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Abstract
Shape analysis is a precise form of pointer analysis, which can be
used to verify deep properties of data structures such as whether or
not they are cyclic, whether they are nested, etc. Shape analyses are
also expensive, and the tremendous number of abstract states they
generate is an impediment to their use in verification of sizeable
programs. We start with an analysis that is able to analyze programs
up to 1000 lines manipulating complex, nested structures, and pro-
gressively improve it until it is capable of analyzing programs of up
to 10,000 lines. By experimental results we show that our analysis
is precise. It identifies memory safety errors and memory leaks in
several Windows and Linux device drivers and, after these bugs are
fixed, it automatically proves integrity of pointer manipulation for
these drivers.

This order of magnitude improvement in sizes of programs ver-
ified is obtained by combining several ideas. One is the local rea-
soning idea of separation logic, which reduces recomputation of
analysis of procedure bodies, and which allows efficient transfer
functions for primitive program statements. Another is an interpro-
cedural analysis algorithm which aggressively discards intermedi-
ate states. The most important new technical contribution of the
work is a new join operator, which greatly reduces the number of
abstract states used by the analysis while not greatly reducing pre-
cision; the join is also integrated with procedure summaries in an
interprocedural analysis.

1. Introduction
Automatic software verification has seen an upsurge of interest
in recent years. By lowering aims from proving full functional
correctness to weaker properties, such as absence of arithmetic
errors or protocol properties of procedures, it has been possible
to obtain practical and fully automatic proof methods for special
classes of real-world software. This is exemplified by tools such
as SLAM [2] and ASTRÉE [5], which have been used to verify
properties of device drivers and avionics code.

[Copyright notice will appear here once ’preprint’ option is removed.]

Crucial in this reinvigoration of software verification has been
the employment of methods from static program analysis. Analy-
sis techniques lessen annotation burden, by inferring loop invari-
ants and by automatically computing procedure summaries. This is
particularly important for programs, such as device drivers, where
invariants and procedure specifications may not be known before-
hand and may otherwise be nontrivial to come by.

While these advances are impressive, a persistent trouble area
stands in the way of verification-oriented program analysis for
a wider range of properties: the heap. Shallow pointer analyses,
which tabulate points-to information between dereferencing ex-
pressions of bounded length, often do not give enough information
for verification purposes. For example, we might like to prove, au-
tomatically, that a device driver manipulating a collection of cyclic
linked lists, themselves with sublists, does not dereference null or
a dangling pointer. Even if the property (e.g., dereferencing null)
is a weak-sounding one, proving it requires looking deeper into the
heap than do points-to analyses, in fact unboundedly deep. One
might say that the analysis needs to track indefinite dereferencing
(by analogy with indefinite iteration), in the presence of dynamic
allocation, deallocation, and destructive heap updates.

Shape analyses are precise, deep forms of pointer analysis, that
infer the sort of information needed for verification [25, 26, 1,
14, 9, 6]. With a shape analysis it is possible to characterize, for
example, whether a variable points to a cyclic or acyclic list, or a
doubly-linked list, a list with back-pointers, etc. It is because of this
precision that shape analyses are in principle useful for verification.
However, again because of their precision, shape analyses oriented
to verification are expensive; the analysis engine can encounter an
enormous number of states. As a result, the in-principle promise of
shape analysis has not yet translated into practice.

The purpose of this paper is to take steps towards addressing
the central scalability problem for shape analysis. We start with
an analysis that is able to analyze C programs of around 1000
LOC manipulating complex, nested structures, and progressively
improve it until it can analyze programs of up to 10,000 LOC. On
some programs, we observe savings in space and time reductions
well beyond this order of magnitude improvement in LOC verified
(of course, this observation is consistent with an analysis that is not
linear-time).

The main thrust of this work is experimental in nature, and we
liberally borrow from what has gone before: we want to see how far
shape analysis can be pushed. We utilize the basic ideas on shape
analysis for deep heap update, advanced by Sagiv et al first in [25];
namely, we use analogues of materialization of summary nodes
(which we call rearrangement), followed by symbolic execution,
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followed by repackaging of the results (which we call abstraction).
We utilize the idea of local reasoning, stemming from the frame
rule in separation logic, which demonstrates that it is sound, when
analyzing an instruction, to pass only a fragment of the input heap
[20]. This can be used to speed up the analysis of both primitive
instructions (as in [4, 9, 17]) and procedure calls [23, 10]. Finally,
our treatment of procedures is based on the interprocedural analysis
algorithm of Reps, Horowitz and Sagiv [22] (subsequently, RHS),
which attempts to limit re-execution of procedure bodies using
certain procedure summaries.

Although we re-use these ideas, we also provide some new per-
spectives on them. We reformulate RHS in a style that makes it eas-
ier to account for further optimizations used in our analyzer. One of
the optimizations concerns the use of a join operator, whose incor-
poration into the original RHS presentation is non-trivial. Another
is a conceptually simple but pragmatically useful optimization that
aggressively discards unneeded states.

Concerning local reasoning, we take the ideas over wholesale.
As far as new information is concerned, we provide more exten-
sive experimental results than previously given. In particular, we
identify limits to what gains localization can provide by providing
negative experimental results, to complement the positive results
reported in [23, 24, 10].

The most significant new technical material in the paper, and the
most important optimization for scalability, is a new join operator.
A join operator takes several abstract states, and finds a common
generalization [8]. Using join can speed up an analysis, but care
is needed not to lose too much information on generalization. Too
much loss can lead to many false alarms, which are less tolerable in
application of program analysis to verification than to other tasks
such as compiler optimization. It is even possible to slow down an
analysis, if the implementation of join is too costly. The truth is
that the devil is in the detail: the problem of designing a good join
operator is a balancing act between precision, expense (of the join),
and gain (in state-space reduction).

Our new join operator leads to a dramatic reduction in the state
space of the analysis. In Section 3 we quote an example of a
program where our analysis without join produces a post-condition
with over 3000 states, and with join the post-condition has only 1
state. This example program is environment code, which is used in
the verification of a device driver. It nondeterministically generates
an infinite number of linked structures of various sizes, which are
passed to driver dispatch routines. The > 3000 states in the analysis
without join do provide a finite overapproximation of this infinity,
but to have to run the dispatch routines on > 3000 states (where
each run does not use join) can be expensive, expensive enough
that termination in reasonable time and space is not possible for
our base analysis. The difference that a good join can make should
be evident.

The way we arrived at our particular join operator was partly by
design, and partly by experimentation. It has several distinguishing
characteristics, the most important being the way that it treats
a combination of predicates for possibly empty and necessarily
nonempty lists. We will come back to this point several times in
the paper.

We show by experimental results that our new join operator
does not lead to an unacceptable loss of precision. Our experiments
concern five device drivers ranging from 2500 to 10,000 LOC. The
analysis identifies a number of genuine memory safety errors and
memory leaks in these drivers, without any false alarms, and it
proves integrity of pointer manipulation for the drivers after the
bugs have been fixed.

Before continuing, we remark that, in passing from 1000 to
10,000 lines, we have held the data structure fixed – the numbers
refer to code from the Windows IEEE 1394 (firewire) device driver

– so the comparison has some relevance. If we were to change
this baseline to a program with simpler or more complex data
structures than 1394 then the numbers could change. Indeed, two of
the drivers that we analyze are smaller than 1394, but more difficult.
If we were to strip out the environment code and instead manually
supply preconditions then the programs we could analyze would
again be larger, but it is more realistic to include environment code
(furthermore, the preconditions are nontrivial to write). We offer
these remarks just to warn the reader that the specific numbers must
be interpreted with care (even if there is value in comparisons),
and with that having been said now move on to the technical
development.

2. Basic Setting
In this section we describe our initial analysis. We start by describ-
ing the inputs to our analysis: interprocedural control flow graphs
with heap-manipulating commands.

2.1 Control Flow Graphs
Consider a language of atomic commands a defined by the gram-
mar below:
B ::= E=E | E !=E
E ::= x | nil
a ::= x := E | [E] := E | x := [E] | free(E) | x := new()

| assume(B) | f().

This language includes an assignment to a variable x (x:=E), an
update of a heap cell E ([E]:=E′), the lookup of the content of cell
E (x:=[E]), the disposal of cell E (free(E)), and the allocation of
a new cell (x:=new()). The language also has an assume statement
assume(B) that filters out all states not satisfying B. Finally, it
contains a call f() to a parameterless procedure f .

Our language is chosen to be simple; we only consider unary
cells and parameterless procedures and we assume that programs
do not have local variables. This simplification is mainly for clari-
fying presentation, and it does not limit the techniques described in
the paper. In fact, our implementation deals with C structs, which
contain multiple fields, and C procedures, which can pass parame-
ters, return a value and declare local variables.

An intraprocedural control flow graph is a finite graph (N, E ⊆
N×N) with two distinguished nodes s, e and a map L which labels
nodes n in N with atomic commands a. The s node models the
starting point of a procedure, and it is required to have no incoming
edges. The e node models the exit of a procedure, and it is not
allowed to have any outgoing edges.

A control flow graph (or an interprocedural control flow graph)
is a finite collection of disjoint intraprocedural control flow graphs

G = {(Nf , Ef , Lf , sf , ef )}f∈F .

Here F is the set of all the procedures defined by a program. Since
we are considering a whole program analysis in the paper, we
assume that F contains all the called procedures f (i.e., f ’s such
that its call f() is in the range of Lg for some g) as well as the main
procedure main. In the paper, we write N , E and L for ∪f∈F Nf ,
∪f∈F Ef and ∪f∈F Lf , respectively.

2.2 Shape Domain
We give a description of our abstract domain parameterized by a
collection P of primitive predicates. By parameterizing the defini-
tion in this way, it is clear that our results apply to a number of
specific domains. Our definitions are for an analysis where the ab-
stract states are certain separation logic formulae called symbolic
heaps, following the approach initiated in [4, 9].
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The symbolic heaps q, are defined by the following grammar:
e ::= x | x′ | nil
Π ::= Π ∧Π | e=e | e!=e | true
Σ ::= Σ ∗ Σ | emp | P | true
P ::= · · ·
q ::= err | Π ∧ Σ

A symbolic heap q can be err, denoting the error state, or it has the
form Π ∧ Σ, where Π and Σ describe properties of variables and
the heap, respectively. We remind the reader of the meaning of Σ’s,
since our analysis mostly works on the Σ part of symbolic heaps.
The separating conjunction Σ0∗Σ1 of Σ0 and Σ1 holds for a heap if
and only if the heap can be split into two disjoint parts, one making
Σ0 true and the other making Σ1 true. emp means the empty heap,
and true holds for all heaps. Throughout the paper, we use the fact
that emp is the unit of ∗ so that Σ ∗ emp = emp ∗ Σ = Σ. Note
that in each symbolic heap, we use both normal program variables
and primed variables. These primed variables are used to denote
cells that are not directly pointed to by program variables, and they
are assumed to be (implicitly) existentially quantified outside of
symbolic heaps.

Our first, simplest, instantiation of P is as follows:
k ::= PE | NE

P ::= (e '→ e) | ls k e e

Here, e '→ e′ means a heap with only one cell e that stores e′. The
list segment predicate ls k e0 e1 denotes heaps containing one list
segment from e0 to e1 only. This list segment starts at cell e0 and
its last cell stores e1. The list is possibly empty if k = PE; otherwise
(i.e., k = NE), the list is not empty.

The meanings of the segment predicates can be understood in
terms of the definitions

ls PE e e′ ⇐⇒ (e = e′ ∧ emp) ∨ (ls NE e e′),
ls NE e e′ ⇐⇒ (e '→ e′) ∨ (∃y′. e '→ y′ ∗ ls NE y′ e′).

These definitions are not within the shape domain (e.g., the domain
does not have ∨), but are mathematical definitions in the metalan-
guage, used to verify soundness of operations on the predicates.
Note that there is no problem with the recursion in ls NE : the re-
cursive instance is in a positive position, and the definition satisfies
monotonicity properties sufficient to ensure a least solution in a
suitable sense.

The reader might have noticed that having ls PE does not give us
any extra expressive power: its meaning can be represented using
two abstract states, one a emp and the other a ls NE. However,
having ls PE impacts on performance, as it represents disjunctive
information, succinctly. We will return to this point several times
throughout the paper.

A different instantiation of P gives us the predicates for a
variation on the domain of [3].1

k ::= PE | NE

P ::= (e '→ !f : !e) | ls k φ e e

Here, the points-to predicate (e '→ !f : !e) is for records with fields
!f , and φ is a predicate that describes the shape of each node in a
list. The definition of the nonempty list segment here is

ls NE φ e e′ ⇐⇒ φ(e, e′) ∨ (∃y′. φ(e, y′) ∗ ls NE y′ e′)

and the φ predicate gives us a way to describe composite structures.
For example, if φ describes lists, then ls NE φ e e′ describes lists of
lists: see [3] for examples.

The experiments in this paper are done using this second instan-
tiation of P . It is similar to the domain from [3], but uses predicates

1 This instantiation assumes the change of the language where we have heap
cells with multiple fields, instead of unary cells.

for both possibly empty and necessarily nonempty list segments.
The experiments use this domain because of its ability to describe
the composite structures found in device drivers. On the other hand
the small examples in the text will be done using the simpler do-
main, without the φ’s.

We show some of the basic ideas with a simple example, a
program that nondeterministically creates a linked list of arbitrary
size (it should be clear how this is rendered as a flow graph).

// program “onelist create”
x := nil;
while (NONDET) {d := new(); [d] := x; x := d; };

When we run our basic analysis algorithm, it returns three symbolic
heaps at the end, which represents a disjunction:

Inv : ls NE x nil ∨ x '→ nil ∨ (x = nil ∧ emp)

In fact, this disjunction is also (when we ignore variable d, which
could be made local2) the invariant at the program point just in-
side the loop. We illustrate how this assertion is an invariant (fixed-
point). Take the first disjunct, ls NE x. When we symbolically ex-
ecute the body of the loop starting from this assertion we get a
post-condition

Post : x '→x′ ∗ ls NE x′ nil

where x is the newly allocated location and x′ is the old value of x.
At this point we perform abstraction, which uses true implications
in separation logic to simplify formulae. The particular abstraction
rules from [9] swallow up the primed (existentially quantified)
variables, and merge points-to facts into list segments, as in

x '→x′ ∗ ls NE x′ nil =⇒ ls NE x nil

When we simplify Post using this implication as a rewrite rule, it
leads back into the invariant Inv that we started with. (In a similar
way, starting from the other disjuncts leads back to the invariant.)

Returning to the formal development, we define SH to be the
set of all symbolic heaps. The abstract domain of symbolic heaps
comes with two operators:

abs : SH → SH rearr(e) : SH → Pfin(SH[e] ∪ {err})
where SH[e] denotes the set of heaps which contain (e '→ e′) for
some e′. The first operator abs overapproximates a given symbolic
heap, by throwing away the length information of linked lists in the
heap. For instance, when abs is applied to (x '→x′)∗(x′ '→ nil) and
(x '→x′) ∗ ls NE x′ nil, which describe linked lists of size two and
at least two, it returns ls NE x nil, which means lists of size at least
one. Note that while applying abs, we lost the length information
in both symbolic heaps. This abs function is used in the separation-
logic based analyses to enable fixed-point convergence (discovery
of invariants). The next operator rearr(e) does, if possible, case
splitting of a given symbolic heap, so as to expose cell e explic-
itly with the points-to predicate. For instance, rearr(x)(ls NE x nil)
returns {x '→ nil, (x '→x′) ∗ ls NE x′ nil}. Note that both elements
in the result set contain the points-to fact about x explicitly, and
they together overapproximate the given symbolic heap. Operator
rearr(e) can fail to expose (e '→−) from a given symbolic heap
q (possibly because q does not ensure the allocatedness of e). The
alternative output {err} is used in such cases. We refer to [9, 3] for
further details of abs and rearr(e).

The abstract transfer function for atomic commands a (except
the procedure call) is a function of type

[[a]] : SH → Pfin(SH).

2 In fact, our implemented analysis uses a pre-pass which performs a live
variable analysis, which has the effect of telling us that variables like d in
this example can be existentially quantified at the end of the loop.

Scalable Shape Analysis 3 2007/11/16



It is defined by the sequential composition of rearr (if a accesses
a heap cell), a-specific transformation (coming from proof rules
in separation logic) and abs. We give three example transfer func-
tions for heap-cell update, disposal and allocation here; the abstract
transfer functions for the other atomic commands can be found in
[9, 3].

[[[e]:=e0]](q) =
{abs(Π ∧ (e '→ e0) ∗ Σ) | Π ∧ (e '→ e′) ∗ Σ ∈ rearr(e)(q)}
∪ {err | err ∈ rearr(e)(q)}

[[free(e)]](q) =
{abs(Π ∧ Σ) | Π ∧ (e '→ e′) ∗ Σ ∈ rearr(e)(q)}
∪ {err | err ∈ rearr(e)(q)}

[[x:=new()]](q) =
{abs

`
Π[x′/x] ∧ (x '→ y′) ∗ (Σ[x′/x])

´
| Π ∧ Σ ∈ q}

(x′, y′ are fresh primed vars)

Our notion of symbolic heaps is slightly different from what
have been studied in previous work on separation-logic-based pro-
gram analyses. First, it includes two forms of list segment predi-
cates ls PE e e0 and ls NE e e0, so that it expresses possibly empty
linked lists directly and distinguishes such lists from non-empty
lists. Although small, this change has a noticeable impact on the
performance and precision of our analysis. Just keeping ls PE often
leads to some false alarms, because it loses the information about
the non-emptiness of the list.3 On the other hand, if we only had
ls NE then the analysis would keep too many disjuncts, which af-
fects performance. We will provide experimental results clarifying
the impact of these decisions in Tables 1 and 3. Finally, technically,
a symbolic heap contains non-formula err. The concretization of
err is the singleton set of the error state, and it allows us to avoid
unnecessary modification of the standard interprocedural analysis,
in order to deal with err.

2.3 Interprocedural Analysis
Our shape analyzer is based on the RHS interprocedural analysis
algorithm [22]. Our presentation of RHS is non-standard; it is
a set-based presentation that makes it easier to explain further
optimizations used in our analyzer, such as the use of the (partial)
join operators. Throughout the section, we assume a fixed control
flow graph G = {(Nf , Ef , Lf , sf , ef )}f∈F .

The goal of RHS is to compute an overapproximation of reach-
able states at each node of a control flow graph, such that the over-
approximation does not consider impossible execution paths (such
as one call to f and two consecutive returns from f ) and that the
analysis avoids repeating the same computation. To achieve this
goal, RHS uses the abstract domain A defined by

A def
= N → Pfin(SH× SH), ordered pointwise.

Note that for each node n we associate a set of symbolic heap pairs,
instead of a set of symbolic heaps. The first component q of a pair
(q, q0) at n describes an input state of the procedure that contains
n, and the second component q0 denotes a resulting state at node n
of the same procedure. Formally, this means that the concretization
γ of A is given by

γ(A)
def
= λn∈N.

[
{γ(q)×γ(q0) | (q, q0) ∈ A}.

3 Some non-emptiness information can be encoded with disequalities, but
it is difficult to deal with disequalities, since they might involve primed
variables (i.e., existentially quantified variables): a naive approach can slow
down the analysis or make the analysis diverge.

Here γ(q) is the concretization of symbolic heap q defined by the
semantics of separation logic formulae [9], and means a set of
concrete states or the error state.

RHS is an iterative fixpoint algorithm with a function K of type
A×A→ A×A. The function K takes (A, B) where A describes
the current analysis result at each node of the control flow graph
G and B defines, at each node of G, the newly obtained symbolic
heap pairs in the previous fixpoint iteration. K updates the analysis
result A and the increment B by abstractly running all commands
in the control flow graph once. Formally, we define K as follows:

K : A×A→ A×A
K(A, B)

def
= (A′, B′)

A′(sf )
def
= A(sf ) ∪ {(q0, q0) | m∈CallSite(f) ∧ (q, q0)∈B(m)}

A′(n)
def
= A(n) ∪

S
(m,n)∈E !L(m)"(A,B)(A(m), B(m))

B′(n)
def
= A′(n)−A(n)

Here CallSite(f) is the set of nodes that call f , and !a" is the lifted
abstract transfer function:

!a"(A,B)(X, Y )
def
= {(q, q1) | (q, q0)∈Y ∧ q1 ∈ [[a]](q0)}

(when a is not a procedure call)

!f()"(A,B)(X, Y )
def
= {(q, q1) | (q, q0)∈X ∧ (q0, q1)∈B(ef )}
∪ {(q, q1) | (q, q0)∈Y ∧ (q0, q1)∈A(ef )}.

Intuitively, function K updates the current analysis result A, by
running commands in the control flow graph once with newly
obtained analysis results. Note that function K treats the start nodes
and non-start nodes differently. For the start nodes sf of procedures,
the analysis collects new inputs q0 to the procedure f and adds pairs
(q0, q0) to A(sf ). For non-start nodes n, the analysis abstractly
runs commands in n’s predecessors m with the previous analysis
results A(m) or increments B(m) at those predecessors, and adds
the resulting sets to A(n).

The most interesting part of RHS is the abstract run of a pro-
cedure call !f()". The issue here is that the fixpoint iteration gives
not just new inputs to f but also new input-output pairs of f . To in-
corporate these two kinds of new information correctly, !f()" takes
the union of two sets; the first is the result of applying the newly
obtained input-output pairs B(ef ) to the old inputs X , and the sec-
ond comes from applying the old input-output pairs A(ef ) to the
new inputs Y .

Given a finite set Q0 of input symbolic heaps to main,4 the RHS
algorithm iteratively generates the below sequence {(Ak, Bk)}k

A0(n)
def
= if (n = main) then {(q, q) | q ∈ Q0} else {}

B0(n)
def
= A0(n) (Ak+1, Bk+1)

def
= K(Ak, Bk),

until it finds an index k with k > 0 and Bk = ∅; Ak with the first
such index k is the result of RHS.

The correctness of RHS comes from the fact that it computes
a post-fix point of the following function Ks for a standard but
inefficient interprocedural analysis:

Ks : A→ A
Ks(A)(sf )

def
= A(sf )∪ {(q0, q0) | m∈CallSite(f)∧ (q, q0)∈A(m)}

Ks(A)(n)
def
= A(n) ∪

S
(m,n)∈E !L(m)"s

A(A(m))

where !a"s is defined below:

!a"s
AX

def
= {(q, q1) | (q, q0)∈X ∧ q1 ∈ [[a]](q0)} (when a !≡ f())

!f()"s
AX

def
= {(q, q1) | (q, q0)∈X ∧ (q0, q1)∈A(ef )}.

4 In our experiments, we used the singleton set {emp} for Q0.
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NO JOIN JOIN
Program NE PE NE PE
onelist create.c 3 3 2 1
twolist create.c 9 9 4 1
firewire create.c 3969 3087 37 1

Table 1. Creation routines. Reports the number of states in the
postcondition with join turned on and turned off, and the base
list predicates chosen to be either nonempty ls only (NE), or both
nonempty and possibly empty ls (PE).

THEOREM 1. The result A of RHS satisfies: γ(Ks(A)) ⊆ γ(A)
and γ(A0) ⊆ γ(A).

3. Join
We now consider the first of our optimizations, the join operator.
We begin this section with an example that illustrates and motivates
our operator, then move on to the formal definition of the operator
itself, and finally show how it can be integrated with the RHS
algorithm, thus updating the analysis described in the previous
section.

3.1 Illustration and Intuition
A join operator takes two symbolic states in a program analysis and
attempts to find a common generalization.

Recall the program onelist create from Section 2.2. It non-
deterministically creates an infinite collection of linked lists, which
the analysis algorithm overapproximates with the three assertions

ls NE x nil ∨ x '→ nil ∨ (x = nil ∧ emp)

Now, if you look at the first two disjuncts there is evident redun-
dancy: If you know that either x points to nil or a nonempty linked
list, then that is the same as knowing you have a nonempty linked
list. So, our join replaces the first two disjuncts with just the list
segment formula, giving us

ls NE x nil ∨ (x = nil ∧ emp)

It is possible to take yet a further step, using the notion of a possibly
empty list segment. If you know that either you have a nonempty
list, or that x = nil ∧ emp, then that is the same as having

ls PE x nil

and our join operator produces this formula from the previous two.
Thus, using join we have gone from a position where we have

three disjuncts in our postcondition, to where we have only one.
The saving that this possibly gives us is substantial, especially
for more complicated programs or more complicated data struc-
tures. Table 1 gives an indication. onelist create.c in the
table is the C program that corresponds to the already referred
onelist create, and twolist create.c is a similar C pro-
gram that creates two disjoint linked lists. firewire create.c is
the environment code we use in the analysis of the 1394 firewire
driver: it creates five cyclic linked lists, which share a common
header node, with head pointers in some of the lists, and nested
sublists.

There are two points to note about the table. The first is just the
great saving, in number of states, given by join (e.g., from 3087
down to 1). This is particularly important with environment code,
like firewire create.c, which is run as a harness to generate
heaps on which driver routines will subsequently be run. The sec-
ond is the distinction between NE and PE. In the table we keep track
of two versions of our analysis, one where ls NE is the only list pred-
icate used by the analysis, and another where we use both ls NE and

ls PE. Having both PE and NE gives significant further reduction; we
will return to this point in Section 5.

This illustration shows some of the aspects of our join operator,
but not all. In the illustration join worked perfectly, never losing any
information, but this is not always the case. Part of the intuition is
that you generalize points-to facts by list segments when you can.
So, considering

y '→ nil ∗ (ls NE x nil) ∨ (ls NE y nil) ∗ x '→ nil

our join will produce

(ls NE y nil) ∗ (ls NE x nil).

This formula is less precise than the disjunction, in that it loses the
information that one or the other of the lists pointed to by x and y
has length precisely 1. (Fortunately, it is unusual for programs to
rely on this sort of disjunctive information.)

We have tried to keep the intuitive description simple, but the
truth is that the join must deal with disequalities, equalities, and
generalization of “nothing” by ls PE in ways that are nontrivial. It
also must deal with the existential (primed) variables specially. In
the end, for instance, when our join is given

q0
def
= x!=y ∧ x′ !=y ∧ (ls NE x x′ ∗ y '→x′) and

q1
def
= x!=y ∧ z′ !=y ∧ (x '→ z′ ∗ ls NE y z′ ∗ ls NE z′ y′),

it will produce

x!=y ∧ ls NE x v′ ∗ ls NE y v′ ∗ ls PE v′ w′.

Now we turn to the formal definition.

3.2 Formal Definition
We now define the (partial) binary operator pjoin on symbolic
heaps. To specify it we use a predicate pjoin sg(Σ0, Σ1, Σ), which
signifies that Σ0 and Σ1 can be joined to give Σ. Note that it
is concerned with the spatial parts of symbolic heaps only. The
definition of pjoin sg is parameterized by another ternary predicate
ε. Intuitively, ε(e0, e1, e) holds when e0, e1 are expressions from
the first and second arguments to the join and e is an expression in
the result of the join, and it means that e0, e1, e are considered the
same during the application of the join operator. For instance, given
two symbolic heaps

(y '→ z′ ∗ ls NE z′ y′) and (ls NE y x′)

the pjoin operator constructs (and uses)

ε = {(y, y, y), (z′, x′, v′), (y′, x′, w′)},

which describes that the primed variables z′, y′ in the first symbolic
heap correspond to x′ in the second heap and they are renamed to
v′, w′ in the result of the join. The ε relation also says that y relates
to itself and is not renamed in the result of the join.
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Predicate pjoin sg is defined by the following rules.

PE 1 NE = NE 1 PE = PE 1 PE = PE NE 1 NE = NE

pjoin sgε(emp, emp, emp)

pjoin sgε(Σ0, Σ1, Σ)

pjoin sgε(true ∗ Σ0, true ∗ Σ1, true ∗ Σ)

ε(e0, e1, e) ε(e′0, e
′
1, e

′) k = k0 1 k1 pjoin sgε(Σ0, Σ1, Σ)

pjoin sgε(ls k0 e0 e′0 ∗ Σ0, ls k1 e1 e′1 ∗ Σ1, ls k e e′ ∗ Σ)

ε(e0, e1, e) ε(e′0, e
′
1, e

′) pjoin sgε(Σ0, Σ1, Σ)

pjoin sgε(ls k0 e0 e′0 ∗ Σ0, (e1 '→ e′1) ∗ Σ1, ls k0 e e′ ∗ Σ)

∃e1. ε(e0, e1, e) ε(e′0, e1, e
′) e1 !∈ LHS(Σ1) pjoin sgε(Σ0, Σ1, Σ)

pjoin sgε(ls k0 e0 e′0 ∗ Σ0, Σ1, ls PE e e′ ∗ Σ)

Here LHS(Σ) is a set of expressions that appear in the left hand
side of the pointsto predicate or as a first expression argument of
ls. In the above, we omitted the symmetric versions of the last two
rules. The third rule has to do with generalizing two lists, the fourth
abstracts a points-to by a list, and the last is about generalizing (or
synthesizing) possibly empty lists.

The (partial) join operator pjoin(Π0 ∧ Σ0, Π1 ∧ Σ1) first
searches for witnesses Σ, ε of

pjoinε(Σ0, Σ1, Σ)

where ε relates non-identical expressions (e0, e1, e) only when e is
a primed variable and at least one of e0 and e1 is a primed variable.5
If this search does not succeed, pjoin is undefined. Otherwise, it
returns Π ∧ Σ where Π is
^ „

{e=e′ | e=e′ has no primed vars, it occurs in Π0 and Π1}
∪ {e!=e′ | e!=e′ has no primed vars, it occurs in Π0 and Π1}

«
.

3.3 Extending RHS with Join
The extension of the RHS with pjoin changes the definition of K
in the previous section by replacing a union by join. Let Nc be the
set of control-flow-graph nodes with incoming backedges,6 which
correspond to loops of a program. If n is an exit node, or a node in
Nc, or a call node (i.e., L(n) = f()),

A′(n)
def
= pjoin‡(A(n),

[

(m,n)∈E

!L(m)"(A,B)(A(m), B(m))).

Intuitively, the effect of this is as follows. Given a new addition to a
procedure summary, join is applied to simplify the disjunctions in
the addition, and then it is applied to combine the simplified new
and the old elements in the post-part of the summary. Additionally,
join is applied before a procedure is called (before the summary
concept is considered) to reduce the number of inputs to the proce-
dure, and it is also applied at the end of while loops.

The operator pjoin‡ in the redefinition of A′(n) is an operator
on sets of symbolic heap pairs (in keeping with the types of the
operators used in RHS), defined in terms of pjoin and an auxiliary

5 In order to prevent the loss of precision, the implementation of pjoin
ensures that when ε is restricted to primed variables only, {(e0, e1) |
∃e.ε(e0, e1, e)} defines a partial isomorphism except for the following
case: if ls k x′ y′ appears in Σ0 or Σ1, x′ and y′ can relate to the same
primed variable.
6 When control flow graphs are traversed from starting nodes of procedures
by depth first traversal, we get a collection of traversing trees, together
with additional edges. Backedges are the ones that go from nodes to their
ancestors in these trees.

R1 := ∅;
while (Q1 != ∅) do

choose and remove q1 from Q1;
q := q1; Q

′
1 := Q1;

while (Q′
1 != ∅) do

choose and remove q′1 from Q′
1;

if (pjoin(q, q′1) is defined and equals q′)
then (Q1 := Q1 − {q′1}; q := q′)

od;
R1 := R1 ∪ {q}

od;
R := ∅;
while (R1 != ∅) do

choose and remove q1 from R1;
q := q1; Q

′
0 := Q0;

while (Q′
0 != ∅) do

choose and remove q′0 from Q′
0;

if (pjoin(q, q′0) is defined and equals q′)
then (Q0 := Q0 − {q′0}; q := q′)

od;
R := R ∪ {q}

od;
return (Q0 ∪R)

Figure 1. Definition of pjoin†(Q0, Q1)

operator pjoin† defined on sets of symbolic heaps. pjoin† takes two
finite sets Q0, Q1 of symbolic heaps, and abstracts Q0 ∪ Q1 by
repeatedly applying pjoin first to two elements of Q1 and then
to two elements chosen from Q0 and Q1. The precise definition
of pjoin† is given in Fig. 1. The operator pjoin‡ is defined using
pjoin†:

pjoin‡ : Pfin(SH×SH)×Pfin(SH×SH) → Pfin(SH×SH)

pjoin‡(A, B)
def
=S

q∈dom(A)∪dom(B)

`
{q}×pjoin†(rng(A, q), rng(B, q))

´

where dom(A) is {q | ∃q0. (q, q0) ∈ A} and rng(A, q) is {q0 |
(q, q0) ∈ A}.

THEOREM 2. When A is the result of RHS extended with pjoin, we
have that γ(Ks(A)) ⊆ γ(A) and γ(A0) ⊆ γ(A), where Ks is the
functional from the standard interprocedural analysis in Sec. 2.3.

4. Localization
The next optimization is localization. The basic idea is to pass only
the relevant part of each input symbolic heap q, when q is given
as an input to a procedure. For instance, when a procedure f that
disposes a linked list x is called with the symbolic heap

ls NE x nil ∗ ls NE y nil,

the localization optimization passes only ls NE x nil to f and later
combines the result emp of the procedure with the remaining
part ls NE y nil. In this way, the localization reduces the amount
of time analyzing f by passing smaller symbolic heaps, and also
helps f to compute more general summaries in A(ef ); the sum-
mary (ls NE x nil, emp) can be used also for an input abstract state
ls NE x nil ∗ z '→ nil.

Formally, we assume two operators that do the splitting and
combining of symbolic heaps:

comb : F →SH×SH→SH split : F →SH→SH×SH.

Both operators are parameterized by callee f . Given callee f , split
splits a symbolic heap q into (qf , q0) where qf is the part of q
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relevant to callee f and q0 is the remainder of q. Operator comb
does the opposite, and combines two symbolic heaps q′f and q′0
into one symbolic heap. Intuitively, split computes the relevant
portion of q by carving out all the unreachable parts of q from
variables used in f or procedures called by f . Operator comb first
renames primed variables in the two symbolic heaps, and then puts
the resulting symbolic heaps together by conjoining their Σ-parts
with ∗ and their Π-parts with ∧.

In order to incorporate localization to our analysis, we change
two places in the analysis that involve the call and return of pro-
cedures. First, we change the definition of A′ for all start nodes of
procedures:

A′(sf )
def
= A(sf ) ∪ {(q′0, q′0) | m∈CallSite(f) ∧ (q, q0)∈B(m)

∧ splitf (q0)=(q′0, q1)}.

Note that the new definition passes only the relevant part q′0 of the
symbolic heap q0 at a call site, which is often much smaller than q0

itself. Next, we change the definition of !f()" in order to put back
the split-out portions of procedure inputs:

!f()"(A,B)(X, Y )
def
=

{(q, combf (q1, q
′′
0 )) |`

(q, q0)∈X ∧ splitf (q0)= (q′0, q
′′
0 ) ∧ (q′0, q1)∈B(ef )

´

∨
`
(q, q0)∈Y ∧ splitf (q0)= (q′0, q

′′
0 ) ∧ (q′0, q1)∈A(ef )

´
}

The correctness of the new analysis comes from the fact that it
computes a post-fix point of the following function Kl:

Kl(A)(sf )
def
= A(sf )∪ {(q′0, q′0) | m∈CallSite(f) ∧ (q, q0)∈A(m)

∧ splitf (q0) = (q′0, q1)}
Kl(A)(n)

def
= A(n) ∪

S
(m,n)∈E !L(m)"l

A(A(m))

where !a"l is defined below:

!a"l
AX

def
= {(q, q1) | (q, q0)∈X ∧ q1 ∈ [[a]](q0)} (when a !≡ f())

!f()"l
AX

def
= {(q, combf (q1, q

′′
0 )) | (q, q0)∈X

∧ splitf (q0) = (q′0, q
′′
0 ) ∧ (q′0, q1)∈A(ef )}.

THEOREM 3. If A is the result of RHS extended with pjoin and
localization, then γ(Kl(A)) ⊆ γ(A) and γ(A0) ⊆ γ(A).

We make two further remarks. First, the correctness of Kl

itself can be given by slightly modifying the correctness argument
given in [10]. Next, the localization involves the so-called issue of
cutpoints [23]. When q is split into qf and q0, a primed variable
x′ appearing both in qf and q0 loses the connection. To see this,
note that x′ is implicitly existentially quantified. Initially, we have
∃x′.q and later we have ∃x′.qf and ∃x′.q0. Our implementation
considers this issue, and uses the approach proposed in [10], which
is to introduce auxiliary non-primed variables x0 during splitting
and conjoin equalities x0=x′ to the split heaps qf and q0.

5. Experiments Involving Localization and Join
We have implemented our analysis in OCaml, using the CIL com-
piler infrastructure [19].

Our target in this paper was a collection of five device drivers.
One, t1394Diag.c, is from the IEEE 1394 (firewire) driver for
Windows, and the others were for Embedded Linux. We present
our experimental results in a graded way, in an effort to show what
some of the optimizations cannot do, as well as what they can. Our
best results will be presented later, in Tables 4 and 5.

In our experiments timeout was set to 90 minutes. In practice,
when we observed the memory consumption exceeding 2GB we
would inexorably proceed to timeout: the experiments were run
on an ordinary laptop with 2GB RAM, and exceeding this caused
communication with the disk.

To begin, we sought to measure the effects of the join and lo-
calization optimizations, compared to our baseline analysis; see
Table 2. In order to get measurements for our base analysis, we
could not use an entire one of our drivers. So, we stripped out part
of t1394Diag.c. Program t1394Diag PnpRemoveDevice.c in
Table 2 is a specific dispatch routine of the 1394 driver, and the
similarly-named t1394Diag PnpRemoveDevice cut.c is a ver-
sion of this program with enough code removed to get it past our
base analysis. The LOC reported in both cases includes data struc-
ture definitions and environment code which nondeterministically
creates input heaps to run the dispatch routine (or its fragment) on.
In these cases the environment code comprised 92 LOC, and the
rest was the dispatch routine or its fragment.

In the first line of the table we can see the significant time
and space savings afforded by join, and the not insignificant time
savings of locality. Line two shows how join is enough to verify
the entire t1394Diag PnpRemoveDevice.c, while locality (on its
own) is not. However, for a larger program, cdrom.c, we find that
join on its own is not sufficient, that both locality and join are
needed.

The measurements in Table 2 were done with the option PE for
possibly empty as well as nonempty list segments, rather than NE
for nonempty only, because PE is so clearly superior. An indication
that this is the case was provided earlier, in Table 1, and we further
confirm this contention with experiments in Table 3. The difference
is so great that it is a determining factor in being able to, or not
being able to, verify one of the programs at all. An explanation for
this difference is that the join with possibly empty list segments
reduces the search space to a significantly larger degree than does
the join for nonempty lists only.

The test programs in Table 3 are the device drivers that are the
target of our main experiments. t1394Diag.c is from Windows
and the others from Embedded Linux. t1394Diag.c is the entire
driver, containing as a part the similarly-named programs in Table
2. The environment code used for the entire drivers is more com-
plex than when analyzing one routine. A driver typically contains
a collection of dispatch routines. The environment code works by
nondeterministically generating candidate heaps for input, and non-
deterministically calling the dispatch routines over and over.

Although the combination of join and locality allows us to
verify our largest example, we are still in a situation where our
analyzer fails to converge on two of our test programs, and this
brings us to our next optimization.

6. Discarding Intermediate Results
The final optimization is to remove unnecessary intermediate re-
sults. The idea is to detect when RHS completes the computation
of a procedure f and to remove all the intermediate results used to
compute the outputs of f from its given inputs.

Let proc be a function that, given a node n in the control flow
graph, returns the name of the procedure containing n. Say that a
node n is reachable from procedure f when n can be reached from
sf by following edges in G or procedure calls. Define a predicate
done that holds for a procedure f and an increment B of RHS if
and only if B(n′) is empty for all nodes n′ reachable from f .

Now, we incorporate the optimization by changing some of the
defining clauses for A of K in our analysis. We insert the discarding
clause like

A′(n)
def
= if (done(proc(n), B)) then {} else . . .

when n is not a start or exit node of a procedure. We do not discard
the analysis result at the exit node ef , because it gives the current
summary of function f , and we also keep the result at the start node
sf , because it prevents the analysis from re-analyzing the same
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No Join & No Locality Join & No Locality No Join & Locality Join & Locality
Program LOC (Sec) (Mb) (Sec) (Mb) (Sec) (Mb) (Sec) (Mb)
t1394Diag PnpRemoveDevice cut.c 973 523.17 1133.69 0.64 3.69 184.87 575.82 0.36 2.70
t1394Diag PnpRemoveDevice.c 1825 X X 2.70 9.58 X X 1.21 5.16
pci-driver.c 2532 X X 1.75 9.09 X X 0.55 4.42
cdrom.c 6218 X X X X X X 107.91 357.58

Table 2. Experimental results on localization and join. Timeout (X) set at 90mins. Experiments run on Intel Core Duo 2Ghz with 2GB
RAM. PE predicate base set. Results do not use further optimizations on intermediate states.

Non Empty Possibly Empty
Program LOC (Sec) (Mb) (Sec) (Mb)
pci-driver.c 2532 1.37 7.13 0.55 4.42
cdrom.c 6218 203.81 650.77 107.91 357.58
t1394Diag.c 10240 X X 119.40 425.16
md.c 6635 X X X X
ll rw blk.c 5469 X X X X

Table 3. Experimental results on nonempty versus possibly empty list segments. Base list predicates chosen to either be nonempty ls
only (NE), or both nonempty and possibly empty ls (PE). Timeout (X) set at 90mins. Experiments run on Intel Core Duo 2Ghz with 2GB
RAM. Results use join but do not use further optimizations on intermediate states.

inputs. Formally, we change K as follows:

A′(sf )
def
= A(sf )∪ {(q0, q0) | m∈CallSite(f)∧ (q, q0)∈B(m)}

A′(ef )
def
= pjoin‡(A(ef ),

F
(m,ef )∈E !L(m)"A,B(A(m), B(m)))

A′(n)
def
= if done(proc(n), B) then {}

else pjoin‡(A(n),
F

(m,n)∈E !L(m)"A,B(A(m), B(m)))
(when n is a node in Nc or a call node)

A′(n)
def
= if done(proc(n), B) then {}

else A(n) 1
F

(m,n)∈E !L(m)"A,B(A(m), B(m))
(otherwise)

7. Experiments on Keeping and Discarding
We then re-ran our analysis on the drivers, with the setting of PE
for possibly empty and nonempty lists and with the join and locality
optimizations turned on; see Table 4. With the further optimization
of discarding intermediate states, we were finally able to verify all
of our drivers.

These verifications establish that programs do not dereference
null or a dangling pointer, and that there are no memory leaks. In
order to verify these properties, we had to fix bugs in the drivers,
discovered in the course of analyzing them. We approached this
in a stop-first way. If our analyzer encountered a memory safety
or leak error, it would stop immediately. A potential memory leak
is indicated if some points-to or ls predicates cannot be reached
from program variables.7 A potential safety violation is indicated
when a statement that dereferences or disposes e is run in a state
where rearrangement is not able to reveal a points-to involving e.
We would then fix the (potential) bug and run the analyzer again.
This stop-first approach would not be desirable in a bug-catching
application of program analysis, where one would like to return a
list of the errors in a piece of code. For our aim of verification, it is
more appropriate, and in any case sufficed for our experiments.

Our claim that the optimizations in our analysis do not lead to
an unacceptable loss of precision is supported by the successful
verifications of the fixed drivers. Also, the bugs that we fixed along
the way were all genuine ones for the programs that were input to

7 To do this reachability check, the analyzer views ls k e e′ and e "→ e′ as
edges from e to e′.

our analysis; in that sense, and in the sense of verification of the
final programs, we found that our analyzer did not lead to false
alarms.

Of course, these remarks should be understood in context. The
bugs that we found were for the code with our environment model
(a nondeterministic creation routine). That does not imply that
the bugs would show up in the normal execution setting of the
drivers, i.e., the Windows or Embedded Linux kernels. As with
tools such as SLAM, determining whether or to what extent an
environment model is suitably faithful to an OS kernel’s view of
the data structures is highly nontrivial.

We also remark that we have not solved the problem of ana-
lyzing arrays (indices as well as their contents) and pointer arith-
metic in this paper. The analyzer assumes that all array accesses
and heap accesses via pointer arithmetic are safe. Thus, the “ver-
ification” done by our analysis is relative, to the validity of this
assumption in a given program. (That is why we have spoken, e.g.,
of integrity of pointer manipulation, rather than the more blanket
“memory safety”.) We decide to make this assumption in our anal-
ysis because designing a precise, scalable analyzer for arrays and
pointer arithmetic is an open question, and it is more sensible not
to try to solve several challenging problems at the same time.

We performed one final experiment. Given the timeout observed
for md.c and ll rw blk.c when states were not discarded, we
wondered whether the analysis would terminate on those programs
if we gave it more RAM. So, we re-ran those experiments on a
(different) machine with more RAM; see Table 5. We were indeed
able to observe convergence without discarding intermediate states,
but the RAM required went beyond 2GB, which would have caused
swapping between RAM and disk on our other experiments. In any
case, the programs in Table 5 are at the edge of what our analysis
can handle, when running on an ordinary laptop.

That our analyzer has more trouble with the smaller programs in
Table 5 is not inconsistent. Like the firewire driver, those programs
use several linked lists, together with nested lists. A difference is
that the nesting is sometimes of a cyclic list. More importantly,
though, md.c and ll rw blk.c use additional fields, that are not
themselves used to tie up linked lists, in a way that makes it more
difficult for our join operator to generalize.

A typical case is a field that always points either to nil or
to a pointer that itself points immediately to nil: that is, a list
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segment of length zero or one, and no longer. We could, soundly,
generalize this with the ls PE predicate, but that would lead to a
loss of precision that leads to false alarms when analyzing these
drivers. What our analysis does instead is maintain this zero-or-
one information precisely, and this introduces case distinctions
which increase the number of abstract states generated. It might
be possible to formulate a more powerful, but not too imprecise,
join operator by considering a single predicate for list segments of
length zero or one; that could possibly lead to a speedup in the
analysis of these programs.

More importantly, though, these remarks just serve to underline
our earlier remark that designing a good join is a balancing act,
where experimentation is crucial. A possible direction for future
work is to have methods for refining or adapting a join operator, by
analogy with counterexample-guided abstraction refinement, and
adaptive methods for shape analysis [16, 3, 27, 12].

8. Related Work
The field of shape analysis, and more generally of heap verification,
has seen rapid growth in recent years. In this section we confine our
comments to related analyses, excluding verification methods that
require user-supplied loop invariants or procedure specifications.

There are two outstanding problems in the area of shape anal-
ysis. One concerns how one might best describe the states of an
analysis. Many techniques are being proposed relevant to this ques-
tion (e.g., [26, 1, 14, 21, 9, 15, 6, 28, 11]). As well as precision and
expressiveness, this question concerns the effort a programmer or
analysis designer would need to put in to press a shape analysis
into service, and there have been works that seek to reduce this ef-
fort by adapting the analysis to the structures found in a program
[16, 3, 27, 12].

The second problem is scalability. Shape analyses are expen-
sive, and this is the principal impediment to them being used “for
real”, for verification of substantial software. There has been com-
paratively little work on this second problem. The analysis in [13]
has been applied to non-trivial code, but the abstract domain there
is rather imprecise and not well suited to verification; it could not
be used to verify memory safety of the device drivers that we con-
sider. [15] considers the question of efficiency of transfer functions
in 3-valued analyses. The abstract domain we consider here already
has efficient transfer functions because it is based on [9], which
leverages the local reasoning idea of [20]. The question we address
concerns the efficiency of an overall analysis, rather than individ-
ual transfer functions, and limiting the number of abstract states
tracked by the analysis is crucial for this.

On this note, [17] presents a novel abstract domain which cuts
down on the number of abstract states, in a different way from that
here. The largest example reported in [17] comprises 278 LOC,
(also from the IEEE 1394 driver and thus not yet approaching
the experiments achieved here). However, the savings compared
to their base analysis are significant, and the abstract domain in-
triguing; it will be interesting to see if the ideas can help with more
substantial programs.

Another way to increase performance is to use a slicer, that re-
moves shape-irrelevant statements from a program [12]. In case
there are many such irrelevant statements, this can make a signif-
icant difference. In this paper, we are concerned with the problem
of how to limit the number of states that need to be considered, for
the relevant statements. In our most advanced examples, it seems
difficult to soundly slice away much of the code. But, it would cer-
tainly make sense to use slicing and state-space reduction methods,
together.

In our experiments we fixed our abstract domain, in order to
separate out scalability from the first of the open problems men-
tioned above. The domain is a variant of the one in [3]. It deals

with composite, possibly nested, variations on liked lists, but does
not deal with trees and other non-linear structures. We expect that
the improvements in this paper do not depend wholly on the partic-
ular abstract domain, that analogous results could be obtained for
other domains. We warn, though, about the non-orthogonal nature
of the question of what is a good join and the question of what base
predicates (or summary nodes) an analysis uses, as we illustrated
in Tables 1 and 3.

The general lines of our attack exploit two existing general
ideas, join and local reasoning. In the case of shape analyses,
several join operators have been proposed in the literature [18, 14,
7]. Our join is related to these, but its detailed formulation was
also driven by the problem of verifying device driver programs,
and this problem caused many variations to be tried. A difference
with these other works is the way that we distinguished possibly
empty and nonempty lists; this choice was determined by pragmatic
considerations, and turned out to be performance-critical. We refer
again to the gains illustrated in numbers of states (Table 1) and the
time and space speedups in our other experiments. The previous
join operators in shape analysis have not reported gains comparable
to those here.

This being said, neither we nor the referenced works can claim
to have found the ultimate join for shape domains. Further work is
needed to better understand the tradeoffs involved.

The local reasoning idea stems from work surrounding the
frame rule in separation logic [20]. We are not the first to ex-
ploit this idea in automatic verification. [4] uses localization to
obtain efficient transfer functions for primitive operations in an
abstract domain based on separation logic, and [17] uses the idea
in a graph-based analysis. [23] and [10] use the idea in interpro-
cedural analysis, with [23] contributing a key heuristic based on
reachability. In common with these works our results suggest that
the local reasoning idea can help with scalability. But, as we men-
tioned in the introduction, an additional contribution of this paper
is the identification of limits to its positive effect, as is evident from
Table 2.

The RHS algorithm was previously used to very good effect
in SLAM. We are not aware of published modifications to RHS
for join and for discarding intermediate states. In implementation,
our modifications required a significantly different treatment of the
working set, for which care is required, and which motivated our
alternate formulation.

9. Conclusions
Scalability is a central problem in shape analysis, critical to its po-
tential wider use in verification of real-world code. The main con-
tribution of this paper is the demonstration that it is possible to
scale a shape analysis in a way that leads to an order of magnitude
increase in the size of program it can handle (holding the com-
plexity of the data structures constant). This involved a mixture of
reuse of existing ideas (materialization and abstraction, RHS, local
reasoning, a shape domain for composite structures), several op-
timizations to RHS (supported by an alternate formulation), and,
most importantly, a new join operator that greatly reduces the state
space of the analysis. The crucial part of our contribution is our ex-
perimental validation involving verification of five device drivers.

No previous shape analysis has reported experimental results
approaching our verification of the safety of pointer manipulation
in several entire device drivers in the thousands LOC, including
one of 10,000 LOC. The closest related results are those of [7, 3].
[7] analyzed the Linux scull driver, which has 879 LOC, and the
analysis was done with manually given preconditions rather than
nondeterministic environment code as here. [3] analyzed several
1394 driver routines of around 700 LOC, with environment code
included. It timed out on a routine of 1800 LOC when run with
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Keep Discard Bugs Found
Program LOC (Sec) (Mb) (Sec) (Mb) Leaks Safety
pci-driver.c 2532 0.55 4.42 0.75 3.19 0 0
cdrom.c 6218 107.91 357.58 91.45 84.79 0 2
t1394Diag.c 10240 119.40 425.16 137.78 73.24 33 10
md.c 6635 X X 1819.53 1010.81 6 5
ll rw blk.c 5469 X X 947.20 511.43 3 1

Table 4. Keep vs Discard run on Intel Core Duo 2Ghz with 2GB.

Keep Discard
Program LOC (Sec) (Mb) (Sec) (Mb)
md.c 6635 2491.90 3146.47 2022.83 1027.52
ll rw blk.c 5469 1594.86 2257.80 1007.38 500.12

Table 5. Keep vs Discard on a Dual-Core Opteron 2.2Ghz with 4GB.

environment code, and terminated when the routine was supplied
with a particular precondition.

In addition to being able to verify larger pieces of code than
before, we observed significant time and space reductions on code
that could be analyzed before. On our starting program (Table 2)
we saw a reduction in running time from 523sec to 0.36sec and
space reduction from >1GB to 5MB. (Even with these reductions,
our most difficult example, md.c, still requires >1GB in space.)

As we mentioned above, many interesting techniques are being
advanced in the field of shape analysis, and more generally in
heap verification, and we hope that other ideas can lead to further
improvements in scalability. In particular, a better understanding of
the tradeoffs surrounding join operators for shape domains might
lead to better control over the space requirements of these analyses.
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