Bisimulation for Stochastic Systems


Nathanaël Fijalkow


Formerly: University of Oxford, UK
Now: Research Fellow @ Simons
Next: Alan Turing Institute of Data Science, London, UK


Simons Institute for the Theory of Computing, Berkeley, November 7th, 2016

1 0 1 1/3 1/2 5/6 4/9 7/24 0.736111
Induces a function $\ f : A^* \to [0,1]$
A strategy $\ \sigma : (Q \times A)^* \to \mathcal{D}(Q)$ induces a Markov Chain

Reasoning about Stochastic Models


Key Notion: Bisimulation on Distributions


(due to Hermanns, Krčál, Křetı́nský 2014)

Defined for MDP: $\Delta : Q \times A \to \text{Conv}(\mathcal{D}(Q))$

If $\delta \equiv \delta'$, then for all $a$ in $A$:
Theorem (folklore): $M_1,M_2$ two Labelled Markov Chains, bisimilarity on distributions is the same as equivalence.

Theorem (F., Kiefer, Shirmohammadi, FoSSaCS'16):

My Copernican Revolution about Probabilistic Bisimulation

Probabilistic Bisimulation


(due to Larsen, Skou 91)

Defined for Labelled Markov Chains: $\Delta : Q \times A \to \mathcal{D}(Q)$

Definition: If $p \equiv q$, then for all $a$ in $A$, for all $C$ equivalence class of $\equiv$, $$\Delta(p,a,C) = \Delta(q,a,C)$$

The two bisimulations are different

Probabilistic Bisimulation


(due to Larsen, Skou 91)

Defined for Labelled Markov Chains: $\Delta : Q \times A \to \mathcal{D}(Q)$

Definition: If $p \equiv q$, then for all $a$ in $A$, for all $C$ equivalence class of $\equiv$, $$\Delta(p,a,C) = \Delta(q,a,C)$$

Spoiler and Duplicator


Defined for Labelled Markov Chains: $\Delta : Q \times A \to \mathcal{D}(Q)$

Definition: if $p \equiv q$, then for all $a$ in $A$, for all $C$ equivalence class of $\equiv$, $$\Delta(p,a,C) = \Delta(q,a,C)$$
Equivalent game: Duplicator claims that $p \equiv q$

25 years of research on Probabilistic Bisimulation


What are the properties of the new planet?

Two notions

$M_1,M_2$ two MDP

Logical Characterisations

\[ \phi\ =\ \top\ \mid\ \phi \wedge \phi\ \mid\ \langle a \rangle \phi\ \mid\ \Sigma_{\ge p} \text{ for } p \in \mathbb{Q} \] Theorem: (F., Klin @ Simons) Two distributions are bisimiliar if, and only if, they satisfy the same formulas of this logic

\[ \phi\ =\ \Sigma_{\ge p} \wedge \bigwedge_{a \in S} \langle a \rangle \phi \text{ for } p \in \mathbb{Q} \text{ and } S \subseteq A \text{ finite.} \] Theorem: (F., Klin @ Simons) Two distributions trace refine each other if, and only if, they satisfy the same formulas of this fragment

The relation corresponding to the fragment is undecidable, the one corresponding to the full logic is decidable!