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ABSTRACT
OWL ontologies, whose formal semantics are rooted in Descrip-

tion Logic (DL), have been widely used for knowledge represen-

tation. Similar to Knowledge Graphs (KGs), ontologies are often

incomplete, and maintaining and constructing them has proved

challenging. While classical deductive reasoning algorithms use the

precise formal semantics of an ontology to predict missing facts,

recent years have witnessed growing interest in inductive reasoning
techniques that can derive probable facts from an ontology. Similar

to KGs, a promising approach is to learn ontology embeddings in a

latent vector space, while additionally ensuring they adhere to the

semantics of the underlying DL. While a variety of approaches have

been proposed, current ontology embedding methods suffer from

several shortcomings, especially that they all fail to faithfully model

one-to-many, many-to-one, and many-to-many relations and role

inclusion axioms. To address this problem and improve ontology

completion performance, we propose a novel ontology embedding

method named Box2EL for the DL EL++
, which represents both

concepts and roles as boxes (i.e., axis-aligned hyperrectangles), and

models inter-concept relationships using a bumping mechanism.

We theoretically prove the soundness of Box2EL and conduct an ex-

tensive experimental evaluation, achieving state-of-the-art results

across a variety of datasets on the tasks of subsumption prediction,

role assertion prediction, and approximating deductive reasoning.
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1 INTRODUCTION
Ontologies are a widely used formalism to represent general knowl-

edge about a domain [37]. They are usually specified in the Web

Ontology Language (OWL) [13] standard developed by W3C
2
, and

have been widely adopted in many domains such as the Semantic

Web [16], healthcare [34], bioinformatics [17], and geoinformat-

ics [46]. OWL allows for the expression of a variety of statements,

ranging from simple relational facts to specifying concept hier-

archies and complex logical relationships, and is underpinned by

Description Logic (DL) [5] to define its formal semantics.

Although many real-world OWL ontologies have been devel-

oped and used with great success, such as the Gene Ontology GO

[2] and the food ontology FoodOn [10], both maintaining these

existing OWL ontologies and creating new ontologies has proved

challenging and relies mostly on manual labor carried out by ex-

perts. Common ontology curation tasks include completing missing

subsumptions between concepts (or membership relations between

individuals and concepts) and identifying missing logical restric-

tions between concepts. Symbolic logical reasoning algorithms such

as HermiT [12] and ELK [19] help address this problem by deduc-

tively inferring implicit knowledge from the precise semantics of

an ontology, but this classical reasoning is often too rigid for real-

world OWL ontologies— especially in the presence of incomplete

or noisy data— and cannot derive knowledge that is only probable
from the given ontology.

At the same time, there has been growing interest in represen-

tation learning-based methods for completing Knowledge Graphs

(KGs) [18], i.e. relational facts in the form of RDF
3
triples <Subject,

Predicate, Object>. Most of these approaches first learn structure-

preserving embeddings of the entities and relations (predicates) of

a KG in a latent vector space and then use them to score the likeli-

hood of novel facts [40]. For example, the classic method TransE

[7] maps entities and relations to vectors such that translating the

subject embedding by the relation embedding approximately yields

the object embedding.

Similar embedding-based techniques as for KGs have been de-

veloped for inductive reasoning in ontologies, which promises to

complement classical deductive reasoning for ontology curation

tasks. Some approaches such as OPA2Vec [35] and OWL2Vec* [9]

rely on exploiting textual meta information (e.g., concept labels and

comments) to model similarities between entities, but do not retain

the semantics defined by the underlying DL. Other approaches

aim to directly embed the logical information of an OWL ontology

in the latent space [22, 25, 31, 44], mostly targeting the OWL 2

EL profile [21], whose semantics are defined according to the DL

EL++
[3]. Prominent examples include ELEm [22] and its extension

EmEL
++
[25], which model concepts as high-dimensional balls, but

2
https://www.w3.org/OWL/

3
Resource Description Framework. https://www.w3.org/RDF/.
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fail to faithfully capture concept conjunction, since the intersec-

tion of two balls is no longer a ball. This led to the development

of the state-of-the-art methods BoxEL [44] and ELBE [31], which

instead represent concepts as boxes (i.e., axis-aligned hyperrect-

angles). However, all of these approaches still rely on TransE [7]

to model roles (i.e., binary relations) as simple translations, which

is unable to capture one-to-many, many-to-one, or many-to-many

relationships [23, 42], and is limited in its ability to faithfully rep-

resent inclusion relationships between roles. Furthermore, these

current works focus on the basic task of predicting subsumptions

between named concepts, without considering complex concepts

defined with logical operators or complex logical relationships in

evaluation.

In this paper, we propose Box2EL, a novel OWL ontology em-

bedding method targeting the semantics of EL++
, which has been

widely adopted in many real-life large-scale ontologies [17, 36].
4

To address the aforementioned limitations of existing approaches,

we instead draw inspiration from BoxE [1] and represent both rela-

tions and concepts as boxes, while modeling interactions between

concepts via a bumping mechanism. We not only demonstrate how

Box2EL overcomes the shortcomings of previous methods, but also

prove that it is sound, i.e., faithfully captures the semantics of the un-

derlying DL, which shows its theoretical correctness and supports

interpretable inference for ontology completion. We evaluate our

method in the two different inductive reasoning settings of concept

subsumption prediction— involving both named and complex con-

cepts— and role assertion (link) prediction, and on approximating

deductive reasoning. Our results demonstrate that the theoretical

advantages of our approach manifest themselves in practice and

lead to state-of-the-art performance across a variety of datasets.

2 BACKGROUND AND RELATEDWORK
2.1 Description Logic Ontologies
A DL ontology O describes some domain of interest in terms of

individuals, concepts and roles, where individuals correspond to

objects in the domain, concepts represent sets of objects, and roles

are binary relations between objects. We limit our discussion to

the DL EL++
[3], which underpins the OWL 2 EL profile [21]. It

is widely adopted since it contains many useful and important

knowledge representation features, while allowing for reasoning

in polynomial time. Given sets N𝐼 , N𝐶 and N𝑅 of, respectively,

individual, concept, and role names, EL++
concepts are recursively

defined as

⊤ | ⊥ | 𝐴 | 𝐶 ⊓ 𝐷 | ∃𝑟 .𝐶 | {𝑎}
where ⊤ is the top concept, ⊥ is the bottom concept, 𝐴 ∈ N𝐶 is an

atomic (or named) concept, 𝑟 ∈ N𝑅 is an atomic role, 𝑎 ∈ N𝐼 is an

individual, and 𝐶 and 𝐷 are themselves (possibly complex) EL++

concepts. We say a concept is complex when it is constructed with a

logical operator such as ⊓ or ∃. An EL++
ontology O consists of a

TBox T and an ABox A. The TBox consists of logical background

knowledge in the form of concept subsumption axioms 𝐶 ⊑ 𝐷 and

role inclusion axioms 𝑟1 ◦ · · · ◦ 𝑟𝑘 ⊑ 𝑟 , while the ABox contains

concrete data in the form of concept and role assertion axioms𝐶 (𝑎)
4
The logical constructors provided by EL++

are very common. While some OWL

ontologies use more complicated features not supported by EL++
, Box2EL can still

be used in that case to model the subset of axioms that fall into EL++
.

and 𝑟 (𝑎, 𝑏). Note that a relational fact from a KG in the form of an

RDF triple (𝑎, 𝑟, 𝑏) is equivalent to a role assertion axiom in the

form of 𝑟 (𝑎, 𝑏), and thus ontologies can be seen as extending KGs

with more complex conceptual and logical information.

Example 1. The following ontology models a simple family do-

main:

T = {Father ⊑ Parent ⊓Male, Mother ⊑ Parent ⊓ Female,

Child ⊑ ∃hasParent.Father, Child ⊑ ∃hasParent.Mother,

hasParent ⊑ relatedTo}
A = {Father(Alex),Child(Bob), hasParent(Bob,Alex)}

The TBox specifies that a father is a male parent, a mother is a

female parent, every child has a father and a mother, and having

a parent implies being related to that parent; the ABox states that

Alex is a father, Bob is a child, and Alex is a parent of Bob.

Similarly to first order logic, the semantics of EL++
are defined

in terms of interpretations that map individuals to elements, concept

names to subsets, and role names to binary relations over some set

called the interpretation domain. An interpretation I that satisfies

the semantics of every axiom in O is called a model of O, denoted

as I |= O. See Appendix A for a formal discussion of the semantics.

Remark. EL++
also allows for so-called concrete domains (a.k.a.

datatypes and values), which we do not consider in this paper.

Technically, we work on the ELHO(◦)⊥ subset of EL++
.

2.2 Subsumption Inference
A central problem in DLs is to infer concept subsumptions from an

ontology O. In general, these subsumptions can involve both named

and complex concepts. Classical reasoning algorithms leverage the

logical information in O to derive subsumptions that logically fol-

low from the semantics; for example, we can infer from the ontology

in Example 1 that Child ⊑ ∃relatedTo.Father. In contrast, inductive
reasoning (also called prediction) aims to infer probable subsump-

tions from O. Note that when we limit ourselves to predicting

subsumptions of the form {𝑎} ⊑ ∃𝑟 .{𝑏}, which are equivalent to

role assertion axioms 𝑟 (𝑎, 𝑏), this is identical to the problem of link
prediction in KGs (i.e., KG completion).

The majority of the existing prediction methods focus only on

subsumptions between named concepts. Some approaches embed

the formal semantics defined by the DL, while others focus on uti-

lizing textual information such as concept labels and comments.

For the former, please see Section 2.4. For the latter, OPA2Vec [35]

and OWL2Vec* [9] use a Word2Vec model trained with local graph

structure augmented corpora to embed the text for predicting sub-

sumptions, while the recent method BERTSubs [8] fine-tunes a

BERT model together with an attached classifier for predicting sub-

sumptions involving both named concepts and complex concepts.

Although these works consider a small part of the formal seman-

tics such as the concept hierarchy as the context of a concept for

augmenting prediction, they do not model the (complete) logical

relationships of the ontology in the vector space. They are com-

plementary to semantic ontology embedding methods including

Box2EL, but jointly embedding DL semantics and textual informa-

tion is out of the scope of this paper.
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2.3 Knowledge Graph Embeddings
KG embedding models such as TransE [7], DistMult [45], ComplEx

[39] and BoxE [1] aim to solve the problem of completing KGs com-

posed of purely relational facts, and can be thought of as modeling

only the role assertion part of the ABox of an OWL ontology [40].

In particular, BoxE [1] also represents relations as boxes and adopts

bump vectors, but it models relational facts alone, whereas we aim

at much more complex DL ontologies with logical relationships

involving concepts and roles.

Some KG embedding methods take background knowledge into

account and are therefore related to ontology embedding tech-

niques. However, these methods still focus only on modeling re-

lational facts in a KG, using the background knowledge as con-

straints, and most of them only support logical rules concerning

relations [14, 27, 28, 33, 41] or schemas in simple languages like

RDF Schema [15, 43]. In contrast, ontology embedding methods

including Box2EL focus on OWL ontologies, which contain a large

quantity of conceptual knowledge in the form of subsumptions

and logical relationships. Furthermore, these methods can only be

applied in the setting of link prediction, whereas ontology embed-

dings also allow predicting novel conceptual information or logical

background knowledge itself.

2.4 Semantic Ontology Embeddings
Several ontology embedding methods for DL semantics have been

proposed by learning geometric models. ELEm [22] is among the

first to embed EL++
, and EmEL

++
[25] extends ELEm by consider-

ing role inclusion axioms. However, both methods represent con-

cepts as high-dimensional balls, which have the disadvantage of

not being closed under intersection. Our concept representation

based on boxes has previously been used in the two recent meth-

ods BoxEL [44] and ELBE [31]. Mondal et al. [25] is the only other

technique we are aware of that also models role inclusion axioms;

the other methods consider only a smaller subset of EL++
. All

previous methods simply model roles (binary relations) by a single

vector-based translation as in TransE [7], which fails to faithfully

capture one-to-many, many-to-one, and many-to-many relations

[23, 42]. We use box-based modeling in combination with bump

vectors to address the above problem, achieving better performance

in ontology completion.

Going beyond EL++
, Özçep et al. [29] introduce a cone-based

model for the more expressive DL ALC; however, their contribu-
tion is mainly theoretical since they provide neither an implemen-

tation nor an evaluation. Embed2Reason [11] is another embedding

approach for ALC ontologies based on quantum logic [6]. In con-

trast to our work, its focus is on ABox instead of subsumption

reasoning. Finally, it is worth mentioning that in comparison with

all these DL embedding works, we conduct a more thorough eval-

uation by considering predicting subsumptions between not only

named concepts, but also named concepts and complex concepts

involving logical operators.

3 METHOD
In order to perform inductive reasoning over an EL++

ontology O
with signature Σ = (N𝐶 ,N𝑅,N𝐼 ), we follow the general framework

of Kulmanov et al. [22] and learn embeddings that correspond to

geometric models of O; that is, (logical) models with interpretation

domain Δ = R𝑛 . We now specify how Box2EL maps concepts,

individuals, and roles to the embedding space R𝑛 and describe the

loss functions that encode the axioms of O.

3.1 Geometric Representation
Concepts and individuals. We follow recent work [31, 44] and

represent concepts as 𝑛-dimensional boxes, i.e., axis-aligned hy-
perrectangles. This representation has several advantages over the

alternative based on 𝑛-dimensional balls, such as closure under

concept intersection, and has been shown to work well in practice.

Formally, we associate with every concept 𝐶 ∈ N𝐶 two vectors

𝒍𝐶 ∈ R𝑛 and 𝒖𝐶 ∈ R𝑛 such that 𝒍𝐶 ≤ 𝒖𝐶 , where ≤ is applied

element-wise. These vectors form the lower and upper corner of
the box of 𝐶 , i.e., Box(𝐶) = { 𝒙 ∈ R𝑛 | 𝒍𝐶 ≤ 𝒙 ≤ 𝒖𝐶 }. The center
of Box(𝐶) is given by (𝒍𝐶 + 𝒖𝐶 )/2, and its offset is (𝒖𝐶 − 𝒍𝐶 )/2.

We represent individuals 𝑎 ∈ N𝐼 as points 𝒆𝑎 ∈ R𝑛 in the embed-

ding space. For notational convenience, nominals (e.g., {𝑎}) are then
formally mapped to boxes with volume 0, i.e., 𝒍{𝑎} = 𝒖{𝑎} = 𝒆𝑎 .

Roles. While most existing EL++
embedding models represent

roles (binary relations) via simple translations in the form of TransE

[7], we instead follow the idea of the BoxE KG embedding model [1].

That is, we associate every role 𝑟 ∈ N𝑅 with a head box Head(𝑟 ) and
a tail box Tail(𝑟 ). Intuitively, every point in the head box is related

via 𝑟 to every point in the tail box. This representation is made more

expressive by introducing translational bump vectors Bump(𝐶) ∈
R𝑛 for every atomic concept 𝐶 , which model interactions between

related concepts by dynamically translating their embeddings. An

axiom of the form 𝐶 ⊑ ∃𝑟 .𝐷 is then considered to hold if

Box(𝐶) ⊕ Bump(𝐷) ⊆ Head(𝑟 ) and

Box(𝐷) ⊕ Bump(𝐶) ⊆ Tail(𝑟 ), (1)

where ⊕ denotes the operation of translating a box along a bump

vector, i.e., Box(𝐶) ⊕ Bump(𝐷) = { 𝒙 + Bump(𝐷) | 𝒙 ∈ Box(𝐶) }.

Example 2. Figure 1 illustrates 2-dimensional Box2EL embeddings

that form a logical model of the TBox in Example 1, since, e.g.,

Box(Father) ⊆ Box(Parent) ∩ Box(Male) and Equation (1) holds

for all relevant axioms. We will formalise the logical geometric

model associated with a set of Box2EL embeddings in Theorem 1.

Note also that the embeddings furthermore imply the subsumption

Child ⊑ ∃relatedTo.Father (again by Equation (1)), illustrating their
utility for approximate reasoning.

Expressiveness. The previous example illustrates the expressive

power of Box2EL. Representing roles as head and tail boxes al-

lows modeling one-to-many relationships such as hasParent faith-
fully, in contrast to previous approaches that employ a TransE-

based role representation. Moreover, role inclusion axioms such as

hasParent ⊑ relatedTo can be represented naturally via inclusion

constraints on the relevant head and tail boxes. In contrast, previous

methods either do not consider role inclusion axioms at all or only

rudimentarily approximate them by forcing the embeddings of the

involved roles to be similar [25].

Model complexity. Box2EL requires 2𝑛 |N𝐶 | + 𝑛 |N𝐼 | parameters

to store the lower and upper corners of the box embeddings of con-

cepts and points associated with individuals. In order to represent
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Child

Female

Male

Parent

Father

Mother

hasParenth

relatedToh
relatedTot

hasParentt

Bump(Father) Bump(Child)

Bump(Mother)

Figure 1: An illustration of Box2EL embeddings. Striped boxes represent concept embeddings, whereas role embeddings are
shaded blue and labelled as rh or rt for the head or tail box of r, respectively. Bump vectors are drawn as arrows and labelled
with the corresponding concept. The illustrated embeddings form a logical model of the TBox in Example 1.

the head and tail boxes for every relation and a bump vector per

concept and individual, the model needs 4𝑛 |N𝑅 | + 𝑛( |N𝐶 | + |N𝐼 |)
additional parameters. Therefore, the total space complexity of

Box2EL is in 𝑂

(
𝑛
(
3|N𝐶 | + 2|N𝐼 | + 4|N𝑅 |

) )
.

3.2 Training Procedure
In order to learn embeddings forO, we first convert its ABox axioms

into equivalent TBox axioms using the transformation rules

𝐶 (𝑎) ⇝ {𝑎} ⊑ 𝐶

𝑟 (𝑎, 𝑏) ⇝ {𝑎} ⊑ ∃𝑟 .{𝑏}

and then normalize the axioms using the standard procedure in

[3, 4]. This results in a normalized ontology in which all axioms

are in one of the normal forms described below. Crucially, this

procedure is semantics-preserving: every model of the normalized

ontology is also a model of the original ontology [3]. For more

details on normalization, see Appendix B. We introduce separate

loss functions for axioms in each normal form, which intuitively

ensure that the learned embeddings adhere to the semantics of O.

Finally, we minimize the sum of all loss terms L(O) via mini-batch

gradient descent.

Our loss functions are based on the distance-based loss formu-

lation in [22, 31] and aim to minimize the element-wise distance

between the embeddings of related concepts. Given two arbitrary

boxes 𝐴 and 𝐵, this element-wise distance is computed as

𝒅 (𝐴, 𝐵) = |𝒄 (𝐴) − 𝒄 (𝐵) | − 𝒐(𝐴) − 𝒐(𝐵),

where 𝒄 (·) and 𝒐(·) denote the center and offset of a box, respec-

tively. Note that for nominals {𝑎} we have that 𝒄 (Box({𝑎})) = 𝒆𝑎
and 𝒐(Box({𝑎})) = 0.

Generic inclusion loss. Before defining loss functions for the dif-

ferent EL++
normal forms, we first introduce a generic inclusion

loss L⊆ (𝐴, 𝐵). It encourages box 𝐴 to be contained in box 𝐵 and is

defined as

L⊆ (𝐴, 𝐵) =
{
∥max{0, 𝒅 (𝐴, 𝐵) + 2𝒐(𝐴) − 𝛾}∥ if 𝐵 ≠ ∅
max{0, 𝒐(𝐴)1 + 1} otherwise,

where 𝛾 ∈ R is a margin hyperparameter. If L⊆ (𝐴, 𝐵) = 0, either 𝐴

lies within 𝛾-distance of 𝐵 in each dimension, or both 𝐴 and 𝐵 are

empty.

We next introduce each normal form and the corresponding loss

function. Note that all concepts in the normal forms below are

atomic concepts or nominals (and not complex).

First normal form (NF1). For an NF1 axiom of the form 𝐶 ⊑ 𝐷 ,

the learned embeddings need to satisfy Box(𝐶) ⊆ Box(𝐷), cor-
responding to the semantics of concept inclusion. Therefore, we

define the loss for NF1 as simply the inclusion loss:

L1 (𝐶, 𝐷) = L⊆ (Box(𝐶), Box(𝐷)) .

Second normal form (NF2). For an NF2 axiom of the form𝐶⊓𝐷 ⊑
𝐸, we similarly require that the intersection of the boxes of 𝐶 and

𝐷 is within the box of 𝐸. The intersection of Box(𝐶) and Box(𝐷)
is itself a box with lower corner max{𝒍𝐶 , 𝒍𝐷 } and upper corner

min{𝒖𝐶 , 𝒖𝐷 }, where max and min are applied element-wise. We

thus have

L2 (𝐶, 𝐷, 𝐸) = L⊆
(
Box(𝐶) ∩ Box(𝐷), Box(𝐸)

)
.

However, this formulation is problematic since it can be easily

minimized to 0 by setting Box(𝐶) and Box(𝐷) to be disjoint. While

disjoint embeddings for 𝐶 and 𝐷 would technically not violate the

semantics, usually an axiom of the form 𝐶 ⊓ 𝐷 ⊑ ⊥ would have

been used directly if it had been the intention that 𝐶 and 𝐷 should

be disjoint. Therefore, we add the additional term

∥max {0, max{𝒍𝐶 , 𝒍𝐷 } −min{𝒖𝐶 , 𝒖𝐷 }}∥
to the loss, which intuitively encourages Box(𝐶) ∩ Box(𝐷) to be

non-empty by making all elements of its offset vector positive.

Third normal form (NF3). For an NF3 axiom of the form𝐶 ⊑ ∃𝑟 .𝐷 ,

the embeddings should satisfy Box(𝐶) + Bump(𝐷) ⊆ Head(𝑟 ) and
Box(𝐷) + Bump(𝐶) ⊆ Tail(𝑟 ). This is captured by the following

loss function:

L3 (𝐶, 𝑟, 𝐷) =
1

2

(
L⊆ (Box(𝐶) + Bump(𝐷),Head(𝑟 ))

+ L⊆ (Box(𝐷) + Bump(𝐶),Tail(𝑟 ))
)
.
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Father ⊑ Male ⊓ Parent Mother ⊑ Female ⊓ Parent

Male ⊓ Parent ⊑ Father Female ⊓ Parent ⊑ Mother

Male ⊓ Female ⊑ ⊥ Parent ⊓ Child ⊑ ⊥
Child ⊑ ∃hasParent.Mother Child ⊑ ∃hasParent.Father
Parent ⊑ ∃hasChild.Child

Figure 2: Proof of concept ontology.

If Box(𝐷) is empty, we furthermore add the term L⊆ (Box(𝐶), ∅)
to also make Box(𝐶) empty.

Fourth normal form (NF4). For an NF4 axiom of the form ∃𝑟 .𝐶 ⊑
𝐷 , we need to ensure that all points in the embedding space that

are connected to 𝐶 via role 𝑟 are contained in Box(𝐷). It can be

seen from our geometric representation that the set of these points

is contained in the set Head(𝑟 ) − Bump(𝐶). We therefore define

the loss for the fourth normal form as

L4 (𝑟,𝐶, 𝐷) = L⊆ (Head(𝑟 ) − Bump(𝐶), Box(𝐷)) .

Fifth normal form (NF5). Axioms of the fifth normal form𝐶⊓𝐷 ⊑
⊥ state that concepts 𝐶 and 𝐷 are disjoint. Our corresponding loss

function penalizes embeddings for which the element-wise distance

is not greater than 0 (within a margin of 𝛾 ) and is defined as

L5 (𝐶, 𝐷) = ∥max{0, −(𝒅 (Box(𝐶), Box(𝐷)) + 𝛾)}∥.

Role inclusion axioms. After normalization, role inclusion axioms

are either of the form 𝑟 ⊑ 𝑠 or 𝑟1 ◦ 𝑟2 ⊑ 𝑠 . For the first case, we

define the loss function

L6 (𝑟, 𝑠) =
1

2

(
L⊆ (Head(𝑟 ),Head(𝑠)) + L⊆ (Tail(𝑟 ),Tail(𝑠))

)
,

which intuitively makes any embeddings related via role 𝑟 also

related via 𝑠 . Similarly, in the second case we have the loss

L7 (𝑟1, 𝑟2, 𝑠) =
1

2

(
L⊆ (Head(𝑟1),Head(𝑠))+ L⊆ (Tail(𝑟2),Tail(𝑠))

)
.

Regularization. In order to prevent our expressive role represen-

tation from overfitting, we furthermore 𝐿2-regularize the bump

vectors by adding the regularization term

𝜆
∑︁

𝐶∈N𝐶∪N𝐼

∥Bump(𝐶)∥,

where 𝜆 is a hyperparameter.

Negative sampling. In addition to the above loss functions, we

also employ negative sampling to further improve the quality of the

learned embeddings. We follow previous work [22, 31] and generate

negative samples for axioms of the form 𝐶 ⊑ ∃𝑟 .𝐷 by replacing

either 𝐶 or 𝐷 with a randomly selected different concept, similar

to negative sampling in KGs [7]. For every NF3 axiom we generate

a new set of 𝜔 ≥ 1 negative samples 𝐶 @ ∃𝑟 .𝐷 in every epoch, for

which we optimize the loss

L@ (𝐶, 𝑟, 𝐷) = (𝛿 − 𝜇 (Box(𝐶) + Bump(𝐷), Head(𝑟 )))2

+ (𝛿 − 𝜇 (Box(𝐷) + Bump(𝐶), Tail(𝑟 )))2 ,
where 𝜇 (𝐴, 𝐵) = ∥max{0, 𝒅 (𝐴, 𝐵) + 𝛾}∥ is the minimal distance

between any two points in 𝐴 and 𝐵 and 𝛿 > 0 is a hyperparameter

that controls how unlikely the negative samples are made by the

model.
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Figure 3: Visualization of the embeddings learned by Box2EL
(left) and ELBE (right) for the proof-of-concept ontology.
While Box2EL can accurately represent the axioms in the on-
tology, the limitations of TransE as a model for roles prevent
ELBE from learning correct embeddings.

As in the case of KGs, the above procedure may occasionally gen-

erate false negative samples, i.e., negative axioms that actually do

follow from O. However, on average it will predominantly produce

true negatives, which we find to empirically improve the learned

embeddings.

3.3 Soundness
We now show that the embeddings learned by Box2EL indeed cor-

respond to a logical geometric model of the given ontology O.

Theorem 1 (Soundness). Let O = (T ,A) be an EL++ ontology.
If𝛾 ≤ 0 and there exist Box2EL embeddings inR𝑛 such thatL(O) = 0,
then these embeddings are a model of O.

Proof sketch. The proof relies on the correctness of our loss

functions, i.e., if L⊆ (𝐴, 𝐵) = 0 then𝐴 ⊆ 𝐵. We first construct a geo-

metric interpretation I of O from the embeddings by interpreting

every individual as its associated point, every concept as the set of

points in its associated box, and every role as the Cartesian product

of its head box and its tail box. Since the loss for every axiom is 0,

the embeddings satisfy the corresponding semantics. We thus have

that I is a model of O. □

A formal proof of Theorem 1 is given in Appendix C. While our

optimization procedure might not achieve a loss of 0 in practice, the

importance of Theorem 1 is that it demonstrates that the learned

embeddings converge to a semantically meaningful representation

of the ontology in which all of its axioms are satisfied, i.e., a model

of O. The embeddings therefore indeed encode the axioms in O
and are thus useful to perform inductive or approximate reasoning.

4 EVALUATION
We first validate our model and demonstrate its expressiveness on a

proof of concept ontology. We then evaluate Box2EL on three tasks:

general subsumption prediction, link (role assertion) prediction,

and approximating deductive reasoning. Furthermore, we conduct

a variety of ablation studies whose results are shown in Appendix E.

Our implementation is based on PyTorch [30], and we use the jcel
reasoner [24] to transform ontologies into normal form axioms.
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Table 1: Overall subsumption prediction results combined
across normal forms.

Model H@1 H@10 H@100 Med MRR MR AUC

G
A
L
E
N

ELEm 0.01 0.12 0.29 1662 0.05 5153 0.78

EmEL
++

0.01 0.11 0.24 2295 0.05 5486 0.76

BoxEL 0.00 0.03 0.16 4785 0.01 7163 0.69

ELBE 0.02 0.14 0.27 1865 0.06 5303 0.77

Box2EL 0.05 0.20 0.35 669 0.10 4375 0.81

G
O

ELEm 0.03 0.24 0.43 272 0.09 6204 0.86

EmEL
++

0.03 0.23 0.38 597 0.09 6710 0.85

BoxEL 0.01 0.06 0.08 8443 0.03 14905 0.68

ELBE 0.01 0.10 0.22 1838 0.04 6986 0.85

Box2EL 0.04 0.23 0.59 48 0.10 3248 0.93

A
n
a
t
o
m
y

ELEm 0.10 0.40 0.64 22 0.19 6464 0.94

EmEL
++

0.11 0.36 0.57 36 0.19 8472 0.92

BoxEL 0.03 0.12 0.28 1151 0.06 10916 0.90

ELBE 0.04 0.36 0.63 29 0.15 5400 0.95

Box2EL 0.16 0.47 0.70 13 0.26 2675 0.97

4.1 Proof of Concept: Family Ontology
We visualize the embeddings learned by Box2EL for a proof of

concept family ontology given in Figure 2. To this end, we train

Box2EL with an embedding dimensionality of 𝑛 = 2, a margin of

𝛾 = 0, regularization strength 𝜆 = 1, and no negative sampling. We

also train embeddings for ELBE [31], a comparable EL++
ontology

embedding model that similarly uses boxes to represent concepts,

but interprets roles as translations. In order to ensure the volume

of the learned embeddings is large enough for plotting, we add the

following visualization loss term to the objective function of both

models:

L𝑉 =
1

𝑛 |N𝐶 |
∑︁

𝐶∈N𝐶

𝑛∑︁
𝑖=1

max{0, 0.2 − 𝒐(Box(𝐶))𝑖 }.

The learned concept embeddings of both models are depicted

in Figure 3. We see that Box2EL is able to successfully learn em-

beddings that align with the axioms in the ontology. In particular,

the embeddings fulfill all disjointness axioms and correctly repre-

sent the relationships between the concepts Father, Male, Mother,
Female, and Parent.

In contrast, we find that the embeddings learned by ELBE violate

several of the axioms in the ontology. This is due to the inability of

the underlying TransE model to correctly represent one-to-many

relationships: because the ontology contains the axioms Child ⊑
∃hasParent.Mother as well as Child ⊑ ∃hasParent.Father, the
model is forced to let the embeddings of Mother and Father overlap.

4.2 General Subsumption Prediction
We next evaluate Box2EL on general subsumption prediction for

inductive reasoning. In contrast to previous work [25, 44], we not

only consider subsumptions between atomic (named) concepts, but

also the more challenging task of predicting subsumptions between

atomic concepts and complex concepts.

Benchmark. We introduce amodification of the benchmark based

on three biomedical ontologies GALEN [32], GeneOntology (GO) [2]

Table 2: Detailed subsumption prediction results on the
GALEN ontology.

Model H@1 H@10 H@100 Med MRR MR AUC

N
F
1

ELEm 0.01 0.16 0.40 430 0.06 3568 0.85

EmEL
++

0.02 0.16 0.37 632 0.06 3765 0.84

BoxEL 0.00 0.00 0.05 3715 0.00 5727 0.75

ELBE 0.03 0.24 0.47 138 0.10 2444 0.89
Box2EL 0.03 0.30 0.51 91 0.12 2632 0.89

N
F
2

ELEm 0.01 0.07 0.17 5106 0.03 7432 0.68

EmEL
++

0.01 0.07 0.15 5750 0.03 7767 0.66

BoxEL 0.00 0.00 0.00 11358 0.00 11605 0.50

ELBE 0.03 0.06 0.11 6476 0.04 8068 0.65

Box2EL 0.06 0.15 0.28 2149 0.09 6265 0.73

N
F
3

ELEm 0.02 0.14 0.28 1479 0.05 4831 0.79

EmEL
++

0.02 0.11 0.22 2240 0.05 5348 0.77

BoxEL 0.00 0.02 0.08 7239 0.01 8615 0.63

ELBE 0.03 0.14 0.25 2154 0.07 5072 0.78

Box2EL 0.08 0.19 0.32 635 0.12 3798 0.84

N
F
4

ELEm 0.00 0.05 0.18 3855 0.02 6793 0.71

EmEL
++

0.00 0.04 0.12 4458 0.01 7020 0.70

BoxEL 0.00 0.15 0.69 47 0.04 2667 0.89
ELBE 0.00 0.03 0.07 7563 0.01 8884 0.62

Box2EL 0.00 0.06 0.15 4364 0.02 7266 0.69

and Anatomy (a.k.a. Uberon) [26], that has been considered in pre-

vious DL embedding works [25, 44]. For each ontology, our bench-

mark consists of axioms split into training (80%), validation (10%),

and testing (10%) sets for each normal form. This enables us to

evaluate ontology embedding models on subsumption prediction

between atomic concepts (NF1), atomic concepts and conjunctions

(NF2), and atomic concepts and existential restrictions (NF3 and

NF4). We report statistics on the sizes of these ontologies, including

the numbers of axioms of different forms, in Table 7 in the appendix.

Baselines. We compare Box2EL with the state-of-the-art ontol-

ogy embedding methods ELEm [22], EmEL
++

[25], BoxEL [44],

and ELBE [31]. We do not consider any traditional KG embedding

methods in our experiments, since they have been shown to be con-

siderably outperformed by ontology embedding methods [25, 44]

and are not applicable in the setting of complex concepts.

Evaluation protocol. To evaluate the subsumption prediction per-

formance, we follow the literature [25, 44] and report a variety of

ranking-based metrics on the testing set. Given a test axiom in

some normal form, we generate a set of candidate predictions by

replacing the atomic side of the subsumption with all the atomic

concepts in N𝐶 . We then rank all candidate predictions by a score

based on the distance between the embeddings of the concepts of

the subsumption (for details see Appendix F) and record the rank

of the true axiom. We report the standard metrics Hits@𝑘 (H@𝑘),

where 𝑘 ∈ {1, 10, 100}, the median rank (Med), the mean reciprocal

rank (MRR), the mean rank (MR), and the area under the ROC curve

(AUC). These metrics are computed for the axioms in each normal

form individually, as well as combined across normal forms. See

Appendix G for definitions of the metrics.

Experimental protocol. The embeddings are optimizedwithAdam

[20] for a maximum of 10,000 epochs. All hyperparameters are
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Table 3: Detailed subsumption prediction results on the GO
ontology.

Model H@1 H@10 H@100 Med MRR MR AUC

N
F
1

ELEm 0.01 0.13 0.35 590 0.05 6433 0.86

EmEL
++

0.01 0.12 0.30 1023 0.05 6709 0.85

BoxEL 0.00 0.01 0.05 5374 0.00 13413 0.71

ELBE 0.01 0.10 0.24 1156 0.04 5657 0.88

Box2EL 0.03 0.17 0.58 58 0.08 2686 0.94

N
F
2

ELEm 0.12 0.49 0.63 11 0.24 4508 0.90

EmEL
++

0.11 0.44 0.55 23 0.21 5169 0.89

BoxEL 0.00 0.00 0.00 22882 0.00 23007 0.50

ELBE 0.01 0.05 0.09 6456 0.02 9421 0.80

Box2EL 0.18 0.58 0.75 6 0.31 2104 0.95

N
F
3

ELEm 0.06 0.40 0.52 54 0.15 6292 0.86

EmEL
++

0.05 0.39 0.48 210 0.15 7788 0.83

BoxEL 0.00 0.00 0.00 17027 0.00 18947 0.59

ELBE 0.02 0.15 0.30 959 0.07 7131 0.84

Box2EL 0.00 0.18 0.53 79 0.05 5042 0.89

N
F
4

ELEm 0.01 0.49 0.60 12 0.12 6272 0.86

EmEL
++

0.01 0.49 0.58 12 0.13 6442 0.86

BoxEL 0.09 0.54 0.54 2215 0.28 9673 0.79

ELBE 0.00 0.07 0.12 9049 0.02 12868 0.72

Box2EL 0.00 0.37 0.64 20 0.08 4989 0.89

described in detail in Appendix H. We evaluate the models on

a fraction of the validation set every 100 epochs and choose the

embeddings that achieve the best performance for final evaluation

on the testing set. The results we report are averages across 5

different random seeds.

Results. The results on all the testing axioms (combined across

all normal forms) are reported in Table 1. For detailed results on

testing axioms of each normal form, see Tables 2 to 4. We first

observe that our model Box2EL consistently outperforms all the

baselines on all datasets, often with significant performance gains.

For example, the median rank (MR) of Box2EL is around 60% lower

than the second best-performingmethod on GALEN, more than 80%

lower on GO, and more than 40% lower on Anatomy. Among the

baseline methods, results are similar; interestingly, ELEm generally

performs best, in contrast to previous benchmarks.

From the detailed results, we observe that the novel role repre-

sentation of Box2EL not only generally improves prediction perfor-

mance for NF3 axioms, which contain roles, but also for NF1 and

NF2 axioms. This can be explained by the fact that the different

normal forms are used to optimize the same embeddings; i.e., if

Box2EL can better represent an axiom of the form 𝐶 ⊑ ∃𝑟 .𝐷 , it
will learn better embeddings for 𝐶 and 𝐷 , therefore also improving

prediction quality for NF1 and NF2 axioms involving 𝐶 and/or 𝐷 .

There is no clear trend which axioms are the easiest to predict;

on GALEN, the models generally perform better on NF1 axioms

involving only atomic concepts, whereas on GO and Anatomy they

perform similarly well on axioms involving complex concepts.

4.3 Link Prediction
We next evaluate our model on the task of link prediction, i.e.,

predicting role assertions of the form 𝑟 (𝑎, 𝑏), which is implemented

by predicting subsumptions of the form {𝑎} ⊑ ∃𝑟 .{𝑏}.

Table 4: Detailed subsumption prediction results on the
Anatomy ontology.

Model H@1 H@10 H@100 Med MRR MR AUC

N
F
1

ELEm 0.07 0.30 0.57 43 0.14 9059 0.91

EmEL
++ 0.08 0.29 0.53 60 0.14 10414 0.90

BoxEL 0.01 0.05 0.16 1828 0.03 9597 0.91

ELBE 0.05 0.24 0.55 68 0.11 5177 0.95

Box2EL 0.07 0.34 0.65 27 0.15 2894 0.97

N
F
2

ELEm 0.03 0.18 0.42 394 0.08 11592 0.89

EmEL
++

0.03 0.18 0.35 1291 0.08 15759 0.85

BoxEL 0.00 0.00 0.00 17607 0.00 26872 0.75

ELBE 0.02 0.11 0.26 1394 0.05 4885 0.96

Box2EL 0.16 0.41 0.64 26 0.24 1928 0.98

N
F
3

ELEm 0.12 0.47 0.69 13 0.23 4686 0.96

EmEL
++

0.13 0.42 0.60 23 0.23 7097 0.93

BoxEL 0.04 0.17 0.36 567 0.08 11095 0.90

ELBE 0.04 0.44 0.70 16 0.18 5408 0.95

Box2EL 0.21 0.56 0.75 7 0.33 2466 0.98

N
F
4

ELEm 0.00 0.03 0.23 813 0.01 10230 0.91

EmEL
++

0.00 0.02 0.17 1470 0.01 10951 0.90

BoxEL 0.00 0.00 0.00 38942 0.00 41283 0.61

ELBE 0.00 0.02 0.06 6261 0.01 15187 0.86

Box2EL 0.00 0.05 0.14 3065 0.01 8366 0.92

Datasets. We consider a real-world protein-protein interaction

(PPI) prediction task introduced in [22]. They provide two ontolo-

gies for human and yeast organisms, constructed by combining

the STRING database of PPIs [38] with the Gene Ontology [2]. The

proteins and their interactions recorded in STRING constitute the

ABox, while GO acts as the TBox, and additional axioms modeling

the association of proteins with their biological functions are added

to the ontology. The task is to predict missing subsumptions of

the form {𝑃1} ⊑ ∃interacts.{𝑃2}, where 𝑃1 and 𝑃2 represent two

proteins.

Baselines. We also consider ELEm [22], EmEL
++

[25], BoxEL [44],

and ELBE [31] for the baselines as in general subsumption predic-

tion, and report the relevant best results from their original papers.

Evaluation and experimental protocol. In order to evaluate our

method, we use the 80%/10%/10% training, validation, and test-

ing split of the PPI data provided by [22]. We compute the same

ranking-based metrics as in subsumption prediction, both in the

standard and filtered fashion, in which any true candidate predic-

tions except for the target axiom to predict are first removed from

the set of all candidate predictions before computing the ranks. The

experimental protocol is the same as in subsumption prediction.

Results. Table 5 lists the results of Box2EL and the baseline meth-

ods on the yeast and human PPI prediction datasets. Box2EL outper-
forms all the baselines, with significant performance gains for both

datasets on most of the metrics including filtered hits and mean

rank. The AUC and AUC (F) values are all very close to the maxi-

mum value 1.0, but Box2EL still improves the state-of-the-art on

Yeast, and ties ELBE on Human. All these results demonstrate the

effectiveness of Box2EL in role assertion prediction for ontologies

with an ABox. The comparatively stronger results than ELBE and

BoxEL, which share the same concept representation as our model,
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Table 5: PPI prediction results on the yeast and human datasets. Columns annotated with (F) contain filtered metrics, other
columns contain raw metrics. The results for BoxEL are from [44]; all other baseline results are from [31].

Model H@10 H@10 (F) H@100 H@100 (F) MR MR (F) AUC AUC (F)

Y
e
a
s
t

ELEm 0.10 0.23 0.50 0.75 247 187 0.96 0.97

EmEL
++

0.08 0.17 0.48 0.65 336 291 0.94 0.95

BoxEL 0.09 0.20 0.52 0.73 423 379 0.93 0.94

ELBE 0.11 0.26 0.57 0.77 201 154 0.96 0.97

Box2EL 0.11 0.33 0.64 0.87 168 118 0.97 0.98

H
u
m
a
n

ELEm 0.09 0.22 0.43 0.70 658 572 0.96 0.96

EmEL
++

0.04 0.13 0.38 0.56 772 700 0.95 0.95

BoxEL 0.07 0.10 0.42 0.63 1574 1530 0.93 0.93

ELBE 0.09 0.22 0.49 0.72 434 362 0.97 0.98
Box2EL 0.09 0.28 0.55 0.83 343 269 0.98 0.98

Table 6: Deductive reasoning results on GALEN, GO, and
Anatomy.

Model H@1 H@10 H@100 Med MRR MR AUC

G
A
L
E
N

ELEm 0.00 0.04 0.20 1807 0.01 4405 0.81

EmEL
++

0.00 0.04 0.18 2049 0.01 4634 0.81

BoxEL 0.00 0.00 0.01 6906 0.00 7925 0.67

ELBE 0.00 0.06 0.16 1785 0.02 3974 0.84

Box2EL 0.01 0.09 0.24 1003 0.03 2833 0.88

G
O

ELEm 0.00 0.04 0.22 1629 0.02 7377 0.84

EmEL
++

0.00 0.04 0.19 1346 0.01 6557 0.86

BoxEL 0.00 0.00 0.13 1085 0.00 5359 0.88

ELBE 0.00 0.06 0.21 935 0.02 3846 0.92

Box2EL 0.00 0.08 0.49 107 0.04 1689 0.96

A
n
a
t
o
m
y

ELEm 0.00 0.07 0.28 901 0.02 7958 0.93

EmEL
++

0.00 0.07 0.26 1576 0.02 10976 0.90

BoxEL 0.01 0.10 0.24 838 0.04 9156 0.92

ELBE 0.00 0.08 0.32 336 0.03 2312 0.98

Box2EL 0.01 0.09 0.44 152 0.04 1599 0.99

once again highlight the positive impact of our novel approach of

representing the semantics of roles with boxes and bump vectors.

4.4 Approximating Deductive Reasoning
We finally investigate how well our model can approximate deduc-
tive reasoning, i.e., infer subsumptions that are logical consequences

of the axioms in the ontology.

Experimental setup. We again consider the GALEN, GO, and

Anatomy ontologies. Instead of splitting the axioms into separate

training, validation, and testing sets, we now train the models on

the entire ontology using all of its asserted axioms. For evaluation,

we use an EL++
reasoner to compute the complete set of NF1

axioms (i.e., atomic subsumptions) that are logically implied by,

but not explicitly asserted in the given ontology. We split off 10%

of these implied NF1 axioms for the validation set and keep the

remainder as the testing set. We report the results of Box2EL and

the same baseline methods considered in subsumption prediction.

The evaluation and experimental protocol is also the same as in

subsumption prediction.
5

5
Deductive reasoning with EL++

embeddings has been previously considered in [25].

However, we find that there is significant leakage (overlap) between their testing and

Results. Table 6 lists the results of approximating deductive

reasoning. The baselines perform similarly, with ELBE achiev-

ing slightly stronger results than the others on GO and Anatomy.

Box2EL outperforms the baselines on almost all metrics across the

three ontologies, with significant performance gains especially for

Hits@100, median rank, and mean rank. This indicates that Box2EL
is able to preserve more of the logical structure than the other

embedding methods.

Deductive vs inductive reasoning. Comparing the results in Ta-

bles 1 and 6, we observe that the embedding models generally

perform better in subsumption prediction than in approximating

deductive reasoning. To see why, note that the learned embeddings

are used tomake purely statistical predictions about missing axioms.

The soundness of our method guarantees that these predictions

align with the semantics of the ontology. However, we do not ex-

plicitly perform logical inference steps in the embedding space, as

would be required to derive logical inferences similar to a deductive

reasoning algorithm. We illustrate this difference with a concrete

example in Appendix I. While embedding methods can thus be

useful to approximate deductive reasoning, the two approaches are

best used in conjunction in order to combine formal derivations

with inductive and probable knowledge.

5 CONCLUSION
We developed Box2EL, a novel OWL ontology embedding method

that adopts box-based representations for both concepts and roles.

This representation is able to model complex logical constructs

from EL++
and overcomes the limitations of previous approaches

in representing roles and role inclusion axioms. We formally proved

that our method is sound, i.e., correctly represents the semantics of

EL++
, and performed an extensive empirical evaluation, achieving

state-of-the-art results in concept subsumption prediction, role

assertion prediction, and approximating deductive reasoning.
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