Example: Palindromes over binary alphabet

Input alphabet: 0,1

Tape alphabet: 0,1,b

States

State  Interpretation
i initial state
p0   look for 0 at RHS
p1 look for 1 at RHS
q0 found RHS; check it's 0
q1 found RHS; check it's 1
r return to LHS
t accepting state

Transitions

δ (i,b) = (t,b,R) accept if tape is blank
δ (i,0) = (p0,b,R) delete 0 at LHS; look for 0 at RHS
δ (i,1) = (p1,b,R) delete 1 at LHS; look for 1 at RHS
δ (p0,0) = (p0,0,R) move to RHS
δ (p0,1) = (p0,1,R)
δ (p1,0) = (p1,0,R)
δ (p1,1) = (p1,1,R)
δ (p0,b) = (q0,b,L) found RHS; now check whether 0 or 1
δ (p1,b) = (q1,b,L)
δ (q0,0) = (r,b,L) check RHS=0; delete it
δ (q1,1) = (r,b,L) check RHS=1; delete it
δ (q0,b) = (t,b,R) accept if all tape is blank
δ (q1,b) = (t,b,R)
δ (r,0) = (r,0,L) return to LHS
δ (r,1) = (r,1,L)
δ (r,b) = (i,b,R) found LHS; reurn to state i

Example Computation

Below is a depiction of the initial state of the Turing machine with a tape and input word, where b denotes the blank symbol. (As you can see, the word is a palindrome, so it should be accepted.) Underneath is a table of transitions, with the one that is used first highlighted. Then we depict alternately each successive state/tape and each transition that is used next.
                        step 1
 10100101bbb...         next
 i

δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 2
 b0100101bbb...         next
  p                     back
   1
δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 3
 b0100101bbb...         next
   p                    back
    1
δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 4
 b0100101bbb...         next
    p                   back
     1
δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 5
 b0100101bbb...         next
     p                  back
      1
δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 6
 b0100101bbb...         next
      p                 back
       1
δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 7
 b0100101bbb...         next
       p                back
        1
δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 8
 b0100101bbb...         next
        p               back
         1
δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 9
 b0100101bbb...         next
         p              back
          1
δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 10
 b0100101bbb...         next
        q               back
         1
δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 11
 b010010bbbb...         next
       r                back

δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 12
 b010010bbbb...         next
      r                 back

δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 13
 b010010bbbb...         next
     r                  back

δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 14
 b010010bbbb...         next
    r                   back

δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 15
 b010010bbbb...         next
   r                    back

δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 16
 b010010bbbb...         next
  r                     back

δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 17
 b010010bbbb...         next
 r                      back

δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 18
 b010010bbbb...         next
  i                     back

δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 19
 bb10010bbbb...         next
   p                    back
    0
δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 20
 bb10010bbbb...         next
    p                   back
     0
δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 21
 bb10010bbbb...         next
     p                  back
      0
δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 22
 bb10010bbbb...         next
      p                 back
       0
δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 23
 bb10010bbbb...         next
       p                back
        0
δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 24
 bb10010bbbb...         next
        p               back
         0
δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 25
 bb10010bbbb...         next
       q                back
        0
δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 26
 bb1001bbbbb...         next
      r                 back

δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 27
 bb1001bbbbb...         next
     r                  back

δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 28
 bb1001bbbbb...         next
    r                   back

δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 29
 bb1001bbbbb...         next
   r                    back

δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 30
 bb1001bbbbb...         next
  r                     back

δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 31
 bb1001bbbbb...         next
   i                    back

δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 32
 bbb001bbbbb...         next
    p                   back
     1
δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 33
 bbb001bbbbb...         next
     p                  back
      1
δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 34
 bbb001bbbbb...         next
      p                 back
       1
δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 35
 bbb001bbbbb...         next
       p                back
        1
δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 36
 bbb001bbbbb...         next
      q                 back
       1
δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 37
 bbb00bbbbbb...         next
     r                  back

δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 38
 bbb00bbbbbb...         next
    r                   back

δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 39
 bbb00bbbbbb...         next
   r                    back

δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 40
 bbb00bbbbbb...         next
    i                   back

δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 41
 bbbb0bbbbbb...         next
     p                  back
      0
δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 42
 bbbb0bbbbbb...         next
      p                 back
       0
δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 43
 bbbb0bbbbbb...         next
     q                  back
      0
δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 44
 bbbbbbbbbbb...         next
    r                   back

δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 45
 bbbbbbbbbbb...         next
     i                  back

δ (i,b) = (t,b,R) δ (p0,0) = (p0,0,R) δ (p0,b) = (q0,b,L) δ (q0,b) = (t,b,R)
δ (i,0) = (p0,b,R) δ (p0,1) = (p0,1,R) δ (p1,b) = (q1,b,L) δ (q1,b) = (t,b,R)
δ (i,1) = (p1,b,R) δ (p1,0) = (p1,0,R) δ (q0,0) = (r,b,L) δ (r,0) = (r,0,L)
δ (r,b) = (i,b,R) δ (p1,1) = (p1,1,R) δ (q1,1) = (r,b,L) δ (r,1) = (r,1,L)
                        step 46
 bbbbbbbbbbb...
      t                 back

At this point the machine is in accepting state t, and there are no transitions from t, so the machine halts and accepts.