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Abstract. Developing the ability to recognize a landmark from a visual image of a robot’s current location is
a fundamental problem in robotics. We consider the problem of PAC-learning the concept class of geometric
patterns where the target geometric pattern is a configuration ofk points on the real line. Each instance is a
configuration ofn points on the real line, where it is labeled according to whether or not it visually resembles the
target pattern. To capture the notion of visual resemblance we use the Hausdorff metric. Informally, two geometric
patternsP andQ resemble each other under the Hausdorff metric if every point on one pattern is “close” to some
point on the other pattern. We relate the concept class of geometric patterns to the landmark matching problem
and then present a polynomial-time algorithm that PAC-learns the class of one-dimensional geometric patterns.
We also present some experimental results on how our algorithm performs.
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1. Introduction

Developing the ability to recognize a landmark from a visual image of a robot’s current
location is a fundamental problem in robotics. We consider the problem of PAC-learning the
concept class of geometric patterns where the “target” geometric pattern is a configuration
of k points on the real line. Each instance is a configuration ofn points on the real line,
where it is labeled according to whether or not it visually resembles the target pattern. To
capture the notion of visual resemblance we use theHausdorff metric(for example, see
Gruber (1983)). Informally, two geometric patternsP andQ resemble each other under the
Hausdorff metric if every point on one pattern is “close” to some point on the other pattern.

Consider a robot designed to navigate through a large-scaled environment1. An important
component of a complete autonomous navigation system is an algorithm to recognize a
landmark from a visual image of a robot’s current location. Suppose that another component
of the navigation system has selected a set of key “landmarks” of which the robot has prior
knowledge. It is crucial that the robot be able to recognize whether or not it is in the vicinity
of a given landmark from a visual image taken from the robot’s current location. We shall
refer to this problem as thelandmark matching problem. In his doctoral thesis, Pinette
(1993) states that “any general navigation algorithm must be able to match landmarks by
their appearance.” Namely, when performing navigation a robot plans a path by moving
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between known landmarks, tracking landmarks as it goes. Because of inaccuracies in
effectors and errors in the robot’s internal map, when the robot believes it has reached
landmarkL, before heading to the next landmark it should check that it is really in the
vicinity of L. Then adjustments can be made if the robot is not atL by either traveling
towardsL and/or updating its map.

We can apply our algorithm to learn geometric patterns to the landmark matching problem
by converting the robot’s visual image into a one-dimensional geometric pattern. Then this
algorithm can be used to predict whether or not the robot is near (or not near) the given
landmark. The main result of this paper is a polynomial-time algorithm that PAC-learns
the class of one-dimensional geometric patterns. In addition to theoretical results we also
provide the learning curves obtained by running our algorithm on simulated data. In addition
to providing results on the empirical performance of our algorithm as a function of sample
size, these simulations show that the sample complexity requirements are likely to be far
less than those of the worst-case theoretical bounds.

An interesting feature of this problem is that the target concept is specified by ak-tuple of
points on the real line, while the instances are specified byn-tuples of points on the real line
wheren is potentially much larger thank. Although there are some important distinctions,
in some sense our work illustrates a concept class in a continuous domain in which a large
fraction of each instance can be viewed as “irrelevant”. As in previous work on learning
with a large number of irrelevant attributes in the Boolean domain (e.g. Littlestone’s work
(1988)), our algorithm’s sample complexity (the best dual to a mistake-bound) depends
polynomially onk andlogn.

This paper is organized as follows. In the next section we describe how algorithms for
the problem we address could be applied to the landmark matching problem described
above. Then in Section 3 we review the PAC learning model and some techniques from
learning theory that we apply. In Section 4 we formally define the concept class of one-
dimensional geometric patterns. Our main result appears in Section 5, where we describe
our algorithm to PAC-learn the class of one-dimensional geometric patterns. Section 6
presents our simulation results. Finally, we conclude in Section 7.

2. The Landmark Matching Problem

In this section we explore, in further depth, how this work relates to the landmark matching
problem. It is crucial that the landmark matching algorithm be performed in real-time. To
reduce the processing time required by the landmark matching algorithm, some have pro-
posed the use of imaging systems that generate a one-dimensional array of light intensities
taken at eye-level (see e.g. Hong et al. (1992), Levitt and Lawton (1990), Pinette (1993),
Suzuki and Arimoto (1988)). We now briefly describe one such imaging system (Hong
et al. (1992) and Pinnette (1993)). In their robot a spherical mirror is mounted above an
upward-pointing camera that enables it to instantaneously obtain a360◦ view of the world.
See Figure 1 for a picture of such a robot. The view of the world obtained by this imaging
system and the processing performed are shown in Figure 2. All points along the eye-level
view of the robot (shown by the horizon line in Figure 1) project into a circle in the robot’s
360◦ view. Figure 2 shows the panoramic view that results by scanning the360◦ view
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Figure 1. The imaging system on the robot. (This figure comes directly from Pinnette’s (1993) thesis.)

(beginning at due north) in a circle around the robot’s horizon line. The panoramic view
is sampled along the horizontal line midway between the top and the bottom to produce a
one-dimensional array of light intensities (orsignature) as shown in Figure 2.

Most work on designing landmark matching algorithms uses a pattern matching approach
by trying to match the current signature to the signature taken at landmark positionL. If one’s
goal is to determine if the robot is standing exactly at positionL, then the pattern matching
approach can easily be implemented to work well. However, in reality, the matching
algorithm must determine if the robot is in the vicinity ofL (i.e. in a circle centered around
L). Because the visual image may change significantly as small movements aroundL are
made, the pattern matching approach encounters difficulties.

Rather than using a pattern matching approach to match the light intensity array from the
current location with the light intensity array of the landmark, we instead propose using
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Figure 2. Stages of image processing. (This figure comes directly from Pinnette’s (1993) thesis.)
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Figure 3. An example to help illustrate a problem that must be overcome. SupposeA andB are the locations of
the bases of an arch andL is a landmark location. The visual images, obtained within the dashed circle, change
dramatically.

a learning algorithm to construct a good hypothesis for performing landmark matching.
Intuitively, the learning algorithm is being used to “average” a set of positive examples to
create a hypothesis that will make good predictions. We obtain the instances by converting
the arrays of light intensities into one-dimensional geometric patterns by placing points
where there are significant changes in light intensity. Then by applying our algorithm,
giving it a set of positive examples (i.e. patterns2 obtained from locations in the vicinity
of the landmark) and a set of negative examples (i.e. patterns obtained from locations not
in the vicinity of the landmark), we can construct a hypothesis that can accurately predict
whether or not the robot is near the given landmark.

A natural question raised is why there is a need for learning here. To answer this question,
we briefly examine some problems that would occur if a single pattern taken at the landmark
location was used as a hypothesis. (The same problems cause difficulties when using a
pattern matching approach.) Suppose a landmark location was selected at the positionL
shown in Figure 3 whereA andB are the legs of the Gateway Arch in downtown St. Louis.
(To keep the example simple, suppose that nothing besides the arch was in the robot’s visual
image.) Further, suppose we want the landmark matching system to indicate that the robot
is at landmark positionL exactly when it is in the dashed circle. Clearly in this example,
the robot’s visual image changes dramatically as the robot moves within this circle. Thus
simply using as a hypothesis the single pattern obtained from the visual image obtained
from the landmark location would not yield good predictions as to whether or not the robot
is “near” the landmark location.

In the learning-based approach we propose here, the navigation system (when selecting
L as a landmark) would collect images from locations evenly spaced throughout the dashed
circle. Then by using these images as positive examples (and images taken at random
locations not in the circle as negative examples), we can apply a learning algorithm to
“combine” all of these images taken nearL to obtain a hypothesis that will accurately
predict if the robot is nearL. A valuable feature of the learning algorithm is the generality
of its hypothesis class. The concepts (defined precisely in Section 4) areapproximationsto
sets of patterns visible within limited regions, and this more general hypothesis class may
allow a better fit to the diverse set of positive examples than the simple concept of a single
pattern.
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Also, while the work here assumes noise-free data, when really applying an algorithm
for learning one-dimensional geometric patterns to the landmark matching problem, one
must handle noisy data. Because of the noise inherent in the data, the problems illustrated
above with simply using as a hypothesis the single (noisy) pattern obtained from the visual
image at the landmark location would be exacerbated. We note that by converting the
algorithm presented here to one in the statistical query model (Kearns (1993) and Aslam
and Decatur (1995)), noise tolerance can be achieved (Goldman and Scott (1996)). Thus
by using noise-robust learning algorithms, our learning-based approach can handle noisy
data.

3. Background

In this paper we work within the PAC (probably approximately correct) model of compu-
tational learning, as introduced by Valiant (1984, 85). Details of the model may be found
in such textbooks as Kearns and Vazarani (1994), Natarajan (1991), or Anthony and Biggs
(1992). We now review the basic definitions and results used here.

3.1. The PAC Learning Model

In the PAC model, examples of a concept are made available to the learner according to
an unknown probability distributionD, and the goal of a learning algorithm is to classify
with high accuracy any further (unclassified) instances generated according to the same
distributionD.

The instance domainX is the set of all possible objects (instances) that may be made
available as data to a learner. Aconcept classC is a collection of subsets ofX , and examples
input to the learner are classified according to membership of atarget conceptC ∈ C. (C
is known to the learner,C is to be learned.) OftenC is decomposed into subclassesCn
according to some natural size measuren for encoding an example. In this paper, We refer
to n as theinstance complexity. For the class of one-dimensional patterns,n is the number
of points in an example. LetXn denote the set of examples to be classified for each problem
of sizen, and letX =

⋃
n≥1 Xn denote theexample space. We say eachX ∈ X is an

example.
For eachn ≥ 1, we define eachCn ⊆ 2Xn to be afamily of conceptsoverXn, and
C =

⋃
n≥1 Cn to be aconcept classoverX . ForC ∈ Cn andX ∈ Xn, C(X) denotes the

classification ofC on exampleX. We say that an exampleX ∈ C is apositive example
and an exampleX 6∈ C is anegative example.

Because learning algorithms need a means for representing the functions to be learned,
typically associated with each concept classC is a languageRC over a finite alphabet, used
for representing concepts inC. Eachr ∈ RC denotes someC ∈ C, and everyC ∈ C
has at least one representationr ∈ RC . (Here we represent a target concept as a set of
points on the real line.) Each conceptC ∈ Cn has asizedenoted by|C|, which is the
representation length of the shortestr ∈ RC that denotesC. In this paper, we refer to|C|
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as theconcept complexity. For ease of exposition, in the remainder of this paper we useC
andRC interchangeably.

To obtain information about an unknown target functionC ∈ Cn, the learner is provided
access to labeled (positive and negative) examples ofC, drawn randomly according to some
unknown target distributionD overXn. The learner is also given3 as inputε andδ such that
0 < ε, δ < 1, and an upper boundk on |C|. The learner’s goal is to output, with probability
at least1− δ, a polynomially evaluatablehypothesisH ⊆ Xn that has probability at mostε
of disagreeing withC on a randomly drawn example fromD (thus,H haserror at mostε).
If such a learning algorithmA exists (that is, an algorithmAmeeting the goal for anyn ≥ 1,
any target conceptC ∈ Cn, any target distributionD, anyε, δ > 0, and anyk ≥ |C|), we
say thatC is PAC-learnable. We say that a PAC learning algorithm is a polynomial-time (or
efficient) algorithm if the number of examples drawn and computation time are polynomial
in n, k, 1/ε, and1/δ. For any particular instance of a learning problem, the number of
variablesn is given. For simplicity, we henceforth drop the subscript “n”, and writeC and
X instead ofCn andXn, noting that all algorithms run in time polynomial inn.

Note, as originally formulated, PAC learnability also required the hypothesis to be a
member ofC. Pitt and Valiant (1988) show that under the assumption NP6= RP, a prerequisite
for PAC learnability in this sense is the ability to solve theconsistent hypothesis problem,
which is the deterministic problem of finding a concept which is consistent with a given
sample (that is, containing the positive but not the negative examples of the sample). This
implies that if the consistent hypothesis problem is NP-hard for a given concept class (as
happens for the concept classes considered here), then the learning problem is hard.

The more general form of learning that we use here is commonly calledprediction. The
goal is to find any polynomial-time algorithm that classifies instances accurately in the PAC
sense. Thus the algorithm need not define a set that corresponds to some concept inC. This
idea of prediction in the PAC model originated in the paper of Haussler, Littlestone and
Warmuth (1988), and is discussed in Pitt and Warmuth (1990).

3.2. The VC-dimension and Occam Algorithms

The paper of Blumer et al. (1989) identifies a combinatorial parameter of a class of hy-
potheses called theVapnik-Chervonenkis (VC) dimension, which originated in the paper of
Vapnik and Chervonenkis (1971), that gives bounds on how large a sample size is required
in order to have enough information for accurate generalization. (We call this quantity the
sample complexityof a learning problem; note that given a sufficiently large sample there
is still the computational problem of finding a consistent hypothesis.)

Definition. Blumer et al. (1989) The VC dimension of concept classC (which we denote
VCD(C)) is the size of a largest setS ⊆ X such that any subset ofS is of the formS ∩ C
for someC ∈ C, or∞ if such sets can be arbitrarily large. When it is true that any subset
of S is of the formS ∩ C for someC ∈ C, it is said thatC shattersS.

As an example, consider the concept classC of axis-parallel rectangles in<2 where
points lying on or inside the target rectangle are positive, and points lying outside the target
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rectangle are negative. First, it is easily seen that there are four points (for example points
at (0, 1), (0,−1), (1, 0), (−1, 0)) that can be shattered. Thus VCD(C) ≥ 4. We now argue
that no set of five points can be shattered. The (smallest) bounding axis-parallel rectangle
defined by the five points is in fact defined by at most four of the points. Forp a non-defining
point in the set, we see that the set cannot be shattered since it is not possible forp to be
classified as negative while also classifying the others as positive. Thus VCD(C) = 4.

The results of Blumer et al. give a sufficient condition for a prediction algorithm to gener-
alize successfully from example data, in terms of the VC dimension. Namely, they showed

that any conceptC ∈ C consistent with a sample of size4 max
(

4
ε lg 2

δ ,
8 VCD(C)

ε lg 13
ε

)
will

have error at mostε with probability at least1− δ. Furthermore, Ehrenfeucht et al. (1989)

prove that any concept classC must useΩ
(

1
ε log 1

δ + VCD(C)
ε

)
examples in the worst case.

One drawback with the above approach is that the hypothesis must be drawn fromC.
However, for the problem we study the computational problem of finding such a hypothesis
from the class is NP-complete. In fact, the size of the hypothesis output by our algorithm
depends on the size of the sample. In particular, the representation complexity of a hy-
pothesis is sublinear in the sample size and polynomial in the parametersn andk. Blumer
at al. (1987, 89) show that this achievement of data compression is sufficient to guarantee
polynomial learnability. LetFAk,n,m be the hypothesis space used by algorithmA for an
example complexity ofn, a target complexity ofk and sample sizem. More formally, we
say that algorithmA is anOccam Algorithmfor concept classC if there exists a polynomial
p(k, n) and a constantα, 0 ≤ α < 1, such that for any sampleS with |S| = m ≥ 1 and
anyk, n,A outputs a hypothesisH consistent withS such thatsize(H)≤ p(k, n)mα.

Theorem 1 Blumer et al. (1989)LetA be an Occam algorithm for concept classC that
has hypothesis spaceFAk,n,m. If the VC dimension ofFAk,n,m is at mostp(k, n)(lgm)` for
some polynomialp(k, n) ≥ 2 and` ≥ 1, thenA is a PAC-learning algorithm forC using
sample size

m = max

(
4
ε

lg
2
δ
,

2`+4p(k, n)
ε

(
lg

8(2`+ 2)`+1p(k, n)
ε

)`+1
)
.

4. The Class of One-Dimensional Geometric Patterns

For the concept class considered here, the instance spaceXn consists of all configurations
of n points on the real line5. A concept is the set of all configurations fromXn within
unit distance6 under the Hausdorff metric of some “ideal” configuration ofk points. The
Hausdorff distance between configurationsP andQ, denotedH(P,Q), is:

max
{

sup
p∈P

{
inf
q∈Q
{dist(p, q)}

}
, sup
q∈Q

{
inf
p∈P
{dist(p, q)}

}}
wheredist(p, q) is the Euclidean distance between pointsp andq.
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n points on the real line. Thus the notion of being able to independently vary the concept
complexity and instance complexity does not exist for the class of unions of intervals.
Furthermore, observe that forCk,n each instance (configuration ofn points) is an element
of a metric space, which has a measure of distance defined between any pair of instances.
However, with the class of unions of intervals there is no notion of a distance between
instances. Finally, for the class of unions of intervals, an instance is a positive example
simply when the single point provided is contained within one of thek intervals. ForCk,n
an instance is positive if and only if it satisfies the following two conditions.

1. Each of then points in the instance is contained within one of thek width 2 intervals
defined by thek target points.

2. There is at least one of then points in the instance contained within the width 2 interval
defined by each of thek target points.

Further we note that Goldberg (1992) has shown that it is NP-complete to find a sphere
in the given metric space (i.e. one-dimensional patterns of points on the line under the
Hausdorff metric) consistent with a given set of positive and negative examples of an
unknown sphere in the given metric space. In other words, given a setS of examples labeled
according to some one-dimensional geometric pattern ofk points, it is NP-complete to find
some one-dimensional geometric pattern (ofanynumber of points) that correctly classifies
all examples inS. Thus, assuming NP6= RP, it is necessary to use a more expressive
hypothesis space. Thus to give even further evidence that the class of one-dimensional
patterns is significantly more complex than the union of intervals on the real line, observe
that the consistency problem for the latter class is trivial to solve.

5. A PAC-Learning Algorithm

Our algorithm is motivated by the fact that while it is NP-complete to find a sphere in this
metric space consistent with given sets of positive and negative examples, it is possible in
polynomial time to find one that is consistent with all positive and at least a fraction1

2(k+1)

of the negative examples, wherek is the target concept complexity, the number of points in
the configuration defining the target concept. Hence we may build a hypothesis consisting
of an intersection of concepts obtained by a greedy set cover algorithm on the negative
examples.

We now present our algorithm for learningCk,n. Our algorithm is an Occam algorithm.
DefineHk to be the intersection of at most2(k + 1) lgm concepts fromCk,n, wherem
is the sample size required. Then the algorithm draws a sufficiently large sample of size
m (polynomial ink, lgn, 1/ε, andlg 1/δ) and then outputs a consistent hypothesis from
Hk+1.

In order to apply Theorem 1 we need to upperbound the VC dimension ofHk+1. To
achieve this goal we make use of recent results of Goldberg and Jerrum (1995), which iden-
tify general situations where the VC dimension of a hierarchical concept class is guaranteed
to be only polynomial inn andk, as required for PAC learning.
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Note we are measuring the complexity of a configuration of points by the number of
points it contains, and the positions of the points is of no importance. This is based on
the assumption of unit cost for representing and operating on a real number, used in the
computational geometry and neural network literature, and noted by Valiant (1991) to be
typically appropriate for geometrical domains.

The difference between the unit cost model and discretized geometrical problems is
significant. Blumer et al. (1989) show that Euclideann-spheres can be learned in polynomial
time under the logarithmic cost model (in which the cost of a real value is the number of
bits it occupies). The problem of finding a consistent hypothesis in this class is equivalent
to linear programming, and the complexity of this is a major open problem in the unit cost
model of real arithmetic. For a discussion of this see Renegar (1992). The NP-completeness
results noted above for our learning problems hold also in the discretized case.

We use the following theorem of Goldberg and Jerrum (1995):

Theorem 2 Goldberg and Jerrum (1995)Let {Ck,n : k, n ∈ N } be a family of concept
classes where concepts inCk,n and instances are represented byk and n real values,
respectively. Suppose that the membership test for any instance and any conceptC of
Ck,n can be expressed as a boolean formulaΦk,n containingσ = σ(k, n) distinct atomic
predicates, each predicate being a polynomial inequality overk+n variables (representing
C andx) of degree at mostd = d(k, n). Then VCD(Ck,n) ≤ 2k ln(8edσ).

Corollary 1 Let Ck,n be sets of points on the line under the Hausdorff metric. Then
VCD(Ck,n) ≤ 2k ln(8ekn) ≤ 2k lg(8ekn).

This follows from the fact that the Hausdorff distance between a set ofk points on the
line and a set ofn points on the line depends on a set ofkn degree 1 inequalities in their
coordinates.

Combined with a result from Blumer et al. (1989) we can upperbound the VC dimension
of our hypothesis class.

Theorem 3 Blumer et al. (1989)For concept classC, the class of concepts defined by
the intersection of at mosts concepts fromC has VC dimension≤ 2VCD(C)s lg(3s).

Combining Corollary 1 with Theorem 3, we get the following result.

Corollary 2 The VC dimension ofHk+1 is upperbounded by

VCD(Hk+1) ≤ 8(k + 1)2 lg(8e(k + 1)n) lgm lg(6(k + 1) lgm)

≤ 24
√

6(k + 1)5/2 lg(8e(k + 1)n)(lgm)3/2.

Proof: To obtain the first inequality we apply Theorem 3 withs = 2(k + 1) lgm and
VCD(C) = 2(k + 1) lg(8e(k + 1)n). We then get the second inequality by using the
inequalitylg x < 3

√
x forx > 1 (which in turn comes from7 lnx < c(x1/c−1) for c ≥ 1).

We are now ready to present the main result of this paper:
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Theorem 4 Let C = ∪k,n∈NCk,n be the class of spheres under the Hausdorff metric,
whose domain is configurations of up ton points on the real line, and concepts defined by
configurations of up tok points on the real line. ThenCk,n is predictable from positive and
negative examples with a sample complexity of

m = O

(
1
ε

log
1
δ

+
k5/2 log(kn)

ε
log5/2

(
k log(kn)

ε

))
,

and time complexity ofO(kmn logm+mn log(mn)).

Proof: To build the hypothesis we use a greedy set cover algorithm that is based on the
observation that it is possible, in polynomial time, to find a concept fromCk+1,n consistent
with all the positive examples and a fractionϕ = 1

2(k+1) of the negative examples. Then
the negative examples accounted for are removed and the procedure is repeatedly applied
until all negative examples have been eliminated. The intersection of all concepts obtained
by doing this is consistent with the sample, and assuming that enough negative examples
are removed at each stage, it is an Occam algorithm.

Let r denote the number of rounds until all negative examples have been covered. Then
since 1

1−ϕ = 1 + ϕ
1−ϕ ≥ 1 + ϕ, it is easily seen that

r ≤ log 1
1−ϕ

m ≤ log1+ϕm = (log1+ϕ 2)(lgm).

We next apply the inequality(1+ϕ)x ≥ 1+ϕxwithx = 1/ϕ. This gives that(1+ϕ)1/ϕ ≥
2, and thuslog1+ϕ 2 ≤ 1/ϕ. Applying this to the above upperbound forr shows that

r ≤ (log1+ϕ 2)(lgm) ≤ 1
ϕ

lgm = 2(k + 1) lgm.

Finally, the hypothesis output is the intersection of ther concepts obtained in this manner.
Thus by applying Theorem 1 withp(k, n) = 24

√
6(k+1)5/2 lg(8e(k+1)n) and` = 3/2

we get that any hypothesis fromHk+1,n,m that is consistent with a sample of size

m=max

(
4

ε
lg

2

δ
,
1536

√
3(k+1)5/2 lg(8e(k+1)n)

ε
lg5/2

(
4800

√
30(k+1)5/2 lg(8e(k+1)n)

ε

))
= O

(
1

ε
log

1

δ
+
k5/2 log(kn)

ε
log5/2

(
k logn

ε

))
(1)

will have error at mostε with probability at least1− δ.
What remains is to prove that in polynomial time we can find a conceptH fromCk+1,n that

is consistent with all positive examples and at least a fraction1/(2k + 1) of the uncovered
negative examples. Recall that there are two ways for an example to be negative: either
there is a point in the example that is not near8 any target point (e.g.X2 in Figure 1), or no
points in the example are near some target point (e.g.X3 in Figure 1). LetN be the set of
negative examples that remain at the start of a round. By a simple averaging argument it
follows that one of the following holds.
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Figure 5. Algorithm to preprocess the examples to find a pattern that is consistent with all positive examples.
Note that any pattern consistent with the points inP must be a subset ofI.

Case 1:At least|N |/2 of the negative examples have no points near some target point.
Thus, by an averaging argument, there is some width 2 intervalI1 containing at least
one point from each of the positive examples that does not contain points in at least|N |

2k
of the negative examples.

Case 2:At least|N |/2 of the negative examples have a point that is not near a target
point. Since the portions of the real line that are not near any target point form at
mostk + 1 contiguous intervals, by an averaging argument, there is some intervalI2
containing points from at least|N |2(k+1) distinct negative examples and no points from
the positive examples.

Our complete algorithm is given in Figures 5 and 6.
The algorithmCover-Positivesgreedily covers the points from the positive examples. It

first computes the setSi of points that are unit distance from some point in positive example
Xi. Then the points used for the greedy covering are selected fromI = S1 ∩ · · · ∩ Sm+ .
This ensures that every positive example has some point within unit distance of a point in
H+. Then a greedy covering is used to be sure thatH+ has a point within unit distance of
a point from every positive example. Thus the finalH+ returned will be consistent with all
positive examples.

We now argue thatH+ is a pattern of at mostk points that is consistent with all examples
in P. First note thatk points defining the target concept must be inI since each example
in P must have a point near each target point. Then by a simple inductive argument, it can
be shown that for alli, theith leftmost points inH+ cover all points from the examples of
P that are within unit distance of the firsti points of the target concept.

Next our algorithmLearn-1d-Pattern finds either an intervalI1 (correpsonding to Case
1) or an intervalI2 (corresponding to Case 2) that when intersected withH will cover at
least|N |/(2(k+ 1)) of the misclassified negative examples. The procedureFind-I1 takes
as input the set of positive examplesP and uncovered negative examplesN and searches
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Figure 6. Algorithm to PAC learn a one-dimensional pattern. First a patternH+ of k points is greedily formed
that is guaranteed to correctly classify all examples inP. Next a greedy set covering technique is used to find a
set of patterns (each consistent with all examples inP) that when intersected withH+ will correctly classify all
negative examples.

for an intervalI1 of width 2 that contains at least one point from each positive example and
does not contain any point in at least|N |/(2k) of the negative examples. This interval can
be found by placing allmn points on one line and sliding a width 2 window over them while
updating records of which examples are represented in the current window. It is easily seen
that this can be done inO(mn) time. The procedure returns the first interval that satisfies
the condition (if one exists), or otherwise returns failure.

Our algorithm first callsFind-I1 . By the above argument we know that ifFind-I1 returns
failure, then Case 2 must apply. In this situation, our algorithm then uses procedureFind-
I2 which takes as inputP andN and returns an intervalI2 that contains points from at
least |N |2(k+1) distinct negative examples and no points from the positive examples. As with
Find-I1 , Find-I2 runs inO(mn) time.

We have already argued that eitherFind-I1 or Find-I2 will succeed. IfFind-I1 succeeds
then since the patternP added toH has at most one point added toH+, P ∈ Ck+1,n as

desired. Also it is easily seen thatP is consistent with the|N |2k negative examples that have
no point in the returned intervalI1.
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In Find-I2 , R = {x | x ∈ H+ ∩ [rmin − 1, rmax + 1]} is the set of points ofH+ that
cover points inI2, i.e. the points that must be removed fromP to make it consistent with
the negative examples with points inI2. If Find-I2 succeeds andR = ∅ then certainly
P ∈ Ck+1,n and the required number of negative examples are covered. Finally, note that
by the definition ofI, all points inR must be within unit distance of eitherrmin or rmax.
Thus the selectedP ∈ Ck+1,n will be consistent with the |N |2(k+1) negative examples that
have a point in[rmin, rmax].

Thus our final hypothesisH consists of an intersection of at most2(k+ 1) lgm concepts
from Ck+1,n. The correctness thus follows from that fact thatm was selected to satisfy
Theorem 1. For the stated time complexity we first assume that themn points from the
sample are sorted. The rest of the preprocessing takesO(mn) time. The main loop in
Learn-1d-Pattern is executedO(k logm) times, with each execution takingO(mn) time.
Thus the stated time complexity follows.

6. Simulation Results

To empirically evaluate the algorithm, we simulated it on uniformly distributed random
test data. For each pair of values ofk andn, we generated 3 random targets ofk real points
each on the real interval[1, 100]. Then a test set of 500 examples was randomly generated
for each target. For each target we created 10 training sets, each withm examples, where
m varied from 20 to 1000 in increments of 20. Each training example had a 0.5 probability
of being negative, and if negative, it had a 0.5 probability of being Case 1. All negative
examples were made as deceptive as possible by only allowing one point not near a target
point (if Case 1) or only allowing one target point not near any example points (if Case 2).
For each training set, the algorithm generated a hypothesis which was evaluated with the
corresponding test set to measure its accuracy. All 10 evaluations per target were averaged
and then the results from the 3 targets were averaged. Figure 7 describes our simulation
procedure.

The curves in Figures 8 and 9 are connected points separated by increments of 20, where
each point is the average of10 ·3 = 30 hypothesis generations and evaluations. No attempt
was made to fit a smooth curve to the points, so sudden changes in slope merely indicate
minor variations in accuracy. Figure 8 indicates how the accuracy of the hypothesis relates
to the number of examples in the training set for different values ofk andn. Even for
values as high ask = 20 andn = 40, the hypothesis generated by the algorithm was
almost 95% correct when trained on 1000 examples. By contrast, substitutingε = 0.95,
δ = 0.5, k = 20 andn = 40 into Equation 1 yields a worst-case sample complexity of
m = 3.806 × 1011, more than 8 orders of magnitude beyond what our empirical results
suggest.

Figure 9 exhibits the relationship between the hypothesis accuracy and the number of
examples in the training set ask varies butn remains constant at 50. In this case, varyingk
did not greatly impact accuracy. Fork = 10, the hypothesis generated by the algorithm was
almost 96% correct when trained on 1000 examples. Fork = 30, the hypothesis generated
by the algorithm was almost 93% correct when trained on 1000 examples. By contrast,
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Figure 7. Summary of the simulation procedure.
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Figure 8. Hypothesis accuracy versus sample size for different values ofn andk.

Figure 9. Hypothesis accuracy versus sample size for varying values ofk.
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substitutingε = 0.9, δ = 0.5, k = 30 andn = 50 into Equation 1 yields a worst-case
sample complexity ofm = 1.286 × 1012, more than 9 orders of magnitude beyond what
our empirical results suggest. This disparity is due to the worst-case assumptions used
throughout the analysis.

7. Concluding Remarks

In this paper we have presented an algorithm to efficiently PAC learn the class of one-
dimensional geometric patterns. As discussed in Section 2, we feel that this algorithm can
provide a novel way in which to perform landmark matching.

One interesting direction of further research is to consider the problem of learning two-
dimensional geometric patterns. Goldberg (1992) has shown that while there is a con-
siderable loss of efficiency in extending this technique from the one-dimensional to the
two-dimensional case, the resulting algorithm still runs in polynomial time. This loss is
caused by the increased search space of regions which define appropriate local features
which perform the function of eliminating a significant fraction of the negative examples.
It can be shown that a suitable set of regions to search over is the set of regions bounded
by up to two vertical lines passing through points occurring in the examples, and two unit
circles centered at points occurring in the examples. Can improved algorithms for higher
dimensions be obtained?

Another very important research direction, that must be addressed to apply this work to
real-world problems, is extending our algorithm so that it still performs well when there is
noise in the data. Goldberg and Goldman (1994) have presented an algorithm that works
when there is one-sided random classification noise (where only the labels are wrong).
However, it would be nice to extend this work to handle general random classification noise
and even small amounts of other types of noise. (See Goldman and Scott (1996) for recent
work in achieving this goal.)

Finally, after we have extended our algorithm to tolerate the types of noise that we expect
to see in real-world examples, we intend to obtain performance curves using real-world
data rather than simulated data.
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Notes

1. By a large-scaled environment we mean that not all landmarks are visible from all locations in the environment.

2. We assume that the portion of the complete navigation system that selects the landmarks will gather a set of
images near the landmark to be used as the positive examples for training.

3. If the demand of polynomial-time computation below is replaced with expected polynomial-time computation,
then the learning algorithm need not be given the parameterk, but could “guess” it instead (Haussler et
al. (1991)).

4. Note that throughout this paper,lg will be used for the base-2 logarithm. When the base of the logarithm is
not significant (such as when using asymptotic notation), we uselog.

5. Note that throughout this paper, the word “point” will refer to a single point on the real line, and we shall use
the term “a configuration of points” when speaking of an instance.

6. All results presented here apply if unit distance is replaced by some fixed distance since we can just rescale.

7. The exponent oflgm can be reduced arbitrarily close to 1 by just increasing the value ofc.

8. For ease of exposition, we say that an example point within unit distance from a given target point isnearthat
target point.
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