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We study the problem of counting answers to unions of conjunctive queries (UCQs) under structural restrictions
on the input query. Concretely, given a class𝐶 of UCQs, the problem #UCQ(𝐶) provides as input a UCQ Ψ ∈ 𝐶

and a database D and the problem is to compute the number of answers of Ψ in D.
Chen andMengel [PODS’16] have shown that for any recursively enumerable class𝐶 , the problem #UCQ(𝐶)

is either fixed-parameter tractable or hard for one of the parameterised complexity classesW[1] or #W[1].
However, their tractability criterion is unwieldy in the sense that, given any concrete class 𝐶 of UCQs, it is
not easy to determine how hard it is to count answers to queries in 𝐶 . Moreover, given a single specific UCQ
Ψ, it is not easy to determine how hard it is to count answers to Ψ.

In this work, we address the question of finding a natural tractability criterion: The combined conjunctive
query of a UCQ Ψ = 𝜑1 ∨ · · · ∨ 𝜑ℓ is the conjunctive query ∧ (Ψ) = 𝜑1 ∧ · · · ∧ 𝜑ℓ . We show that under
natural closure properties of 𝐶 , the problem #UCQ(𝐶) is fixed-parameter tractable if and only if the combined
conjunctive queries of UCQs in 𝐶 , and their contracts, have bounded treewidth. A contract of a conjunctive
query is an augmented structure, taking into account how the quantified variables are connected to the free
variables — if all variables are free, then a conjunctive query is equal to its contract; in this special case the
criterion for fixed-parameter tractability of #UCQ(𝐶) thus simplifies to the combined queries having bounded
treewidth.

Finally, we give evidence that a closure property on 𝐶 is necessary for obtaining a natural tractability
criterion: We show that even for a single UCQ Ψ, the meta problem of deciding whether #UCQ({Ψ}) can be
solved in time 𝑂 ( |D|𝑑 ) is NP-hard for any fixed 𝑑 ≥ 1. Moreover, we prove that a known exponential-time
algorithm for solving the meta problem is optimal under assumptions from fine-grained complexity theory.
As a corollary of our reduction, we also establish that approximating the Weisfeiler-Leman-Dimension of a
UCQ is NP-hard.

CCS Concepts: • Theory of computation→ Design and analysis of algorithms; • Information systems
→ Relational database query languages.
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1 INTRODUCTION
Conjunctive queries are among the most fundamental and well-studied objects in database theory [2,
20, 42, 43, 54, 55]. A conjunctive query (CQ) 𝜑 with free variables 𝑋 = {𝑥1, . . . , 𝑥𝑘 } and quantified
variables 𝑌 = {𝑦1, . . . , 𝑦𝑑 } is of the form

𝜑 (𝑋 ) = ∃𝑌 𝑅1 (t1) ∧ . . . ∧ 𝑅𝑛 (t𝑛),
where 𝑅1, . . . , 𝑅𝑛 are relational symbols and each t𝑖 is a tuple of variables from 𝑋 ∪𝑌 . A databaseD
consists of a set of elements𝑈 (D), denoted the universe ofD, and a set of relations over this universe.
The corresponding relation symbols are the signature of D. If 𝑅1, . . . , 𝑅𝑛 are in the signature of D
then an answer of 𝜑 in D is an assignment 𝑎 : 𝑋 → 𝑈 (D) that has an extension to the existentially
quantified variables 𝑌 that agrees with all the relations 𝑅1, . . . , 𝑅𝑛 . Even more expressive is a union
of conjunctive queries (UCQ). Such a union is of the form Ψ(𝑋 ) = 𝜑1 (𝑋 ) ∨ . . . ∨𝜑ℓ (𝑋 ), where each
𝜑𝑖 (𝑋 ) is a CQ with free variables 𝑋 . An answer to Ψ is then any assignment that is answer to at
least one of the CQs in the union.
Since evaluating a given CQ on a given database is NP-complete [20] a lot of research focused

on finding tractable classes of CQs. A fundamental result by Grohe, Schwentick, and Segoufin [38]
established that the tractability of evaluating all CQs of bounded arity whose Gaifman graph is in
some class of graphs 𝐶 depends on whether or not the treewidth in 𝐶 is bounded.
More generally, finding an answer to a conjunctive query can be cast as finding a (partial)

homomorphism between relational structures, and therefore is closely related to the framework
of constraint satisfaction problems. In this setting, Grohe [36] showed that treewidth modulo
homomorphic equivalence is the right criterion for tractability. There is also an important line
of work [34, 37, 45] culminating in the fundamental work by Marx [46] that investigates the
parameterised complexity for classes of queries with unbounded arity. In general, tractability of
conjunctive queries is closely related to how “tree-like” or close to acyclic they are.
Counting answers to CQs has also received significant attention in the past [3, 22, 25, 27, 28,

35, 51]. Chen and Mengel [21] gave a complete classification for the counting problem on classes
of CQs (with bounded arity) in terms of a natural criterion loosely based on treewidth. They
present a trichotomy into fixed-parameter tractable,W[1]-complete, and #W[1]-complete cases. In
subsequent work [22], this classification was extended to unions of conjunctive queries (and to
even more general queries in [27]). However, for UCQs, the established criteria for tractability and
intractability are implicit (see [22, Theorems 3.1 and 3.2]) in the sense that, given a specific UCQ Ψ,
it is not at all clear how hard it is to count answers to Ψ based on the criteria in [22]. To make this
more precise: It is not even clear whether we can, in polynomial time in the size of Ψ, determine
whether answers to Ψ can be counted in linear time in the input database.

1.1 Our contributions
With the goal of establishing a more practical tractability criterion for counting answers to UCQs,
we explore the following two main questions in this work:

Q1) Is there a natural criterion that captures the fixed-parameter tractability of counting
answers to a class of UCQs, parameterised by the size of the query?
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Q2) Is there a natural criterion that captures whether counting answers to a single
fixed UCQ is linear-time solvable (in the size of a given database)?

Question Q1): Fixed-Parameter Tractability. For a class 𝐶 of UCQs, we consider the problem
#UCQ(𝐶) that takes as input a UCQ Ψ from𝐶 and a databaseD, and asks for the number ans(Ψ →
D) of answers of Ψ in D. We assume that the arity of the UCQs in 𝐶 is bounded, that is, there is
constant 𝑐 such that each relation that appears in some query in𝐶 has arity at most 𝑐 . As explained
earlier, due to a result of Chen and Mengel [22], there is a known but rather unwieldy tractability
criterion for #UCQ(𝐶), when the problem is parameterised by the size of the query. On a high
level, the number of answers of a UCQ Ψ in a given database can be expressed as a finite linear
combination of CQ answer counts, using the principle of inclusion-exclusion. This means that
ans(Ψ → D) is equal to∑𝑖 𝑐𝑖 · ans(𝜑𝑖 → D), where each 𝜑𝑖 is simply a conjunctive query (and not
a union thereof). We refer to this linear combination as the CQ expansion of Ψ. Chen and Mengel
showed that the parameterised complexity of computing ans(Ψ → D) is guided by the hardest
term in the respective CQ expansion. The complexity of computing these terms is simply the
complexity of counting the answers of a conjunctive query, and this is well understood [21]. Hence,
the main challenge for this approach is to understand the linear combination, i.e., to understand for
which CQs the corresponding coefficients are non-zero. The problem is that the coefficients 𝑐𝑖 of
these linear combinations are alternating sums, which in similar settings have been observed to
encode algebraic and even topological invariants [52]. This makes it highly non-trivial to determine
which CQs actually contribute to the linear combination. We introduce the concepts required to
state this classification informally, the corresponding definitions are given in Section 2.
We first give more details about the result of [21]. Let Γ(𝐶) be the class of those conjunctive

queries that contribute to the CQ expansion of at least one UCQ in 𝐶 , and that additionally are
what we call #minimal. Intuitively, a conjunctive query 𝜑 is #minimal if there is no proper subquery
𝜑 ′ of 𝜑 that has the same number of answers as 𝜑 in every given database. Then the tractability
criterion depends on the treewidth of the CQs in Γ(𝐶). It also depends on the treewidth of the
corresponding class contract(Γ(𝐶)) of contracts (formally defined in Definition 2.9), which is an
upper bound of what is called the “star size” in [28] and the “dominating star size” in [27]. Here is
the formal statement of the known dichotomy for #UCQ(𝐶).

Theorem 1.1 ([22]). Let 𝐶 be a recursively enumerable class of UCQs of bounded arity. If the

treewidth of Γ(𝐶) and of contract(Γ(𝐶)) is bounded, then #UCQ(𝐶) is fixed-parameter tractable.

Otherwise, #UCQ(𝐶) isW[1]-hard.

We investigate under which conditions this dichotomy can be simplified. We show that for large
classes of UCQs there is actually a much more natural tractability criterion that does not rely
on Γ(𝐶), i.e., here the computation of the coefficients of the linear combinations as well as the
concept of #minimality do not play a role. We first show a simpler classification for UCQs without
existential quantifiers. To state the results we require some additional definitions: The combined

query ∧ (Ψ) of a UCQ Ψ(𝑋 ) = 𝜑1 (𝑋 ) ∨ · · · ∨ 𝜑ℓ (𝑋 ) is the conjunctive query obtained from Ψ by
replacing each disjunction by a conjunction, that is ∧ (Ψ) = 𝜑1 (𝑋 ) ∧ · · · ∧ 𝜑ℓ (𝑋 ). Given a class of
UCQs 𝐶 , we set ∧ (𝐶) = {∧ (Ψ) | Ψ ∈ 𝐶}.

It will turn out that the structure of the class of combined queries∧ (𝐶) determines the complexity
of counting answers to UCQs in 𝐶 , given that 𝐶 has the following natural closure property: We
say that 𝐶 is closed under deletions if, for all Ψ(𝑋 ) = 𝜑1 (𝑋 ) ∨ · · · ∨ 𝜑ℓ (𝑋 ) and for every 𝐽 ⊆ [ℓ],
the subquery

∨
𝑗∈ 𝐽 𝜑 𝑗 (𝑋 ) is also contained in 𝐶 . For example, any class of UCQs defined solely by

the conjunctive queries admissible in the unions (such as unions of acyclic conjunctive queries) is
closed under deletions. The following classification resolves the complexity of counting answers
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to UCQs in classes that are closed under deletions; we will see later that the closedness condition
is necessary. Moreover, the tractability criterion depends solely on the structure of the combined
query, and not on the terms in the CQ expansion, thus yielding, as desired, a much more concise and
natural characterisation. As mentioned earlier, we first state the classification for quantifier-free
UCQs.

Theorem 1.2. Let 𝐶 be recursively enumerable class of quantifier-free UCQs of bounded arity. If

∧ (𝐶) has bounded treewidth then #UCQ(𝐶) is fixed-parameter tractable. If ∧ (𝐶) has unbounded
treewidth and 𝐶 is closed under deletions then #UCQ(𝐶) isW[1]-hard.

We emphasise here that Theorem 1.2 is in terms of the simpler object ∧ (𝐶) instead of the
complicated object Γ(𝐶).
If we allow UCQs with quantified variables in the class 𝐶 then the situation becomes more

intricate. Looking for a simple tractability criterion that describes the complexity of #UCQ(𝐶)
solely in terms of ∧ (𝐶) requires some additional effort. First, for a UCQ Ψ that has quantified
variables, contract(Ψ) is not necessarily the same as Ψ, and therefore the treewidth of the contracts
also plays a role. Moreover, the matching lower bound requires some conditions in addition to
being closed under deletions. Nevertheless, our result is in terms of the simpler objects ∧ (𝐶)
and contract(∧ (𝐶)) rather than the more complicated Γ(𝐶) and contract(Γ(𝐶)). For Theorem 1.3,
recall that a conjunctive query is self-join-free if each relation symbol occurs in at most one atom
of the query.

Theorem 1.3. Let 𝐶 be a recursively enumerable class of UCQs of bounded arity. If ∧ (𝐶) and
contract(∧ (𝐶)) have bounded treewidth then #UCQ(𝐶) is fixed-parameter tractable. Otherwise, if

(I)–(III) are satisfed, then #UCQ(𝐶) isW[1]-hard.
(I) 𝐶 is closed under deletions.

(II) The number of existentially quantified variables of queries in 𝐶 is bounded.

(III) The UCQs in 𝐶 are unions of self-join-free conjunctive queries.

In the full version [31] we show that Theorem 1.3 is tight in the sense that, if any of these
conditions is dropped, there are counterexamples to the claim that tractability is guided solely by
∧ (𝐶) and contract(∧ (𝐶)).

Question Q2): Linear-Time Solvability. Now we turn to the question of linear-time solvability for
a single fixed UCQ. The huge size of databases in modern applications motivates the question of
which query problems are actually linear-time solvable. Along these lines, there is a lot of research
for enumeration problems [7, 10, 11, 14, 19, 55].

The question whether counting answers to a conjunctive query 𝜑 can be achieved in time linear
in the given database has been studied previously [47]. The corresponding dichotomy is well
known and was discovered multiple times by different authors in different contexts.1 In these
results, the tractability criterion is whether 𝜑 is acyclic, i.e., whether it has a join tree (see [33]). The
corresponding lower bounds are conditioned on a widely used complexity assumption from fine-
grained complexity, namely the Triangle Conjecture. We define all of the complexity assumptions
that we use in this work in Section 2. There we also formally define the size of a database (as the
sum of the size of its signature, its universe, and its relations).
It is well-known that counting answers to quantifier-free conjunctive queries can be done in

linear time if and only if the query is acyclic. The “only if” part relies on hardness assumptions
from fine-grained complexity theory. Concretely, we have
1We remark that [10, Theorem 7] focuses on the special case of graphs and near linear time algorithms. However, in the
word RAM model with𝑂 (log𝑛) bits, a linear time algorithm is possible [19].
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Theorem 1.4 (See Theorem 12 in [16], and [6, 7, 10]). Let 𝜑 be a quantifier-free conjunctive

query and suppose that the Triangle Conjecture is true. Then the number of answers of 𝜑 in a given

database D can be computed in time linear in the size of D if and only if 𝜑 is acyclic.

We note that the previous theorem is false if quantified variables were allowed as this would
require the consideration of semantic acyclicity2 (see [9]).
Theorem 1.4 yields an efficient way to check whether counting answers to a quantifier-free

conjunctive query 𝜑 can be done in linear time: Just check whether 𝜑 is acyclic (in polynomial time,
see for instance [33]). We investigate the corresponding question for unions of conjunctive queries.
In stark contrast to Theorem 1.4, we show that there is no efficiently computable criterion that
determines the linear-time tractability of counting answers to unions of conjunctive queries, unless
some conjectures of fine-grained complexity theory fail.
We first observe that, as in the investigation of question Q1), one can obtain a criterion for

linear-time solvability by expressing UCQ answer counts as linear combinations of CQ answer
counts. Concretely, by a straightforward extension of previous results, we show that, assuming
the Triangle Conjecture, a linear combination of CQ answer counts can be computed in linear
time if and only if the answers to each #minimal CQ in the linear combination can be computed in
linear time, that is, if each such CQ is acyclic. However, this criterion is again unwieldy in the sense
that, for all we know, it may take time exponential in the size of the respective UCQ to determine
whether this criterion holds.

In view of our results for question Q1) about fixed-parameter tractability, one might suspect
that a more natural and simpler tractability criterion exists. However, it turns out that even under
strong restrictions on the UCQs that we consider, an efficiently computable criterion is unlikely.
We make this formal by studying the following meta problem.
Name: Meta
Input: A union Ψ of quantifier-free conjunctive queries.
Output: Is it possible to count answers to Ψ in time linear in the size of D.

Restricting the input ofMeta to quantifier-free queries is sensible as, without this restriction, the
meta problem is known to be NP-hard even for conjunctive queries: If all variables are existentially
quantified, then evaluating a conjunctive query can be done in linear time if and only if the query
is semantically acyclic [55] (the “only if” relies on standard hardness assumptions). However,
verifying whether a conjunctive query is semantically acyclic is already NP-hard [9]. In contrast,
when restricted to quantifier-free conjunctive queries, the problem Meta is polynomially-time
solvable according to Theorem 1.4.
We can now state our main result about the complexity of Meta. The hardness results hold

under substantial additional input restrictions, which make these results stronger.

Theorem 1.5. Meta can be solved in time 2𝑂 (ℓ ) · |Ψ|poly(log |Ψ | )
, where ℓ is the number of conjunctive

queries in the union, if the Triangle Conjecture is true. Moreover,

• If the Triangle Conjecture is true then Meta is NP-hard. If, additionally, ETH is true, then Meta

cannot be solved in time 2𝑜 (ℓ ) .
• If SETH is true then Meta is NP-hard and cannot be solved in time 2𝑜 (ℓ ) .
• If the non-uniform ETH is true then Meta is NP-hard and Meta ∉

⋂
𝜀>0 DTime(2𝜀 ·ℓ ).

The lower bounds remain true even if Ψ is a union of self-join-free and acyclic conjunctive queries over

a binary signature (that is, of arity 2).

2A conjunctive query is semantically acyclic if and only if its #core (Definition 2.8) is acyclic.
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We make some remarks about Theorem 1.5. First, it may seem counterintuitive that the algo-
rithmic part of this result relies on some lower bound conjectures. This is explained by the fact
that an algorithmic result forMeta is actually a classification result for the underlying counting
problem. The lower bound conjectures are the reason that the algorithm for Meta can answer that
a linear-time algorithm is not possible for certain UCQs.

Second, while for counting the answers to a CQ in linear time the property of being acyclic is the
right criterion, note that for unions of CQs, acyclicity is not even sufficient for tractability. Even
when restricted to unions of acyclic conjunctive queries, the meta problem is NP-hard.

Third, we elaborate on the idea that we use to prove Theorem 1.5. As mentioned before, the
algorithmic part of Theorem 1.5 comes from the well-known technique of expressing UCQ answer
counts in terms of linear combinations of CQ answer counts, and establishing a corresponding
complexity monotonicity property, see Section 2.3. The more interesting result is the hardness
part. Here we discover a connection between the meta question stated inMeta, and a topological
invariant, namely, the question whether the reduced Euler characteristic of a simplicial complex is
non-zero. It is known that simplicial complexes with non-vanishing reduced Euler characteristic
are evasive, and as such this property is also related to Karp’s Evasiveness Conjecture (see e.g.
the excellent survey of Miller [48]). We use the known fact that deciding whether the reduced
Euler characteristic is vanishing is NP-hard [53]. Roughly, the reduction works as follows. Given
some simplicial complex Δ, we carefully define a UCQ ΨΔ in such a way that only one particular
term in the CQ expansion of ΨΔ determines the linear-time tractability of counting answers to ΨΔ.
However, the coefficient of this term is zero precisely if the reduced Euler characteristic of Δ is
vanishing.

Simplicial complexes also appeared in a related context in a work by Roth and Schmitt [52].
They show a connection between the complexity of counting induced subgraphs that fulfil some
graph property and the question whether a simplicial complex associated with this graph property
is non-zero. To solve their problem, it suffices to consider simplicial graph complexes, which are
special simplicial complexes whose elements are subsets of the edges of a complete graph, and to
encode these as induced subgraph counting problems. In contrast, to get our result we must encode
arbitrary abstract simplicial complexes as UCQs and to show how to transfer the question about
their Euler characteristic to a question about linear-time solvability of UCQs.
It turns out that, as additional consequences of our reduction in the proof of Theorem 1.5, we

also obtain lower bounds for (approximately) computing the so-called Weisfeiler-Leman-dimension
of a UCQ.

Consequences for the Weisfeiler-Leman-dimension of quantifier-free UCQs. During the last decade
we have witnessed a resurge in the study of theWeisfeiler-Leman-dimension of graph classes and
graph parameters [4, 8, 26, 32, 41, 49]. The Weisfeiler-Leman algorithm (WL-algorithm) and its
higher-dimensional generalisations are important heuristics for graph isomorphism; for example,
the 1-dimensional WL-algorithm is equivalent to the method of colour-refinement. We refer the
reader to e.g. the EATCS Bulletin article of Arvind [4] for a concise and self-contained introduction;
however, in this work we will use the WL-algorithm only in a black-box manner.

For each positive integer 𝑘 , we say that two graphs 𝐺1 and 𝐺2 are 𝑘-WL equivalent, denoted by
𝐺1 �𝑘 𝐺2, if they cannot be distinguished by the 𝑘-dimensional WL-algorithm. A graph parameter
𝜋 is called 𝑘-WL invariant if 𝐺1 �𝑘 𝐺2 implies 𝜋 (𝐺1) = 𝜋 (𝐺2). Moreover, theWL-dimension of 𝜋
is the minimum 𝑘 for which 𝜋 is 𝑘-WL invariant, if such a 𝑘 exists, and∞ otherwise (see e.g.[5]).
The WL-dimension of a graph parameter 𝜋 provides important information about the descriptive
complexity of 𝜋 [17]. Moreover, recent work of Morris et al. [49] shows that the WL-dimension of
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a graph parameter lower bounds the minimum dimension of a higher-order Graph Neural Network
that computes the parameter.
The definitions of the WL-algorithm and the WL-dimension extend from graphs to labelled

graphs, that is, directed multi-graphs with edge- and vertex-labels (see e.g. [44]). Formally, we say
that a database is a labelled graph if its signature has arity at most 2, and if it contains no self-loops,
that is, tuples of the form (𝑣, 𝑣). Similarly, (U)CQs on labelled graphs have signatures of arity at
most 2 and contain no atom of the form 𝑅(𝑣, 𝑣).

Definition 1.6 (WL-dimension). Let Ψ be a UCQ on labelled graphs. The WL-dimension of Ψ,
denoted by dimWL (Ψ), is the minimum 𝑘 such that, for any pair of labelled graphs D1 and D2 with
D1 �𝑘 D2, it holds that the number of answers to Ψ in D1 is the same as in D2. If no such 𝑘 exists,
then the WL-dimension is ∞.

Note that a CQ is a special case of a UCQ, so Definition 1.6 also applies when Ψ is a CQ 𝜑 .
It was shown very recently that the WL-dimension of a quantifier-free conjunctive query 𝜑 on

labelled graphs is equal to the treewidth of the Gaifman graph of𝜑 [44, 50]. Using known algorithms
for computing the treewidth [15, 29] it follows that, for every fixed positive integer 𝑑 , the problem
of deciding whether the WL-dimension of 𝜑 is at most 𝑑 can be solved in polynomial time (in the
size of 𝜑). Moreover, the WL-dimension of 𝜑 can be efficiently approximated in polynomial time.
In stark contrast, we show that the computation of the WL-dimension of a UCQ is much harder; in
what follows, we say that 𝑆 is an 𝑓 -approximation of 𝑘 if 𝑘 ≤ 𝑆 ≤ 𝑓 (𝑘) · 𝑘 .

Theorem 1.7. There exists an algorithm that computes a 𝑂 (
√︁
log𝑘)-approximation of the WL-

dimension 𝑘 of a quantifier-free UCQ on labelled graphs Ψ = 𝜑1 ∨ · · · ∨ 𝜑ℓ in time |Ψ|𝑂 (1) ·𝑂 (2ℓ ).
Moreover, let 𝑓 : Z>0 → Z>0 be any computable function. The problem of computing an 𝑓 -

approximation of dimWL (Ψ) given an input UCQ Ψ = 𝜑1 ∨ · · · ∨ 𝜑ℓ is NP-hard, and, assuming ETH,

an 𝑓 -approximation of dimWL (Ψ) cannot be computed in time 2𝑜 (ℓ ) .

Finally, the computation of the WL-dimension of UCQs stays intractable even if we fix 𝑘 .

Theorem 1.8. Let𝑘 be any fixed positive integer. The problem of deciding whether theWL-dimension

of a quantifier-free UCQ on labelled graphs Ψ = 𝜑1 ∨ · · · ∨ 𝜑ℓ is at most 𝑘 can be solved in time

|Ψ|𝑂 (1) ·𝑂 (2ℓ ).
Moreover, the problem is NP-hard and, assuming ETH, cannot be solved in time 2𝑜 (ℓ ) .

1.2 Further Related Work
For exact counting it makes a substantial difference whether one wants to count answers to a
conjunctive query or a union of conjunctive queries [22, 27]. However, for approximate counting,
unions can generally be handled using a standard trick of Karp and Luby [40], and therefore
fixed-parameter tractability results for approximately counting the answers to a conjunctive query
also extend to unions of conjunctive queries [3, 30].
Counting and enumerating the answers to a union of conjunctive queries has also been stud-

ied in the context of dynamic databases [12, 13]. This line of research investigates the question
whether linear-time dynamic algorithms are possible. Concretely, the question is whether, after
a preprocessing step that builds a data structure in time linear in the size of the initial database,
the number of answers to a fixed union of conjunctive queries can be returned in constant time
with a constant-time update to the data structure, whenever there is a change to the database.
Berkholz et al. show that for a conjunctive query such a linear-time algorithm is possible if and
only if the CQ is 𝑞-hierarchical [12, Theorem 1.3]. There are acyclic CQs that are not 𝑞-hierarchical,
for instance the query 𝜑 ({𝑎, 𝑏, 𝑐, 𝑑}) = 𝐸 (𝑎, 𝑏) ∧ 𝐸 (𝑏, 𝑐) ∧ 𝐸 (𝑐, 𝑑) is clearly acyclic — however, the
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sets of atoms that contain 𝑏 and 𝑐 , respectively, are neither comparable nor disjoint, and therefore 𝜑
is not 𝑞-hierarchical. So, there are queries for which counting in the static setting is easy, whereas it
is hard in the dynamic setting. Berkholz et al. extend their result from CQs to UCQs [13, Theorem
4.5], where the criterion is whether the UCQ is exhaustively 𝑞-hierarchical. This property essentially
means that, for every subset of the CQs in the union, if instead of taking the disjunction of these
CQs we take the conjunction, then the resulting CQ should be 𝑞-hierarchical. Moreover, checking
whether a CQ 𝜙 is 𝑞-hierarchical can be done in time polynomial in the size of 𝜙 . However, the
straightforward approach of checking whether a UCQ is exhaustively 𝑞-hierarchical takes exponen-
tial time, and it is stated as an open problem in [13] whether this can be improved. In the dynamic
setting this question remains open — however, in the static setting we show that, while for counting
answers to CQs the criterion for linear-time tractability can be verified in polynomial time, this is
not true for unions of conjunctive queries, subject to some complexity assumptions, as we have
seen in Theorem 1.5.

1.3 Organisation of the Paper
The subsequent Section 2 introduces some preliminary material, and in Section 3 we prove the
complexity classification of #UCQ(𝐶) for deletion-closed classes 𝐶 . The treatment of Meta and its
connection to the WL-dimension is presented in the full version [31].

2 PRELIMINARIES
Due to the fine-grained nature of the questions we ask in this work (e.g. linear time counting vs
non-linear time counting), it is important to specify the machine model. We use the standard word
RAM model with 𝑂 (log𝑛) bits. The exact model makes a difference. For example, it is possible
to count answers to quantifier-free acyclic conjunctive queries in linear time in the word RAM
model [19], while Turing machines only achieve near linear time (or expected linear time) [10].

Due to the space constraints, we defer the introduction of some background material on parame-
terised complexity theory and relational databases to the full version.

2.1 Fine-grained Complexity Theory
In this work, we will rely on the following hypotheses from fine-grained complexity theory.

Conjecture 2.1 (ETH [39]). 3-SAT cannot be solved in time exp(𝑜 (𝑛)), where𝑛 denotes the number

of variables of the input formula.

Conjecture 2.2 (SETH [18, 39]). For each 𝜀 > 0 there exists a positive integer 𝑘 such that 𝑘-SAT

cannot be solved in time 𝑂 (2(1−𝜀 )𝑛), where 𝑛 denotes the number of variables of the input formula.

Conjecture 2.3 (Non-uniform ETH [23]). 3-SAT is not contained in

⋂
𝜀>0 DTime(exp(𝜀𝑛)),

where 𝑛 denotes the number of variables of the input formula.

Conjecture 2.4 (Triangle Conjecture [1]). There exists 𝛾 > 0 such that any (randomised)

algorithm that decides whether a graph with 𝑛 vertices and𝑚 edges contains a triangle takes time at

least Ω(𝑚1+𝛾 ) in expectation.

2.2 Homomorphisms and ConjunctiveQueries
We assume familiarity with the central notions of relational databases such as signatures, structures,
and Gaifman graphs. We refer the reader to the full version [31] for a brief introduction.

Homomorphisms as Answers to CQs. Let A and B be structures over signatures 𝜏A ⊆ 𝜏B . A
homomorphism from A to B is a mapping ℎ : 𝑈 (A) → 𝑈 (B) such that for each relation symbol
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𝑅 ∈ 𝜏A with arity 𝑎 and each tuple ®𝑡 = (𝑡1, . . . , 𝑡𝑎) ∈ 𝑅A we have thatℎ(®𝑡) = (ℎ(𝑡1), . . . , ℎ(𝑡𝑎)) ∈ 𝑅B .
We use Hom(A → B) to denote the set of homomorphisms from A to B, and we use the lower
case version hom(A → B) to denote the number of homomorphisms from A to B.
Let 𝜑 be a conjunctive query with free variables 𝑋 = {𝑥1, . . . , 𝑥𝑘 } and quantified variables

𝑌 = {𝑦1, . . . , 𝑦𝑑 }. We can associate 𝜑 with a structure A𝜑 defined as follows: The universe of
A𝜑 are the variables 𝑋 ∪ 𝑌 and for each atom 𝑅(®𝑡) of 𝜑 we add the tuple ®𝑡 to 𝑅A . It is well-
known that, for each database D, the set of answers of 𝜑 in D is precisely the set of assignments
𝑎 : 𝑋 → 𝑈 (D) such that there is a homomorphism ℎ ∈ Hom(A𝜑 → D) with ℎ |𝑋 = 𝑎. Since
working with (partial) homomorphisms will be very convenient in this work, we will use the
notation from [27] and (re)define a conjunctive query as a pair consisting of a relational structure
A together with a set 𝑋 ⊆ 𝑈 (A). The size of (A, 𝑋 ) is denoted by | (A, 𝑋 ) | and defined to be
|A| + |𝑋 |. Furthermore, the set of answers of (A, 𝑋 ) in D, denoted by Ans((A, 𝑋 ) → D), is
defined as {𝑎 : 𝑋 → 𝑈 (D) | ∃ℎ ∈ Hom(A → D) : ℎ |𝑋 = 𝑎}. We then use ans((A, 𝑋 ) → D) to
denote the number of answers, i.e., ans((A, 𝑋 ) → D) B |Ans((A, 𝑋 ) → D)|.
We can now formally define the (parameterised) problem of counting answers to conjunctive

queries. As is usual, we restrict the problem by a class 𝐶 of allowed queries.
Name: #CQ(𝐶)
Input: A conjunctive query (A, 𝑋 ) ∈ 𝐶 and a database D.
Parameter: | (A, 𝑋 ) |.
Output: The number of answers ans((A, 𝑋 ) → D).

#Equivalence and #Minimality. In the realm of decision problems, it is well known that evaluating
a conjunctive query is equivalent to evaluating the (homomorphic) core of the query, i.e., evaluating
theminimal homomorphic-equivalent query. A similar, albeit slightly different notion of equivalence
and minimality is required for counting answers to conjunctive queries. In what follows, we will
provide the necessary definitions and properties of equivalence, minimality and cores for counting
answers to conjunctive queries, and we refer the reader to [22] and to the full version of [27] for a
more comprehensive discussion. To avoid confusion between the notions in the realms of decision
and counting, we will from now on use the # symbol for the counting versions (see Definition 2.6).

Definition 2.5. Two conjunctive queries (A, 𝑋 ) and (A′, 𝑋 ′) are isomorphic, denoted by (A, 𝑋 ) �
(A′, 𝑋 ′), if there is an isomorphism 𝑏 from A to A′ with 𝑏 (𝑋 ) = 𝑋 ′.

Definition 2.6 (#Equivalence and #minimality (see [22, 27])). Two conjunctive queries (A, 𝑋 )
and (A′, 𝑋 ′) are #equivalent, denoted by (A, 𝑋 ) ∼ (A′, 𝑋 ′), if for every database D we have
ans((A, 𝑋 ) → D) = ans((A′, 𝑋 ′) → D). A conjunctive query (A, 𝑋 ) is #minimal if there is no
proper substructure A′ of A such that (A, 𝑋 ) ∼ (A′, 𝑋 ).

Observation 2.7. The following are equivalent:
(1) A conjunctive query (A, 𝑋 ) is #minimal.
(2) (A, 𝑋 ) has no #equivalent substructure that is induced by a set𝑈 with 𝑋 ⊆ 𝑈 ⊂ 𝑈 (A).
(3) Every homomorphism from A to itself that is the identity on 𝑋 is surjective.

It turns out that #equivalence is the same as isomorphism if all variables are free, and it is the same
as homomorphic equivalence if all variables are existentially quantified (see e.g. the discussion in
Section 5 in the full version of [27]). Moreover, each quantifier-free conjunctive query is #minimal.

Definition 2.8 (#core). A #core of a conjunctive query (A, 𝑋 ) is a #minimal conjunctive query
(A′, 𝑋 ′) with (A, 𝑋 ) ∼ (A′, 𝑋 ′).
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It is well known (see e.g. [27]) that,for #minimal queries, #equivalence and isomorphism coincide.
Thus the #core is unique up to isomorphisms; in fact, this allows us to speak of “the” #core of a
conjunctive query.

Classification of #CQ(𝐶) via Treewidth and Contracts. It is well known that the complexity of
counting answers to a conjunctive query is governed by its treewidth, and by the treewidth of its
contract [21, 27], which we define as follows.

Definition 2.9 (Contract). Let (A, 𝑋 ) be a conjunctive query, let 𝑌 = 𝑈 (A) \ 𝑋 , and let 𝐺 be the
Gaifmann graph of A. The contract of (A, 𝑋 ), denoted by contract(A, 𝑋 ) is obtained from 𝐺 [𝑋 ]
by adding an edge between each pair of vertices 𝑢 and 𝑣 for which there is a connected component
𝑆 in𝐺 [𝑌 ] that is adjacent to both 𝑢 and 𝑣 , that is, there are vertices 𝑥,𝑦 ∈ 𝑆 such that {𝑥,𝑢} ∈ 𝐸 (𝐺)
and {𝑦, 𝑣} ∈ 𝐸 (𝐺). Given a class of conjunctive queries 𝐶 , we write contract(𝐶) for the class of all
contracts of queries in 𝐶 .

We note that there are multiple equivalent ways to define the contract of a query. For our
purposes, the definition in [27] is most suitable. Also, the treewidth of the contract of a conjunctive
query is an upper bound of what is called the query’s “star size” in [28] and its “dominating star
size” in [27].
Chen and Mengel established the following classification for counting answers to conjunctive

queries of bounded arity.

Theorem 2.10 ([21]). Let 𝐶 be a recursively enumerable class of conjunctive queries of bounded

arity, and let 𝐶′
be the class of #cores of queries in 𝐶 . If the treewidth of 𝐶′

and of contract(𝐶′) is
bounded, then #CQ(𝐶) is solvable in polynomial time. Otherwise, #CQ(𝐶) isW[1]-hard.

We point out that theW[1]-hard cases can further be partitioned intoW[1]-complete, #W[1]-
complete and even harder cases [21, 27].3 However, for the purpose of this work, we are only
interested in tractable and intractable cases (recall thatW[1]-hard problems are not fixed-parameter
tractable under standard assumptions from fine-grained and parameterised complexity theory, such
as ETH).

Self-join-free Conjunctive Queries and Isolated Variables. A conjunctive query (A, 𝑋 ) is self-join-
free if each relation of A contains at most one tuple. We say that a variable of a conjunctive query
is isolated if it is not part of any relation.

Note that that adding/removing isolated variables to/from a conjunctive query does not change
its treewidth or the treewidth of its #core. Further, it does not change the complexity of counting
answers: Just multiply/divide by 𝑛𝑣 , where 𝑛 is the number of elements of the database and 𝑣 it
the number of added/removed isolated free variables. For this reason, we will allow ourselves in
this work to freely add and remove isolated variables from the queries that we encounter. For the
existence of homomorphisms we also observe the following.

Observation 2.11. Let (A, 𝑋 ) be a conjunctive query, let 𝑋 ′
be a superset of 𝑋 and let A′

be

the structure obtained from A by adding an isolated variable for each 𝑥 ∈ 𝑋 ′ \ 𝑋 . Then for all

𝑎 : 𝑋 ′ → 𝑈 (D) we have that 𝑎 |𝑋 ∈ Ans((A, 𝑋 ) → D) iff 𝑎 ∈ Ans((A′, 𝑋 ′) → D).

2.3 UCQs and the Homomorphism Basis
A union of conjunctive queries (UCQ) Ψ is a tuple of structures (A1, . . . ,Aℓ (Ψ) ) over the same
signature together with a set of designated elements 𝑋 (the free variables) that are in the universe
of each of the structures. For each 𝐽 ⊆ [ℓ (Ψ)], we define Ψ| 𝐽 = ((𝐴 𝑗 ) 𝑗∈ 𝐽 , 𝑋 ). If we restrict to a
3Those cases are: #W[2]-hard and #A[2]-complete.
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single term of the union then we usually just write Ψ𝑖 instead of Ψ|{𝑖 } . Note that Ψ𝑖 = (A𝑖 , 𝑋 ) is
simply a conjunctive query (rather than a union of CQs).
We will assume (without loss of generality) that, for any distinct 𝑖 and 𝑖′ in [ℓ (Ψ)], 𝑈 (A𝑖 ) ∩

𝑈 (A𝑖′ ) = 𝑋 , i.e., that each CQ in the union has its own set of existentially quantified variables.
If each such conjunctive query is acyclic we say that Ψ is a union of acyclic conjunctive queries.

Moreover, the arity of Ψ is the maximum arity of any of the A𝑖 . The size of Ψ is |Ψ| = ∑ℓ (Ψ)
𝑖=1 |Ψ𝑖 |.

The elements of 𝑋 are the free variables of Ψ and ℓ (Ψ) is the number of CQs in the union. The set
of answers of Ψ in a database D, denoted by Ans(Ψ → D) is defined as follows:

Ans(Ψ → D) = {𝑎 : 𝑋 → 𝑈 (D) | ∃𝑖 ∈ [ℓ] : 𝑎 ∈ Ans(Ψ𝑖 → D)} .
Again, we use the lower case version ans(Ψ → D) to denote the number of answers of Ψ in D.

In the definition of UCQs we assume that every CQ in the union has the same set of free variables,
namely 𝑋 . This assumption is without loss of generality. To see this, suppose that we have a union
of CQs (A1, 𝑋1), . . . , (Aℓ , 𝑋ℓ ) with individual sets of free variables. Let 𝑋 =

⋃ℓ
𝑖=1𝑋𝑖 and, for each

𝑖 ∈ [ℓ], let A′
𝑖 be the structure obtained from A𝑖 by adding an isolated variable for each 𝑥 ∈ 𝑋 \𝑋𝑖 .

Then consider the UCQ Ψ := ((A′
1, . . . ,A′

ℓ ), 𝑋 ). If for some assignment 𝑎 : 𝑋 → 𝑈 (D) it holds
that there is an 𝑖 ∈ [ℓ] such that 𝑎 |𝑋𝑖

∈ Ans((A𝑖 , 𝑋𝑖 ) → D). Then, according to Observation 2.11,
this is equivalent to 𝑎 ∈ Ans((A′

𝑖 , 𝑋 ) → D), which means that 𝑎 is an answer of Ψ. So, without
loss of generality we can work with Ψ, which uses the same set of free variables for each CQ in the
union.

Now we define the parameterised problem of counting answers to UCQs. As usual, the problem
is restricted by a class 𝐶 of allowed queries with respect to which we classify the complexity.
Name: #UCQ(𝐶)
Input: A UCQ Ψ ∈ 𝐶 together with a database D.
Parameter: |Ψ|.
Output: The number of answers ans(Ψ → D).
The next definition will be crucial for the analysis of the complexity of #UCQ(𝐶).
Definition 2.12 (combined query ∧ (Ψ)). Let Ψ = ((A1, , . . . ,Aℓ ), 𝑋 ) be a UCQ. Then we define

the combined query ∧ (Ψ) = (⋃𝑗∈[ℓ ] 𝐴 𝑗 , 𝑋 ).

What follows is an easy, but crucial observation about ∧
(
Ψ| 𝐽

)
.

Observation 2.13. Let ((A1, , . . . ,Aℓ ), 𝑋 ) be a UCQ, and let ∅ ≠ 𝐽 ⊆ [ℓ]. For each database D
and assignment 𝑎 : 𝑋 → 𝑈 (D) we have

𝑎 ∈ Ans(∧
(
Ψ| 𝐽

)
→ D) ⇔ ∀𝑗 ∈ 𝐽 : 𝑎 ∈ Ans(Ψ𝑗 → D).

Definition 2.14 (Coefficient function 𝑐Ψ). Let Ψ = ((A1, , . . . ,Aℓ ), 𝑋 ) be a UCQ. For each conjunc-
tive query (A, 𝑋 ), we set I(A, 𝑋 ) = {𝐽 ⊆ [ℓ] | (A, 𝑋 ) ∼ ∧

(
Ψ| 𝐽

)
}, and we define the coefficient

function of Ψ as follows: 𝑐Ψ (A, 𝑋 ) = ∑
𝐽 ∈I(A,𝑋 ) (−1) | 𝐽 |+1.

Using inclusion-exclusion, we can transform the problem of counting answers to Ψ into the
problem of evaluating a linear combination of CQ answer counts. We include a proof in the full
version [31] only for reasons of self-containment and note that the complexity-theoretic applications
of this transformation, especially regarding lower bounds, have first been discovered by Chen and
Mengel [22].

Lemma 2.15 ([22]). Let Ψ = ((A1, , . . . ,Aℓ ), 𝑋 ) be a UCQ. For every database D, ans(Ψ → D) =∑
(A,𝑋 ) 𝑐Ψ (A, 𝑋 ) · ans((A, 𝑋 ) → D), where the sum is over all equivalence classes of ∼.
We conclude this subsection with the following two operations on classes of UCQs.
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Definition 2.16 (Γ(𝐶) and ∧ (𝐶)). Let 𝐶 be a class of UCQs. Γ(𝐶) is the class of all (A, 𝑋 ) such
that (A, 𝑋 ) is #minimal and there is Ψ ∈ 𝐶 with 𝑐Ψ (A, 𝑋 ) ≠ 0. Let ∧ (𝐶) = {∧ (Ψ) | Ψ ∈ 𝐶}.

It was independently discovered by Chen andMengel [22], and by Curticapean, Dell andMarx [24]
that the computation of a linear combination of homomorphism counts is precisely as hard as
computing its hardest term. Moreover, in the former work, Chen and Mengel also established this
property in the more general context of linear combinations of conjunctive queries. Applying this
principle to counting answers to UCQs (which we have seen to be equivalent to computing a linear
combination in Lemma 2.15), we obtain the following two results; details are provided in the full
version [31].

Corollary 2.17. Let Ψ be a UCQ. For each 𝑑 ≥ 1, computing the function D ↦→ ans(Ψ → D)
can be done in time𝑂 ( |D|𝑑 ) if and only if for each #minimal (A, 𝑋 ) with 𝑐Ψ (A, 𝑋 ) ≠ 0 the function
D ↦→ ans((A, 𝑋 ) → D) can be computed in time 𝑂 (|D|𝑑 ).

Corollary 2.18 (Implicitly also in [22]). Let 𝐶 be a recursively enumerable class of UCQs. The

problems #UCQ(𝐶) and #CQ(Γ(𝐶)) are interreducible with respect to parameterised Turing-reductions.

3 PROOFS OF THEOREM 1.2 AND THEOREM 1.3
Let𝐶 be a class of UCQs. Recall that∧ (𝐶) is the class of all conjunctive queries that are obtained just
by substituting all ∨ by ∧ in UCQs in𝐶 , whereas Γ(𝐶) in Theorem 1.1 is the much less natural class
of #minimal queries that survive with a non-zero coefficient in the CQ expansion of a UCQ in𝐶 . The
work of Chen and Mengel [22] implicitly also shows an upper bound for counting answers to UCQs
from the class 𝐶 in terms of the simpler objects ∧ (𝐶) and contract(∧ (𝐶)), rather than in terms of
the more complicated objects Γ(𝐶) and contract(Γ(𝐶)). We include a proof for completeness.

Lemma 3.1. Let 𝐶 be a recursively enumerable class of UCQs. Suppose that both ∧ (𝐶) and

contract(∧ (𝐶)) have bounded treewidth. Then #UCQ(𝐶) is fixed-parameter tractable.

Proof. Let Ψ ∈ 𝐶 . Recall from the proof of Lemma 2.15 that, for every D, ans(Ψ → D) =∑
∅≠𝐽 ⊆[ℓ ] (−1) | 𝐽 |+1 · hom(∧

(
Ψ| 𝐽

)
→ D). Hence #UCQ(𝐶) ≤FPT #CQ(𝐶) where𝐶 is {∧

(
Ψ| 𝐽

)
| Ψ ∈

𝐶 ∧ ∅ ≠ 𝐽 ⊆ [ℓ (Ψ)]}. Finally, since ∧
(
Ψ| 𝐽

)
is a subquery of ∧ (Ψ) for each 𝐽 , the treewidths of

∧
(
Ψ| 𝐽

)
and contract(∧

(
Ψ| 𝐽

)
) are upper-bounded by the treewidths of ∧ (Ψ) and contract(∧ (Ψ)),

respectively. Consequently, the treewidths of 𝐶 and contract(𝐶) are bounded, and thus #CQ(𝐶)
is polynomial-time solvable by the classification of Chen and Mengel [21, Theorem 22] Since
#UCQ(𝐶) ≤FPT #CQ(𝐶), the lemma follows. □

Our goal is to relate the complexity of #UCQ(𝐶) to the structure of ∧ (𝐶) with the hope of
obtaining a more natural tractability criterion than the one given by Theorem 1.1. While we show
in the full version [31] that this seems not always possible, we identify conditions under which a
natural criterion based on ∧ (𝐶) is possible, both in the quantifier-free case (Section 3.1), and in the
general case that allows quantified variables (Section 3.2).
A class of UCQs 𝐶 is closed under deletions if, for every Ψ = ((A1, . . . ,Aℓ ), 𝑋 ) ∈ 𝐶 and for

every ∅ ≠ 𝐽 ⊆ [ℓ], the UCQ Ψ| 𝐽 is also contained in 𝐶 . For example, any class of UCQs defined by
prescribing the allowed conjunctive queries is closed under deletions. This includes, e.g., unions of
acyclic conjunctive queries.

3.1 TheQuantifier-free Case
As a warm-up, we start with the much simpler case of quantifier-free queries. Here, we only allow
(unions of) conjunctive queries (A, 𝑋 ) satisfying𝑈 (A) = 𝑋 .
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Lemma 3.2. Let𝐶 be a recursively enumerable class of quantifier-free UCQs of bounded arity. Suppose

that 𝐶 is closed under deletions. If ∧ (𝐶) has unbounded treewidth then #UCQ(𝐶) is W[1]-hard.

Proof. We show that ∧ (𝐶) ⊆ Γ(𝐶), which then proves the claim by Theorem 1.1. Recall from
Definition 2.16 that Γ(𝐶) = {(A, 𝑋 ) | (A, 𝑋 ) is #minimal and there is Ψ ∈ 𝐶 with 𝑐Ψ (A, 𝑋 ) ≠ 0}.
Let Ψ = ((A1, . . . ,Aℓ ), 𝑋 ) ∈ 𝐶 . Note that, according to Observation 2.7,∧ (Ψ) is its own #core since
it does not have existentially quantified variables. For the same reason, for each nonempty subset 𝐽
of [ℓ], the query ∧

(
Ψ| 𝐽

)
is its own #core. Now let 𝐽 ⊆ [ℓ] be inclusion-minimal with the property

that ∧
(
Ψ| 𝐽

)
is isomorphic to ∧ (Ψ). Since 𝐶 is closed under deletions, the UCQ Ψ| 𝐽 is contained in

𝐶 . By the inclusion-minimality of 𝐽 , Definition 2.14 ensures that 𝑐Ψ | 𝐽 (∧ (Ψ)) = (−1) | 𝐽 |+1 ≠ 0. As a
consequence, ∧ (Ψ) ∈ Γ(𝐶), concluding the proof. □

From Lemmas 3.2 and 3.1 together with the fact that the contract of a quantifier-free query is
the query itself, we obtain Theorem 1.2.

3.2 The General Case
Now we consider UCQs with existentially quantified variables. Here, a corresponding hardness
result (Lemma 3.5) can be achieved under some additional assumptions. Note that the number of
existentially quantified variables in a UCQ Ψ = ((A1, . . . ,Aℓ ), 𝑋 ) is equal to ∑ℓ

𝑖=1 |𝑈 (A𝑖 ) \𝑋 |. We
first need the following two auxiliary results:

Lemma 3.3. Let (A, 𝑋 ) and (A′, 𝑋 ′) be #equivalent conjunctive queries. Further, let 𝐺 and 𝐺 ′
be

the Gaifman graphs of A and A′
, respectively. Then 𝐺 [𝑋 ] and 𝐺 ′ [𝑋 ′] are isomorphic.

Lemma 3.4. Let (A, 𝑋 ) be a self-join-free conjunctive query. Let A′
be the structure obtained from

A by deleting all isolated variables in𝑈 (A) \ 𝑋 . Then (A′, 𝑋 ) is the #core of (A, 𝑋 ).

Lemma 3.5. Let 𝐶 be a recursively enumerable class of unions of self-join-free conjunctive queries

with bounded arity. Suppose that 𝐶 is closed under deletions and that there is a finite upper bound on

the number of existentially quantified variables in queries in 𝐶 . If either of ∧ (𝐶) or contract(∧ (𝐶))
have unbounded treewidth then #UCQ(𝐶) isW[1]-hard.

Proof. Let 𝑑 be the maximum number of existentially quantified variables in a query in 𝐶 .
Assume first that ∧ (𝐶) has unbounded treewidth. We show that Γ(𝐶) has unbounded treewidth,
which proves the claim by Theorem 1.1. To this end, let 𝐵 be any positive integer. The goal is to find
a conjunctive query in Γ(𝐶) with treewidth at least 𝐵. Since ∧ (𝐶) has unbounded treewidth, there
is a UCQ Ψ = ((A1, . . . ,Aℓ ), 𝑋 ) in 𝐶 such that ∧ (Ψ) has treewidth larger than 𝑑 + 𝐵. Note that,
although all Ψ𝑖 are self-join-free, ∧ (Ψ) is not necessarily self-join-free. Let 𝐽 be inclusion-minimal
among the subsets of [ℓ] with the property that the #core of ∧

(
Ψ| 𝐽

)
is isomorphic to the #core of

∧ (Ψ). Since 𝐶 is closed under deletions, the UCQ Ψ| 𝐽 is contained in 𝐶 . Let (A′, 𝑋 ′) be the #core
of ∧ (Ψ).

By inclusion-minimality of 𝐽 , 𝑐Ψ | 𝐽 ((A′, 𝑋 ′)) = (−1) | 𝐽 |+1 ≠ 0. As a consequence, (A′, 𝑋 ′) ∈ Γ(𝐶).
It remains to show that the treewidth of (A′, 𝑋 ′) is at least 𝐵. For this, let𝐺 be the Gaifmann graph
of ∧ (Ψ) and let 𝐺 ′ be the Gaifmann graph of the #core of ∧ (Ψ) (the Gaifman graph of A′). First,
deletion of a vertex can decrease the treewidth by at most 1. Thus, 𝐺 [𝑋 ] has treewidth at least
𝑑 + 𝐵 − 𝑑 = 𝐵. By Lemma 3.3, 𝐺 [𝑋 ] and 𝐺 ′ [𝑋 ′] are isomorphic.

Therefore the treewidth of𝐺 ′ [𝑋 ′], i.e., the treewidth of (A′, 𝑋 ′), is at least 𝐵. So we have shown
that if the treewidth of ∧ (𝐶) is unbounded then so is the treewidth of Γ(𝐶).
In the second case, we assume that the contracts of queries in ∧ (𝐶) (see Definition 2.9) have

unbounded treewidth. We introduce the following terminology: Let (A, 𝑋 ) be a conjunctive query
and let 𝑦 ∈ 𝑈 (A). The degree of freedom of 𝑦 is the number of vertices in 𝑋 that are adjacent to
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𝑦 in the Gaifman graph of A. Let 𝐶 be the class of all conjunctive queries (A, 𝑋 ) such that there
exists Ψ = ((A1, . . . ,Aℓ (Ψ) ), 𝑋 ) in 𝐶 with (A, 𝑋 ) = (A𝑖 , 𝑋 ) for some 𝑖 ∈ [ℓ (Ψ)]. Since 𝐶 is closed
under deletions, 𝐶 ⊆ 𝐶 . By the assumptions of the lemma, 𝐶 consists only of self-join-free queries.
Thus, by Lemma 3.4, each query in 𝐶 is its own #core (up to deleting isolated variables). We will
now consider the following cases:

(i) Suppose that 𝐶 has unbounded degree of freedom. With Definition 2.9 it is straightforward
to check that a quantified variable 𝑦 with degree of freedom 𝐵 induces a clique of size 𝐵 in
the contract of the corresponding query. Therefore, the contracts of the queries in 𝐶 have
unbounded treewidth. Consequently, #CQ(𝐶) is W[1]-hard by the classification of Chen
and Mengel [21, Theorem 22]. Since 𝐶 ⊆ 𝐶 the problem #CQ(𝐶) is merely a restriction of
#UCQ(𝐶), the latter of which is thusW[1]-hard as well.

(ii) Suppose that the degree of freedom of queries in𝐶 is bounded by a constant 𝑑 ′. We show that
Γ(𝐶) has unbounded treewidth, which proves the claim by Theorem 1.1. To this end, let 𝐵 be
any positive integer. The goal is to find a conjunctive query in Γ(𝐶) with treewidth at least
𝐵. Since contract(∧ (𝐶)) has unbounded treewidth, there is a UCQ Ψ = (A1, . . . ,Aℓ ), 𝑋 )
in 𝐶 such that contract(∧ (Ψ)) has treewidth larger than 𝑑 +

(
𝑑𝑑 ′

2
)
+ 𝐵. We will show that

∧ (Ψ) has treewidth larger than 𝑑 + 𝐵, which, as we have argued previously, implies that
Γ(𝐶) contains a query with treewidth at least 𝐵. To prove that ∧ (Ψ) indeed has treewidth
larger than 𝑑 +𝐵, let ∧ (Ψ) = (A, 𝑋 ) and let𝐺 be the Gaifman graph ofA. Let 𝑌 = 𝑈 (A) \𝑋
and recall from Definition 2.9 that contract(A, 𝑋 ) is obtained from 𝐺 [𝑋 ] by adding an edge
between any pair of vertices 𝑢 and 𝑣 that are adjacent to a common connected component
in 𝐺 [𝑌 ]. Let 𝑁 ⊆ 𝑋 be the set of all vertices in 𝑋 that are adjacent to a vertex in 𝑌 and
observe that |𝑁 | ≤ 𝑑𝑑 ′ since the number of existentially quantified variables and the degree
of freedom are bounded by 𝑑 and 𝑑 ′, respectively. Thus, contract(A, 𝑋 ) is obtained by adding
at most

(
𝑑𝑑 ′

2
)
edges to𝐺 [𝑋 ]. The deletion of an edge can decrease the treewidth by at most 1,

so tw(∧ (Ψ)) = tw(𝐺) ≥ tw(𝐺 [𝑋 ]) ≥ tw(contract(A, 𝑋 )) −
(
𝑑𝑑 ′

2
)
> 𝑑 + 𝐵, which concludes

Case (ii).
With all cases concluded, the proof is completed. □

From Lemmas 3.1 and 3.5 we directly obtain Theorem 1.3.

Remark 3.6. It turns out that all side conditions of Theorem 1.3 are necessary if we aim to classify
#UCQ(𝐶) solely via ∧ (𝐶). To this end, we provide counter examples for each missing condition in
the full version [31].
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