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Abstract. We investigate the task of inserting new concepts extracted
from texts into an ontology using language models. We explore an ap-
proach with three steps: edge search which is to find a set of candidate
locations to insert (i.e., subsumptions between concepts), edge forma-
tion and enrichment which leverages the ontological structure to pro-
duce and enhance the edge candidates, and edge selection which even-
tually locates the edge to be placed into. In all steps, we propose to
leverage neural methods, where we apply embedding-based methods and
contrastive learning with Pre-trained Language Models (PLMs) such as
BERT for edge search, and adapt a BERT fine-tuning-based multi-label
Edge-Cross-encoder, and Large Language Models (LLMs) such as GPT
series, FLAN-T5, and Llama 2, for edge selection. We evaluate the meth-
ods on recent datasets created using the SNOMED CT ontology and the
MedMentions entity linking benchmark. The best settings in our frame-
work use fine-tuned PLM for search and a multi-label Cross-encoder for
selection. Zero-shot prompting of LLMs is still not adequate for the task,
and we proposed explainable instruction tuning of LLMs for improved
performance. Our study shows the advantage of PLMs and highlights
the encouraging performance of LLMs that motivate future studies.
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1 Introduction

New concepts appear as they are discovered in the real world, for example, new
diseases, species, events, etc. Ontologies are inherently incomplete and require
evolution by enriching with new concepts. A main source for concepts is corpora,
e.g., new publications that contain mentions of concepts not in an ontology.

In this work, we focus on the problem of placing a new concept into an
ontology by inserting it into an edge which corresponds to a subsumption rela-
tionship between two atomic concepts, or between one atomic concept and one
complex concept constructed with logical operators like existential restriction
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(∃r.C). Distinct from previous work in taxonomy completion (e.g., [30, 33, 34]),
the task allows natural language contexts together with the mention as an in-
put and also considers logically complex concepts by Web Ontology Language
(OWL). Distinct from previous work in new entity discovery (e.g., [8]), the task
places the new entity into the ontology, a step further to their discovery from
the texts. The task is more challenging than entity linking from a mention to
a concept, considering that there are many more edges than already the large
number of concepts and axioms in an ontology (of a form much more complex
than a tree), even by limiting the edges to only those having one-hop or two-hop.

Recently, machine learning, neural network based methods, and especially
pre-trained language models (PLM), have been applied to ontology engineering
tasks. For new entity discovery tasks, typically, the entity linking or retrieval
tasks comprise two steps, the first is to search relevant entities by narrowing
down the candidates, and the second is to select the correct one. Previous studies
on entity linking and new entity discovery mostly use BERT-based fine-tuning
methods [31, 8]. We differ Large Language Models (LLMs) from PLMs by their
vast difference in scale and language generation capabilities. There is a recent
growth of studies using LLMs, e.g., for entity linking [29] and ontology matching
[14], but the experimental results are yet to be confirmed and their advantages
and drawbacks for concept placement are not clear. A more detailed investigation
is needed to compare the methods for the representation, and a framework is
needed for their comparison. In the texts below, we use LMs as a general term
for both PLMs and LLMs and use more specific terms where necessary.

For concept placement, we propose a framework that extends the two-step
process, with another edge enrichment step. After the edge search to narrow
the edge candidates to a limited number, we enrich the edges by walking in the
ontological graph by extending the parents and children to another layer. Then
this enriched set of edges is re-ranked through the edge selection part (which
can be modelled as a multi-label classification task). Using this framework, we
are able to compare different data representation methods, including traditional
inverted index, fixed embedding based similarity, contrastive learning based PLM
fine-tuning, and instruction-tuning and prompting of LLMs.

The evaluation is based on the recent datasets in [7], created by using an on-
tology versioning strategy (i.e., comparing two versions of an evolving ontology)
to synthesise new concepts and their gold edges to be placed w.r.t. the older
version of the ontology. The ontology is SNOMED CT, under Disease and CPP
(Clinical Finding, Procedure, and Pharmaceutical / biologic products) branches.

Results indicate that edge enrichment by leveraging the structure of ontology
greatly improves the performance of new concept placement. Also, among the
data representation methods, contrastive learning based PLM fine-tuning gen-
erally performed the best in all settings. The inadequate yet encouraging results
of LLMs under our experimental setting may be related to the input length re-
striction and the inherent knowledge deficiencies of LLMs for nuanced concept
relations of domain specific ontologies. Instruction-tuning, especially with au-
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tomated explainable prompts, improves over the zero-shot prompting (i.e., no
further instruction-tuning) of LLMs.

Thus, our contribution to this work is below5:

– An investigation of the new task of ontology enrichment from texts through
concept placement, by exploring the recent datasets in [7] for SNOMED CT.

– Proposing a novel three-step framework for edge search, edge formation and
enrichment, and edge selection, compatible with the LM-based methods.

– Benchmarking results the datasets, with a case study, show the top perfor-
mance of PLM fine-tuning methods and highlight the encouraging results of
LLMs to motivate future studies.

2 Related Work

2.1 Ontology Concept Placement

Ontology concept placement is a key task in ontology engineering and evolution.
It aims to automatically place or insert a new concept, in its natural language
form and potentially with contexts in a corpora, to an existing ontology. This
automated task helps to reduce the immense initial human effort to discover
and insert new concepts, as humans may not be able to review all available new
information at the rate when they are available, and the manual process while
of high quality, is of high cost and low efficiency [11, 3].

The recent study in [7] summarised the related available datasets on ontology
concept placement. Datasets for the relevant tasks include taxonomy completion,
ontology extension, post-coordination, and new mention and entity discovery.
The proposed new datasets in [7] supports a more comprehensive set of charac-
teristics, including NIL entity discovery, contextual mentions, concept placement
(under both atomic and complex concepts in ontologies). We extend the datasets
in the work [7] and use them for benchmarking in this paper.

Another relevant task is entity linking, which links a textual mention to its
concept in a Knowledge Base (KB) or an ontology [24]. Entity linking can be
extended to the case for out-of-KB mentions [8]. Ontology Concept Placement is
distinct from entity linking to a concept, which alternatively links an out-of-KB
mention to an edge (of subsumption relations) in the structure of an ontology.

2.2 Pre-trained Language Models for Ontology Concept Placement

We consider pre-trained language model as a neural, Transformer model [27] that
can be pre-trained using corpora using masked modelling or by predicting future
tokens, processing very large amounts of text [18]. A Large Language Model is a
scaled PLM to a vastly higher degree which can result in improved performance
and emergent capabilities [35].

5 Our implementation of the methods and experiments are available at
https://github.com/KRR-Oxford/LM-ontology-concept-placement.
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A relevant line of work to ontology concept placement is Knowledge Graph
Construction, where BERT is evaluated and shows promise to enhance several
relations in WikiData [28]. Other studies focus on formal KBs which are usually
expressed as OWL Ontology, e.g., by predicting the subsumption relations [4].
The work [17] predicts a wider range of inter-ontology relations (e.g., equivalence,
subsumption, meronymy, etc.) using PLMs (e.g., DistillBERT, RoBERTa, etc.).

For ontology concept placement, PLMs have also been applied. The study
[21] aims to place concepts to SNOMED CT by pre-training and fine-tuning
BERT for subsumption prediction. The study [23] uses a similar BERT-based
Bi-encoder architecture and experiments with more medical ontologies. However,
both works always place a concept as a leaf node, instead of higher levels.

Another approach utilising LLMs is through a prompting-based approach.
The idea is to formulate an ontology-related task using natural language input
that leverages the generative capability of a language model. While the recent
study [29] explored prompting-based approaches of LLMs for concept equivalence
linking, few studies have explored them for ontology concept placement.

In this paper, we propose an LM-based framework that leverages embedding,
fine-tuning, prompting, and instruction-tuning of PLMs and LLMs for ontology
concept placement. The task also considers contexts in a mention and the logi-
cally complex concepts in ontologies that are not considered in previous work.

3 Problem Statement

We use the definition of an OWL ontology, a Description Logic KB that contains
a set of axioms [12, 2]. We focus on the TBox (terminology) part of an ontology,
containing General Concept Inclusion axioms, each as A ⊑ B, where A (and B)
are atomic or complex concepts [1]. Complex concepts mean concepts that involve
at least one logical operator, e.g., negation (¬), conjunction (⊓), disjunction (⊔),
existential restriction (∃r.C), universal restriction (∀r.C), etc. [1].

An ontology O can be more simply defined as a set of concepts D (possibly
complex) and directed edges E. A directed edge contains a direct parent and a
direct child, where the parent or child can be complex concepts.6

Formally, the task is to place a new concept mention m (with surround-
ing contexts in a corpus) into edges in an ontology O so that C ⊑ m ⊑ P
for an edge < P,C > (or as P → C) that contains a parent concept P and
a child concept C. The child concept C can be NULL when the mention is
to be placed as a leaf node. Using SNOMED CT (version 1703) as an exam-
ple, a mention “Psoriatic arthritis” (in a scientific paper) is to be placed as
Psoriatic arthritis with distal interphalangeal joint involvement ⊑
Psoriatic arthritis ⊑ Psoriasis with arthropathy; and a mention “Neu-
rocognitive Impairment” is to be placed as a leaf concept (so C is NULL), and

6 We focus on the common case that only the parent can be a complex concept, as in
the explicit axioms in the SNOMED CT ontology.
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Fig. 1. An overall three-step framework for ontology concept placement with LMs.

the axioms include Neurocognitive Impairment ⊑ Cognitive disorder and
Neurocognitive Impairment ⊑ ∃RoleGroup.(∃DueTo.Disease)7.

Ontology concept placement can thus be considered matching from a textual
mention (possibly surrounded by a context window) to edges in the structure of
an ontology. Given that a concept may have more than one parent and more than
one child, it can be placed into many edges. Thus ontology concept placement
can be formulated as a multi-label learning problem [10]. The task is to learn a
mapping function f that can map the input (a textual mention possibly with
contexts) to a set of labels (here as edges in E). Typically, a multi-label learning
process can create a label ranking based on a metric score that orders the whole
set of labels [10] or an ordered set without an explicit metric (e.g., by the order
of text generation). This is distinct from the entity linking task which usually
maps the input to only a single label (as an entity or a NIL entity) [8].

4 Methodology

Extending the general ideas in information retrieval and entity linking, we pro-
pose a three-step framework for ontology concept placement, as shown in Fig-
ure 1 below. Usually, retrieving a set of correct items (e.g., edges) needs two
steps, search (or candidate generation) and selection (or candidate ranking).
The search step aims to find a set of seed concepts (to form edges) or a set of
seed edges directly. The selection step finds (and also ranks, as in multi-label
classification) the correct edges among the candidates. Considering the struc-
tural nature of the edge generation process, we add another step in between,
edge formation and enrichment, which forms seed edges from a seed concept
(optionally) and enriches seed edges to derive the full candidate edges. We em-
ploy LMs in both the search and the selection steps, and further leverage the
ontological structure for the edge formation and enrichment step.

7 This means that Neurocognitive Impairment belongs to the role group [25] or a
grouping of the characteristic that is caused by (“due to”) a disease.
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4.1 Edge Search: Searching Seed Concepts or Edges

The search step inputs a textual mention m (with a context window) and an on-
tology O, both represented using LMs. For concept search, we encode a mention
and the label of a concept using an LM with fixed parameters (or as two same
LMs sharing parameters). For edge search, we encode a mention and an edge
using two LMs with fine-tuning to align them into the same embedding space,
given the distinct types of texts (in corpora and in ontologies) between them.

Concept Search with Fixed Embeddings We search concepts by using the
nearest neighbours of LM-based embeddings, i.e., ranking using the cosine simi-
larity of the mention embedding and every concept embedding in the ontology. A
domain-specific ontology-pre-trained BERT, SapBERT [20], is used to represent
both a mention and a concept. Complex concepts, with logical operators, can be
verbalised using a rule-based verbaliser (e.g., in [16]), before their embedding.

Edge Search with Fine-tuning Edge-Bi-encoder We use two LMs to en-
code the mention and the edge separately, using the representation of the [CLS]
token in the last layer, adapting the Bi-encoder architecture [31, 8]. A mention
is represented as [CLS] ctxtl [Ms] mention [Me] ctxtr [SEP], where ctxtl
and ctxtr are the left and right contexts of the mention in the document, resp.,
and [Ms], [Me] are the special tokens placed before and after the mention. In
the setting without contexts, we set both ctxtl and ctxtr as empty strings. A
directed edge (having a direct parent and a direct child) is represented as “[CLS]
parent tokens [P-TAG] child tokens [C-TAG] [SEP]”. We use a special to-
ken [NULL] to represent the child tokens of a leaf concept in the ontology.

The training follows a contrastive loss, more specifically, a max-margin triplet
loss [22] described below, where α is a margin of small value (e.g., 0.2) and [x]+
denotes max(x, 0), for each mention to its gold edge (the i-th) in a batch, s(m, e)
is the mention-edge similarity, calculated as the dot-product of the mention
embedding and the concept embedding. The idea is to make each mention close
to one of its edges in the embedding space, but far away from the other edges
within the same batch. We use in-KB data for training and validation to form a
model and then finally validate and test on out-of-KB data.

Lmi,ei =
∑
j ̸=i

[α− s(mi, ei) + s(mi, ej)]+; s(m, e) = vm · ve (1)

4.2 Edge Formation and Enrichment

The idea of edge formation and enrichment is to leverage the ontological struc-
ture together with the LM-based embedding for candidate retrieval. The detailed
process with examples is presented in Figure 2.

Edge Formation from Seed Concepts When concept candidates are selected
from entities, for each concept A, we traverse the ontology by one hop to find
the parents P1, ..., Pn and children C1, ..., Cn of the concept, and then using the
set S =

⋃
i{Pi → A} ∪

⋃
j{A → Cj} ∪

⋃
i

⋃
j{Pi → Cj} as the candidate edge
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Fig. 2. An example of the edge formation and enrichment process using ontology struc-
ture. Edge formation transforms a seed concept into a set of edges, while edge enrich-
ment augments the set of edges one by one. For methods that directly search edges
(e.g., Edge-Bi-encoder), no edge formation is needed and only enrichment is applied.

set, which includes all one-hop edges containing A and all two-hop edges which
traverse through A (see an example in the left part of Figure 2). We further
added leaf edges, A → NULL, to S.

Edge Ranking after Edge Formation Then the edge set is ranked using
the LM-based embedding w.r.t. the mention m, as the average cosine similarity
of m to the parent and m to the child in the embedding space (see Equation 2
below). For the edge score of leaf edges (where C = NULL), we first set a rule to
deduce whether the mention is to be placed on a leaf edge by checking if the top
ranked seed concept is a leaf concept, if so, we prioritise all enriched leaf edges of
the mention with a highest edge score (i.e., better ranked than non-leaf edges).

Edge scorefixed(m,< P,C >) =
sim(m,P ) + sim(m,C)

2
,where C ̸= NULL (2)

Edge Enrichment from Seed Edges We further enrich the edges by travers-
ing one-hop upper for parents and one-hop lower for children in the ontology. For
each edge P → C, we thus first find their one-hop upper parents P+1,...,P+i and
one-hop lower children C−1,...,C−j , and enrich the set to {P → C}∪

⋃
i{P+i →

C}∪
⋃

j{P → C−j}∪
⋃

i

⋃
j{P+i → C−j}. We combine the enriched edges from

all seed edges and then remove the duplicated edges (given that some of the
enriched edges can be the same for different but similar seed edges). This covers
more related edges based on the ontological structure and LM-based similarity
and can greatly improve the recall of the edge retrieval. We also enrich a “leaf”
edge, i.e., P → NULL, when a parent P in a non-leaf edge is predicted.

Edge Ranking after Edge Enrichment The enriched edges are then
ranked with scores from different edge search methods. For the fixed embed-
ding approach, edges are ranked based on the edge score in Equation 2. For
the fine-tuned embedding (Edge-Bi-encoder) approach, edges are ranked using
the dot product scores, s(m, e) (see Equation 3 below and Equation 1) for all
edges (including both leaf and non-leaf edges) after the enrichment for the fine-
tuned embedding (Edge-Bi-encoder) approach. The top-k candidate edges are
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then retrieved from the seed edges after this process.

Edge scorefine−tuned(m,< P,C >) = s(m,< P,C >) (3)

4.3 Edge Selection

The edge selection step aims to find the correct edges to place the concept
mention from the k candidate edges. We utilise LMs based on their distinct
architectures, i.e., we fine-tune BERT-like, encoder-only PLMs for multi-label
classification, and prompts and instruction-tunes LLMs, which have a decoder,
for result generation.

Fine-tuning PLMs: Multi-label Edge-Cross-encoder We adapt an LM-
based cross-encoder in [8, 31], that encodes the interaction between sub-tokens in
the contextual mention and an edge in the top-k edges, for multi-label classifica-
tion. Specifically, for each of the k candidate edges the input is a concatenation
of the contextual mention with the edge, i.e., [CLS] ctxtl [Ms] mention [Me]

ctxtr [SEP] parent tokens [P-TAG] child tokens [C-TAG] [SEP], and the
output is a multi-label classification over all the inputs, i.e., the selection of the
correct edges from the candidates. We use a special token [NULL] to represent
the child tokens of a leaf edge. Each input is encoded with a BERT model
into a vector vcross (we use the representation of [CLS] in the last layer).

Therefore, the loss is a binary cross-entropy loss after a sigmoid activation of

the score, linearly transformed from the representation vector, s
(cross)
m,e = vcrossw,

of each input. All the inputs share the same BERT model for fine-tuning.

Zero-shot Prompting LLMs Alternatively, a recent paradigm is to prompt
LLMs to generate answers directly. We formulate a prompt to allow LLMs to
generate the indices of the options. The prompt provides contexts and all neces-
sary information including the top-k candidate edge options to allow the LLMs
to be conditioned and generate the answer. The prompt is structured as below,
which contains an input (including task description, the mention in context,
and the options of k edges) and a response headline. The sequence which is
underlined (after ### Response) is expected to be generated by the LLM.

### Input:
Can you identify the correct ontological edges for the given mention (marked with *) based
on the context? The ontological edge consists of a pair where the left concept represents
the parent of the mention, and the right concept represents the child of the mention. If the
mention is a leaf node, the right side of the edges will be NULL. If the context is not relevant
to the options, make your decision solely based on the mention itself. There may be multiple
correct options. Please answer briefly using option numbers, separated by commas. If none
of the options is correct, please answer None.

mention in context:
Our aim was to verify the occurrence of selected mutations of the EZH2 and ZFX genes
in an Italian cohort of 23 sporadic *parathyroid carcinomas*, 12 atypical and 45 typical
adenomas.

options:
0.primary malignant neoplasm → parathyroid carcinoma
1.malignant neoplastic disease → malignant tumor of parathyroid gland
2.malignant neoplastic disease → primary malignant neoplasm of parathyroid gland
...
8.primary malignant neoplasm of parathyroid gland → NULL
...
(till all the k candidates are listed)

### Response:
2,8



A Language Model based Framework for Ontology Concept Placement 9

Explainable Instruction-tuning LLMs We can observe that it would not
be straightforward for an LLM to directly figure out the edges and output the
option numbers (e.g., 2,8 in the example above). Fine-tuning with in-KB training
data would be needed. To bridge the reasoning gap between the input and the
response, we propose to add an explanation section that describes the reasoning
steps in a narrative form.

Thus, we automatically synthesise explanations by steps to solve the new
concept placement problem: (i) List all possible parents in the candidates; (ii)
Find correct parents; (iii) Narrow the list of children based on the correct parents;
(iv) Find correct children; (v) List the final answer based on the correct children.
The explanation Expl texts is a function of the k candidate edges and the gold
edges of a mention, i.e., Expl texts = Template(Ecand, Egold). The template is
below, where elements in the lists (in square brackets) are separated by comma.

### Explanation:
From the parents in the options above, including [all candidate parents], the correct par-
ents of the mention, [mention name], include [correct gold parents]. Thus the options are
narrowed down to [option numbers having correct gold parents]. From the children in the
narrowed options, including [children in the filtered options], the correct children of the
mention, [mention name], include [correct gold children in the filtered options]. Thus,
the final answers are [correct option numbers].

We place the explanation section (### Explanation) before the response
section (### Response). During training, the whole explanation is fed into the
LLM to allow it to be conditioned to generate the response. During inference,
the instruction-tuned LLM is expected to generate an explanation of the same
template structure, after the explanation section mark (### Explanation), with
a response (as a part of the explanation and also in the response section).

An issue with current LLMs is the limited text window it can support. This
long context issue however will be addressed with future LLMs. At this stage,
we test the framework with an openly available LLM, Llama 2, which supports
4,096 tokens as input, sufficient for a low or medium top-k setting as 10 or 50.

5 Experiments

5.1 Data Construction

We adapt datasets MM-S14-Disease and MM-S14-CPP from the work in [7] for
new concept placement in ontologies8. The datasets are constructed by using
two versions of SNOMED CT (2014.09 and 2017.03) with a text corpus where
mentions are linked to UMLS. Then mapping between UMLS and SNOMED
CT is also available in the UMLS. New mentions are therefore synthesised by
considering the gap between the two versions of SNOMED CT. The edges to be
inserted into the ontology for each new mention are also created, by finding the
nearest parents and children for the new mention in the old version of SNOMED
CT. The statistics of the dataset are displayed in Table 1.

8 https://zenodo.org/records/10432003
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Table 1. Statistics for datasets for Concept Placement, for SNOMED CT (ver
20140901, “S14”) under different categories: “Disease” and “CPP”, i.e., Clinical find-
ing, Procedure, and Pharmaceutical / biologic product. A mention-edge pair or link (in
L) denotes a mention (in M) and one of its directed edges in the KB. The mention-edge
pair is complex (i.e. Lcomp) when the edge involves a complex concept. Mentions are
from the MedMentions dataset (“MM”). The numbers of edges are those having one
hop (including leaf nodes to NULL) and two hops from any paths in the ontology. (Table
adapted from the study [7].)

MM-S14-Disease MM-S14-CPP
Ontology:
# all (# complex)

concepts 64,900 (824) 175,895 (2,718)
edges 237,826 (4,997) 625,994 (19,401)

Corpus:
# M / # L / # Lcomp

train, in-KB 11,812 / 887,840 / 917 34,704 / 1,398,111 / 9,475
valid, in-KB 4,248 / 383,457 / 203 11,707 / 548,295 / 4,305
valid, out-of-KB 329 / 672 / 10 568 / 979 / 13
test, out-of-KB 276 / 965 / 3 432 / 1,152 / 9

The number of edges (one-hop including leaf nodes and two-hop) is numerous,
over 3.5 times of the number of concepts. This makes the task of placement into
edges less tractable than entity linking into a concept for a mention.

We consider the unsupervised setting of concept placement common to the
real-world scenario, which means that no mention-edge pairs for out-of-KB con-
cepts are available for the training. This can, however, be approached using
in-KB self-supervised data creation: we can see from Table 1 that it is possible
to generate edges for in-KB concepts; this is simply by looking at the directed
parents and children of a concept in the current ontology (i.e., the older version
of SNOMED CT). Thus, we use in-KB data for training and validation, and
then use out-of-KB data solely for external validation and testing.

5.2 Metrics

We present new metrics for new concept placement, as insertion rate for any
edges (InRany) and for all edges (InRall) predicted for mentions. Here “any”
means that one of the gold edges is predicted for a mention, whereas “all” means
that all of the gold edges are predicted. The metrics can be defined as below in
Equation 4, where the value of 1(x) is 1 where the statement x is true, otherwise
0, and Zi and Yi are the set of predicted edges and gold labels (or edges), resp.
Also, we use the insertion rates at k (i.e., InRany@k and InRall@k) to denote
the performance after predicting the top-k edges, this measures whether the
“positive” edges are ranked before the “negative” ones. We select k as 1, 5, and
10, considering that terminologists can select from a few edges (as few as 10 or
less) suggested by a system for updating an ontology.

InRany =
1

|M |
∑

mi∈M

1(Zi ∩ Yi ̸= ∅); InRall =
1

|M |
∑

mi∈M

1(Zi ⊇ Yi) (4)

The proposed metrics can be considered a loose version (“any”) and a strict
version (“all”) of the example-based metrics [10] for multi-label learning. The
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standard multi-label learning requires a complete set of gold labels, while ontolo-
gies that follow the open-world assumption are inherently incomplete (i.e., edges
which are not in the gold standard may also be correct), thus the ranking-based
metrics, InRany@k and InRall@k, are more appropriate.

The insertion rate metrics can be used to evaluate both edge candidates and
final edge selection. We also separately evaluate the insertion rate metrics for
leaf edges (where the child edge is NULL) and non-leaf edges.

5.3 Experimental Settings and Baseline Methods

We select two representative top-k values after the edge enrichment step, k = 10
and k = 50, enriched from k

2 edges, or 5 and 25 seed edges resp., after an initial
investigation of a range of k values9. Then for each of the top-k settings, the
models select the final set of top 1, 5, and 10 edges after the edge selection step.

For edge search, the baselines include an inverted index based approach, fixed
BERT embeddings, and fine-tuned BERT embeddings with contrastive learning
(as Edge-Bi-encoder). For all methods, the sub-token length of contexts and
concepts are 32 and 128 resp. We choose SapBERT [20] as the BERT model
in edge search (fixed and fine-tuned embeddings). For the inverted index based
approach, we create an inverted index from all SNOMED CT concepts, where a
key is a sub-token from a concept and a corresponding value is all the concepts,
and we use the index of sub-tokens created using the SentencePiece tokenizer
(also used by FLAN-T5) [19]. The similarity score based on the inverted index
between a mention and a concept is then calculated as the sum of inverse doc-

ument frequency scores (simidf (m,C, T , I, |D|) =
∑

t∈T (C)∩T (m) log
|D|
|I[t]| ) of all

the common sub-tokens t that appear in both the mention m and a concept C
in the set of all concepts D, and T is the tokenizer and I is the index from a
sub-token t to the list of concepts. Then the edge score w.r.t. a mention is cal-
culated similarly to Equation 2, as the average of mention-parent similarity and
mention-child similarity score using the inverted index. For inverted index and
fixed embedding, we use the mention only without contexts, considering that
methods do not learn the relation between the concept and the natural language
context; for Edge-Bi-encoder we explored mentions with or without contexts.

We apply all baseline methods with the steps of edge formation and en-
richment. Then, for edge selection, we choose PubMedBERT [13] as the model
for fine-tuning cross-encoder-based method; we also choose GPT-3.5 (“gpt-3.5-
turbo-0613”)10, and Llama 2 [26] for the zero-shot prompting of LLMs, both
models allowing 4,096 sub-tokens as input. FLAN-T5 [5] has a limited input to-
ken length of 512, below the token usage of our prompts with the top-50 settings
(between 1,556 and 3,014 sub-tokens for the datasets for top-50), thus we only
use it for the top-10 setting. The model GPT-4 has a much higher cost, 30 folds

9 We also investigated k up to 300, while the insertion rate at k improves, the overall
results after edge selection are worse than smaller k values as 10 and 50. A larger k
also leads to a substantially longer running time for edge enrichment and selection.

10 https://platform.openai.com/docs/models/gpt-3-5
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Table 2. Results on edge search, formation and enrichment for MM-S14-Disease and
MM-S14-CPP datasets. Each setting has validation and testing results, separated by
a slash (/) sign. “lf ” and “nlf ” mean leaf and non-leaf, resp.

MM-S14-Disease k InRany InRall InRany, lf InRall, lf InRany , nlf InRall, nlf
Inverted Index 10 10.0 / 12.0 9.1 / 10.1 9.5 / 14.2 9.2 / 11.9 14.3 / 3.4 8.6 / 3.4

50 41.3 / 40.6 37.7 / 38.8 44.6 / 50.0 41.2 / 48.2 14.3 / 5.2 8.6 / 3.4
Fixed embs 10 16.1 / 13.0 7.0 / 12.3 18.0 / 16.1 7.8 / 16.0 0.0 / 1.7 0.0 / 0.0

50 35.3 / 31.9 28.3 / 30.8 38.4 / 38.1 30.6 / 37.6 8.6 / 8.6 8.6 / 5.2
Fine-tuned embs 10 31.9 / 25.7 14.6 / 8.0 28.9 / 12.4 14.6 / 8.7 57.1 / 75.9 14.3 / 5.2
(Edge-Bi-enc) 50 57.8 / 50.0 40.1 / 38.0 55.4 / 38.1 38.4 / 33.5 77.1 / 94.8 54.3 / 55.2

MM-S14-CPP k InRany InRall InRany, lf InRall, lf InRany , nlf InRall, nlf
Inverted Index 10 5.5 / 5.8 5.1 / 5.3 5.3 / 5.7 5.1 / 5.7 6.9 / 6.3 5.2 / 3.1

50 23.1 / 23.4 21.0 / 22.5 24.9 / 26.9 22.8 / 25.8 6.9 / 3.1 5.2 / 3.1
Fixed embs 10 11.3 / 8.3 8.3 / 7.4 12.4 / 9.2 9.2 / 8.7 1.7 / 3.1 0.0 / 0.0

50 28.4 / 26.9 25.9 / 25.2 30.4 / 30.2 28.8 / 29.6 10.3 / 7.8 0.0 / 0.0
Fine-tuned embs 10 32.0 / 27.8 19.7 / 14.4 31.2 / 19.3 21.4 / 16.0 39.7 / 76.6 5.2 / 4.7
(Edge-Bi-enc) 50 50.9 / 48.4 36.8 / 34.5 50.4 / 42.4 38.8 / 38.0 55.2 / 82.8 19.0 / 14.1

of the price compared to GPT-3.5, and is slower and less stable in querying, and
GPT-4 is also under updating, thus we only report results for GPT-3.5.

For LLM instruction-tuning, we use the Supervised Fine-tuning (SFT)11 with
4-bit quantisation to fine-tune the Llama-2 model; the efficient instruction-tuning
uses QLoRA, quantisation with Low Rank Adapters (LoRA) [6].

For all supervised models (fine-tuning and instruction-tuning), we use in-KB
data for training. The best models were selected by using the validation set of
the in-KB data. We then report results on the validation and the test sets for the
out-of-KB data. Note that the out-of-KB validation set is not used for parameter
tuning and is independent of model development.12

5.4 Results

We report results on the first two steps to determine the best edge search meth-
ods, followed by the overall results of the full framework, with edge selection.
The metric results in all Tables are presented as percentage scores.

Results on Edge Search, Formation and Enrichment Results are pre-
sented in Table 2. The “all” metrics are generally lower than the “any” metrics
(also for results in the other tables) as the full completion for concept placement
is more challenging than the placement into any correct edges.

It can be observed that the fine-tuned Edge-Bi-encoder achieves the best
overall results under the settings. The inverted index approach has a higher
coverage of leaf edges for Diseases (but not for the broader categories of CPP)
- this may be because the parent disease names are likely to be lexically similar
to the new mention, while for non-leaf edges, fixed and fine-tuned embedding-
based methods achieve higher performance; also, the inverted index and fixed
embeddings tend to prioritise leaf edges, based on the rule by checking whether
the top seed concept is a leaf concept.
11 https://huggingface.co/docs/trl/sft trainer
12 More details on experimental settings and time usage are in Appendix 1.
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Table 3. Overall results after edge selection for MM-S14-Disease and MM-S14-CPP
datasets. Each setting has validation and testing results, separated by a slash (/) sign.

MM-S14-Disease k InRany@1 InRall@1 InRany@5 InRall@5 InRany@10 InRall@10
Inverted Index 10 0.6 / 0.0 0.0 / 0.0 1.8 / 2.5 0.9 / 0.7 10.0 / 12.0 9.1 / 10.1

50 0.6 / 0.0 0.0 / 0.0 0.9 / 1.8 0.0 / 0.0 3.3 / 4.0 0.9 / 1.5
Fixed embs 10 4.0 / 1.4 0.9 / 0.0 6.7 / 2.2 1.5 / 0.7 16.1 / 13.0 7.0 / 12.3

50 4.0 / 1.4 0.9 / 0.0 6.7 / 2.2 1.5 / 0.7 13.4 / 4.4 3.0 / 2.5
Edge-Bi-enc 10 4.0 / 11.6 0.3 / 0.0 9.7 / 17.4 2.7 / 1.4 31.9 / 25.7 14.6 / 8.0

50 4.0 / 11.6 0.3 / 0.0 9.7 / 17.4 2.7 / 1.4 13.7 / 20.3 4.3 / 2.5
+ Edge-Cross-enc 10 0.6 / 2.2 0.0 / 0.4 12.2 / 14.1 1.5 / 3.6 31.9 / 25.7 14.6 / 8.0

50 7.3 / 7.6 1.8 / 1.5 17.9 / 15.6 7.3 / 4.7 25.8 / 26.5 10.6 / 8.7
+ GPT-3.5 10 4.0 / 4.0 0.0 / 0.0 5.5 / 4.3 2.4 / 1.4 5.5 / 4.3 2.4 / 1.4

50 3.3 / 1.5 0.0 / 0.0 4.6 / 3.6 1.5 / 0.4 4.6 / 3.6 1.5 / 0.4
+ FLAN-T5-XL 10 2.7 / 1.8 0.6 / 0.0 2.7 / 1.8 0.6 / 0.0 2.7 / 1.8 0.6 / 0.0
+ Llama-2-7B 10 2.7 / 4.3 0.3 / 0.0 5.8 / 6.2 2.1 / 0.0 8.8 / 7.2 3.3 / 1.1

50 1.8 / 3.3 0.0 / 0.0 3.7 / 5.8 1.2 / 0.7 4.0 / 6.9 1.2 / 0.7
+ Llama-2-7B-tuned 10 5.2 / 13.8 0.0 / 0.0 7.6 / 16.3 1.5 / 1.8 7.6 / 16.3 1.5 / 1.8

50 6.1 / 13.0 0.0 / 0.0 8.5 / 15.2 1.5 / 1.1 8.5 / 15.6 1.5 / 1.5

MM-S14-CPP k InRany@1 InRall@1 InRany@5 InRall@5 InRany@10 InRall@10
Inverted Index 10 0.4 / 0.0 0.0 / 0.0 0.9 / 0.5 0.0 / 0.0 5.5 / 5.8 5.1 / 5.3

50 0.4 / 0.0 0.0 / 0.0 0.4 / 0.0 0.0 / 0.0 0.9 / 1.4 0.0 / 0.5
Fixed embs 10 2.8 / 1.2 0.7 / 0.2 6.3 / 3.7 2.3 / 2.1 11.3 / 8.3 8.3 / 7.4

50 2.8 / 1.2 0.7 / 0.2 6.3 / 3.7 2.3 / 2.1 7.9 / 6.0 3.9 / 4.6
Edge-Bi-enc 10 2.5 / 6.3 0.0 / 0.2 6.2 / 11.8 1.2 / 1.9 32.0 / 27.8 19.7 / 14.4

50 2.5 / 6.3 0.0 / 0.2 6.2 / 11.8 1.2 / 1.9 8.6 / 14.4 3.0 / 3.5
+ Edge-Cross-enc 10 3.4 / 9.3 0.2 / 0.0 7.8 / 13.7 2.1 / 2.3 32.0 / 27.8 19.7 / 14.4

50 4.9 / 3.9 2.1 / 0.2 15.3 / 17.6 6.3 / 6.9 24.8 / 26.6 13.2 / 14.4
+ GPT-3.5 10 5.1 / 3.9 0.0 / 0.0 7.9 / 6.0 3.3 / 3.5 7.9 / 6.0 3.3 / 3.4

50 1.8 / 1.9 0.0 / 0.0 3.9 / 2.8 0.9 / 0.7 4.0 / 2.8 0.9 / 0.7
+ FLAN-T5-XL 10 2.6 / 1.9 0.5 / 0.7 2.6 / 1.9 0.5 / 0.7 2.6 / 1.9 0.5 / 0.7
+ Llama-2-7B 10 1.8 / 4.6 0.0 / 0.2 4.8 / 7.2 0.7 / 1.9 8.8 / 10.4 3.9 / 3.9

50 1.2 / 3.5 0.0 / 0.0 2.5 / 5.1 0.7 / 0.9 3.0 / 6.3 1.1 / 1.2
+ Llama-2-7B-tuned 10 2.6 / 7.2 0.0 / 0.0 6.5 / 10.6 1.9 / 1.2 7.6 / 12.7 2.5 / 3.2

50 2.5 / 4.6 0.0 / 0.0 3.3 / 6.7 0.5 / 0.6 4.0 / 8.1 0.9 / 1.4

Overall Results after Edge Selection We then add the edge selection steps
mainly on the candidates from the fine-tuned embedding (Edge-Bi-encoder) ap-
proach, given its best overall performance in generating edge candidates.

As shown in Table 3, the multi-label Edge-Cross-encoder achieves the best
performance in most experimental settings. Edge-Cross-encoder further reranks
the edge candidates and helps substantially improve the performance over Edge-
Bi-encoder (edge search only), e.g., by around 8-9% absolute scores for InRany@5
for the datasets and around 12-16% for InRany@10 (except for the same @10
results for top-10 setting, where re-ranking does not make a difference).

We also test the LLMs, it can be seen that the tested medium scale LLMs
(GPT-3.5, FLAN-XL, and Llama-2-7B), especially not instruction-tuned for the
task, can still not be directly used for concept placement, although GPT-3.5
has notably better results on top edge suggestion (InRany@1) from the top-10
setting. The explainable instruction tuning approach greatly improves the per-
formance of Llama-2-7B. This shows that training on in-KB data by generating
an automated explanation before generating the results is practically useful to
enhance the capability of LLMs on ontology reasoning tasks. Most results from
LLMs, except for the top edge suggestion (InRany@1 and InRall@1), are still
below the original candidates from Edge-Bi-encoder. Nevertheless, the results are
encouraging and can motivate future studies using LLMs for concept placement.
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We also notice a performance gap between the validation set and the test set
on the two datasets in Tables 2-3, which may be due to the high variance caused
by the small number of mentions in the sets (between 200 and 600, see Table 1)
and the distinct data distribution based on concept drift (e.g., different lexical
mentions between the sets), showing the challenge to generalise to new concepts.

Discussion on Model Applicability The overall performance of the mod-
els is not high, especially for LLMs, as shown in Table 3. The best InAny@10 is
around 30% with Edge-Bi-encoder and Edge-Cross-encoder. This shows that the
models cannot support an automated application, but still, they may potentially
be applicable to suggest a ranking of the edges for human terminologists to add
a new concept to an ontology. In practice, having a larger k can help improve the
metrics of InRany@k and InRall@k, but can also increase the effort of manual
selection, thus a balance needs to be achieved and warrants future studies.

Case Study In Appendix 3, we select a few test mentions and display the 5 top
edge suggestions, under the top-50 setting from Edge-Bi-encoder, Edge-Cross-
encoder, Llama-2-7B, and Llama-2-7B fine-tuned models. For Llama-2 models,
we display the generated answers. Without instruction tuning, Llama-2-7B some-
times generates answers in an incorrect format or generates irrelevant outputs.
With explainable instruction-tuning, Llama-2-7B generates explanations that
follow a natural language reasoning path to lead to the correct edge option.

We also note that many edge predictions are not completely wrong, for exam-
ple for the first case, the predicted parent (e.g., kidney disease) in the methods
is more general than the gold direct parent (e.g., renal impairment), and the
predicted child (e.g., hypertensive heart and renal disease with renal failure) is
not far from the gold children in the ontology structure. However, calculating a
lenient, soft score (e.g., with Wu & Palmer similarity [32]) between every predic-
tion and the set of gold edges instead of a binary evaluation is not time efficient
in our experiments. We leave an efficient, lenient evaluation for future studies.

5.5 Ablation Studies

Our ablation studies aim to investigate how edge enrichment and automated ex-
plainable instruction tuning can enhance the performance of concept placement.
We use top-50 setting and MM-S14-Disease dataset as an example, and other
top-k settings and MM-S14-CPP dataset follow a similar pattern of results.

Edge Enrichment Edge enrichment has greatly improved the overall results for
Edge-Bi-encoder, about above 30% absolute improvement of InRany and InRall

as shown in Figure 3 part (a). Results with inverted index and fixed embeddings
are in Appendix 2, showing a general improvement with edge enrichment.

Contextual Information of Mention The left and right contexts of a mention
are useful in edge search with Edge-Bi-encoder to learn the similarity between
a contextual mention and a concept, even though the type of texts is distinct
from ontology concept labels, as shown in Figure 3 part (b).
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Fig. 3. Ablation results on top-50 edge candidates with MM-S14-Disease dataset: (a)
Top-left: results with Edge-Bi-encoder, with or without the edge enrichment step, on
validation set; (b) Top-right: overall results with Edge-Cross-encoder, with or without
contexts; (c) Bottom: overall results after Edge Selection with Llama-2-7B, with ex-
plainable instruction-tuning, normal instruction-tuning, or without instruction-tuning.

Explainable Instruction Tuning Explainable instruction tuning helps im-
prove the performance of the LLM, Llama-2-7B, under the top-50 setting, es-
pecially on the test set of MM-S14-Disease, as displayed in Figure 3 part (c).
In contrast, normal instruction tuning that directly generates the edge option
number does not always improve over the case without instruction tuning.

5.6 Conclusion and Future Studies

We propose an LM-based framework for new concept placement in ontologies.
The framework uses a three-step approach, that enhances the two-step infor-
mation retrieval with edge formation and enrichment leveraging the ontological
structure. The results overall show that methods that fine-tune PLMs perform
the best, while there is an encouraging performance for the recent LLMs, espe-
cially with explainable instruction tuning. Our case study shows that explana-
tions can be generated to detail the steps for concept placement. We focused on
placing directly the mentions into edges in this work, a following step is to group
mentions of the same new concept when they are placed into the same edges.
Future studies will leverage advanced RAG [9] and in-context learning of LLMs
for concept placement. Future studies are also needed to investigate how to use
the methods to assist human terminologists.
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Appendix 1: Detailed model settings and time usage

The approaches are implemented using PyTorch and Huggingface Transformers.
Edge-Bi-encoder and Edge-Cross-encoder are originally based on the architec-
tures of BLINKout [8] (based on BLINK [31]). Inverted index with ontology con-
cepts is based on DeepOnto Library [15]. The batch sizes for Edge-Bi-encoder and
for Edge-Cross-encoder are 16 and 1, resp. The fine-tuning of Edge-Bi-encoder
and Edge-Cross-encoder takes 1 and 4 epochs, resp. We limit the rows to 200,000
for training the Edge-Cross-encoder models given the sufficient amount the data
for model convergence and the long time of training. The instruction tuning of
Llama-2-7B uses a 4-bit quantisation and takes 3 epochs with a batch size of 4.

Time usage We run all models using an NVIDIA Quadro RTX 8000 GPU card
(48GB GPU). We report the time usage estimate for MM-S14-Disease under the
top-50 setting. Training bi-encoder took around 29 hours. Training cross-encoder
took around 4 hours. Instruction tuning of Llama-2-7B took around 16 hours.
Inferencing with fixed embeddings and inverted index with edge enrichment is
within around 0.5 and 1 second per mention, resp. Inferencing with Edge-Bi-
encoder only takes around 0.2 second per mention. The whole inferencing with
both Edge-Bi-encoder and Edge-Cross-encoder takes around 2.3 seconds per
mention. The prompting of an explainable instruction-tuned Llama-2-7B model
takes around 78 seconds per mention to output natural language explanations.

Appendix 2: Detailed results on edge enrichment

We applied edge formation enrichment over inverted index and fixed embedding
approach. Results in Table 4 show a substantial improvement for InRany and
InRall. We see that the mentions to be placed to non-leaf edges are not improved
with Inverted Index and Fixed embeddings, but are improved with the fine-
tuned, Edge-Bi-encoder, this is because the latter places a more lenient score for
the leaf edges that do not always rank them before the non-leaf edges.

Table 4. Results on edge search and enrichment (vs. not using edge enrichment) for
MM-S14-Disease, under the top-50 setting. Each setting has validation and testing
results, separated by a slash (/) sign. “lf ” and “nlf ” mean leaf and non-leaf, resp.

MM-S14-Disease k InRany InRall InRany, lf InRall, lf InRany, nlf InRall, nlf
Inverted Index 50 41.3 / 40.6 37.7 / 38.8 44.6 / 50.0 41.2 / 48.2 14.3 / 5.2 8.6 / 3.5
w/o Edge Enrich 50 7.3 / 6.5 4.6 / 3.6 2.7 / 3.7 0.7 / 0.5 45.7 / 17.2 37.1 / 15.5
Fixed embs 50 35.3 / 31.9 28.3 / 30.8 38.4 / 38.1 30.6 / 37.6 8.6 / 8.6 8.6 / 5.2
w/o Edge Enrich 50 19.1 / 17.3 4.3 / 4.3 16.0 / 6.4 3.7 / 4.1 45.7 / 58.6 8.6 / 5.2
Edge-Bi-Enc 50 57.8 / 50.0 40.1 / 38.0 55.4 / 38.1 38.4 / 33.5 77.1 / 94.8 54.3 / 55.2
w/o Edge Enrich 50 19.1 / 23.9 5.2 / 5.8 11.9 / 5.0 2.4 / 2.8 80.0 / 94.8 28.6 / 17.2

Appendix 3: Qualitative examples
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Table 5. Examples of two mentions in the out-of-KB test set of MM-S14-Disease to
enrich SNOMED CT 2014.09. The correct predictions are highlighted in bold.

Test, out-of-KB, 13 Test, out-of-KB, 138
*Mention* in
contexts

...Since no one had *CKD* in partial nephrec-
tomized patients, we determined risk factors for
CKD in radical nephrectomized patients. . .

Development of a novel near-infrared fluores-
cent theranostic combretastain A-4 analogue, YK-
5-252, to target triple negative breast cancer.
The treatment of triple negative breast cancer
(*TNBC*) is a significant challenge to cancer re-
search...

Gold Concept
http://snomed.info/id/709044004
Chronic kidney disease
(not available in SNOMED CT 2014.09)

http://snomed.info/id/706970001
Triple negative malignant neoplasm of breast
(not available in SNOMED CT 2014.09)

Gold Edges

Parents: (i) Renal impairment →
Children: (i) Chronic renal impairment associ-
ated with type II diabetes mellitus; (ii) Hyper-
tensive heart and chronic kidney disease; (iii)
Chronic kidney disease stage 1; (iv) Chronic kid-
ney disease stage 2; (v) Chronic kidney dis-
ease stage 3; (vi) Chronic kidney disease stage
4; (vii) Chronic kidney disease stage 5; (viii)
Chronic renal failure syndrome; (viiii) Hyperten-
sive heart AND chronic kidney disease on dialysis;
(x) Chronic kidney disease due to hypertension;
Malignant hypertensive chronic kidney disease

Parents: (i) Human epidermal growth factor 2
negative carcinoma of breast; (ii) Malignant tu-
mor of breast; (iii) Hormone receptor negative
neoplasm →
Children: (i) NULL

Edge-Bi-enc

(i) renal impairment → end stage renal disease
(ii) renal impairment → renal failure following
molar and/or ectopic pregnancy
(iii) renal impairment → renal failure syndrome
(vi) renal impairment → chronic kidney dis-
ease due to hypertension
(v) kidney disease → impaired renal function dis-
order

(i) malignant tumor of breast → lobular carci-
noma of breast
(ii) carcinoma of breast → lobular carcinoma of
breast
(iii) malignant tumor of breast → mucinous car-
cinoma of breast
(iv) carcinoma of breast → cancer en cuirasse
(v) malignant tumor of breast → malignant phyl-
lodes tumor of breast

Edge-Cross-
enc

(i) kidney disease → renal function impairment
with growth failure
(ii) kidney disease → impaired renal function dis-
order
(iii) disorder of the genitourinary system → im-
paired renal function disorder
(iv) renal impairment → chronic kidney dis-
ease due to hypertension
(v) kidney disease → renal failure syndrome

(i) neoplasm of breast → malignant phyllodes tu-
mor of breast
(ii) carcinoma of breast → cancer en cuirasse
(iii) malignant tumor of breast → NULL
(iv) carcinoma of breast → NULL
(v) neoplasm of breast → NULL

Prompt, only
options are
displayed
(correct
options in
bold), the
full prompt
template is in
Sect 4.3

options:
0.renal impairment → end stage renal disease
1.renal impairment → renal failure following mo-
lar and/or ectopic pregnancy
2.renal impairment → renal failure syndrome
3.renal impairment → chronic kidney disease
due to hypertension
4.kidney disease → impaired renal function disor-
der
5.kidney disease → renal function impairment
with growth failure
6.kidney disease → renal failure syndrome
7.renal impairment → chronic renal failure
syndrome
8.disorder of the genitourinary system → im-
paired renal function disorder
9.renal impairment → hypertensive heart and re-
nal disease with renal failure

options:
0.malignant tumor of breast → lobular carcinoma
of breast
1.carcinoma of breast → lobular carcinoma of
breast
2.malignant tumor of breast → mucinous carci-
noma of breast
3.carcinoma of breast → cancer en cuirasse
4.malignant tumor of breast → malignant phyl-
lodes tumor of breast
5.malignant tumor of breast → cancer en cuirasse
6.neoplasm of breast → malignant phyllodes tu-
mor of breast
7.malignant tumor of breast → NULL
8.carcinoma of breast → NULL
9.neoplasm of breast → NULL

Gold answer 3,7 (option incomplete) 7 (option incomplete)
Llama-2-7B 1 Fail to generate answer with the relevant content

Llama-2-7B
instruction-
tuned

### Explanation:
From the parents in the options above, including
renal impairment , kidney disease , disorder of the
genitourinary system , the correct parents of the
mention, CKD, include renal impairment , kid-
ney disease , disorder of the genitourinary system
. Thus the options are narrowed down to 0, 1, 2,
3, 7, 9, 4, 5, 6, 8. From the children in the nar-
rowed options, including end stage renal disease ,
renal failure following molar and/or ectopic preg-
nancy , renal failure syndrome , chronic kidney
disease due to hypertension , chronic renal fail-
ure syndrome , impaired renal function disorder
, renal function impairment with growth failure ,
the correct children of the mention, CKD, include
chronic kidney disease due to hypertension ,
chronic renal failure syndrome , impaired re-
nal function disorder , renal function impairment
with growth failure . Thus, the final answers are
3, 7, 5, 6, 8.

### Response:
3,7,5,6,8

### Explanation:
From the parents in the options above, including
malignant tumor of breast , carcinoma of breast
, neoplasm of breast , the correct parents of the
mention, TNBC, include malignant tumor of
breast . Thus the options are narrowed down to
0, 2, 4, 5, 7. From the children in the narrowed op-
tions, including lobular carcinoma of breast , mu-
cinous carcinoma of breast , malignant phyllodes
tumor of breast , cancer en cuirasse , NULL, the
correct children of the mention, TNBC, include
NULL. Thus, the final answers are 7.

### Response:
7


