v̂ += 1;u2 −= 1

5: u1 −= 2

Consider an initial configuration in which f(u1) = 2n and f(u2) = 2n · N for
some n > 0. Initially, it is true that f(u2) = f(u1) ·N .

Lemma 1 ([5]). There exists a run of the counter program zero-test(v) that
starts in a configuration with f(u2) ≥ 2, f(u2) = f(u1) · N , and ends in a
configuration with f(u2) = f(u1) · N if and only if f(v) = 0 in the initial
configuration.

Proof. The invariant f(v)+f(v̂) = N ensures that the loops on line 1 and line 3
can each decrease the value of u2 by at most N . Moreover, this can only happen
if f(v) = 0 in the initial configuration. ⊓⊔

From a configuration with f(u2) = f(u1) ·N , a run “incorrectly” executing the
zero-test(v) subroutine can only reach a configuration with f(u2) > f(u1) ·N .
Observe that from such a configuration, we can never reach a configuration
respecting the invariant f(u2) = f(u1) ·N if the values of u1, u2 are only changed
by zero-test(v) instructions. Now, consider a counter v and a counter program
C that modifies the values of counters u1 and u2 only through the zero-test(v)
instruction. If we start in a configuration in which f(u1) = 2n and f(u2) = 2n·N
for some n > 0, and we are guaranteed that any run of C cannot execute
more than n zero-test(v) instructions, then after any run of C, we have that
f(u2) = f(u1) · N only if the value of the counter v was zero at the beginning

8 Andrei Draghici, Christoph Haase, Andrew Ryzhikov

of every zero-test(v) instruction. If all the counters that we are interested in
are bounded by the same value N , we can use a single pair of counters u1, u2 to
perform zero tests on all our counters. We subsequently call the counters u1 and
u2 testing counters. To summarise, using this technique, we can perform n zero
tests on counters bounded by N via a reachability query in a VASS.

Given a configuration (L, f), we say that (L, f) is a valid configuration if f
respects the condition that f(u2) = f(u1) ·N . A valid run is a run that starts in
a valid configuration and ends in a valid configuration. Also, a counter program
admits a valid run if there exists a valid run that reaches the terminal instruction
halt. Observe that in every valid run the zero-test() subroutine does not change
the value of the counter which is tested for zero, that is, this value remains zero.
Only the values of the testing counters are changed.

We now introduce components. Informally, a component is a counter program
acting as a subroutine such that, if it is invoked in a configuration fulfilling the
invariants required for valid runs, upon returning, those invariants still hold.
Formally, a component is a counter program such that:

– there is a polynomial p such that every valid run performs at most p(N)
calls of zero-test() on all counters; and

– the values of u1 and u2 are updated only by zero-test() instructions.

We conclude this section with Lemma 2, which states that sequential composi-
tion and non-deterministic branching of components yields components. We will
subsequently implicitly make use of this obvious lemma without referring to it.

Lemma 2. If C1, C2 are components then both C1;C2 and C1 or C2 are also
components.

Remark 1. Let V be a fixed VASS, and s = (q0,n), t = (qf ,m) be a pair of its
configurations. Given s and t, the Fixed VASS coverability problem asks
where there exists a run in V from s to a configuration t′ = (qf ,m

′) such that
m′ ≥ m componentwise. Note that when simulating zero tests as described
above, for each counter x except u1, u2, we have a counter x̂ such that the sum
of the values of x and x̂ is always the same and is known in advance. Since
the values of u1, u2 are never increased, we can introduce in the same way the
counters û1, û2, initially set to zero, so that ui+ûi is constant for i = 1, 2. Hence,
by requiring that the final value of x̂ is at least the initial value of x, we make
sure that the final value of x is equal to zero. Thus, in this setting, reachability
queries reduce to coverability queries.

4 Rudimentary arithmetic and unary VASS

In this section, we provide a lower bound for the zero-reachability problem for a
VASS when the input configuration is encoded in unary. We observe that there
is a close relationship between this problem and deciding validity of a formula
of first-order arithmetic with counting, addition, and multiplication on an initial
segment of N, also known as rudimentary arithmetic with counting [9].

Reachability in Fixed VASS: Expressiveness and Lower Bounds 9

4.1 Rudimentary arithmetic with counting

For the remainder of this section, all the structures we consider are relational.
We denote by FO(+,×) the first-order theory of the structure ⟨N,+,×⟩, where
+ and × are the natural ternary addition and multiplication relations. When
interpreted over initial segments of N, i.e. sets {0, 1, . . . , N}, for some fixed N ∈
N, the family of the first-order theories is known as rudimentary arithmetic. Note
that, in particular, for a predicate x + y = z to hold, all of x, y, z must be at
most N . It thus might seem that after we fix N , a formula Φ(x) can only express
facts about numbers up to N . However, as discussed in [25] and [9], this can be
improved to quantifying over variables up to Nd for any fixed d using (N+1)-ary
representations of numbers. In other words, for any fixed d and formula Φ(x),
there exists a formula Φ′(x) such that for any N ∈ N and x ∈ Nn, we have that
⟨N,+,×⟩ |= Φ′(x) iff ⟨Nd,+,×⟩ |= Φ(x).

Rudimentary arithmetic can be extended with counting quantifiers. As de-
scribed in [25], let rudimentary FOunC(+,×) be rudimentary FO(+,×) ex-
tended with counting quantifiers of the form ∃>xy φ(y). In this expression, the
variable x is free and the variable y is bounded by the quantifier. The semantics
of this expression is that there exist more than x different values of y such that
the formula φ(y) is satisfied. The paper [25] actually uses the counting quantifier
∃=xy φ(y) to state that the number of such values is exactly x, which can be
expressed as (x = 0 ∧ ¬∃y φ(y)) ∨ ((∃>x′

y φ(y)) ∧ (x′ + 1 = x) ∧ ¬∃>xy φ(y)).
Moreover, FOunC(+,×) can be extended to FOk-aryC(+,×), FO(+,×)

with k-ary counting quantifiers ∃=xy φ(y). In this expression, x,y are vectors of
the same dimension, and similarly to the previous case, all the variables of x are
free and all the variables of y are bounded by the quantifier. The semantics is
that the k-tuple x is the (N +1)-ary representation of the number of k-tuples y
that satisfy φ(y). As shown in [3], rudimentary FOunC(+,×) and rudimentary
FOk-aryC(+,×) have the same expressive power. In order to have a meaningful
reduction to fixed VASS, we are interested in the following decision problem:

Problem 3. Fixed rudimentary FOk-aryC(+,×) validity
Fixed: Φ(x) ∈ FOk-aryC(+,×).
Input: N ∈ N and x ∈ Nn given in unary.
Output: YES if and only if ⟨N,+,×⟩ |= Φ(x).

4.2 Reductions between unary languages

In order to study decision problems whose input is, for some constant k, a k-tuple
of numbers presented in unary, and hence to analyse languages corresponding to
them, we need a notion of reductions that are weaker compared to the standard
ones that are widely used in computational complexity. The reason is that clas-
sical problems involving numbers represented in unary, such as Unary Subset
Sum [8], have as an input a variable-length sequence of numbers given in unary.
Hence, languages of such problems are in fact binary, as we need a delimiter
symbol to separate the elements of the sequence. It is not clear how a reasonable

10 Andrei Draghici, Christoph Haase, Andrew Ryzhikov

reduction from such a language to a language consisting of k-tuples of num-
bers for a fixed k would look like. In particular, note that unary Fixed VASS
zero-reachability is not the unary “counterpart” of binary Fixed VASS
zero-reachability in the classical sense. Conversely, arithmetic properties of
a single number, e.g. primality or square-freeness, require very low computational
resources if the input is represented in unary. Hence, the notion of a reduction
between such “genuinely unary” languages has to be very weak.

In view of this discussion, we introduce the following kind of reduction. Given
k > 0, a k-tuple unary language is a subset L ⊆ Nk. We say that L is a tuple
unary language if L is a k-tuple unary language for some k > 0. Let L ⊆ Nk and
M ⊆ Nℓ be tuple unary languages, we say that L arithmetically reduces to M
if there are fixed polynomials p1, . . . , pℓ:Nk → N such that (m1, . . . ,mk) ∈ L if
and only if (p1(m1, . . . ,mk), . . . , pℓ(m1, . . . ,mk)) ∈ M .

We believe that this reduction is sensible for the following informal reasons.
Polynomials can be represented as arithmetic circuits. To the best of our knowl-
edge, there are no known lower bounds for, e.g. comparing the output of two
arithmetic circuits with all input gates having value one [1], suggesting that
evaluating a polynomial is a computationally weak operation. Moreover, in the
light of sets of numbers definable in rudimentary arithmetic, it seems implausible
that applying a polynomial transformation makes, e.g. deciding primality of a
number substantially easier.

For a formula Φ, let LΦ be the tuple unary language of yes-instances for
Fixed rudimentary FOk-aryC(+,×) validity. Also, for a counter program
C, define LC as the tuple unary language of yes-instance for the Fixed counter
program zero-reachability problem. The remainder of this section is de-
voted to proving the following theorem.

Theorem 1. For every formula Φ of rudimentary FOk-aryC(+,×), there ex-
ists a counter program C such that LΦ arithmetically reduces to LC .

This theorem can be viewed in two different contexts. On the one hand, it
relates the computational complexity of the two problems using a very weak
reduction as described above. On the other hand, it also relates the expressivity
of two formalisms. Namely, the set of satisfying assignments for formulas of
rudimentary arithmetic is at most as expressive as the composition of polynomial
transformations with the sets of initial configurations for zero-reachable runs in
counter programs. In particular, it shows that fixed VASS can, up to a polynomial
transformation, decide number-theoretic properties such as primality, square-
freeness, see [9] for further examples. Note that by Remark 1, an analogue of
Theorem 1 holds for tuple unary languages of yes-instances of Fixed VASS
coverability.

4.3 Components for arithmetic operations

Since there is no straightforward way to model negation with a counter program,
we need to provide gadgets for both the predicates + and × of rudimentary
FOk-aryC(+,×) and their negations, and hence design a separate component

Reachability in Fixed VASS: Expressiveness and Lower Bounds 11

for each literal. However, these components may change the values of the counters
representing first-order variables, and since a first-order variable might appear in
multiple literals, we first provide a gadget to copy the value of a chosen counter
to some auxiliary counter before it can be manipulated.

Copy. We provide a counter program Copy[x, x′] with the following properties:

1. it admits a valid run if and only if valend(x
′) = valend(x) = val1(x); and

2. Copy[x, x′] is a component.

We implement Copy[x, x′] as follows:

1: loop
2: x′ −= 1

3: zero-test(x′)
4: loop
5: x −= 1;x′ += 1; t += 1

6: zero-test(x)
7: loop
8: t −= 1;x += 1

9: zero-test(t)

The loop on line 1 ensures that val4(x
′) = 0. We do not do this for the auxil-

iary counter t because any valid run sets valend(t) = 0. Observe that Copy[x, x′]
admits a valid run if and only if the loop on line 4 is executed val1(x) many
times and the loop on line 7 is executed val4(t) = val1(x) many times which
happens if and only if valend(x

′) = valend(x) = val1(x). Moreover, any valid run
performs 3 calls to the zero-test() subroutine, so Copy[x, x′] is a component.

Addition. We define a counter program Addition[x, y, z] that enables us to
check whether the value stored in counter z is equal to the sum of the values
stored in x, y. Formally, it has following properties:

1. Addition[x, y, z] admits a valid run if and only if val1(x)+val1(y) = val1(z);
2. Addition[x, y, z] is a component; and
3. the effect of Addition[x, y, z] is zero on counters x, y, z.

We implement Addition[x, y, z] as follows:

1: Copy[x, x′];Copy[y, y′];Copy[z, z′]
2: loop
3: z′ −= 1
4: x′ −= 1 or y′ −= 1

5: zero-test(x′); zero-test(y′); zero-test(z′)

It is easy to see that the first property is fulfilled by the counter program
and that Addition[x, y, z] is a component because any run performs exactly 12
calss to zero-test() (9 calls on line 1, and 3 calls on line 5). The last property
is true based on the properties of Copy. The component for the negation of the
addition predicate is defined similarly.

12 Andrei Draghici, Christoph Haase, Andrew Ryzhikov

Multiplication. We now define a counter program Multiplication[x, y, z] with
the following properties:

1. it admits a valid run if and only if val1(z) = val1(x) · val1(y);
2. Multiplication[x, y, z] is a component; and
3. the effect of Multiplication[x, y, z] is zero on counters x, y, z.

We implement Multiplication[x, y, z] as follows:

1: Copy[x, x′];Copy[y, y′];Copy[z, z′]
2: loop
3: loop
4: x′ −= 1; t += 1; z′ −= 1

5: zero-test(x′)
6: loop
7: x′ += 1; t −= 1;

8: zero-test(t)
9: y′ −= 1

10: zero-test(y′); zero-test(z′)

Observe that the loop on line 3 of any valid run must be executed val1(x)
val1(x) many times in order to pass the zero test on line 5. The effect of this
loop is then to decrease the value of z′ by val1(x) and to set the value of t to
val1(x). Next, the loop on line 6 must be executed val5(t) = val1(x) many times
to pass the zero test on line 8, so the value of x′ is set to val1(x) and the value
of t is set again to zero. Hence, the effect of lines 3-8 is to subtract val1(x) from
the value of z′ without changing the value of x′. Finally, any valid run passes the
test on line 10 if and only if the loop on line 2 is executed val1(y) many times,
which happens if and only if val1(z) = val1(x) · val1(y). Since we argued that
the loop on line 2 is executed val1(y) many times, we conclude that any valid
run of Multiplication[x, y, z] performs at most 2N +9 calls to zero-test(), so
Multiplication[x, y, z] is a component. Again, the last property is ensured by
the properties of Copy. The definition of ¬Multiplication[x, y, z] is similar.

4.4 Components for quantification

We define the remaining components that we need in order to prove Theorem 1.
These components allow us to existentially and universally quantify over vari-
ables in a bounded range.

Existential quantifiers. We start with a counter program Exists[v] with the
following properties:

1. for every n ∈ N , Exists[v] admits a valid run ϱ such that valend(ϱ, v) = n;
2. Exists[v] is a component.

We define Exists[v] as follows:

1: loop v −= 1

Reachability in Fixed VASS: Expressiveness and Lower Bounds 13

2: zero-test(v)
3: loop v += 1

It is easy to see that both properties hold, since Exists[v] performs exactly one
call to the zero-test() subroutine.

Universal quantifiers. While the component used for simulating existential quan-
tification can be sequentially composed with a component for a subformula,
universal quantification requires directly integrating the component over whose
variable we universally quantify. Let C[v] be a component that may access the
counter v, test it for zero, and change its value on intermediate steps, but has
overall effect zero on counter v. We write ForAll[v] : C[v] for the following
counter program:

1: loop
2: v −= 1

3: zero-test(v)
4: loop
5: C[v]
6: v += 1

7: zero-test(v̂)

The properties of ForAll[v] : C[v] are as follows:

1. it admits a valid run if and only if for all n ∈ N , C has a valid run with
val1(v) = n; and

2. ForAll[v] : C[v] is a component.

Notice that the instruction on line 7 tests if val7(v) = N . Thus, any valid
run that passes the test on line 7 must be able to execute C[v] for all values of
v ∈ N . Moreover, since C[v] is a component, we know that the number of calls
to zero-test() it makes is polynomial in N . Denote this number by B. Then
ForAll[v] : C[v] executes at most N · B + 1 many calls to zero-test() and it
is thus a component.

Counting quantifiers. Finally, we design a component which is an extension
of the ForAll[v] : C[v] component, where, as in the case of ForAll, C[v]
has overall effect zero on v. Formally, ExistsC[x, v] : C[v] component has the
following properties:

– it admits a valid run if and only if there exist more than val1(x) different
integers n ∈ N such that C has a valid run with val1(v) = n

– the overall effect on counter x is zero; and
– ExistsC[x, v] : C[v] is a component.

We write ExistsC[x, v] : C[v] for the following counter program:

14 Andrei Draghici, Christoph Haase, Andrew Ryzhikov

1: loop
2: v −= 1

3: zero-test(v)
4: Copy[x, x′]
5: goto 6 or 9
6: zero-test(x̂′)
7: ForAll[v] : C[v]
8: goto 15

9: x += 1
10: loop
11: v += 1
12: goto 13 or 10
13: C[v]; x′ −= 1

14: zero-test(x′)
15: halt

The branching on line 5 checks whether val1(x) = N . If so, C[v] must have a
valid run for all values of v, which is checked on line 7. Otherwise, the instructions
on line 13 ensure that the value of x′ can be decremented if only if C[v] admits at
least one valid run with the current value of v. Moreover, the zero test on line 14
is passed if and only if C[v] admitted a valid run for more than val1(x) different
values. Similarly to the ForAll case, since C[v] is a component, we have that
it makes at most a polynomial number of calls to zero-test(). If we denote
this number by B, the maximum number of calls to zero-test() performed by
ExistsC[x, v] : C[v] is bounded by N ·B + 5. Hence, it is indeed a component.

4.5 Putting it all together

Having defined all the building blocks above, we now prove Theorem 1, which is
a consequence of the following lemma.

Lemma 3. For any formula Φ(x) of FOk-aryC(+,×), there exists a compo-
nent C over k counters and polynomials p1, . . . , pk : N × Nn → N such that for
any N ∈ N and x ∈ Nn, ⟨N,+,×⟩ |= Φ(x) if and only if C admits a valid run
from the initial configuration (p1(N,x), . . . , pk(N,x)).

Proof. We prove this statement by structural induction on subformulas of Φ.
As shown in [3], rudimentary FOunC(+,×) has the same expressive power
as rudimentary FOk-aryC(+,×). Since in our setting the formula is fixed, we
can thus assume that Φ ∈ FOunC(+,×). Moreover, it is easy to see that we
can assume that only ∃>x is used as a counter quantifier, since ∃=x can easily
be defined using it as described above. Finally, we can assume that negations
appear in Φ only in front of arithmetic predicates. In particular, ¬∃>xy φ(y) is
equivalent to (∃>x′

y ¬φ(y)) ∧ (x+ x′ = N).
The counters of the component C are defined to be:

– a counter in vector xC corresponding to every free variable of Φ(x);
– a counter in vector yC corresponding to every quantified variable of Φ(x);
– a counter in vector aC corresponding to every constant of Φ(x); and
– the auxiliary counters tC ,x

′
C ,y

′
C , c

′
C used inside the components for predi-

cates and counting quantifiers described above.

We initialise them as follows:

Reachability in Fixed VASS: Expressiveness and Lower Bounds 15

– f1(xC) = x and f1(x̂C) = N − x for each counter xC corresponding to a
variable x in x;

– f1(v) = 0 and f1(v̂) = N for all the counters corresponding to quantified
variables and constants, and auxiliary counters; and

– for the testing counters, f1(u1) = 2N and f1(u2) = 2N · P (N), where the
polynomial P (N) will be defined later.

Assume first that a subformula φ of Φ consists of a single literal. Then, by
using the previously defined components, we can construct a fixed component
C ′ corresponding to this literal. In C ′, for every valid initial configuration (L, f),
there exists a valid run starting in it if and only if φ is true under the assignment
of the values of the counters in (L, f) to the corresponding variables in φ. If
φ is a Boolean combination of multiple literals, by simulating conjunction via
sequential composition and disjunction by non-deterministic branching, we can
construct a component Cφ with the same property.

We now need to show how to simulate the quantifiers. Let C be the compo-
nent constructed for φ. We then take

– for ∃y φ:

1: Exists[yC]
2: C[yC]

– for ∀y φ:

1: ForAll[yC] :
2: C[yC]

– for ∃>xy φ:

1: ExistsC[xC , yC] :
2: C[yC]

As noted above, to be able to use these components, we need to make sure
that C[yC] has overall zero effect on the value of yC . This is indeed true, since
the only place where the value of a counter yC is changed by a subroutine is in
the component corresponding to the quantifier bounding y.

The counter program C starts with a component C0 that initialises the coun-
ters a corresponding to the constants of Φ(x) by a sequence of instruction of
the type a += c for a corresponding constant c appearing in Φ(x). Finally, we
let C = C0;C1. By the properties established above, it is clear that C admits
a valid run starting with f1 defined above if and only if Φ(x) is valid. To see
that C is a component, it remains to note that at every step of the structural
induction the number of calls to zero-test() is polynomial in N . Hence, there
exists a polynomial P (N) such that the overall number calls to zero-test() per-
formed by C is bounded by P (N). We conclude by reminding that we use this
polynomial to initialise the value of the testing counter u2. ⊓⊔

To prove Theorem 1, add a loop repeating zero tests at the end of C, thus
setting the values of the testing counters to zero if and only if the invariant
described in Section 3 holds. After that, set to zero all the remaining counters
(including the hatted counters) by decrementing them in loops. A run in thus
constructed counter program is zero-accepting if and only if it is valid.

As proved in [3], rudimentary FOk-aryC(<) has the same expressive power
as FOk-aryC(+,×). Hence, an alternative proof for Theorem 1 is to express
k-ary counting quantifiers without the need for components for addition and
multiplication. However, this approach is more technical and less insightful.

16 Andrei Draghici, Christoph Haase, Andrew Ryzhikov

5 A universal VASS for polynomial space computations

The goal of this section is to show that there is a fixed 5-VASS whose zero-
reachability problem is PSPACE-hard, provided that the initial configuration is
encoded in binary. Let us first remark that we can actually use the techniques
developed in the previous section to prove that for every i, there exists a fixed
VASS Vi such that deciding zero-reachability for Vi is ΣP

i -hard. A result by
Nguyen and Pak [21] shows that for every i, there is a formula Φi of so-called
short Presburger arithmetic such that deciding Φi is Σ

P
i -hard. Applying bounds

on quantifier elimination established in [27], it can be shown that quantification
for formulas of short Presburger arithmetic relativises in a certain sense to an
initial segment N for some N ∈ N whose bit length is polynomial in the size of
Φi. Hence, by combining the results from [21] with Lemma 3, it is possible to show
that zero-reachability for fixed binary VASS is hard for the polynomial hierarchy.
We do not explore this method further because we can actually construct a fixed
binary VASS such that the zero-reachability problem is PSPACE-hard for it and
which has a smaller number of counters than the fixed binary VASS obtained
from showing NP-hardness via the reduction from short Presburger arithmetic
outlined above.

We proceed with our construction as follows. We start with the halting prob-
lem for Turing machines (TMs) working in polynomial space and show that this
problem is PSPACE-hard even if the space complexity of the TM is bounded
by the length of its encoding and its input is empty. In Proposition 2, we then
reformulate the halting problem as follows: given the encoding of such a machine
as an input to a universal one-tape TM U , does U accept?

We then use two consecutive simulation. First, we simulate U with a 3-
counter automaton A (Proposition 3), and then simulate A with an 5-VASS V
(Theorem 2). To be able to apply the technique described in Section 3, we make
sure that the space complexity stays linear in the size of the input throughout
these simulations. This implies that both the upper bound on the value of the
counters and the required number of zero tests are polynomial in the size of the
input, which enables us to establish a polynomial time reduction. As a result we
obtain a VASS V which, in a certain sense, can simulate arbitrary polynomial-
space computations.

To provide the reduction, we then show how to transform in polynomial time
the input of the problem we started with, the halting problem for polynomial-
space TMs, into a zero-reachability query for V.

5.1 The halting problem for space-bounded TMs

The goal of this subsection is to show that there exists a fixed polynomial-
space TM whose halting problem is PSPACE-complete. Note that using standard
arguments, we can assume that M below always halts.

Proposition 1 ([2, Section 4.2]). The following problem is PSPACE-complete:
given a TM M, an input word w and a number n encoded in unary, decide if
M accepts w in at most n space.

Reachability in Fixed VASS: Expressiveness and Lower Bounds 17

We fix some way of encoding, using an alphabet of size at least two, of Turing
machines and we denote by |M| the length of the encoding of M, which we call
the size of M. Given a TM M, we say that it is |M|-space-bounded if on every
input it halts using at most |M| space. Given M, an input word w and a number
n encoded in unary, it is easy to construct a |M|-space-bounded TM M′ such
that if M accepts w in space at most n, then M′ accepts on the empty input,
otherwise M′ rejects on the empty input. Moreover, the size of M′ is polynomial
in |M|, |w| and 2n.

Indeed, M′ can be constructed as follows. When run on the empty input, it
writes w on some tape, and then runs M treating this tape as the input tape.
Additionally, it initialises another tape with n written in unary, and before each
step of M it checks that the space used by the tape where M is simulated does
not exceed n. If it does, it immediately rejects. It is easy to see that such a TM
is |M′|-space-bounded and satisfies the required conditions.

Hence we get that the following problem is PSPACE-complete: given a |M|-
space-bounded TM M, does M accept on the empty input? Observe that from
the construction above we can assume that M has a special representation such
that the fact that it is |M|-space-bounded can be checked in polynomial time.

Let U be a one-tape universal TM. This TM has a single read-write tape,
which in the beginning contains the input, that is, a description of a TM M it
is going to simulate. If M is |M|-space-bounded (and represented as mentioned
in the previous paragraph), U simulates M on the empty input in space linear
in |M| [2, Claim 1.6], otherwise U rejects. That is, in this space, U accepts or
rejects depending on whether M accepts or rejects the empty word. Hence we
get the following proposition.

Proposition 2. There exists a fixed linear-space TM U such that the question
whether U halts on a given input is PSPACE-complete.

5.2 From TMs to a counter automata

In the previous subsection, we obtained a PSPACE-complete problem which al-
ready resembles the form of the reachability problem for a fixed counter program:
given a fixed linear-space TM U , does it accept a given input? In this section
we show how to simulate U with a fixed counter automaton A, and in the next
section we show how to simulate A with a fixed binary VASS V.

Let A be a counter automaton. We say that A is deterministic if for every
configuration (q, n1, . . . , nd) there is at most one transition that A can take from
this configuration. Suppose that A is deterministic, and that its final state qf
does not have any outgoing transitions. Let n = (n1, . . . , nd) ∈ Nd. We treat A
as an acceptor for such vectors. We say that A works in time t and space s
on n if the unique run starting in the configuration (q0, n1, . . . , nd) ends in a
state without outgoing transitions, has length t, and the bit length of the largest
value of a counter along this run is s. If this run ends in qf , we say that A
accepts this vector, otherwise we say that it rejects it. In all our constructions
we make sure that there are no infinite runs. Note that, as in the case of TMs,

18 Andrei Draghici, Christoph Haase, Andrew Ryzhikov

we measure space complexity in the bit length of the values of the counters, and
not in their actual values.

Let Σ be a finite alphabet. Let us bijectively assign a natural number to each
word over Σ as follows. First, assign a natural number between 1 and |Σ| to
each symbol in Σ. Then w can be considered as a number in base |Σ|+1, with
the least significant digit corresponding to the first letter of w. We denote this
number by num(w).

Let M be a TM, and w be its input. We can transform w into a vector
(num(w), 0, . . . , 0), which will be the input of a deterministic counter automa-
ton A. We say that A simulates M if w is accepted by M if and only if the
corresponding vector is accepted by A. We say that this simulation is in linear
space if there exists a constant c such that if the space complexity of M is s on
some input, then the space complexity of A on the coresponding input is cs.

The proof of the following proposition uses the techniques described in the
proofs of [10, Theorem 4.3(a)] and [12, Theorem 2.4].

Proposition 3. For every one-tape TM M, there exists a deterministic 3-
counter automaton A that simulates it in linear space.

Proof. The idea of the proof is as follows. Two counters of A, call them ℓ and r,
represent the content of the tape of M to the left and to the right of the reading
head. They are encoded similarly to the way we encode the input word. Namely,
let w1aw2, where w1, w2 ∈ Σ∗ and a ∈ Σ, be the content of the tape at some
moment of time, with the working head in the position of the letter a. Denote
by wR

1 the reversal of the word w. Then ℓ stores num(wR
1), r stores num(w2),

and a is stored in the finite memory of the underlying finite automaton.
Now, to make a step to the left, we do the following. First, we need to add

a to the end of the word encoded by the value of r. This is done by multiplying
the value of r by |Σ|+1 and adding num(a) to it. Next, we need to extract the
last letter of the word encoded by the value of ℓ, and remove this letter. To do
so, we do the opposite of what we did for r: this letter is the residue of dividing
the value of ℓ by |Σ|+1, and the new value of ℓ is the result of this division.

The reason we need the third counter x is to perform these multiplications
and divisions. Namely, to divide the value of a counter ℓ by a constant c, we
repeat the following until it is no longer possible: subtract c from the value of
ℓ and add one to the value of x. When the value of ℓ becomes smaller than
c, we get the result of the division in the counter x, and the remainder in ℓ.
Multiplication by a constant is done similarly. Observe that by construction the
largest value of a counter of A at any moment of time is at most (|Σ|+1)S , where
S is the maximal amount of space M uses on given input. The bit length of this
number is linear in S, hence A simulates M in linear space. ⊓⊔

By simulating U from Proposition 2 with a counter automaton A, we get the
following statement.

Corollary 1. There exists a fixed 3-counter automaton A working in linear
space such that the zero-reachability problem for it is PSPACE-complete.

Reachability in Fixed VASS: Expressiveness and Lower Bounds 19

For 2-counter automata, no such result is known. Informally speaking, such
automata are exponentially slower than 3-counter automata: the known simula-
tion requires storing the values of the three counters x, y, z as 2x3y5z [20]. They
are also less expressive: for example, 2-counter automata cannot compute the
function 2n [24], while for 3-counter automata this is trivial. It is worth not-
ing the developments of the next subsection imply that a lower bound for fixed
2-counter automata translates into a lower bound for fixed 4-VASS.

5.3 From counter automata to VASS

To go from a counter automaton to a VASS, we need to simulate zero tests with
a VASS. In general, this is not possible. However, the space complexity of the
counter automaton in Corollary 1 is linear, so the values of all its counters are
bounded by a polynomial in the bit length of the input. The number of zero tests
A performs does not exceed its time complexity, which is at most exponential
in the space complexity. However, this is not a problem, since all the values
are provided and stored in binary. The bit length of the number of zero tests
is thus polynomial in the input, and hence the testing counters described in
Section 3 can be initialised with a polynomial time reduction, hence obtaining
PSPACE-hardness of the zero-reachability problem in fixed 8-VASS.

Moreover, a more advanced technique of quadratic pairs described in [7]
allows to deduce the same result for 5-VASS. Namely, a slight variation of [7,
Lemma 2.7] states that given a 3-counter automaton A working in linear space,
one can construct a 5-VASS V such that fixed zero-reachability in A can be
reduced in polynomial time to fixed zero-reachability in V. The same reasoning
as before shows that we can initialise the counters of V to account for enough
zero tests. Hence we get the main result of this section.

Theorem 2. There exists a fixed 5-VASS such that the Fixed VASS zero-
reachability problem for it is PSPACE-hard assuming that the input configu-
ration is given in binary.

By Remark 1 and by further inspecting the construction in [7, Lemma 2.7],
together with the PSPACE upper bound for coverability in fixed VASS with
configurations given in binary established in [22], we moreover obtain the fol-
lowing corollary.

Corollary 2. There exists a fixed 6-VASS such that the Fixed VASS cover-
ability problem for it is PSPACE-complete assuming that the input configura-
tions are given in binary.

Acknowledgements. We would like to thank anonymous reviewers for their
useful comments on the content and presentation of the paper. This work is
part of a project that has received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innovation
programme (Grant agreement No. 852769, ARiAT).

20 Andrei Draghici, Christoph Haase, Andrew Ryzhikov

References

1. Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Miltersen, P.B.: On the com-
plexity of numerical analysis. SIAM Journal on Computing 38(5), 1987–2006
(2009). https://doi.org/10.1137/070697926

2. Arora, S., Barak, B.: Computational Complexity – A Modern Approach. Cam-
bridge University Press (2009)

3. Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within
NC1. Journal of Computer and System Sciences 41(3), 274–306 (1990).
https://doi.org/10.1016/0022-0000(90)90022-D

4. Chistikov, D., Majumdar, R., Schepper, P.: Subcubic certificates for CFL reach-
ability. Proceedings of the ACM on Programming Languages 6(POPL) (2022).
https://doi.org/10.1145/3498702

5. Czerwiński, W., Lasota, S., Lazić, R., Leroux, J., Mazowiecki, F.: The reachability
problem for petri nets is not elementary. Journal of the ACM 68(1), 1–28 (2020).
https://doi.org/10.1145/3313276.3316369

6. Czerwinski, W., Orlikowski, L.: Reachability in vector addition sys-
tems is Ackermann-complete. In: Annual Symposium on Founda-
tions of Computer Science, FOCS. pp. 1229–1240. IEEE (2021).
https://doi.org/10.1109/FOCS52979.2021.00120

7. Czerwinski, W., Orlikowski, L.: Lower bounds for the reachability problem
in fixed dimensional VASSes. In: Symposium on Logic in Computer Science,
LICS. Association for Computing Machinery, New York, NY, USA (2022).
https://doi.org/10.1145/3531130.3533357

8. Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of Bod-
laender and Courcelle. In: Annual Symposium on Foundations of Computer Sci-
ence, FOCS. pp. 143–152 (2010). https://doi.org/10.1109/FOCS.2010.21

9. Esbelin, H.A., More, M.: Rudimentary relations and primitive recur-
sion: A toolbox. Theoretical Computer Science 193(1), 129–148 (1998).
https://doi.org/https://doi.org/10.1016/S0304-3975(97)00002-9

10. Fischer, P.C., Meyer, A.R., Rosenberg, A.L.: Counter machines and
counter languages. Mathematical systems theory 2, 265–283 (1968).
https://doi.org/10.1007/BF01694011

11. Greibach, S.A.: The hardest context-free language. SIAM Journal on Computing
2(4), 304–310 (1973). https://doi.org/10.1137/0202025

12. Greibach, S.A.: Remarks on the complexity of nondeterministic counter languages.
Theoretical Computer Science 1(4), 269–288 (1976). https://doi.org/10.1016/0304-
3975(76)90072-4

13. Jecker, I.: 22.1 complexity of fixed vas reachability. https://autoboz.org/open-
problems (2023), accessed: 2023-10-12

14. Kosaraju, S.R.: Decidability of reachability in vector addition systems (preliminary
version). In: Symposium on Theory of Computing, STOC. pp. 267–281. ACM
(1982). https://doi.org/10.1145/800070.802201

15. Leroux, J.: The reachability problem for petri nets is not primitive recursive. In:
Annual Symposium on Foundations of Computer Science, FOCS. pp. 1241–1252.
IEEE (2021). https://doi.org/10.1109/FOCS52979.2021.00121

16. Leroux, J., Schmitz, S.: Demystifying reachability in vector addition systems. In:
Symposium on Logic in Computer Science, LICS. pp. 56–67. IEEE Computer So-
ciety (2015). https://doi.org/10.1109/LICS.2015.16

Reachability in Fixed VASS: Expressiveness and Lower Bounds 21

17. Leroux, J., Schmitz, S.: Reachability in vector addition systems is primitive-
recursive in fixed dimension. In: Symposium on Logic in Computer Science (LICS).
pp. 1–13 (2019). https://doi.org/10.1109/LICS.2019.8785796

18. Lipton, R.J.: The reachability problem requires exponential space. Research report
(Yale University. Department of Computer Science), Department of Computer Sci-
ence, Yale University (1976)

19. Mayr, E.W.: An algorithm for the general petri net reachability problem. SIAM
Journal on Computing 13(3), 441–460 (1984). https://doi.org/10.1137/0213029

20. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, USA
(1967)

21. Nguyen, D., Pak, I.: Short Presburger arithmetic is hard. SIAM Journal on Com-
puting 51(2), 17:1–30 (2022). https://doi.org/10.1137/17M1151146

22. Rosier, L.E., Yen, H.C.: A multiparameter analysis of the boundedness problem for
vector addition systems. Journal of Computer and System Sciences 32(1), 105–135
(1986). https://doi.org/10.1016/0022-0000(86)90006-1

23. Rytter, W.: A hardest language recognized by two-way nondeterministic
pushdown automata. Information Processing Letters 13(4), 145–146 (1981).
https://doi.org/10.1016/0020-0190(81)90045-4

24. Schroeppel, R.: A two counter machine cannot calculate 2N . Artificial Intelligence
Memo 257, Massachusetts Institute of Technology (1972)

25. Schweikardt, N.: Arithmetic, first-order logic, and counting quantifiers.
ACM Transactions on Computational Logic (TOCL) 6(3), 634–671 (2005).
https://doi.org/10.1145/1071596.1071602

26. Vardi, M.Y.: The complexity of relational query languages (extended
abstract). In: Symposium on Theory of Computing, STOC. pp. 137–
146. Association for Computing Machinery, New York, NY, USA (1982).
https://doi.org/10.1145/800070.802186

27. Weispfenning, V.: The complexity of almost linear diophantine problems. Journal
of Symbolic Computation 10(5), 395–403 (1990). https://doi.org/10.1016/S0747-
7171(08)80051-X

