
Optimised Storage for Datalog Reasoning

Xinyue Zhang1, Pan Hu2, Yavor Nenov3, Ian Horrocks1

1Department of Computer Science, University of Oxford, Oxford, UK
2School of Electrical Information and Electronic Engineering, Shanghai Jiao Tong University, China

3Oxford Semantic Techonologies, Oxford, UK
{xinyue.zhang, ian.horrocks}@cs.ox.ac.uk, pan.hu@sjtu.edu.cn, yavor.nenov@oxfordsemantic.tech

Abstract

Materialisation facilitates Datalog reasoning by precomput-
ing all consequences of the facts and the rules so that queries
can be directly answered over the materialised facts. How-
ever, storing all materialised facts may be infeasible in prac-
tice, especially when the rules are complex and the given set
of facts is large. We observe that for certain combinations of
rules, there exist data structures that compactly represent the
reasoning result and can be efficiently queried when neces-
sary. In this paper, we present a general framework that al-
lows for the integration of such optimised storage schemes
with standard materialisation algorithms. Moreover, we de-
vise optimised storage schemes targeting at transitive rules
and union rules, two types of (combination of) rules that com-
monly occur in practice. Our experimental evaluation shows
that our approach significantly improves memory consump-
tion, sometimes by orders of magnitude, while remaining
competitive in terms of query answering time.

Introduction
Datalog (Abiteboul, Hull, and Vianu 1995) can describe a
domain of interest as a set of “if-then” rules and new facts
in this domain can be derived by applying the rules to a
set of explicitly given facts until a fixpoint is reached. With
the ability to express recursive dependencies, such as transi-
tive closure and graph reachability, Datalog is widely used
in different communities. In the Semantic Web community,
Datalog is used to capture OWL 2 RL ontologies (Motik
et al. 2009) possibly extended with SWRL rules (Horrocks
et al. 2004) and can thus be used to answer queries over
ontology-enriched data. There are an increasing number of
academic and commercial systems that have implemented
Datalog, such as LogicBlox (Aref et al. 2015), VLog (Car-
ral et al. 2019), RDFox (Nenov et al. 2015), Vadalog (Bel-
lomarini, Gottlob, and Sallinger 2018), GraphDB1, and Or-
acle’s database (Wu et al. 2008).

Given a set of explicitly given facts and a set of Data-
log rules, a prominent computational task for a Datalog sys-
tem is to answer queries over both facts and rules. One typ-
ical approach is to pre-compute all derivable facts from the

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://graphdb.ontotext.com/

rules and original facts. This process of computing all con-
sequences is known as materialisation, the same for the re-
sulting set of facts. Materialisation ensures efficient query
evaluation, as queries can be directly evaluated over the ma-
terialised facts without considering the rules further. There-
fore, materialisation is commonly used in Datalog systems.
For example, systems like RDFox, Vadalog, LogicBlox, and
VLog all adopt this approach. However, materialisation has
downsides for large datasets. Computing the materialisa-
tion can be computationally expensive, especially with rules
like transitive closure that derive many inferred facts. Stor-
ing all the materialised facts also increases storage require-
ments. Additionally, if the original facts change, materiali-
sation needs to be incrementally updated, rather than fully
recomputed from scratch each time. This incremental main-
tenance is crucial for efficiency when facts are updated fre-
quently. In essence, materialisation trades increased prepro-
cessing time and storage for improved query performance
by avoiding extensive rule evaluation during query process-
ing. The costs in time and space to materialise can become
prohibitive for very large datasets and rule sets.

The computation and maintenance of materialisation
have been well investigated. The standard seminaı̈ve algo-
rithm (Abiteboul, Hull, and Vianu 1995) efficiently com-
putes the materialisation by avoiding repetitions during
rule applications. This algorithm can also incrementally
maintain the materialisation for fact additions. More gen-
eral (incremental) maintenance algorithms like the count-
ing algorithm (Gupta, Mumick, and Subrahmanian 1993),
Delete/Rederive algorithm (Staudt and Jarke 1995), and
Backward/Forward (B/F) algorithm (Motik et al. 2019) can
maintain materialisation for both additions and deletions and
are applicable beyond initial computation. Additionally, spe-
cialised algorithms optimised for particular rule patterns,
like transitive closure (Subercaze et al. 2016), have been de-
veloped, and a modular framework proposed by Hu, Motik,
and Horrocks (2022) combines standard approaches for nor-
mal rules with tailored approaches for certain types of rules
to further improve materialisation efficiency.

While extensive research has been conducted on the effi-
cient computation and maintenance of Datalog materialisa-
tion, optimised storage of relations that takes into account
properties implied by the program has so far been limited to
the handling of equality relations (Motik et al. 2015) and the

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10748

exploitation of columnar storage (Carral et al. 2019). How-
ever, traditional materialisation methods become impracti-
cable due to oversized fact repositories and rule sets that sig-
nificantly expand data volume. For example, materialising
the transitive closure of just the broader relation in DBpe-
dia (Lehmann et al. 2015) results in 8.5 billion facts, which
would require an estimated 510 GB of memory to store. The
failure of materialisation makes further query answering un-
achievable. In this work, we investigated tailored data struc-
tures to minimise memory utilisation during materialisation,
focusing on transitive closure and union rules. We proposed
non-trivial approaches for efficiently handling incremental
additions of specialised data structures, an unavoidable and
essential step in Datalog Reasoning. Additionally, we pro-
posed a general multi-scheme framework that separates stor-
age from reasoning processes, allowing for various storage
optimisations. Overall, this research aims to provide a novel
way to process large fact sets and Datalog rules. It lays
the groundwork for using materialisation to store and query
large knowledge graphs efficiently.

This paper is organised as follows. First, we introduce
some preliminary concepts and background. We then present
our general framework for reasoning over customised data
structures. Next, we detail specific optimised data struc-
tures for materialisation, including methods for initial con-
struction and incremental maintenance under fact additions.
Finally, we empirically evaluate our techniques, demon-
strating improved performance and reduced memory usage
compared to standard materialisation approaches, including
cases where traditional materialisation fails. Additionally,
we empirically evaluate query performance over our opti-
mised data schemes. For small queries, response times using
our tailored structures are comparable to plain fact storage,
demonstrating efficient access. The evaluations highlight the
benefits of tailored data structures and reasoning algorithms
in enabling efficient large-scale materialisation. The datasets
and test systems are available online2.

Preliminaries
Datalog: A term is a variable or a constant. An atom has the
form P (t1, . . . , tk), where P is a predicate with arity k and
each ti is a term. A fact is a variable-free atom, and a dataset
is a finite set of facts. A rule is an expression of the form:
B0 ∧ · · · ∧ Bn → H , where n ≥ 0 and Bi, 0 ≤ i ≤ n,
and H are atoms. For r a rule, h(r) = H is its head, and
b(r) = {B0, . . . , Bn} is the set of body atoms. A rule is
safe, if each variable in its head atom also occurs in some of
its body atoms. A program is a finite set of safe rules.

A substitution is a finite mapping of variables to constants.
Let α be a term, an atom, a rule, or a set thereof. The appli-
cation of a substitution σ to α, denoted as ασ, is the result
of replacing each occurrence of a variable x in α with σ(x),
if x is in the domain of σ. For a rule r and a substitution σ,
if σ maps all the variables occurring in r to constants, then
rσ is an instance of r.

For a rule r and a dataset I , r[I] = {h(rσ) | b(rσ) ⊆ I} is
the set of facts obtained by applying r to I . Given a program

2https://xinyuezhang.xyz/TCReasoning/

Algorithm 1: Seminaive(Π, I, E,E+)

1: Result: update I from Π∞[E] to Π∞[E ∪ E+]
2: ∆ := E+ \ E
3: while ∆ ̸= ∅ do
4: A := Π[I,∆] \ (I ∪∆)
5: I := I ∪∆
6: ∆ := A

Π, Π[I] =
⋃

r∈Π{r[I]} is the result of applying every rule
r in a program Π to I . The materialisation I∞ of Π w.r.t.
a dataset E is defined as I∞ =

⋃
i≥0 Ii in which I0 = E,

Ii = Ii−1 ∪ Π[Ii−1] for i > 0. Similarly, let Πi[I0] = Ii
be the facts inferred by applying rules in Π to initial facts I0
and recursively to previous inferred facts, for i iterations.

Seminaı̈ve algorithm: The seminaı̈ve algorithm shown in
Algorithm 1 performs Datalog materialisation without rep-
etitions of rule instances. The set E and I are initialised
as empty. In the initial materialisation, the dataset is given
to E+. The ∆ is first initialised as E+. In each round
of rule application, new facts ∆ is used by the operator
Π[I,∆] =

⋃
r∈Π{r[I,∆]}, in which ∆ ⊈ I , and r[I,∆]

is defined as follows:

r[I,∆] = {h(rσ) | b(rσ) ⊆ I ∪∆ , b(rσ) ∩∆ ̸= ∅}, (1)

in which σ is a substitution mapping variables in r to con-
stants. The definition of Π[I,∆] ensures the algorithm only
considers rule instances that are not considered in previous
rounds. Then in line 5, ∆ is merged to I and new derivations
A found in the current round are assigned to ∆ to be used in
the next round. The incremental addition is processed simi-
larly by initialising E+ as the facts to be inserted. Similar to
the seminaı̈ve algorithm, we also identify facts in the domain
‘I’ and ‘∆’ when processing the materialisation.

Modular reasoning: Hu, Motik, and Horrocks (2022)
present a modular version of the seminaı̈ve algorithm, which
integrates standard rule application with the optimised eval-
uation of certain rules (e.g. transitive closure and chain
rules). A Datalog evaluation is split into modules each of
which manages a subset of the original program. The modu-
lar seminaı̈ve algorithm is then obtained by replacing line 4
in Algorithm 1 with A = A∪(Π+

T [I,∆]\∆) for every mod-
ule T , where ΠT [I,∆] \ I ⊆ Π+

T [I,∆] ⊆ Π∞
T [I ∪∆] \ I .

Motivation
In this section, we illustrate the benefits of using a spe-
cialised storage scheme for Datalog reasoning. Let Π be the
program containing the rule R(x, y), R(y, z) → R(x, z)
that declares a binary relation R as a transitive relation.
Let E+ be the set of facts {R(ai+1, ai) | 1 ≤ i ≤ n− 1}.
The materialisation obtained by applying Π to E+ is
I = {R(ai, aj) | 1 ≤ j < i ≤ n}. Each fact R(ai, aj) in
I\E+ can be derived i − j − 1 times by rule instance
R(ai, ak), R(ak, aj) → R(ai, aj) for k with j < k < i. The
seminaı̈ve algorithm considers each distinctive and applica-
ble rule instance once, so the materialisation requires O(n3)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10749

𝑎!𝑎"𝑎#𝑎$𝑎%&"𝑎%&!
(0, 𝑛-1) (0, 𝑛-2) (0, 𝑖) (0, 3) (0, 2) (0, 1)

𝑎%
(0, 𝑛)

Figure 1: The chain with associated intervals.

time. Hu, Motik, and Horrocks (2022) proposed an optimi-
sation that requires one of the body atoms to be matched
in the explicitly given facts, thus avoiding considering all
applicable rule instances and lowering the running time to
O(n2) on this input. In both cases, storing the materialised
result clearly requires O(n2) space.

We next outline an approach that requires significantly
less space and is at the same time efficient to compute.
Our approach builds upon the transitive closure compres-
sion technique by Agrawal, Borgida, and Jagadish (1989),
which makes use of interval trees to allow for compact stor-
age and efficient access of transitive relations. Treating each
constant appearing in E+ as a node and each fact as a di-
rected edge, the idea is to assign each node v an index and
an interval such that the interval covers exactly the indexes
of the nodes that are reachable from v. An example interval
tree representing the transitive relation over E+ is depicted
in Figure 1. Then, Iai

, facts in the closure with ai in the first
position can be retrieved using indexes id and intervals In:

Iai = {R(ai, aj) | aj .id ∈ ai.In}. (2)

The full materialisation is in essence {Iai
| 1 ≤ i ≤ n}.

Answering point queries such as whether R(ai, aj) holds
could also be efficiently implemented: it suffices to check
whether aj’s index is covered by ai’s interval, an operation
that requires O(1) time.

The above data structure can be computed by perform-
ing a post-order traversal starting from the root an. When a
node is visited, its index is assigned by increasing the index
of the previous node by one, and its interval is computed us-
ing the interval of its child. This requires only O(n) time,
as opposed to O(n2) and O(n3) required by existing ap-
proaches. In terms of space usage, in our particular example,
the data structure requires O(n) space, as opposed to O(n2)
required by a full materialisation. For an arbitrary graph in
general, the corresponding indexes and intervals can be con-
structed in O(|V | + |E|) time, where |V | and |E| are the
numbers of vertices and edges of the graph, respectively, and
the worst-case space complexity is O(|V |2). Note that space
consumption can sometimes be reduced by choosing the op-
timum tree cover of a graph (Agrawal, Borgida, and Jagadish
1989), a technique that proves to be useful in our evaluation.

The above example shows that a customised storage
scheme saves time and space during construction, and also
efficiently supports query answering. However, in typical
application scenarios, a Datalog program Π usually contains
multiple different rules, and different optimisations may ap-
ply. How to combine different storage schemes and enable
their integration with standard reasoning algorithms remains
a challenge. In our example, Π may include other rules that
also derive R facts, and it is essential that the interaction be-
tween such rules and the transitive rule is properly handled.

Algorithm 2: Multi-SchemeReasoning(Π, E,E+)

1: Result: update I from Π∞[E] to Π∞[E ∪ E+]
2: schedule(E+\E) ▷ populate ∆T

n and CT

3: loop
4: ∆ = derive() ▷ apply ΠT and update ∆T

5: if ∆ = ∅ then break
6: for every scheme T do
7: schedule(∆T) ▷ populate ∆T

n and CT

8: T .merge() ▷ merge ∆T to IT , empty ∆T

Moreover, to enable seminaı̈ve evaluation, the optimised
storage schemes should provide efficient access to different
portions of the derived facts (i.e., ‘I’, ‘∆’, ‘I ∪∆’), which
will involve nontrivial adaptation of existing approaches.

We address the above issues by first introducing a general
framework which involves the specification of several inter-
faces that each storage scheme must implement. We then
present details of two useful storage schemes, focusing on
the implementation of the relevant interfaces.

Multi-Scheme Framework
Our framework incorporates multiple storage schemes that
are responsible for managing disjoint sets of facts. In partic-
ular, each storage scheme T deals with facts corresponding
to predicates appearing in PT , and it is associated with rules
ΠT ⊆ Π that use predicates in PT in the head. Additionally,
to facilitate representation, we use another set of predicates
SPT to denote the predicates used in the body of rules in
ΠT . Moreover, an internal data structure DT maintains facts
in T and a fact cache CT is used to temporarily store the
input facts. Finally, we denote by IT the facts in the domain
‘I’ managed by scheme T . Similarly, we denote by ∆T the
facts in the domain ‘∆’ managed by scheme T . To work
with different schemes correctly during the materialisation,
each scheme should implement the following functions.

1. The schedule function identifies facts with predicate in
SPT , and stores them in CT so that these facts can be
used by ΠT to derive new facts. An input fact t with the
predicate in PT is added to a set ∆T

n if t /∈ ∆T∪ IT .
This function does not change ∆T or IT for a scheme T ;
it only schedules facts for later computation of ∆T .

2. The derive function applies rules in ΠT and incorporates
new facts in the data structure. The function does not
modify IT but updates ∆T as follows.

∆T = ∆T
n ∪Π+

T [I, CT]. (3)

3. The merge function updates IT to IT∪∆T , empties ∆T .

The global schedule function invokes schedule functions
of every scheme. The global derive function calls derive
functions of every scheme, and returns all facts in domain
‘∆’. The reasoning algorithm incorporating multiple storage
schemes is shown in algorithm 2. It exploits principles simi-
lar to the modular materialisation approach. The main differ-
ence is that our approach additionally manages the (possibly
compact) representation of derivations for different parts of

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10750

the program. In line 2, relevant facts are identified for each
scheme. In line 4, rules in ΠT are applied in each scheme,
and the data structure DT is updated to incorporate facts in
∆T

n and the newly derived consequences into ∆T . Then in
line 7, ∆T are scheduled for insertion into different schemes
before being merged to IT in line 8. In contrast to the modu-
lar materialisation approach in which a module T computes
only Π+

T [I,∆], our approach additionally considers ∆T
n as

part of ∆T in (3). This is to make our framework general
enough to capture storage schemes that do not explicitly
store facts and thus cannot easily distinguish between their
input and consequences. As we shall see, our storage scheme
for transitive relations benefits from this generalisation. The
following theorem states that algorithm 2 is correct, and its
proof is provided in the technical report (Zhang et al. 2023).

Theorem 1 A fact can be derived and represented in rele-
vant schemes by the multi-scheme algorithm if and only if it
can be derived by the modular seminaı̈ve algorithm.

Plain Table: In practice, predicates and rules that are not
handled by customised storage schemes are managed by a
plain table. The plain table, as the name suggests, stores facts
faithfully without any optimisations. The internal data struc-
ture DT can be implemented, for example, as a fact list LT ,
in which each fact is assigned a label, either ‘∆’ or ‘I’. Then
IT and ∆T are defined intuitively as facts with the corre-
sponding label. The derive function adds facts in ∆T

n to LT

and marks them as ‘∆’. Also, derivations in ΠT [I, CT] are
added to the list LT with the label ‘∆’ if they are not in the
list. The merge function is realised by simply changing the
label of facts. It is easy to verify that the plain table satisfies
the requirement of a scheme.

TC Storage Scheme
This section presents a specialised transitive closure (TC)
scheme capable of efficiently handling transitively closed
relations. The implementation of the scheme’s functions is
based on nontrivial adaptations of the interval-based ap-
proach by Agrawal, Borgida, and Jagadish (1989), which
treats TC computation as solving reachability problems over
a graph. More specifically, each node is assigned an inter-
val that compactly represents the (indexes of) nodes it can
reach. The original approach does not accommodate access
to facts in various domains (i.e., ‘I’, ‘∆’, ‘I ∪ ∆’). Fur-
thermore, their discussion of incremental updates does not
encompass all cases. Our extension of the technique en-
ables multi-scheme reasoning by supporting access to differ-
ent domains and providing more comprehensive incremental
update procedures.
Interval-based Approach: For a set of input facts repre-
sented by a graph G, the approach computes a tree cover
of the graph. Each node of the graph is numbered based
on the post-order traversal of the tree. Then, an initial inter-
val is assigned to each node with its post-order index being
the upper bound, and the smallest lower-end number among
its descendants’ intervals being the lower bound. For leaves,
the lower bound is its index. The initial intervals capture the
reachability of the tree. Then, for every edge (i, j) ∈ G that

a
b

e

g h c

d

f[0.9, 1)

[1.9, 2)

[0.9, 3)

[0.9, 4)

[4.9, 5)
[5.9, 6)

[5.9, 7)
[0.9, 8)

[0.9, 3]

Figure 2: One example interval tree. The dashed edge is an
edge in the graph but not covered by the tree cover.

is not in the tree cover, the interval of j is added to i and all
its ancestors. The final intervals capture all reachable pairs
in G. Just as expression (2), for each node in G, facts in the
closure with this node as the first constant can be accessed
using the computed intervals and indexes.
Settings: For the remainder of this section, we assume there
is a rule r ∈ Π that axiomatises a relation R as transitive;
the predicate set PT contains R (and so r is in ΠT). Ad-
ditionally, for the ease of presentation, we assume that ΠT

contains only r. In reality, T could also handle other rules
that derive R facts: these rules are applied using a standard
algorithm, and the output is stored and processed by T .

Incremental Update and Fact Access
We now discuss how customised storage schemes deal with
incremental insertion, which is crucial for integrating with
standard reasoning algorithms. Notice that the original ap-
proach by Agrawal, Borgida, and Jagadish (1989) already
considered incremental insertion. However, their discussion
does not cover all possible insertion cases and the distinction
between facts in domains ‘I’ and ‘∆’ is not allowed, which
is a key requirement in the Datalog reasoning setting.
Naive Approach: One seemingly straightforward solution
to supporting the distinction between ‘I’ and ‘∆’ facts is
to have two sets of intervals for each node s: s.In and s.D
contain indexes that s can reach before the insertion and that
s can additionally reach after the insertion, respectively. Let
Is and ∆s be the facts with s as the first constant in ‘I’ and
‘∆’, respectively, then ∆T and IT can be defined as follows:

Is = {R(s, x) | x.id ∈ s.In}, (4)
∆s = {R(s, x) | x.id ∈ s.D}, (5)

∆T = {∆s | s ∈ G}, IT = {Is | s ∈ G}. (6)

The merge function merges ‘∆’ to ‘I’ by simply adding s.D
to s.In and emptying s.D afterwards.
The Problem of Fresh Nodes: We use an example to show
why the naive approach is insufficient in the presence of
fresh nodes. Assume that we insert a fresh node k and a new
edge (d, k) to the graph shown in Figure 2. The tree cover is
supposed to cover all the nodes, so (d, k) is added to the tree
cover. Instead of re-assigning the post-order index based on
the updated tree, we assign a new post-order number to k by
finding a number i so that i is included in the initial interval
of d and i is not occupied by any existing nodes, as sug-
gested by Agrawal, Borgida, and Jagadish (1989). After in-
sertion, the intervals would still be valid if we did not intend
to distinguish between “I” and “∆”. However, following the

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10751

naive approach we have k.id ∈ d.In, and so R(d, k) ∈ IT ,
which is not as expected since (d, k) is newly inserted.

We propose to have another set of intervals s.N to mem-
orise the reachable nodes that are freshly introduced, where
s.N ⊆ s.In ∪ s.D. So new nodes in s.In can be identified
and skipped when accessing IT , and they can be returned in
addition to nodes in s.D when accessing ∆T . Formally:

Is = {R(s, x) | x.id ∈ s.In\s.N}, (7)
∆s = {R(s, x) | x.id ∈ s.D ∪ s.N}, (8)

in which we treat a set of intervals as the set of numbers
it covers, and set operators such as intersection (∩), union
(∪ or +) and minus (\) naturally apply. The ∆T and IT are
defined in the same way as in expression (6). Notice that to
allow for the insertion of edges involving fresh nodes, when
creating the initial intervals, we should allow for gaps. This
could be achieved, for example, through special treatment
for the leaf nodes: the lower end of the interval is set to be
the current node index minus a small margin (e.g., 0.1), as
illustrated in Figure 2.
Graph with Cycles: While the previous discussion assumes
the graph constructed from the input facts is acyclic in the
initial construction of the data structure, the same technique
can also be applied to a cyclic graph by collapsing each
strongly connected component to a node. Let G0 and G be
the graph before and after condensation, respectively, and let
M be a mapping that maps each SCC in G to its correspond-
ing nodes in G0. Then, the indexes and intervals are assigned
to SCCs of the graph after condensation in the same way as
described above. For each s ∈ G, sets Is and ∆s denoting
the corresponding sets of facts from G0 in domains ‘I’ and
‘∆’ , respectively, can be obtained as follows:

Is = {M(s)×M(x)| x.id ∈ s.In\s.N}, (9)
∆s = {M(s)×M(x)| x.id ∈ s.D ∪ s.N}, (10)

in which M(s)×M(x) computes the cross-product between
the two sets of constants M(s) and M(x); for brevity, the
predicate R is omitted. Finally, ∆T and IT are the same as
in expression (6).
The Merging of Components: A tricky case not discussed
in the original approach is that fact additions could possi-
bly lead to the merging of existing SCCs. For example, if an
edge (h, d) is introduced, then the SCC e, h and d need to be
merged as a new SCC. The graph can be updated by choos-
ing e as a representative node and deleting nodes h and d.
The children of h and d will be inherited to e. However, it is
not straightforward how to maintain the intervals and access
facts in IT and ∆T correctly. For SCCs that are not merged
during fact additions, expressions (9) and (10) are still valid
to use. We distinguish between different SCCs by their sta-
tus St: the status of an SCC that is not merged is stable; the
status of an SCC that is merged and selected to be represen-
tative is new; the status of an SCC that is merged to a repre-
sentative SCC is dropped. For a new SCC e, we use e.D to
store the interval that includes the indexes of nodes that e can
reach after merging regardless of the domain, and e.N in-
cludes newly introduced nodes in e.D, so e.N ⊆ e.D. Intu-
itively, the node e after merging is able to reach all the nodes

in this newly merged component, as well as their descen-
dants, so e.D =

⋃
s∈F (e){s.In∪s.D∪[s.id]}, in which F is

the map from the SCCs in the new graph to the original ones,
and [s.id] is a singleton interval that only includes s.id. In
this example, F (e) = {e, h, d}. Similarly, e.N also takes the
union of s.N for s ∈ F (e), i.e., e.N =

⋃
s∈F (e){s.N}. Let

L be a list of SCCs ordered by their post-order indexes. In-
tervals and other associated information of SCCs are stored
in L. Instead of deleting dropped SCCs in L right away, we
keep the original In, id, and M map of each node s ∈ F (e)
in L. In this way, ∆s and Is can be recomputed as follows:

Is = {M(s)×M(x)| x.id ∈ s.In\e.N}, (11)
∆s = {M(s)×M(x)| x.id ∈ (e.D\s.In)+(e.N ∩ s.In)},

in which e is the representative node of merged components
so that s ∈ F (e). In the merge function of the TC storage
scheme, dropped SCCs in L are deleted, F map is emptied,
and M map of new nodes is updated to the union of mem-
bers of original SCCs. Moreover, the status of new nodes is
changed to stable, and D interval is merged to In, N and D
intervals are emptied.

The designs discussed above make the TC storage scheme
suitable for use in the multi-scheme reasoning algorithm.
For brevity and ease of understanding, we only highlighted
key aspects of the approach. Readers interested in an exhaus-
tive (and lengthy) presentation of the algorithmic details are
invited to consult the technical report (Zhang et al. 2023).

Union Storage Scheme
The union storage scheme is motivated by rules with the
form: A(x, y) → U(x, y), B(x, y) → U(x, y). The facts
with predicate U can be derived by ‘copying’ the instantia-
tions from A and B facts. Therefore, instead of deriving and
storing all the consequences of the above rules, we can have
a ‘virtual’ storage for the facts with predicate U . Assume we
have a union table T for U ; ΠT contains all the rules r ∈ Π
such that r is of the form p(x, y) → U(x, y); for brevity we
again assume that there is no other rule in Π that derives U
facts; the set SPT contains predicates used in the body of
rules in ΠT . For the above example, SPT = {A,B}. The
internal data structure in the union table is a fact list LT : if
a fact with U is explicitly defined and cannot recover from
ΠT , then this fact will be stored in LT .

For a predicate p, Ip and ∆p denote the facts with pred-
icate p in corresponding domains. The function responsible
for computing IT , as well as the implementation of the inter-
faces required by our framework, is described in algorithm 3.
The U facts are the ‘union’ of facts with predicates in PT

and SPT , so the IT set first collects explicit facts in LT

with label ‘I’. Then, the remaining facts are translated from
the supporting facts belonging to the same domain. Note that
the function call U(x⃗).sub(t) obtains the instantiation from
t and uses it to instantiate U(x⃗). In the schedule function,
only facts with the predicate in PT or SPT are relevant for
processing. If the fact passes the relevance check but can-
not be recovered from Ip (line 10), then the corresponding
U fact must be new and should be included in domain ‘∆’
in the derivation stage. To prepare for such derivation, there

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10752

Algorithm 3: Functions of Union Table

1: T : a union table; t: a fact; LT : the fact list in T .
2: DT : implemented as LT . Assume PT = {U}.
3: ΠT = {r | r = p(x⃗) → U(x⃗) ∈ Π}.
4: procedure COMPUTE IT

5: IT := {t ∈ LT | the label of t = ‘I’}
6: for p ∈ SPT , for t ∈ Ip do
7: IT := IT ∪ {U(x⃗).sub(t)}
8: procedure T.schedule(t)
9: if t.p /∈ PT ∪ SPT then return

10: if p(x⃗).sub(t) /∈ Ip for any p ∈ SPT ∪ PT then
11: if t.p ∈ PT then add t to LT as ‘∆n’
12: if t.p ∈ SPT then CT := CT ∪ {U(x⃗).sub(t)}
13: procedure T.derive()
14: mark facts in LT with ‘∆n’ as ‘∆’
15: ∆T := {t ∈ LT | the label of t = ‘∆’}
16: ∆T := ∆T ∪ CT , CT = ∅

are two distinct cases: if t has predicate U , then t is added
to the list LT with label ‘∆n’ (line 11); if t has predicate
appearing in SPT , then a U fact instantiated by t is added to
CT for later use (line 12). The derive function changes facts
with the label ‘∆n’ to ‘∆’. The set ∆T includes the ‘∆’ facts
in LT , and translated facts in CT . The use of CT in derive
and schedule is only for the sake of better presentation. In
reality, the fact translation is done on the fly and thus does
not incur significant memory overhead. The merge function
is realised by changing facts that are explicitly stored in LT

with the label ‘∆’ to ‘I’. It can be verified that the above
implementation satisfies the definition of a scheme, and the
proof is provided in the technical report (Zhang et al. 2023).

Evaluations
Benchmarks: We tested our algorithms on DAG-R (Hu,
Motik, and Horrocks 2022), DBpedia (Lehmann et al.
2015), and Relations (Smith et al. 2007). DAG-R is a
synthetic benchmark, containing a randomly generated di-
rected acyclic graph with 100k edges and 10k nodes and
a Datalog program in which the connected property is
transitive. DBpedia consists of structured information from
Wikipedia. The SKOS vocabulary3 is used to represent var-
ious Wikipedia categories. We used a Datalog subset of the
SKOS RDF schema as rules for DBpedia, in which several
transitive and union rules are present. The Relations bench-
mark is obtained from Relations Ontology (Smith et al.
2007) containing numerous biomedical ontologies. The con-
verted program consists of 1307 rules in total, 33 TC and 130
Union schemes are created according to the program. The
original ontology has no data associated, so we use a syn-
thetic dataset created by Hu, Motik, and Horrocks (2022).
Compared Approaches: We considered three approaches
for the evaluation of materialisation time and memory con-
sumption. The standard approach applies the seminaı̈ve al-
gorithm for materialisation and uses just normal tables for

3https://www.w3.org/TR/skos-reference/

storage. The Multi-Scheme is our proposed approach, us-
ing a plain table, TC and Union schemes. The TC Module
approach proposed by Hu, Motik, and Horrocks (2022) ap-
plies an optimised application of TC rules, and a standard
seminaı̈ve algorithm for the remaining rules, but only a plain
table is used for storage. The original modular approach also
proposes optimisations for other types of rules, such as chain
rules. For a fair comparison, we evaluate a version where
only the optimisation for transitive closure rules is enabled.
Test Setups: All of our experiments are conducted on a
Dell PowerEdge R730 server with 512GB RAM and 2 In-
tel Xeon E5-2640 2.60GHz processors, running Fedora 33,
kernel version 5.10.8.
Performance of TC Scheme Algorithms: To comprehen-
sively evaluate the performance of the proposed TC func-
tions, we extracted two sets of broader facts from DBpedia
and created a program with a transitive rule for broader. For
each dataset, we inserted the facts in four rounds: the first
insertion added all remaining facts (shown in the first col-
umn of Table 1), while the next three insertions each added
1,000 new facts as E+ to test incremental maintenance (the
last three columns). For the smaller dataset (the upper rows),
the TC Module approach optimised the running time to a
large extent compared to the standard approach, but not on
memory consumption. In contrast, our TC scheme approach
is around 100-1000x faster than the standard approach, but
only uses about 1/8 ∼ 1/5 memory, in all the tasks. For the
larger dataset (the lower rows), the standard approach failed
to finish the initial insertion. Our TC scheme approach fin-
ished all the tasks and only used around 1/35 of the mem-
ory used by the TC Module. Our TC scheme can also main-
tain the data structure quickly under addition (around 7-100x
faster than the TC Module), which is beneficial for the recur-
sive and incremental reasoning scenario.
Performance of Multi-Scheme Reasoning Algorithms:
We tested the performance of our proposed multi-scheme
reasoning algorithm on the benchmarks mentioned above.
A scalability evaluation was conducted by randomly choos-
ing subsets from DBpedia. As shown in Table 2, our multi-
scheme approach used slightly more time and memory than
the standard approach when the dataset is small (DB25%),
since the fraction between the output TC facts and the in-
put TC facts is small, benefits of using the compressed data
structure does not show. However, for 50% subset of DBpe-
dia, our approach is 27x faster than the standard approach
and only uses 1/3 memory. In the reasoning process, TC
and union schemes naturally consume more time to traverse
the contained facts than the plain table, which will lead to
longer rule application time for the multi-scheme approach.
But this approach is still faster than applying TC and union
rules faithfully as done in the standard approach. The stan-
dard and TC Module approach cannot finish the materiali-
sation for 75% and the whole DBpedia; while our approach
completes the materialisation only using around 15 GB. In
contrast, storing the materialisation of 75% and full DBpe-
dia is estimated to take 515 GB and 2094.9 GB respectively.

For DAG-R, using TC schemes speeds up runtime but
does not reduce memory usage by much, due to the size of
the TC closure. For Relations, the TC rule optimisation in

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10753

0.2M ▷ 29.1M 29.1M ▷ 29.8M 29.8M ▷ 30.7M 30.7M ▷ 53.9M
time peak static time peak static time peak static time peak static

Standrad 2.8k 1.5k 1.3k 96.0 1.5k 1.3k 92.1 1.5k 1.3k 6.4k 2.8k 2.3k
TCModule 28.2 1.6k 1.3k 15.5 1.6k 1.4k 2.8 1.6k 1.4k 39.4 2.8k 2.4k
TCScheme 8.4 0.2k 0.2k 0.8 0.2k 0.2k 0.9 0.2k 0.2k 6.1 0.3k 0.3k

1.4M ▷ 1,949.3M 1,949.3M ▷ 1,950.4M 1,950.4M ▷ 1,951.4M 1,951.3M ▷ 1,953.8M
time peak static time peak static time peak static time peak static

Standrad >38h - - - - - - - - - - -
TCModule 3.3k 97.9k 82.3k 0.1k 97.9k 82.1k 30.0 97.9k 82.1k 1.5k 98.4k 82.5k
TCScheme 0.4k 2.4k 2.3k 2.2 2.4k 2.3k 3.0 2.4k 2.3k 14.8 2.4k 2.3k

Table 1: Performance Evaluation of TC Scheme Algorithms on DBpedia’s broader relation. The bold text indicates changes in
the fact count before and after materialisation. The time is in second, peak and static stand for the peak memory usage during
the reasoning and the static memory used by the data structure, respectively. Both of the memory are reported in MB.

DB25% (23.0M ▷ 32.7M);
Union: 4.2M; TC: 0.7M ▷ 4.2M

DB50% (46.0M ▷ 0.6B);
Union: 0.3B; TC: 1.4M ▷ 0.3B DAG (100k ▷ 22.9M)

time peak static NT OT time peak static NT OT time peak static NT OT

Standard 33.4 2.7 2.2 2.2 - 12.9k 30.8 25.4 25.4 - 4.0k 1.1 0.9 0.9 -
TCModule 33.9 3.2 2.7 2.2 - 1.0k 31.8 26.4 25.4 - 36.0 1.2 1.0 0.9 -
MultiScheme 31.4 3.6 3.1 1.9 1.2 0.5k 8.7 7.7 3.1 4.6 26.5 0.9 0.9 0.01 0.89

DB75% (69.0M ▷ 8.6B);
Union: 4.3B; TC: 2.0M ▷ 4.3B

DBAll (92.0M ▷ 34.9B);
Union: 17.4B; TC: 2.7M ▷ 17.4B

Relations (845.8k ▷ 212.2M);
Union: 0.2B; TC: 0.4M ▷ 14.1M

time peak static NT OT time peak static NT OT time peak static NT OT

Standard >86h - - ≈515 - - - - ≈2.1k - 14.3k 11.0 9.3 9.2 -
TCModule >86h - - - - - - - - - 2.0k 11.1 9.4 9.2 -
MultiScheme 6.0k 16.3 14.9 4.0 10.9 23.1k 17.3 15.1 5.6 9.5 6.9k 4.9 4.1 3.6 0.5

Table 2: Performance Evaluation of Multi-Scheme Reasoning Algorithm. Time is in seconds. The other four metrics are in GB,
in which NT and ‘OT ’ mean the memory used by the normal plain table and other schemes, respectively.

TC Query 0, 0.1B 1, 0.1B 3, 428 7, 0.8M 8, 1M

Standard 8.4 27.7 0.03 0.1 0.1
MultiScheme 22.4 20.6 0.03 0.2 0.4

Union Query 0, 0.3B 2, 0.8M 3, 1M 4, 337 8, 1M

Standard 25.5 0.3 0.4 0.03 0.2
MultiScheme 338.9 0.6 0.9 0.03 2.9

Table 3: The Query Answering Time in seconds. The index
and cardinality of each query are provided in ‘Query’ rows.

the TC Module significantly decreases materialisation time,
but not memory usage. In contrast, our approach finishes
materialisation using less than half the memory of the stan-
dard and TC Module approaches. However, the presence
of union predicates in some rule bodies requires travers-
ing facts represented by union schemes, increasing running
time, though it is still faster than the standard approach.
Performance of Query Answering: One potential disad-
vantage of the multi-scheme framework is increased query
retrieval time. To fully characterise this trade-off, we eval-
uated query performance using 11 queries with transitive
predicates and 11 queries with union predicates. Instead
of using queries with complex graph patterns, we employ
queries with 1 or 2 atoms using the TC or union predicate

to capture the performance of specialised storage schemes.
Query execution times were conducted in 50% subset of
DBpedia and compared against the standard approach. Due
to page limits, Table 3 presents results for 5 queries with
transitive predicates in the upper rows and 5 queries with
union predicates at the bottom; the complete table and all
queries are provided in the technical report (Zhang et al.
2023). The evaluation results suggest that for queries with
small cardinality (usually less than 1 million), the running
time is not significantly different. For queries with the tran-
sitive predicate, our approach consumes less than 3 times
of the time used by the standard approach. For queries with
union predicates, it is around 2-20 times, since retrieval from
union schemes includes querying other schemes to remove
the duplicate and verify the status of related facts.

Discussion and Perspectives

We proposed a framework that can accommodate different
storage and reasoning optimisations. Our approach offers a
flexible and extensible alternative that supports Datalog rea-
soning applications in scenarios where storage resources are
limited and materialisation fails. Future work will involve
supporting deletion in the multi-scheme framework and in-
troducing deletion functions for specialised tables.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10754

Acknowledgements
This work was supported by the following EPSRC projects:
OASIS (EP/S032347/1), UK FIRES (EP/S019111/1), and
ConCur (EP/V050869/1), as well as by SIRIUS Center for
Scalable Data Access, Samsung Research UK, and NSFC
grant No. 62206169.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
databases, volume 8. Addison-Wesley Reading.
Agrawal, R.; Borgida, A.; and Jagadish, H. V. 1989. Ef-
ficient management of transitive relationships in large data
and knowledge bases. ACM SIGMOD Record, 18(2): 253–
262.
Aref, M.; ten Cate, B.; Green, T. J.; Kimelfeld, B.; Olteanu,
D.; Pasalic, E.; Veldhuizen, T. L.; and Washburn, G. 2015.
Design and implementation of the LogicBlox system. In
Proceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data, 1371–1382.
Bellomarini, L.; Gottlob, G.; and Sallinger, E. 2018. The
Vadalog system: Datalog-based reasoning for knowledge
graphs. arXiv preprint arXiv:1807.08709.
Carral, D.; Dragoste, I.; González, L.; Jacobs, C.; Krötzsch,
M.; and Urbani, J. 2019. Vlog: A rule engine for knowledge
graphs. In International Semantic Web Conference, 19–35.
Springer.
Gupta, A.; Mumick, I. S.; and Subrahmanian, V. S. 1993.
Maintaining views incrementally. ACM SIGMOD Record,
22(2): 157–166.
Horrocks, I.; Patel-Schneider, P. F.; Boley, H.; Tabet, S.;
Grosof, B.; Dean, M.; et al. 2004. SWRL: A semantic web
rule language combining OWL and RuleML. W3C Member
submission, 21(79): 1–31.
Hu, P.; Motik, B.; and Horrocks, I. 2022. Modular materi-
alisation of datalog programs. Artificial Intelligence, 308:
103726.
Lehmann, J.; Isele, R.; Jakob, M.; Jentzsch, A.; Kontokostas,
D.; Mendes, P. N.; Hellmann, S.; Morsey, M.; van Kleef, P.;
Auer, S.; and Bizer, C. 2015. DBpedia - A large-scale, multi-
lingual knowledge base extracted from Wikipedia. Semantic
Web, 6(2): 167–195.
Motik, B.; Nenov, Y.; Piro, R.; and Horrocks, I. 2015. Han-
dling owl: sameAs via rewriting. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 29.
Motik, B.; Nenov, Y.; Piro, R.; and Horrocks, I. 2019. Main-
tenance of datalog materialisations revisited. Artificial Intel-
ligence, 269: 76–136.
Motik, B.; Patel-Schneider, P. F.; Parsia, B.; Bock, C.; Fok-
oue, A.; Haase, P.; Hoekstra, R.; Horrocks, I.; Ruttenberg,
A.; Sattler, U.; et al. 2009. OWL 2 web ontology language:
Structural specification and functional-style syntax. W3C
recommendation, 27(65): 159.
Nenov, Y.; Piro, R.; Motik, B.; Horrocks, I.; Wu, Z.; and
Banerjee, J. 2015. RDFox: A highly-scalable RDF store. In
International Semantic Web Conference, 3–20. Springer.

Smith, B.; Ashburner, M.; Rosse, C.; Bard, J.; Bug, W.;
Ceusters, W.; Goldberg, L. J.; Eilbeck, K.; Ireland, A.;
Mungall, C. J.; et al. 2007. The OBO Foundry: coordinated
evolution of ontologies to support biomedical data integra-
tion. Nature biotechnology, 25(11): 1251–1255.
Staudt, M.; and Jarke, M. 1995. Incremental maintenance of
externally materialized views. Citeseer.
Subercaze, J.; Gravier, C.; Chevalier, J.; and Laforest, F.
2016. Inferray: fast in-memory RDF inference. In VLDB,
volume 9.
Wu, Z.; Eadon, G.; Das, S.; Chong, E. I.; Kolovski, V.; An-
namalai, M.; and Srinivasan, J. 2008. Implementing an in-
ference engine for RDFS/OWL constructs and user-defined
rules in Oracle. In 2008 IEEE 24th International Conference
on Data Engineering, 1239–1248. IEEE.
Zhang, X.; Hu, P.; Nenov, Y.; and Horrocks, I. 2023. Opti-
mised Storage for Datalog Reasoning. arXiv:2312.11297.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10755

