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Abstract
Mentions of new concepts appear regularly in texts and require auto-
mated approaches to harvest and place them into Knowledge Bases
(KB), e.g., ontologies and taxonomies. Existing datasets suffer from
three issues, (i) mostly assuming that a new concept is pre-discovered
and cannot support out-of-KB mention discovery; (ii) only using the
concept label as the input along with the KB and thus lacking the
contexts of a concept label; and (iii) mostly focusing on concept place-
ment w.r.t a taxonomy of atomic concepts, instead of complex con-
cepts, i.e., with logical operators. To address these issues, we propose a
new benchmark, adapting MedMentions dataset (PubMed abstracts)
with SNOMED CT versions in 2014 and 2017 under the Diseases sub-
category and the broader categories of Clinical finding, Procedure,
and Pharmaceutical / biologic product. We provide usage on the eval-
uation with the dataset for out-of-KB mention discovery and concept
placement, adapting recent Large Language Model based methods.1
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• Computing methodologies → Ontology engineering; Lan-
guage resources.
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1 INTRODUCTION
Identifying new concepts and placing them into Knowledge Bases
(KBs, e.g., ontologies and taxonomies) from texts such as a vast
amount of publications is a key application of KB construction and
AI for scientific discovery [13]. Emerging concepts are particularly
common in the biomedical domain and KB can easily be outdated.
For example, new variants of SARS-CoV-2 have kept emerging
since 2020; “Curry-Jones syndrome” was not added to SNOMED
CT ontology [8] until 2017.

Existing datasets on using texts to enrich ontologies are rele-
vant to several tasks, but each of them only reflects a part of the
whole picture. In Taxonomy Completion [20, 29], a pre-specified
out-of-KB (a.k.a. NIL) concept is used to enrich a taxonomy. In On-
tology Extension [11], this is extended into description logic based
ontologies, which include complex concepts which can be consid-
ered [6, 15] but not yet for the existing datasets [11]. In Concept
Post-coordination [5, 22], an out-of-KB concept is defined with sev-
eral existing concepts and attributes, i.e., placed under a complex
concept. Datasets from all the three tasks above assume that the
input concept term is already specified and non-contextual (e.g.,
without contexts in a corpus), which does not reflect the real-world
situation. In Out-of-KB Mention and Entity Discovery [7, 16, 17],
out-of-KB mentions and their clustering are discovered from texts,
but their placement in KBs has not been fully investigated.

In this study, we propose a new benchmark for new entity discov-
ery and placement, supporting two sequential tasks: (i) Out-of-KB
Mention and Entity Discovery: identifying newmentions of concepts
from texts which are not included in a KB; (ii) Concept Placement:
given a new entity expressed as a mention in the text, placing it
into a KB, either an ontology with complex concepts or a taxonomy
with only atomic concepts. Our new dataset and task setting are
different from previous work in terms of the characteristics below:

• Out-of-KB or NIL discovery: inclusion of out-of-KB mentions
from texts to support their concept discovery and placement.

• Contextual terms: inclusion of contexts for mentions, distinct
from only using concept labels as in the previous work.

• Complex concepts: placement of concepts under logic-
equipped complex concepts, instead of atomic concepts alone.

More specifically, the study uses a SNOMED CT subset as the
ontology, and the time difference of two versions (in 2014 and 2017)
to synthesise new entities, then uses MedMentions Entity Linking
dataset [25] (from PubMed abstracts to UMLS) to construct in-KB
and out-of-KB mentions. The study further introduces the usage
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Table 1: Comparison of relevant datasets and tasks on KB (e.g., ontology and taxonomy) enrichment from texts. NIL Discovery
denotes whether the task can support discovering out-of-KB mentions (cf. in-KB mentions). Contextual Term denotes whether
the input term has a context window in a text corpus. Concept Placement denotes whether the task finally places (or can be used
to place) the term in the KB. Complex Concepts denote whether the placement position in the KB includes complex concepts.
The asterisk (*) denotes that only data construction scripts are available instead of the dataset itself.

Datasets (with public access link in citations) Task NIL Discovery Contextual Term Concept Placement Complex Concepts
MAG , WordNet [20, 29, 34]; OSConcepts,
DroneTaxo, MeSH, SemEval [31, 33]

Taxonomy Comple-
tion

No No Yes No

ChEBI500, ChEBI+500 [11] Ontology Extension No No Yes No
SNOMED CT (English, manual, small-scale)
[22]; SNOMED CT (Spanish, automated) [5]∗

Concept Post-
coordination

No No Yes Yes

NILK [17]; ShARe/CLEF 2013 [30]; CLEF HIPE
2020 [10]; EDIN [21]; NEEL 2015-2016 [26, 28]

Out-of-KB Mention
and Entity Discovery

Yes Yes No No

MedMentions-SNOMED-CT-14 (-CPP, -
Disease) [this work]

Concept Discovery
and Placement

Yes Yes Yes Yes

of the data with evaluation for out-of-KB mention discovery and
concept placement. We provide benchmarking results adapting rule-
based and BERT-based Entity Linking [7, 32] and prompting with
GPT-3.5-turbo. Results show that the dataset well differentiates the
performance between rule-based and BERT-based methods, and
the Pre-trained and Large Language Model (LLM) based methods
are still yet to achieve satisfying results.

2 RELATEDWORK
The representative datasets are summarised in Table 1 based on
the four tasks introduced in Section 1. We only list the public and
accessible datasets. We next discuss the related work of each task.
Taxonomy Completion and Ontology Extension. Studies in
taxonomy completion [20, 29, 31, 33, 34] and ontology extension
[11] aim to enrich KB using the concept labels and the concept
graph structure. However, the studies usually assume that the new
term (or concept label) is pre-discovered, which is not the case in
the real-world scenario, where newmentions of concepts need to be
discovered from corpora. Also, from the perspectives of OWL (Web
Ontology Language) [2, 12], most of these studies focus only on
atomic concepts and do not place the new concept under a complex
concept, e.g., with existential restrictions used in SNOMED CT (e.g.,
[24] focuses on placement under only atomic concepts in SNOMED
CT). Also, datasets in both tasks use concept terms as input and do
not consider contexts.
Concept Post-coordination. The studies aim to place a new con-
cept by describing it with existing concepts and attributes in the
ontology [5, 22]. Dataset construction steps in both works [5, 22]
assume that the new concepts or terms are pre-discovered and
without context windows from a corpus.
Out-of-KB Mention and Entity Discovery. The studies aim
to discover new mentions from texts, w.r.t. to a KB [7, 30] and
group them into entity clusters [17, 18, 21, 27]. There is a growth of
datasets in this area recently, constructed throughManual Labelling,
KB pruning, and/or KB versioning [7]. The studies, however, do
not place the newly discovered entities into a KB.

In this work, we present dataset construction for Concept Dis-
covery and Placement to support a comprehensive set of character-
istics (Table 1), with usage for benchmarking, e.g., with Pre-trained
and Large Language Models.

3 PROBLEM DEFINITION
The task of Concept Discovery and Placement inputs contextual,
in-KB and out-of-KB mentions in a corpus and a KB (more for-
mally as an OWL ontology [2, 12]) and outputs an enriched KB
where each out-of-KB mention is inserted into a directed edge, i.e.,
< parent, child >, of the KB, when the out-of-KB mention is
the child of the parent and the parent of the child. The child is
considered NULL when the mention corresponds to a leaf concept.
The parent can be a complex concept.

Several key definitions are as follows. Formally, anOWL ontology
is a Description Logic KB that contains a set of axioms [2, 12]. We
focus on the TBox (or the terminology part) in an ontology, which
mainly consists of General Concept Inclusion axioms of the form
𝐴 ⊑ 𝐵, where 𝐴 (and 𝐵) are either atomic or complex concepts [1].
A TBox can be reduced to a taxonomy (or a subsumption hierarchy)
after the classification process [1]. Borrowing the definition of tax-
onomy in [19, 29], we use a simple definition of ontology as a set
of concepts and directed edges, where both can be atomic or com-
plex. Directed Edges are edges in an ontology (or a taxonomy [31])
which contain a direct parent and a direct child. Complex edges are
edges which have a complex concept as the parent2. Complex con-
cepts mean concepts that involve at least one logical operators, e.g.,
negation (¬), conjunction (⊓), disjunction (⊔), existential restriction
(∃𝑟 .𝐶), universal restriction (∀𝑟 .𝐶), etc. [1].3

An ideal dataset for Concept Discovery and Placement requires a
real-world text corpus and a large OWL ontology (reducible to a
taxonomy), with gold-standard directed edges (possibly complex)
for each out-of-KB concept linked to the mentions in the corpus.

4 DATASET CONSTRUCTION
Step 0: KB and Subset Selection. We consider SNOMED CT
[8], one of the most important OWL ontology in the biomedical
domain, and choose a subset by selected categories of concepts. We
focus on the second level category, Disease (disorder) and the first
level categories, Clinical finding, Pharmaceutical / biologic product,
and Procedure, abbreviated to CPP as the initials of the categories.

2It is not likely to have complex concepts as direct (asserted) children in an ontology.
3The ontology language OWL [12], based on Description Logic, has expressiveness
beyond RDF [2]; an example complex concept as a parent concept is 𝐴𝑟𝑡ℎ𝑟𝑖𝑡𝑖𝑠 ⊑
𝐴𝑟𝑡ℎ𝑟𝑜𝑝𝑎𝑡ℎ𝑦 ⊓ ∃ℎ𝑎𝑠𝑀𝑜𝑟𝑝ℎ𝑜𝑙𝑜𝑔𝑦.𝐼𝑛𝑓 𝑙𝑎𝑚𝑚𝑎𝑡𝑜𝑟𝑦 [15].
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Full, Newer KB	/ Older KB
(e.g., SNOMED CT, after 

axiom transformation)

Subset, Newer KB	/ Older KB
(e.g., a subset of SNOMED CT, 

by categories) 

Step 0: KB and Subset Selection

Step 2: Edge Extraction for In-KB and Out-of-KB Entities

Out-of-KB 
Entity Newer KB	& Older KB

In-KB Entity 
Older KB

Directed Edges, each as
<Parent, Child> ∈ Older KB

Step 3: Mention-to-Edge Data Creation with Sources of Entity Linking and Alignment

Entity ∈ Older KB, 
or NIL Entity

Directed Edges, each as 
<Parent, Child> ∈ Older KB

Entity ∈ KB! Entity ∈	Newer KBContextual Term
(ctxt" 	mention	ctxt# )

Time𝑡$𝑡%𝑡&

Newer KBIn-KB entities ∈	Older KB

𝑡'

Out-of-KB Entities
∉ Older KB, 
∈ Newer KB

Step 1: KB Versioning to Synthesize Out-of-KB Entities

Entity Linking Alignment (if KB! ≠ Newer KB)

Figure 1: Data construction pipeline: KB and Subset Selection, KB Versioning, Edge Extraction, andMention-Edge Data Creation.

CPP categories have the most important types of complex edges
for placement (or post-coordination), according to Kate [22].

The subset selection has two steps: (i) transforming equivalence
axioms into subsumption axioms by outermost conjunctions, e.g.,
from 𝐴 ≡ 𝐶1 ⊓ ∃𝑅.(𝐶2 ⊓𝐶3) to 𝐴 ⊑ 𝐶1 and 𝐴 ⊑ ∃𝑅.(𝐶2 ⊓𝐶3); (ii)
pruning the ontology to only keep the selected categories.4

The implementation is as follows. First, we transform SNOMED
CT files5 into OWL format with snomed-owl-toolkit6. Then, step
(i) is implemented through ontology processing with DeepOnto7
[14]; and step (ii) through Protégé8 to remove the other categories.

Step 1: KBVersioning. We follow a KB versioning strategy [7, 17]
to synthesise out-of-KB entities for the older KB. The concept gap
between the two versions of SNOMED CT subsets (ver 20140901
and 20170301) is considered. The numbers of concepts in the older
and the newer sub-KB are 64,900 and 72,595, resp., for the Disease
sub-category and are 175,895 and 188,988, resp., for CPP categories.

Step 2: Edge Extraction. We extract the directed edges in the
older sub-KB for both in-KB and out-of-KB entities. For in-KB
entities, this is achieved by querying all the direct parents and
children in the older KB. For out-of-KB entities, this is achieved by
querying all the most direct, in-KB (older KB) parents and children
from the newer sub-KB, given that edges for the out-of-KB entities
are not available in the older KB. If the entity is a leaf node, we
set the direct child as NULL, as in Zhang et al. [34]. The querying
process is based on ontology processing module in DeepOnto [14].

Step 3: Mention-Edge Data Creation. A corpus with mentions
linked to entities in SNOMED CT is needed to synthesise contextual
mentions and gold-standard edges. Following Dong et al. [7], we
use MedMentions9 [25], containing around 5,000 biomedical paper
abstracts in PubMed10 where the mentions were manually and

4Given that many subsumption relations are in fact described as equivalence axioms
with conjunction with concepts from to-be-removed categories, simply using step (ii)
without step (i) will result in many broken hierarchies instead of a connected one.
5https://www.nlm.nih.gov/healthit/snomedct/archive.html
6https://github.com/IHTSDO/snomed-owl-toolkit
7https://github.com/KRR-Oxford/DeepOnto
8http://protegeproject.github.io/protege/
9https://github.com/chanzuckerberg/MedMentions
10https://pubmed.ncbi.nlm.nih.gov/

exhaustively linked to UMLS [4] (version 2017AA)11. We leverage
the alignment of entities in UMLS to obtain SNOMED CT entities
(ver 20170301)12. Using the output from the previous steps, we can
then map each in-KB and out-of-KB mention to edges13 in the older
sub-KB (SNOMED CT ver 20140901).

We thus create mention-to-edge datasets with the information
for each mention, each rendered in a JSON format. The information
includes the left and the right contexts of the mention (ctxt𝑙 and
ctxt𝑟 ), the mention or concept itself and its SNOMED CT ID, the
parent and child in the older SNOMED CT ID (and with expres-
sion for complex concepts) and their labels.14 We use DeepOnto’s
verbaliser [14, 15] to form labels of the complex concepts.

Regarding data splitting for the benchmark, for out-of-KB men-
tion and concept discovery, the dataset follows the original splits of
training, validation, and testing sets from MedMentions; for con-
cept placement, the setting is unsupervised for out-of-KB mentions,
i.e., training (and validating) with in-KB mentions but testing on
out-of-KB mentions (and in-KB mentions)

We provide two formats of the data, mention-level, with edges
grouped for each mention; and mention-edge-pair-level, where each
mention-edge pair occupies a row and mentions are repeated if
there are multiple edges. Statistics of the datasets are in Table 2.

5 DATA USAGE FOR BENCHMARKING
5.1 Evaluation with the Data
Metrics for Out-of-KB Mention Discovery The dataset sup-
ports the metrics in [7], including overall accuracy for all in-KB
and out-of-KB mentions (𝐴); out-of-KB precision (𝑃𝑜 ), recall (𝑅𝑜 ),
and 𝐹1 score (𝐹1𝑜 ) to measure how well out-of-KB mentions are
detected; and in-KB precision (𝑃𝑖𝑛), recall (𝑅𝑖𝑛 , and 𝐹1 score (𝐹1𝑖𝑛 ).

11There are also other datasets available, e.g. COMETA [3], which directly links men-
tions in social media posts on Reddit to SNOMED CT. Still, we consider scientific
publications a more reliable source and leave social media for a future study.
12If mention of one UMLS entity matches multiple SNOMED CT entities, we create a
mention row in the data for each SNOMED CT entity.
13We also filtered the edges to one-hop (including leaf concept to NULL) and two-hop
from any paths in the ontology.
14The keys in the JSON format are available in https://github.com/KRR-Oxford/OET.
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Table 2: Statistics for datasets for Concept Discovery and Placement, for SNOMED CT (ver 20140901, “S14”) under different
categories: “Disease” and “CPP”, i.e., Clinical finding, Procedure, and Pharmaceutical / biologic product. A mention-edge pair
denotes a mention (in a corpus) and one of its directed edges in the KB. Mentions are from the MedMentions dataset (“MM”).
* The numbers of edges are those having one hop (including leaf nodes to NULL) and two hops from any paths in the ontology.

Ontology: # all (# complex) Corpus: # Mentions / # Mention-edge pairs / # Mention-edge pairs with complex edges
concepts edges* train, in-KB valid, in-KB test, in-KB out-of-KB

MM-S14-Disease 64,900 (824) 237,826 (4,997) 11,812 / 887,840 / 917 4,248 / 383,457 / 203 3,970 / 316,319 / 393 605 / 1,637 / 13
MM-S14-CPP 175,895 (2,718) 625,994 (19,401) 34,704 / 1,398,111 / 9,475 11,707 / 548,295 / 4,305 11,564 / 478,424 / 4,129 1,000 / 2,131 / 22

Table 3: Results on out-of-KB mention discovery

MM-S14-Disease A 𝑃𝑜 𝑅𝑜 𝐹1𝑜 𝑃𝑖𝑛 𝑅𝑖𝑛 𝐹1𝑖𝑛
Sieve-based 55.9 6.4 47.0 11.2 88.1 56.2 68.6
BLINKout 67.2 14.6 17.4 15.9 69.0 68.6 68.8
MM-S14-CPP A 𝑃𝑜 𝑅𝑜 𝐹1𝑜 𝑃𝑖𝑛 𝑅𝑖𝑛 𝐹1𝑖𝑛
Sieve-based 49.7 3.3 59.3 6.3 85.7 49.6 62.8
BLINKout 65.9 22.5 32.6 26.6 66.8 66.4 66.6

Table 4: Results on out-of-KB concept placement

MM-S14-Disease P / R @1 P / R @5 P / R @10 P / R @50
Edge-Bi-encoder 4.5 / 1.6 6.0 / 11.0 5.4 / 19.9 2.1 / 38.4
+GPT-3.5 4.3 / 1.6 - - -
MM-S14-CPP P / R @1 P / R @5 P / R @10 P / R @50
Edge-Bi-encoder 2.2 / 1.0 2.2 / 5.2 2.0 / 9.4 1.4 / 32.4
+GPT-3.5 2.5 / 1.2 - - -

Metrics for Concept Placement The dataset supports the met-
rics used in taxonomy completion, to evaluate the ranking of edges
for a given mention [19, 29, 34]. The metrics mainly include Pre-
cision at 𝑘 (P@𝑘), Recall at 𝑘 (R@𝑘), 𝐹1 score at 𝑘 (𝐹1@𝑘), Mean
Rank (MR), and Mean Reciprocal Rank (MRR). We report P@𝑘 and
R@𝑘 for different top-𝑘 values.

5.2 Experimenting with the Data
We experiment with the data w.r.t the two tasks using a rule-based
method and recent, LLM-based methods.

For Out-of-KB Mention Discovery Existing methods are su-
pervised, i.e., require a certain amount of NIL in the training data.
Thus, we split the “out-of-KB” mentions in Table 2 based on the
NIL mentions in the original MedMentions data split. The number
of training, validation, and testing NIL mentions are 568, 260, and
172, resp., for CPP (in total 1,000 mentions); and 329, 161, and 115,
resp., for Disease sub-categories (in total 605 mentions). For the
rule-based method, we use Sieve-based approach, which uses rules
designed for biomedical texts and predicts a mention as out-of-KB if
no in-KB entity can be linked to [9]. For the LLM-based method, we
follow BLINKout [7] to detect out-of-KB mentions from texts adapt-
ing a two-step BERT-based approach [32]: candidate generation
with bi-encoder and candidate selection with cross-encoder. Out-of-
KB mentions are discovered through NIL entity representation and
classification in the cross-encoder [7]. We used default parameters
with top-𝑘 value as 50 and domain-specific model, SapBERT [23].

Results on Out-of-KB Mention Discovery Table 3 shows that
BLINKout performs much better than the Sieve-based approach in

terms of the overall accuracy and out-of-KB 𝐹1 scores. However,
it is still challenging to achieve satisfying performance to identify
out-of-KB mentions (with out-of-KB 𝐹1 between 15% and 30%).

For Concept Placement We use the mention-edge pairs (see
Table 2) to train and validate a model to match an in-KB mention
to its gold-standard directed edges in a KB and then test on out-
of-KB mentions, following the unsupervised setting. The model
architecture includes edge candidate generation with an optional
step of edge selection. For edge candidate generation, we adapt the
bi-encoder [32], with the input of a contextual mention and an edge
(i.e., edge-bi-encoder), to match a contextual mention to a directed
edge in an ontology using their concept names15. Top-𝑘 edges
rankings are selected after this step. For an optional edge selection
among the top-𝑘 , we test the capability of zero-shot prompting
of an LLM, GPT-3.5 (“gpt-3.5-turbo”), where 𝑘 is set as 50. The
prompt includes a header, the mention with contexts, and the top-𝑘
candidate edges to query the LLM to select the correct edges16.

Results on Concept Placement Table 4 suggests that concept
placement as edge prediction is very challenging. Also, using GPT-
3.5 to select top-1 from the top-50 edge candidates does not improve,
or only improves marginally, the results with the prompts. This may
suggest the limitation of the state-of-the-art LLM interacting with
formal, domain-specific knowledge using zero-shot prompting.

6 CONCLUSION AND FUTURE STUDIES
This work introduced a new benchmark for Ontology Enrichment
from Texts by Concept Discovery and Placement. The dataset fo-
cuses on enriching OWL ontologies as formal KBs, which are re-
ducible to and thus compatible with taxonomies. Compared to
the prior art, the dataset supports a more comprehensive set of
characteristics, including NIL Discovery, Contextual Term, Con-
cept Placement, and Complex Concepts. We propose a pipeline to
construct this resource and release a dataset using MedMentions
corpus (PubMed abstracts), UMLS and SNOMED CT ontologies. We
provide usage of the data by evaluating recent LLM-based methods.

The data construction method can be applied to other KBs in the
biomedical domain and KBs in various domains.

The baseline LLM-based methods are yet to achieve satisfying
performance on the benchmark. Further methods are encouraged
to address this challenge.
Acknowledgements. This work is supported by EPSRC projects,
including ConCur (EP/V050869/1), OASIS (EP/S032347/1), UK FIRES
(EP/S019111/1); and Samsung Research UK (SRUK).
15An edge is represented as “parent tokens [P-TAG] child tokens [C-TAG]”.
16Further details, parameter settings, and prompts of the experiments are available at
https://github.com/KRR-Oxford/OET.
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