
The Complexity of Computing KKT Solutions of
�adratic Programs

John Fearnley
University of Liverpool

United Kingdom
john.fearnley@liverpool.ac.uk

Paul W. Goldberg
University of Oxford
United Kingdom

paul.goldberg@cs.ox.ac.uk

Alexandros Hollender
University of Oxford
United Kingdom

alexandros.hollender@cs.ox.ac.uk

Rahul Savani
Alan Turing Institute and University of Liverpool

United Kingdom
rahul.savani@liverpool.ac.uk

ABSTRACT

It is well known that solving a (non-convex) quadratic program is

NP-hard. We show that the problem remains hard even if we are

only looking for a Karush-Kuhn-Tucker (KKT) point, instead of a

global optimum. Namely, we prove that computing a KKT point of

a quadratic polynomial over the domain [0, 1]= is complete for the

class CLS = PPAD ∩ PLS.

CCS CONCEPTS

• Theory of computation→ Problems, reductions and com-

pleteness; Quadratic programming.

KEYWORDS

Quadratic Programming, KKT, Continuous Local Search

ACM Reference Format:

John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani.

2024. The Complexity of Computing KKT Solutions of Quadratic Programs.

In Proceedings of the 56th Annual ACM Symposium on Theory of Computing

(STOC ’24), June 24–28, 2024, Vancouver, BC, Canada. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3618260.3649647

1 INTRODUCTION

Quadratic programming (QP) is the problem of optimising a qua-

dratic function of a collection of real variables, subject to linear

constraints on those variables. It has widespread applications, nu-

merous software implementations, and an extensive literature on

its theoretical analysis, dating back more than 50 years. A fairly

standard formulation is the following:

min
G ∈R=

5 (G) := G⊺&G + 2⊺G

subject to 0
⊺

8 G ≤ 18 ,∀8 ∈ {1, . . . ,<} .
(1)

In (1) the matrix & is usually (and without loss of generality) taken

to be symmetric, and there has been much work on restrictions of

the problem based on assumed properties of & , some of which we

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0383-6/24/06
https://doi.org/10.1145/3618260.3649647

touch on below. The main result of the present paper is that for

QP it is computationally hard to compute a Karush-Kuhn-Tucker

(KKT) point, an important kind of solution consisting of one that

is locally optimal with respect to gradient descent. Moreover, our

hardness result applies to a special case of interest known as “box

constraints” (e.g., [3, 8]), in which the feasible region (i.e., the region

0
⊺

8 G ≤ 18 ,∀8 ∈ {1, . . . ,<}) consists of an axis-aligned hypercuboid;

here we use [0, 1]= . (Indeed, the general version of the problem

sometimes assumes that the linear constraints include G ∈ [0, 1]=

(e.g., [5]), which guarantees that the feasible region is compact.)

KKT solutions, and other types of solution. Informally, a

KKT point is one that constitutes a local optimum of gradient de-

scent. It may be a point at which the gradient is zero (a stationary

point), or one where the gradient is non-zero, but further downhill

progress is obstructed by one or more of the boundary constraints.

A key feature of KKT solutions of (1) is that they have concise cer-

ti�cates: roughly, the gradient together with the binding constraints

at a point of interest. Moreover, if the domain is compact, there is

guaranteed to be at least one KKT point, since the global optimum

is a KKT point. These two observations indicate that the problem

of searching for a KKT point belongs to the complexity class TFNP,

search problems in which easily-checkable solutions must exist.

In particular, this means that the problem is not expected to be

NP-hard, unless NP = co-NP [21].

Apart from KKT points, the other main solution concepts for

continuous optimisation problems are the following:

• Global optimum, G for which 5 (G) ≤ 5 (G ′) for all G ′ in the

feasible region;

• Stationary point (a.k.a. critical point), where ∇5 (G) = 0;

• Local minimum, G where for some n > 0 we have 5 (G) ≤

5 (G ′) for all G ′ within n of G ; at a strict local minimum, we

have 5 (G) < 5 (G ′) for all G ′ in the feasible region within n

of G .

For QPs of the form (1), stationary points are not guaranteed to

exist, and global optima and local minima are NP-hard to compute.

KKT points relate to other solution concepts as follows. Global

or local minima are KKT points, thus KKT points are at least as

easy to compute as global/local minima. Any stationary point is

a KKT point, but stationary points are not guaranteed to exist,

even for the box-constrained feasible regions that we consider here.

To see that stationary points can be searched for in polynomial

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

892

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0791-4342
https://orcid.org/0000-0002-5436-7890
https://orcid.org/0000-0001-5255-9349
https://orcid.org/0000-0003-1262-7831
https://doi.org/10.1145/3618260.3649647
https://doi.org/10.1145/3618260.3649647
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618260.3649647&domain=pdf&date_stamp=2024-06-11

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani

time, note that they are given by ∇5 = 0, hence de�ne a linear

subspace, and checking for points in the subspace that satisfy the

boundary constraints 0
⊺

8 G ≤ 18 amounts to solving an LP. In the

unconstrained case (in which there are no boundary constraints)

stationary points are the same as KKT points, so then the problem

of searching for either kind of solution is tractable. A stationary

point need not be a local minimum: for the problem of minimising

5 (G) = −G2 over the interval [0, 1], G = 0 is a stationary point but

not a local minimum.

Hardness results for global/local optima. There has been

much work studying the circumstances in which one can e�ciently

compute a solution of one of the above kinds, also on determining

whether a given point G is one of the above solutions.

The global optimisation problem for quadratic programming

is amongst the earliest problems to be shown NP-hard [30, 31]1,

although containment in NP had to wait until substantially later

[33]2.NP-hardness has also been established for various restrictions

of the problem, for example [26] obtain NP-hardness when & has

rank 1 with one negative eigenvector (in a sense the simplest kind

of nonconvex program that can be expressed as a QP). A simple

reduction from MAX-CLIQUE to QP [2, 22, 28] yields NP-hardness

for QPs that are square-free quadratic forms (diagonal entries of

the matrix & in (1) are zero, and there are no linear terms 2⊺G); the

feasible region is a simplex as opposed to a box.

Regarding local optima, there are hardness results known for

computing them, as well as for checking whether a given point is

locally optimal. It is shown in [2] that it is hard to �nd an approx-

imation to a local minimum. The problems of checking whether

a given point G is a local optimum, or a strict local optimum, are

NP-hard [23, 25] (in particular, when the feasible region is the unit

box [0, 1]= and G is the origin). In the unconstrained case (< = 0)

[1] show that it is possible in polynomial time to determine whether

any version of local optimal solution exists.

There are strong hardness results even for computing approx-

imations to the global optimum of QP. [5] obtained hardness of

approximation for QP by reducing a two-prover one-round proof

(with polylogarithmic communication) to QP in quasi-polynomial

time. From this it follows that assuming NP problems are not solv-

able in quasi-polynomial time, there is no non-trivial constant factor

approximation algorithm for QP. [5, Theorem 1.3] also show that

for some constant ` ∈ (0, 1), QP is NP-hard to approximate within

a factor `; these hardness results even apply assuming numbers

are given in unary. Also in the context of two-prover one-round

interactive proof systems, [16] show how the search for an optimal

strategy for the provers can be expressed as a QP. They study a

relaxed version of the QP that corresponds with an upper bound

on the value of the game played by the provers (and is poly-time

computable); this leads to a general-purpose heuristic for problems

in NP, and in turn a general kind of algorithm for diverse problems

in P. [15] (Corollary 4) use this to conclude that (unless P = NP)

there is no constant-factor approximation algorithm for QP.

1Indeed, even before NP-completeness, [22] reduce MAX CLIQUE to a version of QP
in which the feasible region is a simplex. In Sahni’s reduction (from SUBSET SUM) the
feasible region is a box.
2[33] showed in particular that there exist optimal solutions having polynomial bit
complexity.

1.1 NP Total Search Problems and the Class CLS

As a solution concept, KKT points have two appealing properties:

guaranteed existence (provided the feasible region is bounded), and

polynomial-time checkability (we can e�ciently verify that a point

is KKT). These properties mean that the problem of computing one

belongs to the complexity class TFNP: total (as opposed to partial)

functions that belong to NP. Problems that belong to TFNP are

classi�ed by various syntactic subclasses associated with the proof

principle underlying the existence guarantee. Here, the relevant

classes are PLS [19], PPAD [24], and CLS [12], the latter having

been shown to be equal to PPAD ∩ PLS [14].

The complexity class CLS (for “continuous local search”) was in-

troduced by [12] in an e�ort to understand the complexity of certain

seemingly-hard search problems that belong to both PPAD and PLS.

The problems they list include the search for a KKT point of a given

polynomial over a domain given by linear constraints. Such prob-

lems are unlikely to be complete for either PPAD or PLS, since such

a result would indicate that one of PPAD or PLS contains the other.

Recently [14] showed that CLS is equal to the intersection of PPAD

and PLS, in the process showing that it is CLS-complete to �nd KKT

solutions of piecewise polynomial functions de�ned by a certain

class of arithmetic circuits. Building on these results, [4] showed

that computing a (possibly mixed) Nash equilibrium of a congestion

game is CLS-complete and furthermore (of more relevance to the

present paper) that local optimisation (in the KKT sense) of degree-

5 polynomials is also CLS-complete. Since the CLS-completeness

results of [4, 14], other problems in game theory have been shown

CLS-complete [13, 32] via comparatively direct reductions. The

main result of [14] indicates that CLS-complete problems are un-

likely to have polynomial-time algorithms. Moreover, the hardness

of CLS can also be based on various cryptographic assumptions

such as particular versions of indistinguishability obfuscation [17],

soundness of Fiat-Shamir [10], or Learning With Errors [18].

Regarding our main result and its signi�cance, we have noted

that quadratic programming is a fundamental problem of general

interest. Our main result answers an open question raised in [27]

(see problem 3) and reiterated in [2]. The problem Polynomial

KKT [12] is a generalization of (1) in which 5 is allowed to be any

polynomial, written down as a sum of monomials. [4] showed that

the Polynomial KKT problem is CLS-complete for degree-5 poly-

nomials, which naturally raises the question, pointed out in [14],

of whether such a result holds for lower degree. Here we identify

the lowest degree for which a hardness result holds, since for de-

gree 1 the problem is linear programming. On the other hand, our

result does not hold for some versions of interest, such as taking a

standard simplex as the feasible region, e.g., [6]. Another important

class of QPs that di�ers from the one studied here involves opti-

mising quadratic functions over a unit sphere, or an intersection of

spheres, e.g., [34, 35, 37].

Our main result is for the computation of exact (as opposed

to approximate) solutions. Fortunately, any problem instance has

rational-valued KKT solutions whose bit complexity is polynomial

in the bit complexity of numbers appearing in the problem instance3.

3This does not hold for objective functions of degree 3 or more. The distinction is
analogous to the distinction between Nash equilibria of 2-player games versus 3-player
games.

893

The Complexity of Computing KKT Solutions of �adratic Programs STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

If we consider natural notions of approximation, computation of

exact solutions is polynomial-time equivalent to the computation

of n-approximate solutions for inverse-exponential n . [36] gives an

algorithm that computes n-KKT points, whose runtime dependence

on n is $ ((1/n) log(1/n) log(log(1/n))) (there is also polynomial

dependence on =, and a factor representing the di�erence between

the maximal and minimal objective values). So we give a negative

answer to the question of whether a logarithmic dependence on n

is possible. Finally, our hardness result also highlights a contrast

with convex optimisation, in which KKT points and global optima

coincide, and many algorithms are known that �nd n-approximate

solution in time $ (log(1/n)) [7].

Theorem (Main Result). It is CLS-complete to compute KKT

solutions of (1), even when the feasible region consists of the unit box

[0, 1]= .

1.2 Technical Overview

Our result is proved in two steps. First, we present a reduction

from the problem of computing (some sort of) a KKT point of

a type of arithmetic circuit to the problem of computing a KKT

point of a QP with box constraints. Namely, we consider linear

arithmetic circuits that compute piecewise linear functions using

a single kind of (fairly general, multi-purpose) gate. In the second

step, we show that computing a KKT solution of such a circuit is a

CLS-hard problem by reducing from a version of the problem for

more general circuits, that is known to be CLS-hard [14]. Together,

these two reductions establish the CLS-hardness of computing a

KKT point of a QP.

While the �rst step is certainly the most interesting part of this

combined reduction, the second step is surprisingly technical and

requires a certain number of new ideas, which are likely to be useful

in future works. We now present the main challenges in both parts,

as well as the new ideas that were needed to overcome them.

Step 1: Reducing from a circuit to a QP. The �rst challenge in

this part is the following main obstacle.

Challenge 1: We can only use terms of degree at most two.

Unsurprisingly, the techniques used in [14] to show CLS-hardness

of �nding a KKT point of a general arithmetic circuit are of no use

here, since we are reducing to an explicit polynomial. Rather, just

as in [4], we will just use the result of [14] as a starting point for

reductions.

The techniques used in [4] to reduce to a degree-5 polynomial

are much more relevant here. Their reduction is highly non-trivial

and also relies on some older ideas used in the context of proving

PLS-hardness of a version of local-max-SAT [20]. However, the

restriction here to degree-2 polynomials makes a big di�erence and

we mostly cannot re-use their ideas.4 We encounter a fundamental

obstacle to the use of guide variables (called guide players in [4],

since their reduction is presented in terms of a game). Very brie�y,

the role of these guide variables, which were already used in [20]

4One notable exception to this is the idea of simulating the evaluation of a circuit by
constructing an objective function that consists of a sum of terms, one for each gate of
the circuit, with gates deeper down in the circuit having smaller weights. This idea of
exponentially-decreasing weights, already used in [20] in the context of discrete local
optimisation, ensures that gates are correctly simulated and that their output is not
biased by other gates that use it as an input.

in a somewhat simpler form, is to be able to “deactivate” some

interactions between two (or more) other variables. This deactiva-

tion is absolutely crucial for the approach of [4], as it already was

in [20]. Given that in any reasonable construction of a quadratic

polynomial the interaction between two variables would yield a

quadratic term (e.g., G8G 9 , or perhaps (G8 − G 9)
2), the addition of a

guide variable on top of that immediately takes us to up degree 3.

The inability to use guide variables, or any of the other involved

machinery from [4], forces us to start from the ground up. As a

toy example to illustrate our approach, consider a circuit C that

takes two inputs G1, G2 ∈ [0, 1] and consists of only two gates.

The �rst gate computes G3 := G1 + G2, and then the second gate,

which is the output of the circuit, computes G4 := −2G3. Thus, the

circuit C simply computes the function 5 : [0, 1]2 → R, (G1, G2) ↦→

−2(G1 + G2). This is a linear function and so �nding a KKT point

over the simple domain [0, 1]2 is very easy: the only KKT point

(for the minimization problem) is at (1, 1). Now let us attempt to

simulate this circuit by a quadratic polynomial that implements

each gate separately.5 Consider the polynomial

? (G1, G2, G3, G4) := (G3 − G1 − G2)
2 + (G4 + 2G3)

2

which consists of one squared term for each gate.6 Intuitively, mini-

mizing ? will force G3 = G1+G2 and G4 = −2G3. The partial derivative

of ? with respect to G4 is

m?

mG4
= 2(G4 + 2G3) .

At a KKT point this must be zero,7 so we obtain G4 = −2G3. Next,

we have
m?

mG3
= 2(G3 − G1 − G2) + 4(G4 + 2G3) .

Setting this to zero, and using G4 = −2G3, we obtain G3 = G1 +

G2 as desired. Thus, any KKT point (G1, G2, G3, G4) of ? satis�es

G4 = 5 (G1, G2). In other words, we have correctly simulated the

evaluation of the circuit. However, this is not enough. We want

any KKT point (G1, G2, G3, G4) of ? to yield a KKT point (G1, G2) of

5 , and this is currently not the case. What is missing is that the QP

is not “aware” of the fact that it should attempt to minimize the

output of the circuit, namely G4. An initial attempt to �x this by

rede�ning

? (G1, G2, G3, G4) := (G3 − G1 − G2)
2 + (G4 + 2G3)

2 + G4

fails because it introduces big errors in the evaluation of the gates.

This can be mitigated by using the idea of exponentially-decreasing

5Obviously, there is a trivial reduction here that just lets the quadratic polynomial be the
linear function 5 itself. However, we are interested in a construction that implements
each gate separately, because we will ultimately need to implement (slightly) more
general gates. Indeed, a circuit that only consists of linear gates represents a linear
function, and it is easy to �nd KKT points of such functions.
6Because we use such squared terms, our polynomial will not be multilinear. In partic-
ular, our result has no implications for games, unlike [4].
7To simplify the exposition in this part of the overview we think of G4 (and all other
intermediate circuit variables) as being unconstrained. Thus, we can ignore the fact that

if G4 ∈ {0, 1}, then the KKT condition is not
m?

mG4
= 0, but rather

m?

mG4
≥ 0 or

m?

mG4
≤ 0.

Thinking of G4 as being unconstrained is actually not completely incorrect, since it
is possible to pick a constraint G4 ∈ [0,1] for su�ciently small 0 and su�ciently
large 1 such that G4 never lies on the boundary at a solution. In any case, we will later
revert to [0, 1] constraints and these will indeed be used in a very crucial way in our
construction.

894

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani

weights from [20] (which was also heavily used in [4]). Indeed, we

can instead de�ne

? (G1, G2, G3, G4) := (G3 − G1 − G2)
2 + X (G4 + 2G3)

2 + X2G4

where X > 0 is small. Performing the same analysis as above, yields

G4 = −2G3 − X/2, and then G3 = G1 + G2 + X
2. So the gates are no

longer evaluated exactly, but have some additive error. Fortunately,

the error can be made arbitrarily small by making X su�ciently

small.

The interesting observation however is that

m?

mG1
= −2(G3 − G1 − G2) = −2X2

and similarly
m?
mG2

= −2X2. This forces any KKT point (G1, G2, G3, G4)

of ? to satisfy (G1, G2) = (1, 1), which is indeed the correct KKT

point of the original function 5 ! Moreover, notice that −2X2 is

equal to X2
m5
mG1

, i.e., it is proportional to the partial derivative of the

original function 5 . In other words, this seemingly arbitrary error

term actually carries useful information. This is not a coincidence.

The errors, starting from the error in the output gate due to the new

term X2G4, propagate backwards in the circuit evaluation, until they

reach the input variables G1 and G2. In doing so, every traversed

gate modi�es the error in a very particular way, until, �nally, the

signal seen by the input variables corresponds to the gradient of

the original function 5 . Indeed, at every gate the error is modi�ed

in a way that corresponds to applying the rules for computing

the gradient of a circuit using the backpropagation technique. This

technique, widely used in machine learning, computes the gradient

of a function by starting from the output and repeatedly applying

the chain rule for di�erentiation until the inputs are reached. Indeed,

the following can be proved by induction over the depth of the

circuit:

Lemma (Linear Backpropagation Lemma). When ? is con-

structed from a depth-< circuit C with linear gates computing a

function 5 , any KKT point of ? satis�es

m?

mG8
= X< ·

m5

mG8

for all input variables G8 .

Challenge 2: Circuits with linear gates are easy. The Linear

Backpropagation Lemma implies that any KKT point of ? must

yield a KKT point of the original function 5 . Unfortunately, this

is not enough to prove that our problem is intractable, because

computing a KKT point of a linear function is an easy problem.

In order to reduce from existing hard functions [4, 14] we would

at least need the circuit C to also consist of multiplication gates

G: := G8G 9 . But to implement such a gate we would need terms of

the form (G: − G8G 9)
2, which have degree four.

The crucial observation here is that we have not yet used the

boundary of the domain in any way to implement gates. The bound-

ary constraints suggest a natural generalization of linear gates. In-

deed, if we consider a term such as (G3−G1−G2)
2 and now – unlike

we did before – also constrain G3 ∈ [0, 1], then we see that any

KKT point of this term must satisfy

G3 = T(G1 + G2)

where T : R→ [0, 1] denotes truncation to the [0, 1] interval, i.e.,

T(I) = min{1,max{0, I}}. More generally, we can simulate any gate

of the form G: := T(0G8 +1G 9 + 2) by the term (G: −0G8 −1G 9 − 2)
2.

We call such a gate a truncated linear gate. No e�cient algorithm

for computing KKT points of such circuits seems to be known, so

there is hope that we might be able to prove intractability.

Unfortunately, before we can start considering proving such an

intractability result, there is a more pressing issue: this reduction

only works for a single gate. Although we still have correct (ap-

proximate) evaluation of the circuit by picking a su�ciently small

X , the errors no longer correctly simulate backpropagation when

truncation occurs. In order to restore the behavior that we observed

in the setting without truncation, we need to �nd a way to simulate

truncated linear gates that also works with backpropagation.

We modify the simulation as follows. A truncated linear gate

G: := T(0G8 + 1G 9 + 2) is now simulated by the term

(G: + I+ − I− − 0G8 − 1G 9 − 2)
2 + 2I+I− + 2I+ (1 − G:) + 2I−G:

where I+ and I− are new auxiliary variables. Intuitively, I+ is here

to “pick up the slack” between G: and 0G8 +1G 9 + 2 , when the latter

is strictly larger than 1. The variable I− has a similar function when

0G8 + 1G 9 + 2 < 0. Note that the derivative of the new term with

respect to G: is the same as the derivative of (G: − 0G8 − 1G 9 − 2)
2.

So from the point of view of G: this new term is the same as the

old one; in particular, G: will again (approximately) take the value

T(0G8 + 1G 9 + 2). The di�erence is in what the variables G8 and

G 9 see. The derivative of the old term with respect to G8 was just

−20(G: −0G8 −1G 9 −2), so when truncation occurred this derivative

would essentially correspond to the truncation gap, whereas we

would want it to be 0, which is the correct backpropagation signal

(because a small change in G8 would not change G: if truncation

occurs). On the other hand, the derivative of the new term with

respect to G8 is−20(G: +I
+−I−−0G8−1G 9−2). In this derivative, the

variables I+ and I− �ll the gap between G: and 0G8 + 1G 9 + 2 when

truncation occurs, and thus we obtain the correct backpropagation

signal 0. If truncation does not occur, then I+ = I− = 0 and the new

term behaves just like the old term.

It is thus tempting to try to establish the following lemma.

Desired Lemma (Ideal Backpropagation Lemma). When ? is

constructed from a depth-< circuit C with truncated linear gates

computing a function 5 , any KKT point of ? satis�es(
m?

mG1
(G1, G2),

m?

mG2
(G1, G2)

)
∈ X< · m5 (G1, G2)

where G1 and G2 are the input variables, and m5 is the generalized

gradient8 of the (almost everywhere di�erentiable) function 5 .

Challenge 3: The Ideal Backpropagation Lemma does not

hold. Unfortunately, this lemma fails to hold. The reason for this is

quite fundamental: backpropagation does not really work for such

circuits. Consider the following simple example: the circuit C has

a single input G1, and outputs the value T[2G1]/2 + T[G1 − 1/2].

This can easily be implemented by using three truncated linear

gates. Note that the circuit computes the (linear!) function [0, 1] →

8At a point where 5 is di�erentiable, the generalized gradient is the singleton set con-
sisting of the gradient; where 5 is not di�erentiable, it is the set of convex combinations
of well-de�ned gradients close to that point.

895

The Complexity of Computing KKT Solutions of �adratic Programs STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

[0, 1], G1 ↦→ G1, which has derivative 1 everywhere. Now consider

performing backpropagation when the input is G1 = 1/2. Since

this is the threshold for both truncations, the value 0 is a valid

derivative for both of those gates. As a result, the gradient computed

by backpropagation could theoretically output 0. In Section 3 we

provide a slightly more involved example (Example 3.3) where this

indeed happens in our QP construction: the correct gradient value is

1/2 everywhere, but at G1 ≈ 1/2 we have
m?
mG1

(G1) = 0. In particular,

our construction would incorrectly output G1 ≈ 1/2 as a KKT point.

This shows that the Ideal Backpropagation Lemma cannot hold,

even in some approximate version where we would also consider

points in the vicinity of (G1, G2).

However, the example suggests that a weaker statement might

hold. Indeed, the issue occurs because both truncations have a

threshold at 1/2. If we were to slightly perturb these thresholds,

then we would indeed see a derivative of 0 appear. In other words,

it seems reasonable to think that the backpropagation that occurs

computes some convex combination of gradients of various per-

turbed versions of the circuit C. To be more precise, in a perturbed

version of C, every gate G: := T(0G8 + 1G 9 + 2) is replaced by a

gate G: := T(0G8 + 1G 9 + 2 + c:) for some c: ∈ R. By picking X

su�ciently small, we can ensure that all c: are as small as required.

Indeed, we can prove the following result.

Lemma (Backpropagation Lemma (informal)). When ? is con-

structed from a depth-< circuit C with truncated linear gates, any

KKT point of ? satis�es(
m?

mG1
(G1, G2),

m?

mG2
(G1, G2)

)
∈ X< · conv

{
∇ 5̃ (G1, G2) : 5̃ computed

by small perturbation of C
}

where G1 and G2 are the input variables.

This leads us to de�ne the new notion of a generalized gradi-

ent of a linear arithmetic circuit to capture this behavior. See the

subsequent preliminaries section for more details on this.

With the Backpropagation Lemma in hand, we can now leave

quadratic polynomials behind us and focus on circuits with trun-

cated linear gates. We will also refer to these by the simpler name

linear arithmetic circuits (which is usually used to refer to circuits

with +,−, 2,×2,min,max gates [14]), since our circuits can easily

simulate such circuits and vice-versa. In the next step, we construct

a class of such circuits that is robust to perturbations, and for which

it isCLS-hard to �nd a KKT point (with respect to the new de�nition

of generalized gradient).

Step 2(a): Designing a robust function: the mesa construction.

In order to show CLS-hardness of this problem, we have to reduce

from an existing CLS-hard problem. We reduce from the problem

of computing an approximate KKT point of a smooth function

de�ned on the two-dimensional grid [0, 1]2, which is known to be

CLS-complete when the function is represented by an arithmetic

circuit with more general gates [14]. Indeed, being able to work on

a two-dimensional domain (as opposed to a high-dimensional one

if we used [4] instead) allows us to avoid having to unnecessarily

complicate the construction.

At a high level, given such a smooth function de�ned on [0, 1]2,

we would like to construct a piecewise linear function that has

(approximately) the same KKT solutions as the original function.

Importantly, our piecewise linear function must be represented by

a linear arithmetic circuit. This is already challenging, even if we

ignore the perturbations.

Challenge 1: Existing linear circuit constructions give no

guarantees about the gradient. Interpolations of continuous

functions by linear arithmetic circuits have been given in prior

work [9, 14, 29] and indeed these have been pivotal in proving

important results in this �eld. However, these constructions only

aim to obtain a piecewise linear function that closely approximates

the original function in terms of function value. The usage of the

averaging trick [11], which is common to all of these, means that

the (generalized) gradient of the piecewise linear function can be

wildly di�erent from the original gradient and introduce spurious

KKT solutions.

We are thus forced to move away from this type of construction.

Putting circuits aside for a bit, there is a standard interpolation

by a piecewise linear function that does (approximately) maintain

the gradient. Simply pick a su�ciently �ne standard triangulation

of [0, 1]2, de�ne the value of the function at the vertices of the

triangulation to agree with the original function, and interpolate

linearly within each triangle. This interpolation would be su�cient

for our purposes, because it is not hard to show that any KKT point

of the new function must correspond to an approximate KKT point

of the original function.

The “catch” is that we would have to construct a linear arithmetic

circuit that represents this piecewise linear interpolation. Existing

techniques, which all use the averaging trick, are unable to achieve

this. However, it turns out that using some new ideas (most of which

we end up using in our �nal construction and which are highlighted

below) it is in fact possible to construct a linear arithmetic circuit

that exactly computes this piecewise linear interpolation. At this

point, if the Ideal Backpropagation Lemma stated earlier was true,

we would be done. Unfortunately, this is not the case, and we also

have to argue about what happens to the circuit when gates are

slightly perturbed.

Challenge 2: The standard piecewise linear interpolation

is not robust to perturbations. Unfortunately, this circuit is not

robust to perturbations, i.e., perturbed versions of the circuit would

introduce new solutions that did not appear in the original function.

In order to illustrate the issues that can occur, as well as explain how

they can be overcome, it is useful to take a step back and think about

what would happen if the domain was one-dimensional, instead of

two-dimensional.

In the one-dimensional case, with domain [0, 1], the standard

interpolation is indeed very simple. Given some su�ciently �ne

discretization of [0, 1], we simply interpolate linearly between ad-

jacent points. Implementing this using a linear arithmetic circuit

is still non-trivial (because the discretization is exponentially �ne),

but it is possible using the new ideas hinted at above. Without going

into too much detail, this piecewise linear function is constructed

by taking the maximum of an exponential9 number of simple func-

tions. Every simple function implements a single linear segment

9Of course this would not be e�cient, so the actual construction has to do something
more clever. Nevertheless, this (incomplete) description is su�cient for this part of the
technical overview.

896

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani

Figure 1: Creating a one-dimensional mesa as the minimum

of three lines.

of the interpolation and then very quickly decreases in value as

soon as we leave the segment. Each of the simple functions can be

constructed by taking the minimum of the three linear functions

that they each consist of, see Figure 1. Taking the maximum of

all these simple functions then indeed correctly yields the desired

interpolation.

Now, let us see what happens when we allow small perturbations

at gates of the circuit. Of course, it is hard to think about all the ways

in which perturbations can interfere with a construction (especially

since we have not given many details here), but a good starting

point, and in a certain sense, the absolute minimum requirement is:

if we slightly perturb each of the linear functions that are used to

construct each of the simple functions by some small additive term,

no new solutions should appear.

Unfortunately, the construction already fails this simple test, as

can be seen in the example in Figure 2. Furthermore, note that the

issue appears as soon as we allow non-zero perturbations; requir-

ing the perturbations to be very small does not help. However, this

example suggests a somewhat di�erent approach: instead of always

trying to faithfully approximate the gradient of the original func-

tion, we can relax this requirement as long as we do not introduce

any new KKT points. Indeed, we can avoid the issue by using the

following “halved-gradient” trick: for each linear segment, halve its

slope while keeping the same value at the middle of the segment.

As long as the perturbations are kept su�ciently small, this simple

trick ensures that linear pieces with “bad” gradients are no longer

visible, i.e., they disappear when we take the maximum over all

simple functions. See Figure 2 for an example. The only case where

such a “bad” piece might appear is if the slope of the linear segment

is very �at. But in that case, the original function must have an

approximate KKT point there.

This approach indeed works for the one-dimensional setting. It

turns out that the easiest way to generalize this to two dimensions

is not to try to apply this to a triangulation of the unit square, but

rather to a grid over the unit square. For any point on the grid, we

construct a corresponding square segment with a gradient that is

half the gradient of the original function at that point. When we

leave that square, the function value decreases very quickly. We call

this simple function a mesa due to its shape which is reminiscent of

a �at-topped hill with steep sides, see Figure 3. The �nal function is

then obtained by taking the maximum of (an exponential number

of such) mesa functions, one at each grid point.

We show that this mesa construction does not introduce any

new KKT points, except in the vicinity of approximate KKT points

of the original function. Importantly, this continues to hold even if

we add an arbitrary, but small, perturbation to each linear piece of

each mesa.

In the last part of this technical overview, we give some details

about how the mesa construction can be implemented by using only

the gates available in a linear arithmetic circuit (namely, truncated

linear gates, as well as other gates that can be simulated by them,

such as max and min). Furthermore, we need to make sure that

the perturbations, which appear in any gate, can only impact the

construction in the way described above (i.e., perturbing each linear

piece of each mesa), and not in any other way.

Step 2(b): Robustly implementing themesa constructionwith

a linear circuit. From Step 2(a) we get a grid of points� covering

[0, 1]2, and Boolean circuits that, for each point ~ ∈ � de�ne a

mesa centered at ~. If<(G,~) is the height of the mesa centered

at ~ at the point G , then we must implement a linear circuit that

computes

5 (G) = max
~∈�

<(G,~) .

Since � contains exponentially many points, it is clearly infeasi-

ble to compute 5 directly. Instead we �rst perform a bit extraction

on G to obtain binary encodings of a small set (⊆ � of nearby grid

points, and we then evaluate 5 (G) = max~∈(<(G,~) instead. This

works because each mesa can only achieve the maximum used in 5

in a small radius around its center, so we can disregard the mesas

that are far from G when computing 5 .

While the technique of extracting bits from G to succinctly com-

pute some function 5 (G) has been used before, we must overcome

several challenges to make this work for our setting.

Challenge 1: Dealing with bit extraction failures. The bit

extraction process requires us to implement an inherently discon-

tinuous function, and since linear circuits can compute only con-

tinuous functions, we are forced to rely on bit extractors that can

fail for a small subset of the inputs. This is a well-known problem,

and prior work has addressed it through the use of the “averaging

trick”, in which one extracts bits for G and also a large number

of points that are close to G . By arranging the process such that

only a small number of the bit extractions can fail, then the results

over all of the points can be averaged, giving us a function 5̃ with

| 5̃ (G) − 5 (G) | ≤ Y for some small Y.

For prior work, which was usually interested only in ensuring

that 5̃ (G) was far from zero whenever 5 (G) was also far from zero,

this approach was good enough. However for our purposes, any

deviation in the desired output, no matter how small, may fatally

undermine the construction by introducing new gradients, which

could create new solutions.

To overcome this, we apply averaging in a new way that ensures

that any errors arising from bit extraction failures do not make

their way into the output. Speci�cally, we divide the points in the

grid into four sets (1, (2, (3, (4 ⊆ � where each set contains points

from a grid of double the width of the original. The four sets are

shown in four di�erent colours on the left side of Figure 4. For each

set (8 we build a function 68 (G) = max~∈(8 <(G,~) which takes the

897

The Complexity of Computing KKT Solutions of �adratic Programs STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Figure 2: Left to right: smooth function we want to interpolate (with no stationary points); standard interpolation as the

maximum of adjacent mesas without perturbations (still no stationary points); additive perturbations introduce an unwanted

stationary point (indicated as a brown square); this unwanted stationary point does not arise when the halved-gradient trick is

applied.

.

p

ℓ

ℓ

Figure 3: An illustration of a two-dimensional mesa function

centered at point ?.

Figure 4: Left: the division of the grid into four sets. Right:

one of the four 68 functions.

maximum only over the mesas whose centers are in (8 . We then set

5 (G) = max(61 (G), 62 (G), 63 (G), 64 (G)).

The function 68 is shown on the right of Figure 4. The red lines

in the �gure show the locations at which a bit extraction might fail.

Importantly, these regions occur only in places at which<(G,~) ≤

0 for all mesa centers ~ ∈ (8 . We ensure that at most two bit

extractions can fail, and that when they do fail they result in an

output that is at most 1. So by averaging over 12 points near G

we can ensure that 68 (G) ≤ 1/6 whenever a bit extraction failure

occurs.

However, we also ensure that 5 (~) ≥ 1/3 for all points ~. There-

fore, the function 6 9 that is responsible for the mesa that de�nes

5 (G) will satisfy 6 9 (G) ≥ 1/3. Since 5 is de�ned to be the maximum

of the 6 functions, this means that any errors arising from failed

bit decodings in 68 will be masked completely by another function

6 9 that has correctly decoded its input. Ultimately, this means that

any spurious gradient arising from a failed bit extraction is well

below the value of 5 (G), and so these gradients can never make

their way into the output.

Challenge 2: Multiplying two variables. Now we are given

Boolean circuits that de�ne the mesas that we must output. This

means that a Boolean circuit will tell us to output an a�ne function

at G = (G1, G2) with gradient 6 = (61, 62) and additive value 0, in

which case we will need to output

G1 · 61 + G2 · 62 + 0.

This is problematic however, because G and 6 are both variables,

and a linear circuit does not allow us to multiply two variables

together.

We circumvent this by showing that it is possible to compute

G · ~ when G is a continuous variable and ~ is a variable encoded in

binary. So we represent gradients in binary in our circuit, and this

allows us to precisely control the gradients that we output.

Challenge 3: Perturbations. It is not enough to create a linear

circuit that implements 5 , because our linear circuit must also be

robust to perturbations. These perturbations will slightly alter the

values that are outputted by min, max, and truncation operations,

and we need to ensure that they do not alter the gradients of the

mesas that appear in the output of the function.

We are able to show that evaluating a Boolean circuit and decod-

ing a binary value can be carried out exactly with no errors even

in the presence of perturbations, while introducing perturbations

in the bit extraction process only slightly increases the region in

which the bit extraction will fail. Then we show that each mesa can

be computed with gradients that are exactly correct, but where each

of the �ve pieces might be additively perturbed by a small amount.

Finally, we show that the step of splitting the points into the 68
functions and then maximizing over them to produce 5 only adds

an additional small perturbation, while not altering the gradients

of any of the mesas.

898

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani

2 PRELIMINARIES

All numbers appearing as inputs in our problem are assumed to

be rational. A rational number G is represented by its numerator

and denominator (in binary) of the irreducible fraction for G . We

let size(G) denote the number of bits needed to represent G in this

way. We also extend this notation in the natural way to the case

where G is a vector with rational entries.

De�nition 2.1. The qadratic-KKT problem is de�ned as fol-

lows. We are given a degree-2 polynomial ? over = variables, and

the goal is to compute a KKT point of the following optimization

problem:

min ? (G)

s.t. 0 ≤ G8 ≤ 1 ∀8 ∈ [=]
(2)

A point G ∈ [0, 1]= is a KKT point of (2) if, for all 8 ∈ [=],

• if G8 > 0, then
m?
mG8

(G) ≤ 0, and

• if G8 < 1, then
m?
mG8

(G) ≥ 0.

The qadratic-KKT problem lies in the class CLS, even for

more general domains,10 namely any non-empty compact domain

given by linear inequalities [14]. This is because the problem can be

solved (ine�ciently) by gradient descent. The problem is guaran-

teed to always admit at least one rational solutionwith polynomially

bounded bit complexity; see the full version for a proof sketch of

this fact. Our main result is the following theorem.

Theorem 2.2. The qadratic-KKT problem is CLS-complete.

The problem remains CLS-complete even if we only ask for an

Y-KKT point, where Y > 0 is allowed to be exponentially small (i.e.,

is given in binary). Indeed, by standard arguments, �nding an exact

solution reduces to �nding an approximate solution; see the full

version. For the de�nition of Y-KKT points, we just replace “≤ 0”

and “≥ 0” by “≤ Y” and “≥ −Y” (respectively) in the de�nition of

qadratic-KKT.

We prove Theorem 2.2 by reducing from the 2D-linear-KKT

problem, which we introduce below and for which we prove CLS-

hardness. The reduction from 2D-linear-KKT to qadratic-KKT

is presented in Section 3.

KKT Points of Linear Arithmetic Circuits. A linear arithmetic

circuit is a circuit that consists of gates implementing piecewise

linear operations. As a result, the function represented by a linear

circuit is a piecewise linear function. Such circuits can be evaluated

in polynomial time [14].

In this paper, we consider linear arithmetic circuits that consist

of a single11 type of gate: truncated linear gates. A truncated linear

gate is de�ned by rational parameters 0, 1, 2 ∈ Q. The gate takes as

input two variables G8 , G 9 of the circuit and outputs G: := T(0G8 +

1G 9 + 2), where T : R→ [0, 1] denotes truncation (i.e., projection)

to the [0, 1] interval.

10We omit the de�nition of a KKT point for more general domains; see, e.g., [14].
11Of course, various other types of gates can be simulated using truncated linear gates
and we will use this later in the paper.

Generalized gradients. Let C be a linear arithmetic circuit with

= inputs and one output. We let 5 : R= → R denote the function

computed by the circuit C. This is a piecewise linear function that

is almost everywhere di�erentiable. The generalized gradient of 5

at point ~ can be de�ned as

m5 (~) := conv
{
lim
C→∞

∇5 (~C) : (~C)C converging to ~ such that

5 di�erentiable at ~C and ∇5 (~C) also converges
}
.

For our purposes we have to introduce a new more general

notion of generalized gradient of a circuit. Let C be a linear arith-

metic circuit consisting of< truncated linear gates. For any c =

(c8)8∈[<] ∈ R< , we let Cc denote the circuit C perturbed by c ,

namely, for each 8 ∈ [<] the 8th gate G8 := T(0G 9 + 1G: + 2) is

replaced by G8 := T(0G 9 +1G: + 2 + c8). We let 5 c : R= → R denote

the function represented by the perturbed circuit Cc .

For any X > 0 and any such circuit C, the X-generalized circuit

gradient of C at point ~ ∈ R= is de�ned as

m̃XC(~) := conv
{
∇5 c (~) : c ∈ [−X, X]< such that

5 c is di�erentiable at ~
}
.

It can be shown that m5 (~) ⊆ m̃XC(~) for all X > 0. Although it

is tempting to think that m̃XC(~) → m5 (~) as X → 0, this is not

the case. Indeed, Example 3.3 together with the Backpropagation

Lemma (Lemma 3.2) provide a counter-example.

We can now de�ne the intermediate computational problem

which will act as a bridge between existing CLS-hard problems and

qadratic-KKT.

De�nition 2.3. The 2D-linear-KKT problem is de�ned as follows.

We are given Y, X > 0 and a linear arithmetic circuit C with two

inputs and one output, and consisting only of truncated linear

gates. The goal is to �nd a point ~ ∈ [0, 1]2 that satis�es the Y-KKT

conditions with respect to the X-generalized circuit gradient of C,

i.e., such that there exists D ∈ m̃XC(~) satisfying

• if ~8 > 0, then D8 ≤ Y

• if ~8 < 1, then D8 ≥ −Y

for 8 = 1, 2.

We note that it is not clear whether 2D-linear-KKT lies in TFNP,

because it is not clear whether we can e�ciently check if some

given ~ is a solution. Nevertheless, we establish that this problem is

CLS-hard, which is all we require from this intermediate problem.

Proposition 2.4. The 2D-linear-KKT problem is CLS-hard.

Due to space constraints, the proof of this proposition, which is

quite involved as explained in the introduction, is omitted. It can be

found in the full version of the paper. The rest of this paper focuses

on the reduction from 2D-linear-KKT to our problem of interest.

3 REDUCTION FROM 2D-LINEAR-KKT TO
QUADRATIC-KKT

The main result of this section is the following.

Proposition 3.1. There is a polynomial-time reduction from 2D-

linear-KKT to qadratic-KKT.

899

The Complexity of Computing KKT Solutions of �adratic Programs STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

The remainder of this section proves this result. We begin with

the detailed construction of the quadratic polynomial and a state-

ment of the Backpropagation Lemma (Lemma 3.2), and explain why

it implies Proposition 3.1. Then, we prove some simple properties

of the construction, before the technical culmination of this section,

namely the proof of the Backpropagation Lemma.

3.1 Construction and Backpropagation Lemma

Let C be a linear arithmetic circuit that has two inputs and one

output, and that consists only of truncated linear gates.

Let = denote the number of variables in the circuit C. We use G8
to denote the 8th variable in the circuit, and assume that G1, . . . , G=
are ordered such that the gate computing G8 uses inputs Gℓ (8) , GA (8)
with ℓ (8) < 8 and A (8) < 8 . In particular, G1 and G2 are the input

variables, and G= is the output variable. For every 8 ∈ [=] \{1, 2}, the

8th gate of C is the gate computing G8 . It will be more convenient

to write the 8th gate’s function G8 = T(08Gℓ (8) + 18GA (8) + 28) as

G8 = T(
∑8−1

9=1 08 9G 9 + 28), where

08 9 =



08 if 9 = ℓ (8)

18 if 9 = A (8)

0 otherwise

Let also ≥ 1 be such that ≥ max8∈[=]\{1,2} (
∑8−1

9=1 |08 9 | + |28 |).

We now construct a polynomial ? on = + 2(= − 2) = 3= − 4

variables. In more detail, the polynomial will have the following

variables:

• For each 8 ∈ [=], a variable~8 , corresponding to each variable

G8 of C.

• For each 8 ∈ [=] \ {1, 2}, two auxiliary variables I+8 and

I−8 to help with the implementation of the 8th gate, which

computes G8 .

For each gate 8 ∈ [=] \ {1, 2} we construct a polynomial @8 on

variables ~ = (~1, . . . , ~=), I = (I+3 , I
−
3 , . . . , I

+
=, I

−
=)

@8 (~, I) :=
©­«
~8 + I

+
8 − I−8 −

8−1∑
9=1

08 9~ 9 − 28
ª®¬
2

+ 2 2I+8 I
−
8 + 2 I+8 (1 − ~8) + 2 I−8 ~8 .

For a given X ∈ (0, 1), the �nal polynomial ? is then constructed as

follows

? (~, I) := X=+1~= +

=∑
8=3

X8@8 (~, I) .

qadratic-KKT instance. The instance of qadratic-KKT

we consider is thus

min ? (~, I)

s.t. (~, I) ∈ [0, 1]3=−4
(3)

We are now ready to state the main technical lemma of this

section.

Lemma 3.2 (Backpropagation Lemma). Let (~, I) be a KKT point

of the constructed QP (3), for some X ∈ (0, 1/16 2). Then we have

1

X=+1
·

(
m?

m~1
(~, I),

m?

m~2
(~, I)

)
∈ m̃X′C(~1, ~2)

where X ′ = 8 2X .

Let us see how Proposition 3.1 follows from this lemma. Let Y ′,

X ′, and C be the inputs to a 2D-linear-KKT instance. We construct

the polynomial ? described above with X := min{X ′/8 2, 1/32 2}.

Clearly, this can be done in polynomial time. Now, consider any

KKT point (~, I) of the resulting QP (3). We claim that (~1, ~2) must

be a solution to the original 2D-linear-KKT instance. Indeed, let

D :=
1

X=+1
·

(
m?

m~1
(~, I),

m?

m~2
(~, I)

)
.

By the Backpropagation Lemma, we have that D ∈ m̃X′C(~1, ~2).

Furthermore, since (~, I) is a KKT point of (3), we in particular

have for 8 = 1, 2

• if ~8 > 0, then
m?
m~8

(~, I) ≤ 0, and thus D8 ≤ 0

• if ~8 < 1, then
m?
m~8

(~, I) ≥ 0, and thus D8 ≥ 0.

In other words, (~1, ~2) satis�es the KKT conditions (and thus, in

particular, the Y ′-KKT conditions) with respect to the X ′-generalized

circuit gradient of C.

Before proceedingwith the proof of the Backpropagation Lemma,

we present an example showing that a stronger version of the lemma

– where we ask for the generalized gradient of 5 at (~1, ~2) (or even

of some point in the vicinity) to be zero – fails.

Example 3.3. Consider the circuit C that has one single input G1
and computes G2 := T(2G1), G3 := T(G1 − 1/2), and outputs G4 :=

T(G2/2 + G3 − G1/2). It is easy to see that this circuit computes the

function 5 : [0, 1] → [0, 1], G1 ↦→ G1/2. Thus, the only KKT point

of 5 is at G1 = 0. However, it can be checked that if we construct the

polynomial ? as described above from C, then, for any su�ciently

small X > 0, the QP (3) will have a KKT point at ~1 = 1/2 + X2/4

(and where we have ~2 = 1, ~3 = 0, and ~4 = 1/4 − X2/8 − X/2). In

particular, this means that the backpropagation computes gradient

0 at that point, even though the actual gradient of 5 is always 1/2.

As a result, no general backpropagation result can be proved for

this kind of circuit without taking into account perturbed versions

of the circuit.

3.2 Properties of KKT Points

In this section we prove some simple properties that are satis�ed

by any KKT point of theqadratic-KKT instance (3). Recall that a

point (~, I) ∈ [0, 1]3=−4 is a KKT point of (3) if, for all 8 ∈ [=],

• if ~8 > 0, then
m?
m~8

(~, I) ≤ 0, and

• if ~8 < 1, then
m?
m~8

(~, I) ≥ 0,

and similarly for the other variables I+8 and I−8 for all 8 ∈ [=] \ {1, 2}.

Truncation. The following lemma 3.4 states that, at any KKT

point, the auxiliary variables I enforce truncation, in a certain sense.

Lemma 3.4. Let (~, I) be a KKT point of (3). Then for all 8 ∈

[=] \ {1, 2}

T
©­«
8−1∑
9=1

08 9~ 9 + 28
ª®¬
=

8−1∑
9=1

08 9~ 9 + 28 − I
+
8 + I−8 .

Proof. We show the following stronger fact, namely that

 I+8 = max



0,
©­«
8−1∑
9=1

08 9~ 9 + 28
ª®¬
− T

©­«
8−1∑
9=1

08 9~ 9 + 28
ª®¬



(4)

900

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani

and

 I−8 = max



0, T

©­«
8−1∑
9=1

08 9~ 9 + 28
ª®¬
−
©­«
8−1∑
9=1

08 9~ 9 + 28
ª®¬


. (5)

In order to prove (4), note that the variable I+8 only appears in @8 ,

and thus
m?
mI+

8

= X8
m@8
mI+

8

and

m@8

mI+8
(~, I) = 2

©­
«
~8 + I

+
8 − I−8 −

8−1∑
9=1

08 9~ 9 − 28
ª®
¬

+ 2 2I−8 + 2 (1 − ~8)

= 2
©­
«
1 + I+8 −

8−1∑
9=1

08 9~ 9 − 28
ª®
¬
.

We now consider two cases. If
∑8−1

9=1 08 9~ 9 +28 ≤ T(
∑8−1

9=1 08 9~ 9 +28),

then it must be that
∑8−1

9=1 08 9~ 9 + 28 ≤ 1. As a result,
m?
mI+

8

(~, I) =

X8
m@8
mI+

8

(~, I) ≥ X8 · 2 2I+8 . By the KKT conditions it follows that

I+8 = 0. Indeed, if I+8 > 0, then we would have
m?
mI+

8

(~, I) > 0, which

contradicts the KKT conditions.

If, on the other hand,
∑8−1

9=1 08 9~ 9 + 28 > T(
∑8−1

9=1 08 9~ 9 + 28),

then it must be that
∑8−1

9=1 08 9~ 9 + 28 > 1. As a result,
m?
mI+

8

(~, I) =

X8
m@8
mI+

8

(~, I) < X8 · 2 2I+8 . In particular, we cannot have I+8 = 0,

since that would imply
m?
mI+

8

(~, I) < 0, which is not allowed by the

KKT conditions at I+8 = 0. We also cannot have I+8 = 1. Indeed, by

the KKT conditions, that would imply that
m?
mI+

8

(~, I) ≤ 0, which

translates to

X8 · 2
©­
«
1 + −

8−1∑
9=1

08 9~ 9 − 28
ª®
¬
≤ 0

which is impossible, since ≥ 1 was chosen such that ≥∑8−1
9=1 |08 9 | + |28 | ≥

∑8−1
9=1 08 9~ 9 + 28 . As a result, we must have

I+8 ∈ (0, 1), which implies that the KKT condition is
m?
mI+

8

(~, I) = 0.

This yields

 I+8 =

8−1∑
9=1

08 9~ 9 + 28 − 1 =

8−1∑
9=1

08 9~ 9 + 28 − T
©­
«
8−1∑
9=1

08 9~ 9 + 28
ª®
¬

as desired. We have thus shown that (4) always holds at a KKT

point.

In order to prove (5), we again note that
m?
mI−

8
= X8

m@8
mI−

8
and

m@8

mI−8
(~, I) = −2

©­«
~8 + I

+
8 − I−8 −

8−1∑
9=1

08 9~ 9 − 28
ª®¬

+ 2 2I+8 + 2 ~8

= 2
©­«
 I−8 +

8−1∑
9=1

08 9~ 9 + 28
ª®¬
.

and then perform a similar case analysis. □

Approximate evaluation. The next lemma 3.5 states that the

gates of the circuit are correctly simulated at a KKT point of (3),

up to some small additive error depending on the parameter X . The

lemma also gives a precise expression for the value of each variable

~8 at a KKT point, which will be useful for the next section. In order

to state this precise expression, we �rst have to introduce some

additional notation. We de�ne, for any 8 ∈ [=] \ {1},

?8 (~, I) := X
=+1~= +

=∑
ℓ=8+1

Xℓ@ℓ (~, I).

In particular, ?2 = ? , and ?= (~, I) = X
=+1~= . We are now ready to

state the lemma.

Lemma 3.5. Let (~, I) be a KKT point of (3). Then for any 8 ∈

[=] \ {1, 2}

~8 = T
©­«
8−1∑
9=1

08 9~ 9 + 28 −
1

2X8
·
m?8

m~8
(~, I)

ª®¬
= T

©­«
8−1∑
9=1

08 9~ 9 + 28
ª®¬
± (2 X)=+1−8 .

Proof. Due to space constraints, we only include the proof of

the �rst equality; the second equality is proved in the full version.

Note that

m?

m~8
(~, I) = X8

m@8

m~8
(~, I) +

m?8

m~8
(~, I)

= 2X8
©­«
©­«
~8 + I

+
8 − I−8 −

8−1∑
9=1

08 9~ 9 − 28
ª®¬
− I+8 + I−8

ª®¬
+
m?8

m~8
(~, I)

= 2X8
©­«
~8 −

8−1∑
9=1

08 9~ 9 − 28
ª®¬
+
m?8

m~8
(~, I).

Hence if ~8 >

∑8−1
9=1 08 9~ 9 − 28 −

1
2X8

m?8
m~8

(~, I), then
m?
m~8

(~, I) > 0,

and by the KKT conditions we must have ~8 = 0. If, on the other

hand, ~8 <
∑8−1

9=1 08 9~ 9 − 28 −
1
2X8

m?8
m~8

(~, I), then
m?
m~8

(~, I) < 0, and

by the KKT conditions we must have ~8 = 1. Thus, in all cases we

have ~8 = T(
∑8−1

9=1 08 9~ 9 − 28 −
1
2X8

m?8
m~8

(~, I)). □

3.3 Proof of the Backpropagation Lemma

In this section we prove the Backpropagation Lemma. We begin by

recalling some notation, as well as introducing some new notation.

We let 5 : R2 → R denote the function represented by the circuit C.

For any c = (c8)8∈[=]\{1,2} ∈ R
=−2, we let Cc denote the circuit C

perturbed by c , namely, for each 8 ∈ [=] \ {1, 2} the 8th gate G8 :=

T(
∑8−1

9=1 08 9G 9 + 28) is replaced by G8 := T(
∑8−1

9=1 08 9G 9 + 28 + c8). We

let 5 c : R2 → R denote the function represented by the perturbed

circuit Cc . For any sign vector B = (B8)8∈[=]\{1,2} ∈ {+1,−1}=−2,

we let B · c ∈ R=−2 denote the coordinate-wise product of vector B

with vector c , i.e., [B · c]8 = B8c8 for all 8 ∈ [=] \ {1, 2}. Below we

also use _−8 to denote 1 − _8 .

The Backpropagation Lemma is a consequence of the following

technical lemma.

901

The Complexity of Computing KKT Solutions of �adratic Programs STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Lemma 3.6. Let (~, I) be a KKT point of QP (3), for some X ∈

(0, 1/16 2). Then there exists a perturbation vectorc = (c8)8∈[=]\{1,2}
∈ R=−2 satisfying

• |c8 | ≤ 8 2X for all 8 ∈ [=] \ {1, 2},

• for all B ∈ {+1,−1}=−2, 5 B ·c is di�erentiable in a small neigh-

borhood around (G1, G2) = (~1, ~2).

In addition, there exists _ = (_8)8∈[=]\{1,2} ∈ [0, 1]=−2 such that for

: = 1, 2

m?

m~:
(~, I) = X=+1

∑
B∈{+1,−1}=−2

©­
«

=∏
9=3

_B 9 · 9
ª®
¬
m5 B ·c

mG:
(~1, ~2) .

Before moving to the proof of the technical lemma, let us see

why it implies the Backpropagation Lemma. From the two bullets

we obtain by de�nition of the generalized circuit gradient that

∇5 B ·c (~1, ~2) =

(
m5 B ·c

mG1
(~1, ~2),

m5 B ·c

mG2
(~1, ~2)

)
∈ m̃X′C(~1, ~2)

for all B ∈ {+1,−1}=−2, and where we let X ′ := 8 2X . As a result of

the last part of the technical lemma we can write

1

X=+1
·

(
m?

m~1
(~, I),

m?

m~2
(~, I)

)

=

∑
B∈{+1,−1}=−2

©­«
=∏
9=3

_B 9 · 9
ª®¬
∇5 B ·c (~1, ~2) ∈ m̃X′C(~1, ~2)

since this is a convex combination of elements in m̃X′C(~1, ~2), and

this set is convex by de�nition. This is exactly the statement of the

Backpropagation Lemma.

3.3.1 Proof of the Technical Lemma. Let (~, I) be a KKT point of

(3). For 8 ∈ [=] \ {1}, let Y8 := (2 X)=−8 .

Construction of c . Let 8 ∈ [=] \ {1, 2}. We construct c8 as

follows

• If |
∑8−1

9=1 08 9~ 9 + 28 − 1| ≤ 2 Y8−1, then we set c8 := −4 Y8−1.

• If |
∑8−1

9=1 08 9~ 9 + 28 − 0| ≤ 2 Y8−1, then we set c8 := 4 Y8−1.

• In all other cases we set c8 := 0.

Note that the two �rst cases cannot both occur, since 2 Y8−1 ≤

2 Y=−1 = 4 2X < 1/4, since X < 1/16 2. Furthermore, since

2 Y8−1 < 1/4, we also have that
∑8−1

9=1 08 9~ 9 + 28 + c8 ∉ (−2 Y8−1,

2 Y8−1)∪(1−2 Y8−1, 1+2 Y8−1), and similarly
∑8−1

9=1 08 9~ 9 +28−c8 ∉

(−2 Y8−1, 2 Y8−1) ∪ (1 − 2 Y8−1, 1 + 2 Y8−1).

Construction of _. Let 8 ∈ [=] \ {1, 2}. We construct _8 ∈ [0, 1]

as follows

• If
∑8−1

9=1 08 9~ 9 + 28 < −2 Y8−1, then set _8 := 0.

• If
∑8−1

9=1 08 9~ 9 + 28 > 1 + 2 Y8−1, then set _8 := 0.

• If
∑8−1

9=1 08 9~ 9 + 28 ∈ (2 Y8−1, 1 − 2 Y8−1), then set _8 := 1.

• Otherwise, pick _8 ∈ [0, 1] as a solution of the equation

1

2X8
·
m?8

m~8
(~, I) · _8 = T

©­
«
8−1∑
9=1

08 9~ 9 + 28
ª®
¬

− T
©­
«
8−1∑
9=1

08 9~ 9 + 28 −
1

2X8
·
m?8

m~8
(~, I)

ª®¬
.

(6)

Note that such _8 ∈ [0, 1] always exists.

In fact, it is not hard to see that _8 satis�es (6) in all four cases. This

follows from the fact that by the proof of Lemma 3.5���� 1

2X8
·
m?8

m~8
(~, I)

���� ≤ (2 X)=+1−8 = Y8−1 ≤ Y8−1 .

Furthermore, note that by Lemma 3.5 we can rewrite the equation

satis�ed by _8 as

1

2X8
·
m?8

m~8
(~, I) · _8 = T

©­«
8−1∑
9=1

08 9~ 9 + 28
ª®¬
− ~8 . (7)

Before stating an important claim satis�ed by c and _, we in-

troduce some additional notation. For 8 ∈ [=] \ {1, 2} and any

B8 ∈ {+1,−1}, we de�ne the function qB8 ·c88 : R8−1 → R by

q
B8 ·c8
8 (G1, . . . , G8−1) = T(

∑8−1
9=1 08 9G 9 + 28 + B8 · c8). Recall that we

use _−8 to denote 1 − _8 . The following claim is proved in the full

version.

Claim 1. For 8 ∈ [=] \ {1, 2} and for any B8 ∈ {+1,−1}, the

function q
B8 ·c8
8 is di�erentiable (with respect to its inputs G1, . . . , G8−1)

over
∏

9 ∈[8−1] [~ 9 − Y8−1, ~ 9 + Y8−1] and we have

mq
B8 ·c8
8

mG:
(E1, . . . , E8−1) =

mq
B8 ·c8
8

mG:
(~1, . . . , ~8−1)

for all : ∈ [8 − 1] and all E ∈
∏

9 ∈[8−1] [~ 9 − Y8−1, ~ 9 + Y8−1]. Further-

more, we also have

_8 ·
mq

c8
8

mG:
(~1, . . . , ~8−1) + _−8 ·

mq
−c8
8

mG:
(~1, . . . , ~8−1) = _8 · 08:

for all : ∈ [8 − 1].

We are now ready to prove the technical lemma. We will prove

a slightly stronger statement by induction. For this, we need some

additional notation. For 8 ∈ [=] \ {1}, we let Cc
8 denote the circuit

Cc but where we have only kept the gates 8 + 1, . . . , =. We think

of Cc
8 as having input variables G1, G2, . . . , G8 (even though some of

those variables might be unused and thus not have any impact on

the output of the circuit). We let 5 c8 : R8 → R denote the function

represented by Cc
8 . Note that 5

c
2 = 5 c and 5 c= (G1, . . . , G=) = G= .

Claim 2. For any 8 ∈ [=] \ {1} we have

(1) For any B ∈ {+1,−1}=−2, the function 5 B ·c8 is di�erentiable

(with respect to its inputs G1, G2, . . . , G8) over
∏

9 ∈[8] [~ 9 −

Y8 , ~ 9 + Y8] and we have

m5 B ·c8

mG:
(E1, . . . , E8) =

m5 B ·c8

mG:
(~1, . . . , ~8)

for all : ∈ [8] and all E ∈
∏

9 ∈[8] [~ 9 − Y8 , ~ 9 + Y8].

(2) For any : ∈ [8] we have

m?8

m~:
(~, I) = X=+1

∑
B :B 9=1 ∀9≤8

©­«
=∏

9=8+1

_B 9 · 9
ª®¬
m5 B ·c8

mG:
(~1, . . . , ~8) .

The proof of the claim is omitted due to space constraints and

can be found in the full version. The technical lemma (Lemma 3.6)

simply follows from the claim by noting that for 8 = 2 we have

5 B ·c2 = 5 B ·c and ?2 = ? . Furthermore, note that for all 8 ∈ [=]\{1, 2}

we have |c8 | ≤ 4 Y8−1 ≤ 4 Y=−1 = 8 2X , as desired.

902

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani

4 CONCLUSIONS, OPEN PROBLEMS

Open problems include the question of whether our result continues

to hold for restrictions of QPs such as the bilinear case, where there

are no squared terms. [4] show that it is CLS-complete to �nd a

KKT-point of a multilinear degree-�ve polynomial. They use this

multilinearity to show CLS-completeness also for the problem of

�nding a mixed equilibrium of degree-�ve polytensor games, on the

way to showing CLS-completeness for �nding a mixed equilibrium

of a congestion game. One of the main open problems arising from

their work is whether it is CLS-hard to �nd a mixed equilibrium of

a “network coordination” game, i.e., a degree-2 polytensor game.

This would follow if our result continued to hold without squared

terms. Other special cases of interest include: no linear terms (the

NP-hardness results of [2] apply to QPs that have no linear terms,

i.e., quadratic forms). Our result also exploits exponential ratios

between coe�cients, leaving open the question of whether it should

hold if coe�cients are presented in unary. In connection with their

discussion of KKT solutions, [27] also ask about the special case

where there is a single local minimum (hence the global minimum).

This latter problem would have to be treated as a promise problem.

ACKNOWLEDGMENTS

J.F. and R.S. were supported by EPSRC Grant EP/W014750/1. P.W.G.

is supported by EPSRC Grant EP/X040461/1. A.H. was supported by

the Swiss State Secretariat for Education, Research and Innovation

(SERI) under contract number MB22.00026.

REFERENCES
[1] Amir Ali Ahmadi and Je�rey Zhang. 2022. Complexity aspects of local minima

and related notions. Advances in Mathematics 397, Article 108119 (2022). https:
//doi.org/10.1016/j.aim.2021.108119

[2] Amir Ali Ahmadi and Je�rey Zhang. 2022. On the complexity of �nding a local
minimizer of a quadratic function over a polytope. Mathematical Programming
195 (2022), 783–792. https://doi.org/10.1007/s10107-021-01714-2

[3] Amar Andjouh and Mohand Ouamer Bibi. 2022. Adaptive Global Algorithm
for Solving Box-Constrained Non-convex Quadratic Minimization Problems. J.
Optim. Theory Appl. 192, 1 (2022), 360–378. https://doi.org/10.1007/s10957-021-
01980-2

[4] Yakov Babichenko and Aviad Rubinstein. 2021. Settling the complexity of Nash
equilibrium in congestion games. In Proceedings of the 53rd ACM Symposium on
Theory of Computing (STOC). 1426–1437. https://doi.org/10.1145/3406325.3451039

[5] Mihir Bellare and Phillip Rogaway. 1995. The complexity of approximating
a nonlinear program. Mathematical Programming 69 (1995), 429–441. https:
//doi.org/10.1007/bf01585569

[6] Immanuel M. Bomze, Mirjam Dür, Etienne de Klerk, Cornelis Roos, Arie J. Quist,
and Tamás Terlaky. 2000. On Copositive Programming and Standard Quadratic
Optimization Problems. J. Glob. Optim. 18, 4 (2000), 301–320. https://doi.org/10.
1023/A:1026583532263

[7] Sébastien Bubeck. 2014. Convex Optimization: Algorithms and Complexity. CoRR
abs/1405.4980 (2014). arXiv:1405.4980

[8] Samuel Burer and Adam N. Letchford. 2009. On Nonconvex Quadratic Pro-
gramming with Box Constraints. SIAM J. Optim. 20, 2 (2009), 1073–1089.
https://doi.org/10.1137/080729529

[9] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. 2009. Settling the complexity of
computing two-player Nash equilibria. J. ACM 56, 3 (2009), 14:1–14:57. https:
//doi.org/10.1145/1516512.1516516

[10] Arka Rai Choudhuri, Pavel Hubáček, Chethan Kamath, Krzysztof Pietrzak, Alon
Rosen, and Guy N. Rothblum. 2019. Finding a Nash equilibrium is no easier than
breaking Fiat-Shamir. In Proceedings of the 51st ACM Symposium on Theory of
Computing (STOC). 1103–1114. https://doi.org/10.1145/3313276.3316400

[11] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. 2009.
The complexity of computing a Nash equilibrium. SIAM J. Comput. 39, 1 (2009),
195–259. https://doi.org/10.1137/070699652

[12] Constantinos Daskalakis and Christos Papadimitriou. 2011. Continuous local
search. In Proceedings of the 22nd ACM-SIAM Symposium on Discrete Algorithms
(SODA). 790–804. https://doi.org/10.1137/1.9781611973082.62

[13] Edith Elkind, Abheek Ghosh, and Paul W. Goldberg. 2022. Simultaneous Contests
with Equal Sharing Allocation of Prizes: Computational Complexity and Price
of Anarchy. In Proceedings of the 15th International Symposium on Algorithmic
Game Theory (SAGT). 133–150. https://doi.org/10.1007/978-3-031-15714-1_8

[14] John Fearnley, Paul Goldberg, Alexandros Hollender, and Rahul Savani. 2022.
The Complexity of Gradient Descent: CLS = PPAD ∩ PLS. J. ACM 70, 1 (2022),
7:1–7:74. https://doi.org/10.1145/3568163

[15] Uriel Feige and Joe Kilian. 1994. Two prover protocols: low error at a�ordable
rates. In Proceedings of the 26th ACM Symposium on Theory of Computing. 172–183.
https://doi.org/10.1145/195058.195128

[16] Uriel Feige and László Lovász. 1992. Two-Prover One-Round Proof Systems:
Their Power and Their Problems (Extended Abstract). In Proceedings of the 24th
ACM Symposium on Theory of Computing. 733–744. https://doi.org/10.1145/
129712.129783

[17] Pavel Hubáček and Eylon Yogev. 2020. Hardness of continuous local search:
Query complexity and cryptographic lower bounds. SIAM J. Comput. 49, 6 (2020),
1128–1172. https://doi.org/10.1137/17M1118014

[18] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Zhang. 2021.
SNARGs for Bounded Depth Computations and PPAD Hardness from Sub-
Exponential LWE. In Proceedings of the 53rd ACM Symposium on Theory of
Computing (STOC). 708–721. https://doi.org/10.1145/3406325.3451055

[19] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. 1988.
How easy is local search? J. Comput. System Sci. 37, 1 (1988), 79–100. https:
//doi.org/10.1016/0022-0000(88)90046-3

[20] Mark W. Krentel. 1990. On Finding and Verifying Locally Optimal Solutions.
SIAM J. Comput. 19, 4 (1990), 742–749. https://doi.org/10.1137/0219052

[21] Nimrod Megiddo and Christos H. Papadimitriou. 1991. On total functions, exis-
tence theorems and computational complexity. Theoretical Computer Science 81,
2 (1991), 317–324. https://doi.org/10.1016/0304-3975(91)90200-L

[22] T.S. Motzkin and E.G. Strauss. 1965. Maxima for graphs and a new proof of a
theorem of Turán. Canadian Journal of Mathematics 17 (1965), 553–540. https:
//doi.org/10.4153/CJM-1965-053-6

[23] Katta G. Murty and Santosh N. Kabadi. 1987. Some NP-complete problems in
quadratic and nonlinear programming. Mathematical Programming 39, 2 (1987),
117–129. https://doi.org/10.1007/BF02592948

[24] Christos H. Papadimitriou. 1994. On the complexity of the parity argument and
other ine�cient proofs of existence. J. Comput. System Sci. 48, 3 (1994), 498–532.
https://doi.org/10.1016/S0022-0000(05)80063-7

[25] Panos M. Pardalos and G. Schnitger. 1988. Checking local optimality in con-
strained quadratic programming is NP-hard. Operations Research Letters 7, 1
(1988), 33–35. https://doi.org/10.1016/0167-6377(88)90049-1

[26] Panos M. Pardalos and Stephen A. Vavasis. 1991. Quadratic programming with
one negative eigenvalue is NP-hard. J. Glob. Optim. 1, 1 (1991), 15–22. https:
//doi.org/10.1007/BF00120662

[27] Panos M. Pardalos and Stephen A. Vavasis. 1992. Open questions in complexity
theory for numerical optimization.Mathematical Programming 57 (1992), 337–339.
https://doi.org/10.1007/BF01581088

[28] Panos M. Pardalos, Yinyu Ye, and Chi-Geun Han. 1991. Algorithms for the
Solutions of Quadratic Knapsack Problems. Linear Algebra Appl. 152 (1991),
69–91. https://doi.org/10.1016/0024-3795(91)90267-Z

[29] Aviad Rubinstein. 2018. Inapproximability of Nash equilibrium. SIAM J. Comput.
47, 3 (2018), 917–959. https://doi.org/10.1137/15M1039274

[30] Sartaj Sahni. 1972. Some Related Problems from Network Flows, Game Theory
and Integer Programming. In Proceedings of the 13th Annual Symposium on
Switching and Automata Theory (SWAT). 130–138. https://doi.org/10.1109/SWAT.
1972.23

[31] Sartaj Sahni. 1974. Computationally Related Problems. SIAM J. Comput. 3, 4
(1974), 262–279. https://doi.org/10.1137/0203021

[32] Emanuel Tewolde, Caspar Oesterheld, Vincent Conitzer, and Paul W. Goldberg.
2023. The Computational Complexity of Single-Player Imperfect-Recall Games.
CoRR abs/2305.17805 (2023). arXiv:2305.17805

[33] Stephen A. Vavasis. 1990. Quadratic programming is in NP. Inform. Process. Lett.
36, 2 (1990), 73–77. https://doi.org/10.1016/0020-0190(90)90100-c

[34] Stephen A. Vavasis and Richard Zippel. 1990. Proving Polynomial-Time for Sphere-
Constrained Quadratic Programming. Technical Report TR90-1182. Cornell Uni-
versity. https://hdl.handle.net/1813/7022

[35] Yinyu Ye. 1992. On a�ne scaling algorithms for nonconvex quadratic program-
ming. Mathematical Programming 56 (1992), 285–300. https://doi.org/10.1007/
bf01580903

[36] Yinyu Ye. 1998. On the complexity of approximating a KKT point of quadratic
programming. Math. Program. 80 (1998), 195–211. https://doi.org/10.1007/
BF01581726

[37] Yinyu Ye. 1999. Approximating quadratic programmingwith bound and quadratic
constraints. Math. Program. 84, 2 (1999), 219–226. https://doi.org/10.1007/
s10107980012a

Received 13-NOV-2023; accepted 2024-02-11

903

https://doi.org/10.1016/j.aim.2021.108119
https://doi.org/10.1016/j.aim.2021.108119
https://doi.org/10.1007/s10107-021-01714-2
https://doi.org/10.1007/s10957-021-01980-2
https://doi.org/10.1007/s10957-021-01980-2
https://doi.org/10.1145/3406325.3451039
https://doi.org/10.1007/bf01585569
https://doi.org/10.1007/bf01585569
https://doi.org/10.1023/A:1026583532263
https://doi.org/10.1023/A:1026583532263
https://arxiv.org/abs/1405.4980
https://doi.org/10.1137/080729529
https://doi.org/10.1145/1516512.1516516
https://doi.org/10.1145/1516512.1516516
https://doi.org/10.1145/3313276.3316400
https://doi.org/10.1137/070699652
https://doi.org/10.1137/1.9781611973082.62
https://doi.org/10.1007/978-3-031-15714-1_8
https://doi.org/10.1145/3568163
https://doi.org/10.1145/195058.195128
https://doi.org/10.1145/129712.129783
https://doi.org/10.1145/129712.129783
https://doi.org/10.1137/17M1118014
https://doi.org/10.1145/3406325.3451055
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1137/0219052
https://doi.org/10.1016/0304-3975(91)90200-L
https://doi.org/10.4153/CJM-1965-053-6
https://doi.org/10.4153/CJM-1965-053-6
https://doi.org/10.1007/BF02592948
https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.1016/0167-6377(88)90049-1
https://doi.org/10.1007/BF00120662
https://doi.org/10.1007/BF00120662
https://doi.org/10.1007/BF01581088
https://doi.org/10.1016/0024-3795(91)90267-Z
https://doi.org/10.1137/15M1039274
https://doi.org/10.1109/SWAT.1972.23
https://doi.org/10.1109/SWAT.1972.23
https://doi.org/10.1137/0203021
https://arxiv.org/abs/2305.17805
https://doi.org/10.1016/0020-0190(90)90100-c
https://hdl.handle.net/1813/7022
https://doi.org/10.1007/bf01580903
https://doi.org/10.1007/bf01580903
https://doi.org/10.1007/BF01581726
https://doi.org/10.1007/BF01581726
https://doi.org/10.1007/s10107980012a
https://doi.org/10.1007/s10107980012a

	Abstract
	1 Introduction
	1.1 NP Total Search Problems and the Class CLS
	1.2 Technical Overview

	2 Preliminaries
	3 Reduction from 2D-linear-KKT to quadratic-KKT
	3.1 Construction and Backpropagation Lemma
	3.2 Properties of KKT Points
	3.3 Proof of the Backpropagation Lemma

	4 Conclusions, Open Problems
	Acknowledgments
	References

