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Abstract

Aspects are a novel programming language feature, to ex-
press concerns in program design that crosscut traditional
abstraction boundaries. Aspects are specified as pointcut
designators (patterns in the call stack), coupled with advice
(code whose execution is triggered by the given pattern).
We propose a more primitive syntax for pointcut designa-
tors, based on regular expressions. This primitive syntax
facilitates a new static analysis that in turn enables a more
efficient implementation of aspects.

1 Introduction

Some aspects of program design, such as tracing and log-
ging, crosscut the traditional abstraction boundaries of pro-
cedures and modules. When such crosscutting occurs, it
is desirable that the aspect can be added later, as a sepa-
rate program unit, that is then woven into the original base
program. This is the motivation for the paradigm of aspect-
oriented programming [19]. The most popular implementa-
tion of this paradigm is an extension of Java, called AspectJ
[18].

One way to describe the weaving process is akin to the
observer pattern [13]: the aspect code monitors the execu-
tion of the base program, and when certain sequences of
events occur, additional code that belongs to the aspect is
run. An aspect can be applied recursively, monitoring its
own execution, and splicing in code at appropriate times.
In AspectJ, the sequences that are observed are an abstrac-
tion of the call stack, and the patterns in the aspect that
trigger the execution of new code refer to patterns in the
call stack. A definitional interpreter (in the style of [11])
for this dynamic view of aspect weaving was described in a
pioneering paper by Wand et al. [26]. An alternative formal
model can be found in [9].

Naturally dynamic weaving is costly, and it is important
to find more efficient compilation strategies, and indeed As-
pectJ does implement one such strategy. The salient fea-
tures of the AspectJ optimizer are explained by Masuhara
et al., through partial evaluation of Wand’s interpreter [21].
In brief, the patterns are compiled to matching automata,
and the compiled program maintains a stack of states for
each such automaton. By inspecting the top of this stack,
one can tell in constant time whether new aspect code needs
to be executed. The runtime overhead of maintaining these
stacks is however significant.

This paper makes two contributions to the compilation

of aspects:

• We propose a more primitive language for describing
patterns in the call stack, based on regular expressions.
The AspectJ pattern combinators can be expressed in
our language. The more primitive nature of our pro-
posal makes static analysis easier, and it may be a little
more familiar to readers outside the AspectJ commu-
nity.

• We present a new meet-over-all-paths analysis, which
enables a compiler to determine statically whether the
any call stack at a given point in the program could
match one of the patterns in the aspect. This elimi-
nates most of the runtime overheads in the strategy of
Masuhara et al.

We illustrate these ideas in the context of an experimental
implementation of aspects as an extension to a Pascal-like
language, which was carried out by the first author.

The structure of the paper is as follows. Section 2 reviews
the terminology of aspect-oriented programming and it in-
troduces our new language of patterns. We then illustrate
these with an example, namely counting swap operations in
an implementation of quicksort. With reference to that ex-
ample, we briefly review previous work on interpreting and
compiling aspects. Section 3 proposes our new analysis, and
the way it is implemented. Section 4 discusses the results of
this analysis on some sample programs. Next, in Section 5,
we outline the optimisations that the new analysis enables.
The paper concludes with a discussion of related work, and
possible directions for future investigation. In particular,
we indicate how the results of this paper could be used in a
refactoring tool, which gives automatic assistance in factor-
ing out aspects in legacy code.

2 Aspect-oriented Programming

Aspect-oriented programming builds upon a long tradition
of meta-programming systems (especially [17]) and there ex-
ist several variants of the same ideas [1, 15, 20]. The most
widely adopted, however, is that in AspectJ [18], and there-
fore we follow the terminology of that exposition. Space
does not allow an in-depth review of the applications of as-
pects, and the reader is referred to [5] for a comprehen-
sive overview. AJD is a much smaller aspect-oriented lan-
guage than AspectJ, designed as part of the Aspect SandBox
project, which aims to build a set of tools to experiment with
aspects [21, 26].
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To illustrate the ideas of this paper, we use a small pro-
cedural language, which is a variant of Pascal. It could be
regarded as a subset of AJD that lacks features for object
orientation. The restriction is not fundamental, and the
techniques of this paper could be easily extended to richer
languages. We shall return to this point in Section 6.

2.1 Preliminaries

Base program, aspects and advice. An aspect-orient-
ed program consists of a base program and a number of
aspects. The aspects can be viewed as observers of the base
program, taking action when certain events occur in its exe-
cution. A piece of code that describes an intervening action
is called advice. Aspects are thus understood relative to an
operational semantics of the base language.

Join points. Machine configurations where advice might
intervene are called join points. Variations of aspect-
oriented programming can be explained as variations in the
level of abstraction of these join points. We follow AJD by
defining join points as an abstraction of the control stack, ig-
noring all other notions of machine configuration. To wit, a
join point is a sequence of procedure calls, procedure execu-
tions, and advice executions. A procedure call corresponds
to the invocation of a procedure at the call site, whereas
an execution refers to entry into the procedure’s body. In
the syntax of the ML programming language [22], we might
declare the type of join points thus:

jp = jp element list

jp element = call of ( name ∗ name ∗
actual param list)

| exec of name
| aexec

Note that the join point for a procedure call includes not
only the name of the called procedure, but also that of the
calling context, as well as the values of actual parameters.
Strictly speaking, the calling context is redundant, but it
simplifies the description of useful sets of join points. In
AspectJ, a much richer join point model is assumed, in par-
ticular reflecting the inheritance hierarchy. All these enrich-
ments are however of a static nature, and the focus of this
paper are dynamic join points. A semantics of such static
aspects is sketched in [2].

Pointcut designators. To specify where advice should
intervene, each piece of advice is coupled with a predicate
that singles out the set of join points where that advice
should be executed. Such a set of join points is called a
pointcut, and the predicate that describes it is called a point-
cut designator, or PCD for short. A PCD may include vari-
ables, to match against the actual parameters of a procedure
call.

We deviate from AJD and AspectJ in the syntax for ex-
pressing pointcut designators. A pointcut designator is a
regular expression whose alphabet consists of element desig-
nators (EDs). An element designator is a predicate over join
points elements. The abstract syntax of element designators

compare(i , j ) : returns true if
linesbuf [i ] < linesbuf [j ]

swap(i , j ) : swaps lines i and j
readln(i) : read a line into linesbuf [i ]
writeln(i) : print linesbuf [i ]
partition(a, b) : partitions linesbuf [a..b),

with pivot linesbuf [a]
quicksort(a, b) : sorts linesbuf [a..b)

Figure 1: Quicksort procedures.

is given by:

ed = pcall of name
| pwithin of name
| args of var list
| and of (ed ∗ ed)
| or of (ed ∗ ed)
| not of ed
| true

The pcall n designator matches join point elements of the
form call (n, , ). The next designator is pwithin n; it
matches calls that are made from the context n, that is
call ( ,n, ). Finally, one can match for actual parameters
using args (x1, x2, . . . , xn). This element designator matches
call ( , , [a1, a2, . . . , an ]), binding each variable xi to ai . The
logical operators are interpreted as expected; in particular,
negation can only be applied to element designators that do
not contain free variables.

Within a PCD, a variable may only be repeated in the
branches of a logical disjunction. Furthermore, variables
cannot be used under the Kleene star. These restrictions
simplify the matching of PCDs against join points at run-
time. Indeed, PCDs cannot make tests that depend on dy-
namic values bound using the args primitive. We shall re-
turn to this point later.

Before, after, and around. As explained above, a point-
cut designator describes where advice applies — but there is
still the choice of executing the advice code before or after
the selected join points. Each piece of advice is therefore
also coupled with an indication of whether it happens be-
fore or after a join point. In AJD, there is furthermore the
option of execution advice around a join point. In the corre-
sponding advice execution, the statement proceed describes
the original join point. This is a powerful feature, allowing
the programmer to substitute completely different code for
a procedure call. Our present implementation does not sup-
port around advice, and its possible inclusion will be further
discussed in Section 6.

2.2 Example: Profiling quicksort

To illustrate the above definitions, consider a program that
calls Hoare’s quicksort routine [16], to sort the lines in an
array of strings. The program has a global variable called
linesbuf to hold the array of strings, and Figure 1 shows the
procedures that are relevant to the discussion below. Each
entry in the figure briefly describes what the procedure does
— the open interval notation x [a..b) denotes a consecutive
segment of array x inclusive of x [a], up to but not including
x [b].
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aspect Counts
var swaps, partitions : int;

advice PCount
before: {pcall(partition) ∧ pwithin(quicksort)}; {true}∗

begin
partitions := partitions + 1

end

advice SCount
before: {pcall(swap)}; {true}∗; {pcall(quicksort)}; {true}∗

begin
swaps := swaps + 1

end

advice Init
before: {pcall(quicksort)}; {¬(pcall(quicksort))}∗

begin
partitions := 0;
swaps := 0

end

advice Print
after: {pcall(quicksort)}; {¬(pcall(quicksort))}∗

begin
println “Partitions: ” ++ partitions;
println “Swaps: ” ++ swaps

end
end Counts

Figure 2: Profiling aspect for quicksort.

Now suppose that we wish to augment this program, to
gather some statistics about the performance of quicksort,
printing out the statistics after each run of the algorithm.
We intend to count the number of calls to partition, as well
as the number of swap operations. Note that there may well
be other uses of swap apart from the obvious ones within the
partition routine.

To achieve the desired effect, we use the aspect shown
in Figure 2. The first piece of advice says that before each
call to partition from the body of quicksort , the partitions
counter should be increased. The next piece of advice says
that before any call from swap within the context of a call to
quicksort , the swaps counter should be increased. To achieve
initialisation, we specify a pointcut that contains only non-
recursive calls to quicksort , and of course the initialisation
should be carried out before encountering any join point in
that cut. By contrast, the results should be reported after
each non-recursive call to quicksort .

2.3 Interpreting Aspects

Most programmers will agree that it is nice to localise the
code that gathers the statistics in the quicksort example
— provided the runtime cost is negligible. To assess those
runtime overheads, let us first consider a straightforward
interpreter for aspects.

Such an interpreter is described in detail by [26]. Sereni
has ported those ideas to a variant of Pascal, implemented
in OCAML [4], and the code can be downloaded from [23].
The basic idea is simple: an interpreter for the base lan-
guage is augmented to keep track of the current join point.
Whenever a new join point is created (at a procedure call,
entry to a procedure body or advice execution), that new
join point is matched against all the PCDs in the aspects

that were applied to the program. If a match is found, the
corresponding advice is executed, with an environment that
contains values for the PCD variables that were bound in
matching.

The maintenance and matching of join points is poten-
tially costly. Consider, for example, the PCD we used to
trigger initialisation in the quicksort example. To check that
a join point satisfies this PCD, one must traverse the whole
join point. It follows that upon each new join point creation,
the interpreter may have to traverse the whole join point for
each PCD that is in scope.

2.4 Compiling Aspects

Clearly such interpretative weaving of base program and as-
pects is too costly to be practical; some form of compilation
must be used to transfer work from the dynamic matching
to compile time. This is a clear case for partial evaluation
[12]. Indeed, in [21], it is shown how the first Futamura pro-
jection yields a compiler from the interpreter of [26]. Un-
fortunately, however, without further improvements, that
compiler still generates code that potentially traverses the
whole join point for each PCD.

The same paper [21] explains how the AspectJ compiler
solves this problem. A PCD pcd corresponds to a deter-
ministic finite automaton, say M . This automaton is con-
structed as follows. First, we collect all potential join point
elements from the program text, in a set called A. Note that
this is possible, because all relevant values are available at
compile time, except for the argument values in a call : we
just represent these by dummy place holders. It is likely
that we overestimate the set of join point elements (because
some of them do not occur in actual program runs), but
that does not matter. Next, for the relevant pcd , we de-
termine the set X of element designators that occur within
pcd . Now, for each element designator, we can compute the
set of join point elements that are true of it, giving a map

validates : X → A set

That is, validates takes an element designator e, and returns
the set of join point elements in A that validate e. Take the
finite automaton that corresponds to the regular expression
that makes up pcd : this is an automaton where the tran-
sitions are labelled with element designators. Replace each
transition labelled with e by a set of transitions, taking the
labels from validates(e). Finally determinise the result: thus
we obtain the finite automaton M that corresponds to pcd .

We now describe how M is used for efficient implemen-
tation of PCD matching. Write M (x ) for the state that is
reached via a join point x . Instead of repeatedly running M
on each new join point x = [x1, x2, . . . , xn ] from scratch,
we could keep a stack [M (x ), . . . ,M ([xn−1, xn ]),M ([xn ])].
When a new PCD is constructed, it is either by pushing new
elements on to the front of x , or by popping some, and thus
the transitions can be computed in constant time. It follows
that the overheads of matching are reduced to a constant,
for each individual PCD. Similary we need to keep a stack
of variable bindings for each PCD that contains args(x ) des-
ignators.

This is certainly an improvement, but keeping these
stacks of states is still a significant overhead, roughly propor-
tional to the number of PCDs. The paper [21] describes fur-
ther methods of reducing the constant factor (one of which
we shall elaborate in Section 5), but the overhead remains
proportional to the number of PCDs.
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Intuitively, in examples such as that shown above, it
should be possible to completely eliminate the matching pro-
cess, and determine for each point in the program exactly
what PCDs will apply at runtime, and which cannot ap-
ply. It would then be possible for a compiler to generate the
tangled program that one might have written prior to the
invention of aspects. This is what we set out to do in the
remainder of this paper.

It should be mentioned that the above compilation
scheme, as we have described it, relies on the static nature of
element designators: it can be determined at compile time
whether a join point element validates an element designa-
tor or not. The element designators found in AspectJ do not
have this static property, as they can include tests of run-
time values, so in reality the AspectJ compiler is somewhat
more complex.

3 Analysing Aspects

Our objective is to determine for each procedure call in the
abstract syntax tree of the program the set of all possible
call stacks (or equivalently, join points) at that call. Given
this information, it would be possible to obtain a source-to-
source program transformer that takes an aspect-oriented
program, and returns the base program with some addi-
tional code inserted (corresponding to applicable aspects),
but without any code for matching pointcut designators.

It is important to note, however, that we cannot hope to
achieve this for all possible advice. Both with the regular
expressions we use for denoting PCDs and with the language
used in the Aspect SandBox project, it is possible to write
a pattern which makes compile-time determination impos-
sible. We will come back to this point in Section 5. In the
meantime, we shall describe our approach to computing the
relevant analysis information.

3.1 The Analysis

With each piece of advice is associated a pointcut designator
pcd, which denotes a set of join points. As discussed in
Section 2, it is possible in our language to compute (an over-
approximation of) the set of join point elements in a program
at compile time, which we denote by A. We may hence
define a function:

join points : pcd → A∗

set

which associates to each pointcut designator the (usually in-
finite) set of join points that it represents. This simplifies
our discussion of the analysis and is part of the reason for the
restrictions we have placed on pointcut designators. In the
remainder of this paper, for notational convenience, we iden-
tify a pointcut designator pcd with the set join points(pcd).

Now during the execution of the base program, a piece
of advice with pointcut designator pcd is executed if the
current join point lies in pcd . It therefore suffices to com-
pute, for each procedure call p in the program text, a set
L(p) containing all possible join points at evaluation of the
call p. We shall define L(p) to be a regular language, and
in general it is an over-approximation; however it reduces
the problem of determining advice applicability to tests on
regular languages. Indeed,

• If L(p) ⊆ pcd, then the advice always applies at p, and

• if pcd∩L(p) = ∅, then the advice can never apply at p.
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Procedure Call
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Figure 3: An advised procedure call

Observe that both tests can be reduced to language contain-
ment, as

pcd ∩ L(p) = ∅ ⇔ L(p) ⊆ ¬pcd

where ¬L(p) = A∗ \ L(p).

3.2 The Call Graph

Aims We now proceed to describe how L(p) may be com-
puted. Our approach will be to construct a call graph for
the program, in which each procedure call appears as a node
(these are not the only nodes in the graph, however). Edges
in this graph correspond to elementary operations affecting
the control stack (such as procedure calls) and hence are la-
belled with join point elements — recall that a join point is
a string of join point elements, and thus a path in the graph
corresponds to a join point. The set L(p) will in fact be the
set of paths from the source vertex (the procedure main) to
the vertex corresponding to p. We denote the source vertex
by v .

The graph must thus be built such that every path from
v to p is a valid join point at p (although it need not occur
in actual program runs), and that every valid join point is
represented by a path. There are therefore three kinds of
edges, corresponding to the three join point kinds — proce-
dure calls, procedure executions and advice executions.

The nodes in the graph correspondingly, represent pro-
cedure bodies (the procedure node), procedure calls (call
nodes) and advice bodies (advice nodes). Note however that
while there is a single procedure node in the graph for each
procedure in the program, advice nodes are replicated at
each procedure call.

Building the Graph We can now describe the relation-
ship between these nodes by considering a single procedure
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call to f from g . For simplicity, we will first consider the
case where there are no procedure calls within the bodies of
advice, and return to the more general case later. See also
Figure 3 for an illustration of this. The graph includes nodes
for procedures f and g respectively. The call is represented
by a node n, and edges are added: from g to n, labelled
call(f , g); and from n to f , labelled exec(f ). This represents
the direct, or unadvised path to f from g . However, any
advice that applies modifies this path by adding an advice
execution event between the call to f and its execution. As
we assume at present no knowledge of applicability of ad-
vice, any subset of the program advice can apply, chained
however in the order in which they appear in the program
text. To achieve this, a new node is created for each piece
of advice in the program. Each of these has an aexec edge
leading from the call node, and an exec edge leading to the
execution node.

Finally, the interaction of different pieces of advice at
a single procedure call must be considered, as the previous
construction accurately describes the execution of a single
piece of advice only. In this, we follow the semantics given in
[26], which differ from that of AspectJ. We therefore consider
that if more than one piece of advice apply at a procedure
call, the resulting aexec join point elements are stacked, re-
gardless of the type of advice (in AspectJ, this is only the
case for around advice). Thus there is an additional set of
edges, describing the possibility of chaining aspects. Assum-
ing that aspects are ordered as a0, . . . , an , there is an edge
from ai to aj for all j > i . The type of the advice (before
or after) does not affect the graph. This construction is
illustrated in Figure 3 for the case of three aspects.

This construction of the program graph satisfies the con-
dition that every possible join point at a procedure call is
represented by a path from the source vertex to the vertex
representing that call. Unfortunately, the size of the graph is
quadratic in the number of advices in the program. Indeed,
for n aspects n(n − 1)/2 edges are necessary to capture all
the possible sequences of advice executions. However, it is
possible to dramatically reduce the size of the graph prior
to analysis by considering the topmost element of the call
stack. In practice, many pointcut designators are of the
form

{pcall(f ) ∧ . . .}; . . .

Indeed, PCDs which are not of this form can often cause
infinite loops (more details are given in [26]). Now in this
case it is easy to see that this can never apply to a call to
a procedure g 6= f , and hence it is unnecessary to include
the node for this advice for such calls. Generalising this, it
is usually possible to eliminate a large proportion of advice
nodes and edges by checking whether the first element of the
PCD can apply to the call being considered. The top of the
call stack will always be a call event, and this corresponds
to the label of the edge leading to the procedure call node.

In the previous paragraphs, we have described the con-
struction of the call graph in a restricted case (namely, that
the only procedure calls occur in the base program). This is
thoroughly unrealistic, and we now must complete the de-
scription in the general case. The same construction cannot
be applied for procedure calls within advice bodies, as this
would be a potential cause of infinite regress. Indeed, recall
that a fresh copy of each of the advice nodes is created for
each procedure call in the text (ignoring the quick pruning
performed at that point, as we are considering the worst

�

��

Figure 4: Procedure calls within advice bodies

case). Therefore if a piece of advice ai contains a proce-
dure call pc, a fresh copy of ai is created to advise that call,
which in turn creates a new instance of pc, leading to non-
terminating behaviour. To remedy this problem, procedure
calls from advice bodies are not treated in the same way
as calls from the base program. A procedure call pc from
an advice node ni does not give rise to new copies of the
advice nodes, instead it shares the set S of advice nodes to
which ni belongs. This is illustrated in Figure 4. There is
a final complication to the construction, as our quick prun-
ing means that S will not in general contain the entire set
of advice in the program. If the call pc requires an advice
aj not in S , a fresh copy of aj is created and added to S ,
and is chained with the other nodes in S . To make this
discussion precise, we have included the algorithm used for
this construction in ML-like pseudocode in Figure 5. This
defines a function add call advice which is invoked for all
procedure calls in the base program, and adds the advice
nodes and edges for the call, as well as those for calls from
advice bodies. A mention is appropriate here of the effect
that this sharing of advice nodes has on the analysis. In
principle, it could lead to a certain loss in sharpness, by in-
troducing new and usually spurious paths in the call graph.
In practice, this does not affect the results of the analysis;
furthermore an iterative technique for recovering sharpness
will be presented in the next paragraph.

Iterative Analysis We conclude our description of the
call graph with a mention of the effect of procedure calls
within advice bodies on the sharpness of the analysis. Not
only do these complicate the construction of the graph, they
also have an adverse effect on the analysis of that graph.
Figure 6 depicts a simple case of this, where there are two
procedures f and g and a single piece of advice. We assume
that it has already been determined (by the “quick” analysis
mentioned previously) that the advice can never apply at g ,
hence the presence of only one advice node in the graph.
The body of the advice, however, contains a call to g . What
should be observed here is that even though f does not call
g , there is a path from f to g via the advice. This of course
enlarges L(g), the approximation to the set of possible join
points at g . In particular, consider a (plausible) pointcut
designator of the form:

{pcall(g)} ; {true}∗ ; {pcall(f )} ; {true}∗

This describes any call to g within the dynamic scope of
f . This dynamic scope, however, includes the advice shown
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let add call advice procedure call =

let (applicable,notapplicable)
= partition all advice in the program with the quick
pruning method for procedure call

let new advice nodes
= make a fresh node for each advice in applicable

let to process = ref new advice nodes
and added = ref new advice nodes

for each anode in to process do

let pcalls
= get all procedure calls from the body of the
advice corresponding to anode

for each pcall in pcalls do
add the edges for pcall
let (app′,notapp′)

= quick pruning for pcall

for each anode ′ in app′ do
if name(anode ′) in names(added) then

add the advice edges for advising pcall with
the advice corresponding to anode ′

else
let newv
= create a fresh copy of anode ′

add the advice edges for pcall and newv

added := {newv} ∪ added ;
to process := {newv} ∪ to process

end
done

done
done

chain the nodes in added together

Figure 5: Constructing the Call Graph

��

�������

Figure 6: Effect of calls within advice bodies on sharpness

as an examination of Figure 6 will reveal. Consequently, at
least one of the join points described by this pattern must
lie in L(g), thus we would not be able to determine that
this can never apply. It may be the case, however, that the
advice shown in the graph is found never to be applicable
at f . In this case, deleting the node for this instance of
the advice and re-processing the graph would allow a better
estimate of L(g) to be produced — in particular, one that is
disjoint with the language described by the pattern above.

With this aim, the result of analysing the graph is not
only L(p) for each call p, but also the graph with all “impos-
sible” edges removed. If a piece of advice a has been found
to always apply at a call p, these edges are those that bypass
the advice node corresponding to the instance of a applied
to p (both advice executions and procedure executions from
advice higher in the chain). Conversely, if it has been found
that a can never apply at p, the impossible edges are those
leading to the node corresponding to a. Care must be taken,
however, as our treatment of procedure calls within advice
bodies means that certain advice execution edges (chaining
advice nodes together) are effectively shared between several
procedure calls. We should therefore only remove an advice
edge if it “impossible” for all procedure calls that it advises.

The analysis can be iterated until a fixed point is reached,
which corresponds to the best estimate for L(p) at each
p. This iteration can also compensate for the minor loss
of sharpness resulting from the sharing of advice nodes, as
mentioned previously.

3.3 Meet-Over-all-Paths Analysis

We have constructed a graph from the source program such
that the set of paths from the source vertex v to any vertex
p is an superset of the set of possible call stacks at point p
in the execution of the program. Using this, it is possible to
obtain a regular expression L(p) describing the set of join
points at p, using an algorithm of Tarjan [25]. This regu-
lar expression can then be tested for inclusion with respect
to each PCD in the program. This solves the problem but
implies much duplicated computation. Indeed, the regular
expressions L(p1) and L(p2) are closely related for vertices
p1 and p2 that are “close” in the graph, and hence testing
the same pointcut designator against both of them indepen-
dently is wasteful. In the next section we will describe a
method for performing these tests compositionally.

3.4 Compositional Analysis: Chips and Chops

We can accurately regard the number of advices as fixed and
small in comparison to the number of procedure calls. It is
feasible, therefore, to do some precomputation on the PCDs
prior to the analysis proper.

We define two predicates on regular expressions r :

Subset pcd r ≡ r ⊆ pcd

Disjoint pcd r ≡ r ⊆ ¬pcd

≡ Subset (¬pcd) r

The values that we are interested in are Subset pcd L(p)
and Disjoint pcd L(p). By our previous observation, it is
desirable to compute those compositionally in terms of p,
that is by induction on the structure of L(p).

In a companion paper [7] we have described a compo-
sitional algorithm for achieving just that (presented in the
context of program analysis with side conditions specified
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as regular expressions). In this algorithm, a matrix C (pcd)
of regular expressions (the “chip-chop matrix” for pcd) is
associated with each pointcut designator. We can think of
C (pcd) as a systematic arrangement of the parts of pcd. By
generalising Subset and Disjoint to these matrices, so that:

(S pcd r)x ,y ≡ r ⊆ C (pcd)x ,y

(D pcd r)x ,y ≡ r ⊆ C (¬pcd)x ,y

S and D may be computed compositionally on the structure
of L(p).

More specifically, we have:

S pcd (r1 ; r2) = (S pcd r1) · (S pcd r2)

S pcd (r1 + r2) = (S pcd r1) ∧ (S pcd r2)

where we define multiplication of Boolean matrices taking
∨ for addition and ∧ for multiplication. These rules force
S pcd (r∗) to be the greatest fixed point of the equation:

X = (S pcd ε) ∧ (S pcd r) · X

where ε denotes the empty string.
This defines a regular algebra which may be used di-

rectly in Tarjan’s algorithm. As pcd itself occurs as an entry
of C (pcd), the original problem is an instance of the gen-
eralisation. Note also that the performance advantage of
this algorithm is increased if the analysis is iterated (to ob-
tain better estimates of L(p) in some cases, as previously
mentioned), as the chip-chop matrices do not need to be
recomputed.

4 Results

In the previous section we have described our method for
analysing aspect-oriented programs with the aim of stat-
ically determining the points of application of advices,
thus reducing the runtime overhead associated with aspect-
oriented programming (we will give more details as to ex-
actly how this might be reduced in Section 5). In this sec-
tion, we will explore the effectiveness of this analysis on two
small examples — as space does not allow us to explore the
results of the analysis on larger programs, we use these to
exemplify the main ideas. We will first come back to the ex-
ample application of aspects given in Section 2, namely trac-
ing the quicksort routine. We will then present an example
for which it is actually necessary to iterate the analysis.

4.1 Tracing quicksort

Recall that we had augmented the behaviour of quicksort
with an aspect Count made up of four advices: SCount and
PCount for counting calls to swap and calls to partition re-
spectively, Init for initialising counters, and Print for print-
ing the tracing information (note that for clarity we use
identifiers beginning with a capital letter for aspects and
advices only). There were in total ten procedure calls in our
program, which we have detailed in Figure 7, along with the
results of the analysis. Our results are presented as follows
(for a procedure call pc and an advice a):

• A X means that a always applies at pc.

• An × means that a can never apply at pc.

• A blank entry means that the analysis is inconclusive.

Procedure calls:

1: main −→ readln(N )
2: main −→ quicksort(0,N )
3: main −→ writeln(i)
4: readln −→ swap(0, i)
5: partition −→ compare(i , a)
6: partition −→ swap(i , j )
7: partition −→ swap(a, i − 1)
8: quicksort −→ partition(a, b)
9: quicksort −→ quicksort(a, i)

10: quicksort −→ quicksort(i + 1, b)

Results:

Call SCount PCount Init Print

1 × × × ×
2 × × X X

3 × × × ×
4 × × × ×
5 × × × ×
6 × X × ×
7 × X × ×
8 X × × ×
9 × × × ×

10 × × × ×

Figure 7: Results of analysing the quicksort example

Calls 5 to 10 are the heart of the actual quicksort routine,
while 1 to 4 make up the interface with the user. This
program demonstrates the use of three different kinds of
pointcut designators (recall that advices Init and Print have
the same pointcut designator). The advice for PCount only
matches on the topmost item of the stack and in this sense is
static — it only depends on the textual location of the call.
In contrast, the other two kinds of advice are dynamic and
depend on the call stack. This is used to express the two
properties that a call is within dynamic scope of quicksort
and that a call to quicksort is not recursive, respectively.

In this case, the analysis has been successful in deter-
mining applicability for each advice at each procedure call.
Thus the pointcut designators which we just described as
dynamic are in fact static in the context of this base pro-
gram. Given the table in Figure 7, it would be possible to
transform the aspect-oriented program into its tangled, or
statically woven counterpart by just inserting the body of
the relevant advice at each point marked with a X. The
programmer can thus write the clear, neatly separated ver-
sion of the program without loss of efficiency.

4.2 Iterating the Analysis

The quicksort example can be resolved in a single pass of
the algorithm, as there are no procedure calls within the
bodies of the advices. In fact, even if such calls are present,
iteration may not be necessary. However, we present a small
example illustrating how iteration can actually add informa-
tion.

Non-trivial examples where iteration is required would
be difficult to present concisely, we therefore only give an
artificial program fragment that has this property (in Figure
8). This consists of just two procedures f and g advised by
two pieces of advice A and B . The complexity arises from
the fact that A calls f , and that the pointcut designator
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procedure f (x : int) : int;
begin
if x = 0 then return 1
else return x ∗ f (x − 1)
end

end;

procedure g(x : int) : int;
begin
return x

end;

begin
(* . . . *)
g(y);
f(x)
(* . . . *)

end.

aspect X

advice A
before: {pcall(g)}; {true}∗; {pcall(g)}; {true}∗

begin
(* . . . *)
f(x)
(* . . . *)

end

advice B
before: {pcall(f )}; {true}∗; {pcall(g)}; {true}∗

begin
(* . . . *)

end

end X

Figure 8: A program fragment with calls within advice

Procedure Calls:

1: main −→ g(x )
2: main −→ f (y)
3: f −→ f (x − 1)

Results:

Quick Pruning First Pass Second Pass
Call A B

1 ×
2 ×
3 ×

Call A B

1 × ×
2 × ×
3 ×

Call A B

1 × ×
2 × ×
3 × ×

Figure 9: Results of iterating the analysis

for B matches exactly those calls to f within the dynamic
scope of g . As A is invoked on a call to g , the call to f from
the body of A occurs within the dynamic scope of g , thus
extending the possible join points on execution of f . This
means that B can actually apply in some cases (even though
g is trivial and thus does not call f , directly or indirectly).

However, it is easy to see that in this case the possibility
is purely fictitious: in fact g is not a recursive procedure,
so that A can never apply! This is admittedly unrealistic,
since a programmer is unlikely to write a piece of advice
that never applies. We believe, however, than it can serve
as an abstraction of what could occur in practice. It is
desirable, therefore, that the analysis can deduce that since
A can never apply, B can never apply either. This cannot
be determined in its first pass, but is in fact detected on the
second pass. We present the results in Figure 9.

Let us briefly comment on the efficiency of iterating the
analysis. As mentioned before, the compositional algorithm
used means that much information can be kept and does
not need to be recomputed, and so naturally we expect any
supplementary passes to be faster than the first pass. In
practice, the gain in efficiency goes further than that — the
time taken by subsequent passes is negligible compared to
the time taken for the first pass. This is caused by the
pruning of the graph after the first set of analysis results is
obtained — essentially, in that process almost all infeasible
edges disappear, leaving only a handful of troublesome cases
that still need to be resolved.

5 Optimisations

The analysis that we have described in Section 3 determines,
for each procedure call in the program, the “status” of each
advice at that call (based on the advice’s pointcut desig-
nator). This status is one of three possibilities: the advice
can never apply at that call, or the advice always applies at
this call, or applicability of the advice cannot be statically
determined (that is, the analysis has been unsuccessful for
this particular advice and call).

In the case that the analysis has been successful at a call
p for a piece of advice with pointcut designator pcd , the
advice body may be either discarded or inserted directly
at the appropriate point in the code. The analysis thus
eliminates the need for run-time matching of pointcut des-
ignators, which is certainly desirable and a significant per-
formance saving if matching is implemented in the straight-
forward way. However, when the matching algorithm from
the AspectJ compiler (as presented in [21]) is used, the sav-
ings will be less important — more time is spent keeping
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the current state of the automaton Mpcd for each pointcut
designator pcd .

It is however easy to see how this may be eliminated:
suppose that the analysis has been successful for a given
pointcut designator pcd at every procedure call in the pro-
gram. In this case, the current state of the corresponding
automatonMpcd will never be used, as pcd will never need to
be matched during the execution of the program. It there-
fore becomes unnecessary to keep and update the state of
Mpcd , and the functionality of the advice is woven with no
run-time overhead.

Thus far, we have made the restriction that no free vari-
ables appear in pcd . We shall now extend the previous de-
scription to include the possibility of free variables in pcd .
Recall that in our language, free variables are introduced by
the args construct and bind to the values of parameters to
procedures. Also, due to the restrictions that we have placed
on the use of variables in our pointcut designators, they act
as place holders only and have no influence on matching
(and hence static analysis). It follows that whenever we can
determine that a pointcut designator cannot apply at a pro-
gram point p, we can eliminate the relevant code, just as in
the absence of variables.

However, it is not possible to eliminate the matching
code in the presence of variables, since we still must maintain
a stack of variable bindings. Of course there are a number
of common special cases where the stack is unnecessary, for
instance when the variables are bound only in the leftmost
element designator.

Unfortunately, it is in general impossible to statically
determine applicability for arbitrary pointcut designators.
As an example, consider the case of a simple procedure f
with a single recursive call to f from within its body. Now
the pointcut designator:

{pcall(f )}; {true}∗;
{pcall(f )}; {true}∗;
{pcall(f )}; {true}∗

matches exactly those calls to f that occur within the scope
of two previous calls to f (that is, the depth of recursion is at
least three). Certainly this may apply to the recursive call
to f from within its body, but this is not always the case —
in the first, non-recursive execution of f it will not. There-
fore no static analysis can in general solve the problem for
this particular situation. It is worth noting that this phe-
nomenon is not introduced by our new language for pointcut
designators, as the previous expression has an equivalent in
the AJD syntax [26], namely

pcall(f )
∧ cflowbelow( pcall(f )

∧ cflowbelow(pcall(f )))

(We discuss the primitives in this expression, and its relation
to our notation, further in Section 6.) Because of this re-
striction on the power of static analysis of aspects, it would
be desirable to reduce run-time overhead when we have de-
termined some, but not all, of the information about appli-
cability of a piece of advice. We will examine two possible
directions for achieving this.

5.1 Optimising Pointcut Automata

The motivation for this optimisation lies in the observation
that not all join point elements actually update the state of

�

�

�
�

Figure 10: Deterministic automaton for a PCD

the automaton associated with a pointcut designator. As
an example, consider the deterministic automaton M for
the pointcut given above (Figure 5.1). We have used the
wildcard “*” as a label for an edge leading from a node n to
denote the set of join point elements not labelling any other
edges leaving n. In this case, it is clear that we can know
the state M (x ) for any join point x given the restriction xΣ
of x to the set Σ of join point elements corresponding to a
call to f — intuitively it suffices to know the stack of calls
to f . More formally, we can define:

〈x1x2 . . . xn〉Σ = 〈xi | xi ∈ Σ〉

where we use the angle-bracket notation to denote se-
quences. For an arbitrary pointcut designator, it suffices
to determine the set Σ of join point elements corresponding
to useful edges – that is, edges whose start and end states
are distinct. It is then clearly the case that M (x ) = M (xΣ)
for any join point x . Bookkeeping code need thus only be in-
serted exactly at those points (always procedure calls in our
model) for which the join point element lies in Σ. This op-
timisation does not depend on the analysis described above,
and it was already described in [21]. The AspectJ compiler
implements this optimisation.

5.2 Isolating Aspect-Free Components of the Call
Graph

Another optimisation is based on the observation that of-
ten the static undecidability of aspects will be limited to a
few procedure calls in the program, and hence there will be
large portions of the call graph in which this may be com-
puted statically. We say that such portions of the call graph
are “aspect-free”, in reference to the fact that they can be
compiled without the code responsible for matching point-
cut designators (we are not saying that no advice can apply
in those components of the graph, however). For concision,
we say a procedure call node is “good” if all advice can be
statically determined for that node. Given a node v , we also
define reachables(v) to be the set of nodes reachable from
v in the graph. The crucial point is that due to the stack
nature of join points, the events occurring in reachables(v)
do not influence the join point at any predecessor of v (as
the graph may not be acyclic, we only say that a node is a
predecessor of v if it is not also a successor of v). There-
fore if all nodes in reachables(v) are good, we may safely
eliminate all bookkeeping code (i.e. code that updates the
current state of automata for pointcut designators) from all
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calls within reachables(v), as this will not affect the states
of the automata at other points in the program.

If this property is true of the source node (that corre-
sponding to the body of the procedure main), then this just
boils down to eliminating all PCD matching code from the
program. However, it is much more general than that, as
there may be several aspect-free components in the graph
even if it is not globally aspect-free.

6 Related Work

As we indicated earlier, the research reported here is closely
related to and much inspired by the Aspect SandBox project
at UBC, and in particular its implementations of the exper-
imental language AJD. In this section, we discuss some of
the differences.

6.1 Regular expressions vs. cflow

The main difference is our language of pointcut designators,
which is that of regular expressions over element designa-
tors. By contrast, in AJD the abstract syntax of pointcut
designators is given by

ajd pcd = top of ed
| cflow of ajd pcd
| and of (ajd pcd ∗ ajd pcd)

as well as some further logical combinators that are not rel-
evant to the present discussion. The first form matches a
join point whose head matches the given element designa-
tor. The form cflow p is matched against a join point x as
follows. First, p is matched against x . If that succeeds, so
does the matching of cflow p. Otherwise, the process is re-
peated with the tail of x , until a match is found, or no more
elements remain. A PCD of the form and(p, q) matches x
if both p and q match x .

From the above description, it is easy to deduce a trans-
lation from the PCDs in AJD to our notation:

trans : ajd pcd → pcd

To wit, we define (using abstract syntax on the left, and for
brevity, concrete syntax on the right):

trans (top e) = {e} ; {true}∗

trans (cflow p) = {true}∗ ; trans p

trans (and p q) = trans p ∩ trans q

This translation is faithful in the absence of variables, in
the sense that matching an ajd pcd (say p) against a join
point x yields the same result as matching trans p against
x . In the presence of variables however (introduced using
the args element descriptor), the situation is more complex.
AJD defines the matching process of cflow so that it takes
a “minimal munch” from the left of the join point. This
characteristic is not reflected in the above translation, al-
though our implementation of regular expression matching
does produce the same behaviour.

We have only very limited experience with writing point-
cut designators, but it would seem that the regular expres-
sion syntax is just a more primitive counterpart to the nota-
tion in AJD. Admittedly, however, regular expressions tend
to be somewhat more verbose. For example, consider

{pcall(swap)} ; {true}∗ ; {pcall(quicksort)} ; {true}∗

In AJD, one would write the much shorter

pcall(swap) ∧ cflow(quicksort)

(in the concrete syntax of AJD, the top constructor is invis-
ible).

The AJD pointcut language is however complicated by
some subtle variants of cflow , like cflowbelow , which is the
same as cflow , but it operates on the tail of a join point.
This extra operator is necessary to express pointcuts such
as

{pcall(quicksort)} ; {¬(pcall(quicksort))}∗

Which would be written

pcall(quicksort) ∧ ¬(cflowbelow(quicksort))

We saw another example of the use of cflowbelow in Section
5.1.

It is our belief that regular expressions provide a nice
set of primitives to define higher-level constructs, including
those of the AJD pointcut language. We are not advocating
that the cflow notation is replaced by regular expressions:
we merely suggest that it may be worthwhile to offer the
more primitive notation for situations where the current set
of higher-level constructs proves awkward or inadequate.

6.2 around advice

We earlier described the notion of around advice. At a
matching join point, the corresponding piece of advice is
executed. When proceed statement is encountered, the pro-
cedure that originated this join point is executed, after which
advice execution resumes. It is not necessary for the advice
to contain a proceed statement, and it is thus possible to
completely replace the existing procedure. Furthermore, the
proceed statement takes parameters, which are used instead
of those in the original procedure call.

This powerful feature does not present any conceptual
difficulties for the analysis we have outlined. It certainly
complicates the construction of the call graph, which so far
did not need to take the type of advice (before or after) into
account. It is thus for expository reasons that we decided
not to consider around advice in this paper.

6.3 Objects

The construction of the call graph is also complicated by
considering virtual methods. At each virtual method call,
we need to determine what instances might be called from
that point in the code. Fortunately, however, a great deal of
research has been devoted to such virtual method call resolu-
tion (e.g. [14, 24]), and we foresee no problems in combining
it with the analysis presented here.

7 Conclusion and Future Work

This paper has reported on a first exploration of static analy-
sis of aspects. In particular, it has been shown how the
runtime overheads of matching pointcut designators can be
reduced, and sometimes completely eliminated. This is en-
couraging, and we feel it warrants a larger research effort,
where these and similar techniques are applied to a realis-
tic aspect language, so that meaningful performance exper-
iments can be conducted.
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The efficiency of our analysis is acceptable for small ex-
amples, taking seconds on programs of a few hundred lines.
The main bottleneck is in the preprocessing phase, where
the chip-chop matrix is constructed. This new application
of chip-chop matrices, in addition to that in [7], suggests
that it is worthwhile investigating efficient algorithms for
their construction. Conway’s monograph (where chip-chop
matrices originated) [6] and Backhouse’s thesis [3] contain a
wealth of theory that can guide this research.

The first AspectJ compiler was a whole-program com-
piler, and currently it is being re-engineered to allow sepa-
rate compilation, and use incremental recompilation where
necessary. We are hopeful that our analysis can fit this set-
ting: to re-use the work from a previous pass of the analysis,
one can store the S and D matrices (Section 3.4) for each
procedure. If a program change is known not to affect the
call graph of a procedure, the matrices can be re-used.

Another interesting direction for future work is the ap-
plication of static analysis to aid the refactoring of legacy
code [10], extracting slices of the original program into as-
pects. Consider the tangled version of our quicksort exam-
ple, where the relevant counters have been manually placed
in the program. Standard program slicing [27] will extract
the computations from the original program, thus giving us
the relevant pieces of advice. If the original program al-
ready contains aspects, we can use the results of [28]. To
then construct a new aspect, suitable pointcut designators
have to be associated with each piece of advice: a static
analysis could assist in finding suitable regular expressions.
For this purpose, the output of Tarjan’s algorithm on the
call graph needs to be simplified, as the resulting regular
expressions are seldom in the simplest possible form. It is
our belief that tools to easily move from traditional code to
aspect-oriented views are indispensable for the acceptance
of this new paradigm. The present paper has investigated
how to translate from aspects to traditional programs, but
the reverse direction is equally important.

Finally, in large aspect-oriented programs, it is impor-
tant for programmers to be warned of potential interactions
between aspects. A static analysis for this problem was first
proposed in [8]. We are hopeful that the results of this paper
can be used similarly, namely to detect when two different
pieces of advice may both be executed at the same program
point.
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