TM to accept words 11010010001…0k1 (for natural numbers k)

Input alphabet: 0,1

Language: {1,11,1101,1101001,11010010001,1101001000100001,...}

Tape alphabet: 0,1,#,b (where b denotes the blank symbol)

Note that none of the transitions replace a 1 by any other symbol, or print a 1 on the tape in place of some other symbol.

State0 on tape1 on tape# on tape b on tapecomment
i .δ(i,1)=(i',1,R). δ(i,b)=(accept,b,R) In initial state, accept if blank, move right if 1 (and go to state i'), reject if 0. Also rejects if # is seen. In i', accept if blank, move right if 1. States i and i' are only ever used during the first 2 steps of computation.
i' .δ(i,1)=(q,1,R). δ(i,b)=(accept,b,R)
q δ(q,0)=(s',#,R).. δ(q,b)=(accept,b,R) In state q, delete a 0, move right, get ready to delete 2 zeroes, one from each block being compared. State q corresponds to a state of the system where the TM has just compared 2 consecutive blocks of 0's, and moved to the right of the 1 to their right.
r.δ(r,1)=(r',1,L)δ(r,#)=(r,#,L) .move left, looking for corresponding 0 (use 2 states r and r' to remember whether a 1 has been by-passed.)
r'δ(r',0)=(s,#,R).δ(r',#)=(r',#,L) .
s.δ(s,1)=(s',1,R)δ(s,#)=(s,#,R) .move right, look for new 0 to delete (use 2 states s and s' to remember whether a 1 has been by-passed)
s'δ(s',0)=(r,#,L)δ(s',1)=(t,1,L)δ(s',#)=(s',#,R) .
t .δ(t,1)=(t',1,L)δ(t,#)=(t,#,L) . In states t and t', move to left, prior to replacing #'s by 0's.
t' .δ(t,1)=(u,1,R)δ(t',#)=(t',#,L) .
u .δ(u,1)=(u',1,R)δ(u,#)=(u,0,R) . In states u and u', move to right, replacing #'s by 0's.
u' .δ(u',1)=(q,1,R)δ(u',#)=(u',0,R) .

Example computation

 1 1 0 1 0 0 1 0 0 0 1 ...
 i   

  
 1 1 0 1 0 0 1 0 0 0 1 ...
   i'     

      
 1 1 0 1 0 0 1 0 0 0 1 ...
     q     

     
 1 1 # 1 0 0 1 0 0 0 1 ...
       s'     

     
 1 1 # 1 0 0 1 0 0 0 1 ...
     r2     

      
 1 1 # 1 0 0 1 0 0 0 1 ...
     t     
     
 1 1 # 1 0 0 1 0 0 0 1 ...
   t      

    
 1 1 # 1 0 0 1 0 0 0 1 ...
 t'      

     
 1 1 # 1 0 0 1 0 0 0 1 ...
   u       

     
 1 1 # 1 0 0 1 0 0 0 1 ...
     u'      

        
 1 1 0 1 0 0 1 0 0 0 1 ...
       u'       

      
 1 1 0 1 0 0 1 0 0 0 1 ...
         v      

      
 1 1 0 1 0 0 1 0 0 0 1 ...
         q       

      
 1 1 0 1 # 0 1 0 0 0 1 ...
           s'       

      
 1 1 0 1 # # 1 0 0 0 1 ...
         r        

      
 1 1 0 1 # # 1 0 0 0 1 ...
       r        

      
 1 1 0 1 # # 1 0 0 0 1 ...
     r'        

      
 1 1 # 1 # # 1 0 0 0 1 ...
       s

      
 1 1 # 1 # # 1 0 0 0 1 ...
         s'

      
 1 1 # 1 # # 1 0 0 0 1 ...
           s'

 1 1 # 1 # # 1 0 0 0 1 ...
             s'

 1 1 # 1 # # 1 0 0 0 1 ...
           t

 1 1 # 1 # # 1 0 0 0 1 ...
         t

 1 1 # 1 # # 1 0 0 0 1 ...
       t

 1 1 # 1 # # 1 0 0 0 1 ...
     t'

 1 1 # 1 # # 1 0 0 0 1 ...
   t'

 1 1 # 1 # # 1 0 0 0 1 ...
     u

 1 1 0 1 # # 1 0 0 0 1 ...
       u

 1 1 0 1 # # 1 0 0 0 1 ...
         u'

 1 1 0 1 0 # 1 0 0 0 1 ...
           u'

 1 1 0 1 0 0 1 0 0 0 1 ...
             u'

 1 1 0 1 0 0 1 0 0 0 1 ...
               q

(note, we would have accepted if a blank was seen here)

 1 1 0 1 0 0 1 # 0 0 1 ...
                 s'

 1 1 0 1 0 0 1 # # 0 1 ...
               r

 1 1 0 1 0 0 1 # # 0 1 ...
             r

 1 1 0 1 0 0 1 # # 0 1 ...
           r'

 1 1 0 1 0 # 1 # # 0 1 ...
             s

 1 1 0 1 0 # 1 # # 0 1 ...
               s'

 1 1 0 1 0 # 1 # # 0 1 ...
                 s'

 1 1 0 1 0 # 1 # # 0 1 ...
                   s'

 1 1 0 1 0 # 1 # # # 1 ...
                 r

 1 1 0 1 0 # 1 # # # 1 ...
               r

 1 1 0 1 0 # 1 # # # 1 ...
             r

 1 1 0 1 0 # 1 # # # 1 ...
           r'

 1 1 0 1 0 # 1 # # # 1 ...
         r'

 1 1 0 1 # # 1 # # # 1 ...
           s

 1 1 0 1 # # 1 # # # 1 ...
             s

 1 1 0 1 # # 1 # # # 1 ...
               s'

 1 1 0 1 # # 1 # # # 1 ...
                 s'

 1 1 0 1 # # 1 # # # 1 ...
                   s'

 1 1 0 1 # # 1 # # # 1 ...
                     s'

 1 1 0 1 # # 1 # # # 1 ...
                   t

and so on...