
On the complexity of symmetric vs. functional PCSPs
TAMIO-VESA NAKAJIMA, University of Oxford, United Kingdom

STANISLAV ŽIVNÝ, University of Oxford, United Kingdom

The complexity of the promise constraint satisfaction problem PCSP(A,B) is largely unknown, even for sym-

metric A and B, except for the case when A and B are Boolean.

First, we establish a dichotomy for PCSP(A,B) where A,B are symmetric, B is functional (i.e. any 𝑟 − 1

elements of an 𝑟 -ary tuple uniquely determines the last one), and (A,B) satisfies technical conditions we
introduce called dependency and additivity. This result implies a dichotomy for PCSP(A,B) withA,B symmetric

and B functional if (i) A is Boolean, or (ii) A is a hypergraph of a small uniformity, or (iii) A has a relation 𝑅A

of arity at least 3 such that the hypergraph diameter of (𝐴, 𝑅A) is at most 1.

Second, we show that for PCSP(A,B), where A and B contain a single relation, A satisfies a technical

condition called balancedness, and B is arbitrary, the combined basic linear programming relaxation (BLP)

and the affine integer programming relaxation (AIP) is no more powerful than the (in general strictly weaker)

AIP relaxation. Balanced A include symmetric A or, more generally, A preserved by a transitive permutation

group.

CCS Concepts: • Theory of computation → Design and analysis of algorithms; Problems, reductions
and completeness.

Additional Key Words and Phrases: algebraic approach, constraint satisfaction, promise CSP, polymorphisms,

minions

ACM Reference Format:
Tamio-Vesa Nakajima and Stanislav Živný. 2024. On the complexity of symmetric vs. functional PCSPs. ACM
Trans. Algor. 1, 1, Article 1 (January 2024), 29 pages.

1 Introduction
Promise constraint satisfaction problems (PCSPs) are a generalisation of constraint satisfaction

problems (CSPs) that allow for capturing many more computational problems [4, 6, 8].

A canonical example of a CSP is the 3-colouring problem: Given a graph G, is it 3-colourable?
This can be cast as a CSP. Let K𝑘 denote a clique on 𝑘 vertices. Then CSP(K3), the constraint

satisfaction problem with the template K3, is the following computational problem (in the decision

version): Given a graph G, say Yes if there is a homomorphism from G to K3 (indicated by G → K3)

and say No otherwise (indicated by G ̸→ K3). Here a graph homomorphism is an edge preserving

map [24]. As graph homomorphisms fromG to K3 are 3-colourings ofG, CSP(K3) is the 3-colouring
problem.

Another example of a CSP is 1-in-3-SAT: Given a positive 3-CNF formula, is there an assignment

that satisfies exactly one literal in each clause? This is CSP(1-in-3), where
1-in-3 = ({0, 1}; {(1, 0, 0), (0, 1, 0), (0, 0, 1)}).

Authors’ Contact Information: Tamio-Vesa Nakajima, tamio-vesa.nakajima@cs.ox.ac.uk, University of Oxford, Department

of Computer Science, Oxford, United Kingdom; Stanislav Živný, standa.zivny@cs.ox.ac.uk, University of Oxford, Department

of Computer Science, Oxford, United Kingdom.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 ACM.

ACM 1549-6333/2024/1-ART1

https://doi.org/

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.

HTTPS://ORCID.ORG/0000-0003-3684-9412
HTTPS://ORCID.ORG/0000-0002-0263-159X
https://orcid.org/0000-0003-3684-9412
https://orcid.org/0000-0002-0263-159X
https://doi.org/


1:2 Tamio-Vesa Nakajima and Stanislav Živný

Yet another example is NAE-3-SAT: Given a positive 3-CNF formula, is there an assignment that

satisfies one or two literals in each clause? This is CSP(NAE), where

NAE = ({(0, 1); {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}).

A canonical example of a PCSP is the approximate graph colouring problem [22]: Fix 𝑘 ≤ ℓ . Given

a graph G, determine whether G is 𝑘-colourable or not even ℓ-colourable. (If neither condition

holds then the algorithm can output anything; also, note that if 𝑘 = ℓ this is just 𝑘-colouring.) This

is the same as the PCSP over cliques; i.e., PCSP(K𝑘 ,Kℓ ) is the following computational problem (in

the decision version): Given a graph G, say Yes if G → K𝑘 and say No if G ̸→ Kℓ . In the search

version, one is given a 𝑘-colourable graph G and the task is to find an ℓ-colouring of G (which

necessarily exists by the promise and the fact that 𝑘 ≤ ℓ).

Another example of a PCSP is PCSP(1-in-3,NAE), identified in [8]: Given a satisfiable instance

X of CSP(1-in-3), can one find a solution if X is seen as an instance of CSP(NAE)? I.e., can one

find a solution that satisfies one or two literals in each clause given the promise that a solution

that satisfies exactly one literal in each clause exists? Although both CSP(1-in-3) and CSP(NAE)
are NP-complete, Brakensiek and Guruswami showed in [8] that PCSP(1-in-3,NAE) is solvable in
polynomial time and in particular it is solved by the so-called affine integer programming relaxation

(AIP), whose power was characterised in [6].

More generally, one fixes two relational structures A and B with A → B. The PCSP(A,B) is then,
in the decision version, the computational problem of distinguishing (input) relational structures X
with X → A from those with X ̸→ B. In the search version, PCSP(A,B) is the problem of finding a

homomorphism from an input structure X to B given that one is promised that X → A. One can
think of PCSP(A,B) as an approximation version of CSP(A) on satisfiable instances. Another way

is to think of PCSP(A,B) as CSP(B) with restricted inputs. We refer the reader to [26] for a very

recent survey on PCSPs.

For CSPs, a dichotomy conjecture of Feder and Vardi [19] was resolved independently by Bu-

latov [15] and Zhuk [32] via the so-called algebraic approach [14, 25]: For every fixed finite A,
CSP(A) is either solvable in polynomial time or CSP(A) is NP-complete.

For PCSPs, even the case of graphs and structures on Boolean domains is widely open; these

two were established for CSPs a long time ago [24, 30] and constituted important evidence for

conjecturing a dichotomy. Following the important work of Barto et al. [6] on extending the

algebraic framework from the realms of CSPs to the world of PCSPs, there have been several recent

works on complexity classifications of fragments of PCSPs [2, 5, 8, 9, 12, 13, 20, 23, 27, 28], hardness

conditions [6, 7, 12, 31], and power of algorithms [3, 6, 10, 17]. Nevertheless, a classification of

more concrete fragments of PCSPs is needed for making progress with the general theory, such as

finding hardness and tractability criteria, as well as with resolving longstanding open questions,

such as approximate graph colouring.

Brakensiek and Guruswami classified PCSP(A,B) for all Boolean symmetric structures A and B
with disequalities [8]. Ficak, Kozik, Olšák, and Stankiewicz generalised this result by classifying

PCSP(A,B) for all Boolean symmetric structures A and B [20].

Barto, Battistelli, and Berg [5] studied symmetric PCSPs on non-Boolean domains and in particular

PCSPs of the form PCSP(1-in-3,B), where B contains a single ternary relation over the domain

{0, 1, . . . , 𝑑 − 1}. For 𝑑 = 2, a complete classification PCSP(1-in-3,B) is known [8, 20]. For 𝑑 = 3,

Barto et al. [5] managed to classify all but one structure B. The remaining open case of “linearly

ordered colouring” inspired further investigation in [28]. For 𝑑 = 4, Barto et al. [5] obtained partial

results. In particular, for certain structures B they managed to rule out the applicability of the

BLP + AIP algorithm from [10]. The significance of BLP + AIP here is that it is the strongest known

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.



On the complexity of symmetric vs. functional PCSPs 1:3

algorithm for PCSPs for which a characterisation of its power is known both in terms of a minion
1

and also in terms of polymorphism identities, cf. [10] for details. Furthermore, BLP + AIP solves all

currently known tractable Boolean PCSPs [10, 20]. This suggests that those cases are NP-hard (or

new algorithmic techniques are needed).

Contributions. We continue the work from [8, 20] and [5] and focus on promise constraint

satisfaction problems of the form PCSP(A,B), where A is symmetric and B is over an arbitrary

finite domain.
2
Since the template A is symmetric, we can assume without loss of generality that B

is symmetric, as observed in [5] and in [13].
3

As our main result, we establish the following result. A structure B is called functional if, for
any relation 𝑅B in B of, say, arity 𝑟 , and any tuple 𝑥 ∈ 𝑅B, any 𝑟 − 1 elements of 𝑥 determine the

last element. In detail, (𝑥1, . . . , 𝑥𝑟−1, 𝑦), (𝑥1, . . . , 𝑥𝑟−1, 𝑧) ∈ 𝑅B implies 𝑦 = 𝑧, and similarly for the

other 𝑟 − 1 positions.
4
The notions of dependency and additivity will be defined in Section 3: for

the moment, consider them simply as technical conditions on (A,B). Finite tractability is defined

in Section 2 — informally, a template is finitely tractable if it can be solved by treating the instance

as though it were an instance of a tractable finite-domain CSP.

Theorem 1. Let A be a symmetric structure and B be a functional structure such that A → B. Assume
that (A,B) is dependent and additive. Then, either PCSP(A,B) is solvable in polynomial time by AIP
and is finitely tractable, or PCSP(A,B) is NP-hard.

Our main motivation for studying PCSPs with functional structures is the fact (mentioned above)

that more complexity classifications of PCSP fragments are needed to make progress with the

general theory of PCSPs. Furthermore, functional PCSPs generalise linear equations, an important

and fundamental class of CSPs. Finally, the topological methods that proved useful for showing

the hardness of certain PCSPs (e.g. PCSP(𝐺,𝐾3) for any non-bipartite 3-colourable graph 𝐺 , where

𝐾3 is the clique [27], or approximate 3-vs.-4 linearly ordered colouring [21]) seem inapplicable to

functional PCSPs and thus other methods are required.

Theorem 1 has the following three corollaries. The first corollary applies to structures A that are

Boolean.

Corollary 2. Let A be a Boolean symmetric structure and B be a functional structure such that
A → B. Then, either PCSP(A,B) is solvable in polynomial time by AIP and is finitely tractable, or
PCSP(A,B) is NP-hard.

The second corollary applies to structures A consisting of a single relation of a small arity.

Corollary 3. Let A be a symmetric structure and B be a functional structure such that A → B.
Assume that both A and B have exactly one relation of arity at most 4. Then, either PCSP(A,B) is
solvable in polynomial time, or PCSP(A,B) is NP-hard.

An example of a Boolean symmetric structure A is 1-in-3, and more generally q-in-r.5 The
structure 1-in-3 is not only Boolean (and thus is captured by Corollary 2) but also consists of a

1
We will only use polymorphism minions [6] in this paper. More general minions capture not only the power of

BLP + AIP [10] but also the power of the CLAP algorithm [17].

2
All structures in this article can be assumed to be finite unless they are explicitly stated to be infinite.

3
In detail, for any symmetric A and (not necessarily symmetric) B with A → B, there is a symmetric B′

with A → B′
such

that PCSP(A,B) and PCSP(A,B′ ) are polynomial-time equivalent [5, 13]. This B′
is the largest symmetric substructure of

B. Observe that a functional structure has functional substructures, so if B is functional then B′
remains functional.

4
Note that for symmetric B the requirement “for the other 𝑟 − 1 positions” is satisfied automatically.

5q-in-r is the structure on {0, 1} with a single (symmetric) relation of arity 𝑟 containing all 𝑟 -tuples with precisely 𝑞 1s

(and 𝑟 − 𝑞 0s).

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:4 Tamio-Vesa Nakajima and Stanislav Živný

single relation of arity 3 (and thus is also captured by Corollary 3). In fact, it satisfies another

property, leading to the following generalisation of 1-in-3, which applies to structures A with a

certain connectivity property. We will need some notation. Let dist𝑅 (𝑥,𝑦) be the distance between 𝑥
and 𝑦 when viewed as vertices in a hypergraph whose edge relation is 𝑅; in particular, dist𝑅 (𝑥, 𝑥) =
0 and dist𝑅 (𝑥,𝑦) = ∞ if 𝑥 and 𝑦 are in different connected components. Define diam(𝐴, 𝑅) =

max𝑢,𝑣∈𝐴 dist𝑅 (𝑢, 𝑣).

Corollary 4. LetA be a symmetric structure and B be a functional structure such thatA → B. Assume
that A has a relation 𝑅A of arity at least 3 for which diam(𝐴, 𝑅A) ≤ 1. Then, either PCSP(A,B) is
solvable in polynomial time by AIP and is finitely tractable, or PCSP(A,B) is NP-hard.

A hypergraph is called linear if no two distinct edges intersect in more than one vertex. We

remark that any linear 𝑟 -uniform hypergraph can be seen as a functional symmetric relational

structure with one 𝑟 -ary relation.

Several researchers have informally conjectured that PCSP(1-in-3,B) admits a dichotomy. The

authors, as well as other researchers, believe that in fact not only is there a dichotomy but also all

tractable cases are solvable by AIP (cf. also Remark 39).

Conjecture 5. For every structure B, either PCSP(1-in-3,B) is solvable in polynomial time by AIP,
or PCSP(1-in-3,B) is NP-hard.

Theorem 1 establishes the special case of Conjecture 5 for functional B. We make further progress

towards Conjecture 5 by proving that for any structure A with a single (not necessarily Boolean)
symmetric relation, and any (not necessarily functional) structure B for which A → B, BLP + AIP

from [10] is no more powerful for PCSP(A,B) than AIP from [8], although in general BLP + AIP

is strictly stronger than AIP [10], already for (non-promise) CSPs with two Boolean symmetric

relations, cf. Example 57. In fact, we establish a more general result. We say that a relation 𝑅 is

balanced if there exists a matrix𝑀 whose columns are tuples of 𝑅, where each tuple of 𝑅 appears

as a column (possibly a multiple times), and where the rows of𝑀 are permutations of each other.

The matrix𝑀 below shows that the Boolean 1-in-3 relation is balanced:

𝑀 =
©«
1 0 0

0 1 0

0 0 1

ª®¬ .
Theorem 6. Let A be any structure with a single relation. If the relation in A is balanced then, for
any B such that A → B, BLP + AIP solves PCSP(A,B) if and only if AIP solves it.

If the (only) relation in A is binary (i.e., a digraph), the condition of balancedness has a natural

combinatorial interpretation: A binary relation is balanced if and only if it is the disjoint union of

strongly connected components (cf. Appendix A).

Theorem 6 implies the following corollary. We say that a relation of arity 𝑟 is preserved by a

group of permutations of degree 𝑟 if and only if permuting any tuple of the relation according to

any permutation of the group gives another tuple of the relation.

Corollary 7. Suppose that 𝐺 is a transitive group of permutations, of order 𝑟 . Further, suppose that
A is a relational structure with one relation, of arity 𝑟 , that is preserved by 𝐺 . Then, for any A → B,
BLP + AIP solves PCSP(A,B) if and only if AIP does.

While Corollary 7 is more elegant than Theorem 6, it applies to fewer structures. Indeed, we

will show in Remark 60 that there exist balanced relations that are not preserved by any transitive

group. Examples of relations that are preserved by some transitive group of permutations𝐺 include

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.



On the complexity of symmetric vs. functional PCSPs 1:5

symmetric relations (where 𝐺 is the symmetric group) or cyclic relations (where 𝐺 contains all

cyclic shifts of appropriate degree).

2 Preliminaries
We let [𝑟 ] = {1, . . . , 𝑟 }. We denote by 2

𝑆
the powerset of 𝑆 .

Structures and PCSPs. Promise CSPs have been introduced in [4] and [8]. We follow the notation

and terminology of [6].

A (relational) structure is a tuple A = (𝐴;𝑅A
1
, . . . , 𝑅A𝑡 ), where 𝑅A𝑖 ⊆ 𝐴ar(𝑅𝑖 )

is a relation of arity

ar(𝑅𝑖 ) on a set 𝐴, called the domain. A structure A is called Boolean if 𝐴 = {0, 1} and is called

symmetric if 𝑅A𝑖 is a symmetric relation for each 𝑖 ∈ [𝑡]; i.e, if (𝑥1, . . . , 𝑥ar(𝑅𝑖 ) ) ∈ 𝑅A𝑖 then for every

permutation 𝜋 on [ar(𝑅𝑖 )] we have (𝑥𝜋 (1) , . . . , 𝑥𝜋 (ar(𝑅𝑖 ) ) ) ∈ 𝑅A𝑖 . A structure A is called functional if
(𝑥1, . . . , 𝑥ar(𝑅𝑖 )−1, 𝑦) ∈ 𝑅A𝑖 and (𝑥1, . . . , 𝑥ar(𝑅𝑖 )−1, 𝑧) ∈ 𝑅A𝑖 implies 𝑦 = 𝑧 for any 𝑖 ∈ [𝑡], and that the

same hold for all other 𝑟 − 1 positions in the tuple. For any 𝑟 -ary functional relation 𝑅 ⊆ 𝐴𝑟
, we

define a partial map also called 𝑅 from 𝐴𝑟−1
to 𝐴 in the following way: for any 𝑥1, . . . , 𝑥𝑟−1 ∈ 𝐴,

𝑅(𝑥1, . . . , 𝑥𝑟−1) is the unique value 𝑦 such that (𝑥1, . . . , 𝑥𝑟−1, 𝑦) ∈ 𝑅, if it exists; 𝑅(𝑥1, . . . , 𝑥𝑟−1) is
undefined if no such value exists.

Consider two structures A = (𝐴;𝑅A
1
, . . . , 𝑅A𝑡 ) and B = (𝐵;𝑅B

1
, . . . , 𝑅B𝑡 ) with 𝑡 relations, where,

for each 𝑖 ∈ [𝑡], 𝑅A𝑖 and 𝑅B𝑖 have the same arity. A homomorphism from A to B is a function

ℎ : 𝐴 → 𝐵 such that, for any 𝑖 ∈ [𝑡], for each 𝑥 = (𝑥1, . . . , 𝑥ar(𝑅𝑖 ) ) ∈ 𝑅A𝑖 , we have ℎ(𝑥) =

(ℎ(𝑥1), . . . , ℎ(𝑥ar(𝑅𝑖 ) )) ∈ 𝑅B𝑖 . We denote the existence of a homomorphism from A to B by A → B.
Let A and B be two structures with A → B; we call (A,B) a (PCSP) template. In the search

version of the promise constraint satisfaction problem (PCSP) with the template (A,B), denoted by

PCSP(A,B), the task is: Given a structure X with the promise that X → A, find a homomorphism

from X to B (which necessarily exists as homomorphisms compose). In the decision version of

PCSP(A,B), the task is: Given a structure X, output Yes if X → A, and output No if X ̸→ B.6

The decision version trivially reduces to the search version. We will use the decision version in

this paper.

We will be interested in the complexity of PCSP(A,B), in particular for symmetric A and func-

tional B. (As discussed in Section 1, the symmetricity of A means that we can without loss of

generality assume symmetricity of B.)

Operations and polymorphisms. A function ℎ : 𝐴𝑛 → 𝐵 is called an operation of arity 𝑛. A

(2𝑛 + 1)-ary operation 𝑓 : 𝐴2𝑛+1 → 𝐵 is called 2-block-symmetric if 𝑓 (𝑎1, . . . , 𝑎2𝑛+1) = 𝑓 (𝑎𝜋 (1) , . . . ,
𝑎𝜋 (2𝑛+1) ) for every 𝑎1, . . . , 𝑎2𝑛+1 ∈ 𝐴 and every permutation 𝜋 on [2𝑛 + 1] that preserves parity; i.e,
𝜋 maps odd values to odd values and even values to even values.

A (2𝑛 + 1)-ary operation 𝑓 : 𝐴2𝑛+1 → 𝐵 is called alternating if it is 2-block-symmetric, and

furthermore 𝑓 (𝑎1, . . . , 𝑎2𝑛−1, 𝑎, 𝑎) = 𝑓 (𝑎1, . . . , 𝑎2𝑛−1, 𝑎′, 𝑎′) for every 𝑎1, . . . , 𝑎2𝑛−1, 𝑎, 𝑎′ ∈ 𝐴.
Consider structuresA,Bwith 𝑡 relations with the same arities.We callℎ : 𝐴𝑛 → 𝐵 a polymorphism

of (A,B) if the following holds for any relation 𝑅 = 𝑅𝑖 , 𝑖 ∈ [𝑡], of arity 𝑟 = ar(𝑅). For any
𝑥1, . . . , 𝑥𝑟 ∈ 𝐴𝑛

, where 𝑥𝑖 = (𝑥𝑖
1
, . . . , 𝑥𝑖𝑛), with (𝑥1𝑖 , . . . , 𝑥𝑟𝑖 ) ∈ 𝑅A for every 1 ≤ 𝑖 ≤ 𝑛, we have

(ℎ(𝑥1), . . . , ℎ(𝑥𝑟 )) ∈ 𝑅B. One can visualise this as an (𝑟 × 𝑛) matrix whose rows are the tuples

𝑥1, . . . , 𝑥𝑟 . The requirement is that if every column of the matrix is in 𝑅A then the application of ℎ

6
If neither condition holds then the algorithm can output anything. An equivalent way is to define the problem as follows:

Given a relational structure X such that either 𝑋 → A or X ̸→ B, which is the promise, output Yes if X → A and output

No if X ̸→ B. The equivalence, up to polynomial-time solvability, of the two definitions relies on the fact that polynomials

are time-constructible and so a clock can be run.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:6 Tamio-Vesa Nakajima and Stanislav Živný

on the rows of the matrix results in a tuple from 𝑅B. We denote by Pol
(𝑛) (A,B) the set of 𝑛-ary

polymorphisms of (A,B) and by Pol(A,B) the set of all polymorphisms of (A,B).

Relaxations. There are two standard polynomial-time solvable relaxations for PCSPs, the basic
linear programming relaxation (BLP) and the affine integer programming relaxation (AIP) [8]. The

AIP solves most tractable PCSPs studied in this paper, with the exception of cases covered in

Corollary 3 (cf. also Remark 39). There is also a combination of the two, called BLP + AIP [10],

that is provably stronger than both BLP and AIP. We will show that for certain PCSPs, this is not

the case (cf. Theorem 6). The precise definitions of the relaxations are not important for us as we

will only need the notion of solvability of PCSPs by these relaxations and characterisations of

the power of the relaxations; we refer the reader to [6, 8, 10] for details. Let X be an instance of

PCSP(A,B). It follows from the definitions of the relaxations that if X → A then both AIP and

BLP + AIP accept [6, 8]. We say that AIP (BLP + AIP, respectively) solves PCSP(A,B) if, for every
X with X ̸→ B, AIP (BLP + AIP, respectively) rejects.

The power of AIP and BLP + AIP for PCSPs is characterised by the following results.

Theorem 8 ([6]). PCSP(A,B) is solved byAIP if and only if Pol(A,B) contains alternating operations
of all odd arities.

Theorem 9 ([10]). PCSP(A,B) is solved by BLP + AIP if and only if Pol(A,B) contains 2-block-
symmetric operations of all odd arities.

We now define the notion of finite tractability [2, 6]. We say that PCSP(A,B) is finitely tractable

if A → E → B for some finite structure E and CSP(E) is tractable. For a group 𝐺 , we use the

standard notation 𝐻 ◁𝐺 to indicate that 𝐻 is a normal subgroup of 𝐺 .

Lemma 10. Suppose A → E → B, where 𝐸 = 𝐺 for some finite Abelian group (𝐺, +), and each
relation of E is either of the form (i) 𝑐 + 𝐻 for some 𝑟 ∈ N, 𝑐 ∈ 𝐺𝑟 and 𝐻 ◁𝐺𝑟 , or (ii) empty. Then,
PCSP(A,B) is solvable in polynomial time by AIP and is finitely tractable.

Proof. The following alternating operation is a polymorphism of E

𝑓 (𝑥1, 𝑦1, . . . , 𝑦𝑘 , 𝑥𝑘+1) =
𝑘+1∑︁
𝑖=1

𝑥𝑖 −
𝑘∑︁
𝑖=1

𝑦𝑖 .

Consider a relation 𝑅E of E, of the form 𝑐 + 𝐻 . Consider a matrix of inputs whose columns are

𝑥1, 𝑦1, . . . , 𝑦𝑘 , 𝑥𝑘+1 ∈ 𝑅E. In other words, 𝑥𝑖 ∈ 𝑐 + 𝐻 and 𝑦𝑖 ∈ 𝑐 + 𝐻 for each 𝑥𝑖 , 𝑦𝑖 . Note that the

column that results from applying 𝑓 to the rows of this matrix is just

𝑥1 − 𝑦1 + · · · − 𝑦𝑘 + 𝑥𝑘+1 ∈ (𝑐 + 𝐻 ) − (𝑐 + 𝐻 ) + · · · − (𝑐 + 𝐻 ) + (𝑐 + 𝐻 ) ⊆ 𝑐 + 𝐻

Thus 𝑓 is an alternating polymorphism of E. It follows that CSP(E) is solved by AIP, from whence

it follows that PCSP(A,B) is finitely tractable and solved by AIP. □

Minions. We will use the theory of minions from [6]. LetM be a set, where each element 𝑓 ∈ M
is assigned an arity ar(𝑓 ). We write M (𝑛) = {𝑓 ∈ M | ar(𝑓 ) = 𝑛}. Further, let M be endowed

with, for each 𝜋 : [𝑛] → [𝑚], a (so-called minor) map 𝑓 ↦→ 𝑓 𝜋 : M (𝑛) → M (𝑚)
such that, for

𝜋 : [𝑛] → [𝑚] and 𝜎 : [𝑚] → [𝑘], and any 𝑓 ∈ M (𝑛)
we have (𝑓 𝜋 )𝜎 = 𝑓 𝜎◦𝜋 ∈ M (𝑘 )

, and 𝑓 id = 𝑓 .

Then, M is called a minion.7 We often write 𝑓
𝜋−→ 𝑔 instead of 𝑔 = 𝑓 𝜋 .

7
A minion is a functor from the skeleton of the category of finite sets to the category of sets.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.



On the complexity of symmetric vs. functional PCSPs 1:7

Consider two minionsM,N ; a minion homomorphism is a map 𝜉 : M → N such that, for any

𝑓 ∈ M (𝑛)
and 𝜋 : [𝑛] → [𝑚], we have that 𝜉 (𝑓 )𝜋 = 𝜉 (𝑓 𝜋 ).8 If such a minion homomorphism

exists, we write M → N .

Given an 𝑛-ary operation 𝑓 : 𝐴𝑛 → 𝐵 and a map 𝜋 : [𝑛] → [𝑚], an𝑚-ary operation 𝑔 : 𝐴𝑚 → 𝐵

is called a minor of 𝑓 given by the map 𝜋 if

𝑔(𝑥1, . . . , 𝑥𝑚) = 𝑓 (𝑥𝜋 (1) , . . . , 𝑥𝜋 (𝑛) ).
The polymorphisms Pol(A,B) thus form a minion, where 𝑓 𝜋 is given by the minor of 𝑓 at 𝜋 .

The main hardness theorem that we will use is the following.
9

Theorem 11 ([6]). Fix constants𝑚 and 𝐶 . Take any template (A,B). Suppose Pol(A,B) = ⋃𝑚
𝑖=1 M𝑖

such that for every 𝑖 ∈ [𝑚] there exists a map 𝐼𝑖 that takes 𝑓 ∈ M𝑖 to a subset of [ar(𝑓 )] of size at
most 𝐶 such that the following holds: For any 𝑓 , 𝑔 ∈ M𝑖 , 𝜋 : [ar(𝑓 )] → [ar(𝑔)] such that 𝑔 = 𝑓 𝜋 we
have that 𝐼𝑖 (𝑔) ∩ 𝜋 (𝐼𝑖 (𝑓 )) ≠ ∅. Then, PCSP(A,B) is NP-hard.

3 Additivity and dependency
In this section we will define two new concepts for a template (A,B), additivity and dependency.

Let 𝑓 ∈ Pol(A,B) be a polymorphism of (A,B). Intuitively, additivity constrains the value of 𝑓

evaluated at two elements and dependency ensures that 𝑓 is determined by such evaluations. The

end goal of this section is to prove the following two theorems.

Theorem 12. Suppose A has a symmetric relation 𝑅A of arity at least 3 with diam(𝐴, 𝑅A) ≤ 1. Then,
for any functional B such that A → B, (A,B) is additive and dependent.

Theorem 13. Suppose A has a symmetric relation 𝑅A of arity 3 or 4 that is connected when viewed as
the edge relation of a hypergraph on vertices 𝐴. Then, for any functional B such that A → B, (A,B) is
additive and dependent.

Throughout this section, we will assume implicitly that A,B are symmetric.

3.1 Additivity
Consider a polymorphism 𝑓 ∈ Pol

(𝑛) (A,B). For any (𝑖, 𝑗) ∈ 𝐴2
(including the case where 𝑖 = 𝑗 ), we

can define a function 𝑓𝑖 𝑗 derived from 𝑓 in the following way: 𝑓𝑖 𝑗 : 2
[𝑛] → 𝐵 is a function where

𝑓𝑖 𝑗 (𝑆) = 𝑓 (𝑥1, . . . , 𝑥𝑛)
where 𝑥𝑘 = 𝑗 if 𝑘 ∈ 𝑆 and 𝑥𝑘 = 𝑖 otherwise. In other words, 𝑓𝑖 𝑗 (𝑆) is 𝑓 evaluated at the characteristic
vector of 𝑆 , where 𝑗 indicates membership in 𝑆 and 𝑖 indicates non-membership. (Equivalently, let

𝜋𝑆 : [𝑛] → [2] be given by 𝜋𝑆 (𝑘) = 2 if 𝑘 ∈ 𝑆 and 𝜋𝑆 (𝑘) = 1 otherwise. Then, 𝑓𝑖 𝑗 (𝑆) = 𝑓 𝜋𝑆 (𝑖, 𝑗).)
We define 𝑓 𝑝 : 2

[𝑛] → 𝐵𝐴
2

to be the function
10

𝑓 𝑝 (𝑆) (𝑖, 𝑗) = 𝑓𝑖 𝑗 (𝑆).
We will be interested in templates (A,B) that have the following property.

Definition 14. Consider a template (A,B) with A symmetric and B functional. We say that (A,B)
is additive if there exists an operator + : 𝐵𝐴

2 × 𝐵𝐴2 → 𝐵𝐴
2

such that, for any 𝑓 ∈ Pol
(𝑛) (A,B) and

disjoint 𝑆,𝑇 ⊆ [𝑛] we have
𝑓 𝑝 (𝑆) + 𝑓 𝑝 (𝑇 ) = 𝑓 𝑝 (𝑆 ∪𝑇 ).

8
Minion homomorphisms are natural transformations.

9
In [6], this is Theorem 5.21 together with Lemma 5.11, as detailed after the proof of Theorem 5.21 therein.

10
The superscript “p” indicates the word “pair”.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:8 Tamio-Vesa Nakajima and Stanislav Živný

Lemma 15. If (A,B) is additive, there exists an operator − : 𝐵𝐴
2 × 𝐵𝐴2 → 𝐵𝐴

2

such that, for any
𝑓 ∈ Pol

(𝑛) (A,B) and 𝑆 ⊆ 𝑇 ⊆ [𝑛], we have
𝑓 𝑝 (𝑇 ) − 𝑓 𝑝 (𝑆) = 𝑓 𝑝 (𝑇 \ 𝑆).

Proof. While 𝑓 𝑝 (𝑆) has been written as a function from 𝐴2
to 𝐵 above, we can also see it as an

|𝐴| × |𝐴| matrix of elements of 𝐵. Thus we can take the transpose of this matrix, denoted by the

superscript 𝑇 below. Observe that (𝑓 𝑝 (𝑆))𝑇 (𝑖, 𝑗) = 𝑓𝑗𝑖 (𝑆) = 𝑓𝑖 𝑗 (𝑆) = 𝑓 𝑝 (𝑆) (𝑖, 𝑗), where 𝑆 denotes
the complement of 𝑆 . In other words, (𝑓 𝑝 (𝑆))𝑇 = 𝑓 𝑝 (𝑆).

Set 𝑥 − 𝑦 = (𝑥𝑇 + 𝑦)𝑇 . Then for 𝑆 ⊆ 𝑇 ⊆ [𝑛],

𝑓 𝑝 (𝑇 ) − 𝑓 𝑝 (𝑆) = (𝑓 𝑝 (𝑇 )𝑇 + 𝑓 𝑝 (𝑆))𝑇 = 𝑓 𝑝 (𝑇 ∪ 𝑆) = 𝑓 𝑝 (𝑇 \ 𝑆). □

Lemma 16. Suppose (A,B) is additive. Consider a polymorphism 𝑓 ∈ Pol
(𝑛) (A,B). Consider any

family of disjoint sets A ⊆ 2
[𝑛] , containing at least |𝐵 | |𝐴 |2 sets. Then some nonempty subset B ⊆ A

exists such that 𝑓 𝑝 (⋃B) = 𝑓 𝑝 (∅).

The approach used to prove this is analogous to the following well known exercise (first set

out by Vázsonyi and Sved, according to Erdös [1]): Prove that any sequence of 𝑛 integers has a

subsequence whose sum is divisible by 𝑛.

Proof. A contains at least |𝐵 | |𝐴 |2 ≥ | range(𝑓 𝑝 ) | different sets. Let 𝐴1, . . . , 𝐴 | range(𝑓 𝑝 ) | be some

of these sets. Define 𝐵𝑖 =
⋃

𝑗≤𝑖 𝐴 𝑗 for 0 ≤ 𝑖 ≤ | range(𝑓 𝑝 ) |; note that 𝐵0 = ∅. By the pigeonhole

principle there exists 0 ≤ 𝑖 < 𝑗 ≤ | range(𝑓 𝑝 ) | such that 𝑓 𝑝 (𝐵𝑖 ) = 𝑓 𝑝 (𝐵 𝑗 ). Then, using Lemma 15,

𝑓 𝑝 (𝐵 𝑗 \ 𝐵𝑖 ) = 𝑓 𝑝 (𝐵 𝑗 ) − 𝑓 𝑝 (𝐵𝑖 ) = 𝑓 𝑝 (𝐵𝑖 ) − 𝑓 𝑝 (𝐵𝑖 ) = 𝑓 𝑝 (𝐵𝑖 \ 𝐵𝑖 ) = 𝑓 𝑝 (∅). Thus B = {𝐴𝑖+1, . . . , 𝐴 𝑗 }
is the required family of sets. □

Lemma 17. Suppose (A,B) is additive. Consider a polymorphism 𝑓 ∈ Pol
(𝑛) (A,B). Consider any

𝑆 ⊆ [𝑛]. There exists 𝑇 ⊆ 𝑆 of size at most |𝐵 | |𝐴 |2 such that 𝑓 𝑝 (𝑆) = 𝑓 𝑝 (𝑇 ).

Proof. Suppose this is not the case, and suppose that 𝑆 is a minimal counterexample (with

respect to inclusion) to this claim. Clearly |𝑆 | > |𝐵 | |𝐴 |2
, or else taking 𝑇 = 𝑆 shows that 𝑆 is

no counterexample at all. Thus, apply Lemma 16 to the family {{𝑥} | 𝑥 ∈ 𝑆} to find that some

nonempty subset 𝑈 ⊆ 𝑆 exists such that 𝑓 𝑝 (𝑈 ) = 𝑓 𝑝 (∅). But now, take 𝑆 ′ = 𝑆 \𝑈 ⊆ 𝑆 , and note

that 𝑓 𝑝 (𝑆 ′) = 𝑓 𝑝 (𝑆 \𝑈 ) = 𝑓 𝑝 (𝑆) − 𝑓 𝑝 (𝑈 ) = 𝑓 𝑝 (𝑆) − 𝑓 𝑝 (∅) = 𝑓 𝑝 (𝑆 \ ∅) = 𝑓 𝑝 (𝑆). By the minimality

of 𝑆 , 𝑆 ′ has a subset 𝑇 of size at most |𝐵 | |𝐴 |2
such that 𝑓 𝑝 (𝑇 ) = 𝑓 𝑝 (𝑆 ′) = 𝑓 𝑝 (𝑆), which contradicts

the fact that 𝑆 is a counterexample. □

3.2 Dependency
In the sequel, we will use “tuple builder” notation. In other words, for an indexing set 𝐼 , we write

(𝑓 (𝑖) | 𝑖 ∈ 𝐼 ),
to denote the tuple, indexed by 𝐼 , with elements 𝑓 (𝑖) for every 𝑖 ∈ 𝐼 . For instance,

(𝑥2 | 𝑥 ∈ [5]) = (1, 4, 9, 16, 25).
For a more complicated example, we have the tuple

(𝑓 (𝑥) | 𝑥 ∈ [5], 𝑓 : [5] → [6]),
where the elements are 𝑓 (𝑥), indexed by 𝑥 ∈ [5], and by functions 𝑓 : [5] → [6].

This notation is justified since an 𝑛-ary tuple is just a function from [𝑛] to some base set; our

notation (𝑓 (𝑖) | 𝑖 ∈ 𝐼 ) “builds” the tuple equivalent to the function 𝑓 .

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.



On the complexity of symmetric vs. functional PCSPs 1:9

Definition 18. We call (A,B) dependent if there exists a mapℎ such that, for every 𝑓 ∈ Pol
(𝑛) (A,B),

we have that

𝑓 (𝑥1, . . . , 𝑥𝑛) = ℎ(𝑓 (𝛼 (𝑥1), . . . , 𝛼 (𝑥𝑛)) | 𝛼 : 𝐴 → 𝑆, 𝑆 ∈ 𝐴≤2),
where 𝐴≤2

is the set of nonempty subsets of 𝐴 of size at most 2.

Informally, (A,B) is dependent if, for every 𝑓 , we can deduce the value of 𝑓 (𝑥1, . . . , 𝑥𝑛) from the

values 𝑓 (𝛼 (𝑥1), . . . , 𝛼 (𝑥𝑛)) for 𝛼 a function that maps 𝐴 to a subset of 𝐴 of size at most 2. One can

think of 𝛼 as “flattening” the values of 𝑥1, . . . , 𝑥𝑛 to only two values. This deduction is encoded by

ℎ, and must be independent of the choice of 𝑓 .

Any polymorphism 𝑓 ∈ Pol
(𝑛) (A,B) is just a function 𝑓 : 𝐴𝑛 → 𝐵. Without loss of generality,

identify𝐴 with the set [𝑎] from now on. Note that a tuple from𝐴𝑛 = [𝑎]𝑛 can be seen as a partition

of [𝑛] into 𝑎 parts 𝑆1, . . . , 𝑆𝑎 : 𝑆𝑖 is the set of coordinates in the tuple set to 𝑖 . We will thus denote by

𝑎 [𝑛] both the set tuples and the set of such partitions. Thus we can, for example, evaluate 𝑓 at a

partition 𝑆1, . . . , 𝑆𝑎 of [𝑛] and get 𝑓 (𝑆1, . . . , 𝑆𝑎).

Definition 19. For any polymorphism 𝑓 ∈ Pol
(𝑛) (A,B), we define 𝑓 ★ : 𝑎 [𝑛] → (𝐵𝐴2 )𝑎 by

𝑓 ★(𝑆1, . . . , 𝑆𝑎) = (𝑓 𝑝 (𝑆1), . . . , 𝑓 𝑝 (𝑆𝑎)) .

The usefulness of all the concepts introduced so far comes from the following fact.

Lemma 20. Suppose (A,B) is dependent and additive. Then there exists a function ℎ : (𝐵𝐴2 )𝑎 → 𝐵

such that for any polymorphism 𝑓 ∈ Pol
(𝑛) (A,B), we have 𝑓 = ℎ ◦ 𝑓 ★.

In the proof we will freely mix the two notations for functions of form [𝑎]𝑛 → 𝐵. If the input to

such functions is written with capital letters it uses the “families of disjoint sets” notation, and if it

is written with lower case letters it uses the tuple notation.

Proof. We claim that for any 𝛼 : 𝐴 → 𝑆, 𝑆 ∈ 𝐴≤2
we can deduce 𝑓 (𝛼 (𝑥1), . . . , 𝛼 (𝑥𝑛)) from the

values of 𝑓 ★(𝑥1, . . . , 𝑥𝑛) in a manner independent of 𝑓 . If this is the case, then by running this

deduction for each 𝛼 , there exists some map ℎ′ such that for every 𝑓 and 𝑥1, . . . , 𝑥𝑛 we have

ℎ′ (𝑓 ★(𝑥1, . . . , 𝑥𝑛)) = (𝑓 (𝛼 (𝑥1), . . . , 𝛼 (𝑥𝑛)) | 𝛼 : 𝐴 → 𝑆, 𝑆 ∈ 𝐴≤2).

Hence by the dependency of (A,B) there exists a map ℎ′′ such that 𝑓 = ℎ′′ ◦ℎ′ ◦ 𝑓 ★, which implies

our conclusion.

First suppose 𝑆 = {𝑠}. Then we want to find 𝑓 (𝑠, . . . , 𝑠). But this value is just 𝑓𝑠𝑠 (𝑋 ) for any 𝑋 ,
and thus is included in every 𝑓 𝑝 (𝑆𝑖 ) that is within 𝑓 ★(𝑥1, . . . , 𝑥𝑛).
Now suppose 𝑆 = {𝑏, 𝑐}, and that 𝐴 = 𝐵 ∪𝐶 such that 𝛼 maps 𝐵 to 𝑏 and 𝐶 to 𝑐 . In this case we

observe that (𝛼 (𝑥1), . . . , 𝛼 (𝑥𝑛)) contains a 𝑐 at all places where (𝑥1, . . . , 𝑥𝑛) contained an element

in 𝐶 , and contains a 𝑏 elsewhere. Suppose 𝑆1, . . . , 𝑆𝑎 are sets such that 𝑆𝑖 contains all the indices

where (𝑥1, . . . , 𝑥𝑛) is equal to 𝑖 . Thus, 𝑓 (𝛼 (𝑥1), . . . , 𝛼 (𝑥𝑛)) = 𝑓𝑏𝑐 (
⋃

𝑖∈𝐶 𝑆𝑖 ). This value is an element

of the tuple 𝑓 𝑝 (⋃𝑖∈𝐶 𝑆𝑖 ), so it is sufficient to show that we can deduce this latter value from

𝑓 ★(𝑥1, . . . , 𝑥𝑛) = 𝑓 ★(𝑆1, . . . , 𝑆𝑎). But

𝑓 𝑝

(⋃
𝑖∈𝐶

𝑆𝑖

)
=

∑︁
𝑖∈𝐶

𝑓 𝑝 (𝑆𝑖 ).

All of the elements within this sum are containedwithin 𝑓 ★(𝑆1, . . . , 𝑆𝑎) = (𝑓 𝑝 (𝑆1), . . . , 𝑓 𝑝 (𝑆𝑎)). Thus
we can deduce the value of 𝑓 (𝛼 (𝑥1), . . . , 𝛼 (𝑥𝑛)) uniquely from 𝑓 ★(𝑥1, . . . , 𝑥𝑛), without reference to
𝑓 , as required. □

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:10 Tamio-Vesa Nakajima and Stanislav Živný

3.3 Formal system
We will now describe a system of formal proofs that will help us reason about additivity and

dependency. First we define the semantics of this system.

Definition 21. Suppose 𝑆 ⊆ 𝐴𝑛
is a set of 𝑛-ary tuples, and 𝑡 ∈ 𝐴𝑛

is an 𝑛-tuple. We write 𝑆 ⊨A,B 𝑡
(omitting A,B if there is no chance for confusion) if there exists a function ℎ : 𝐵𝑆 → 𝐵 (where we

interpret 𝐵𝑆 as being a tuple indexed by 𝑆), such that, for any polymorphism 𝑓 ∈ Pol
(𝑛) (A,B), we

have that

𝑓 (𝑡) = ℎ(𝑓 (𝑢) | 𝑢 ∈ 𝑆).
In other words, we write 𝑆 ⊨ 𝑡 if the value of 𝑓 (𝑡) is uniquely determined by 𝑓 (𝑢) for 𝑢 ∈ 𝑆 , in a

manner independent of 𝑓 .

Definition 22. For any A, we write ΓA = {(𝑟, 𝑠, 𝑠) | 𝑠, 𝑟 ∈ 𝐴} ∪ {(𝑠, 𝑟, 𝑠) | 𝑠, 𝑟 ∈ 𝐴} for the set of
triples from 𝐴3

with the last two elements equal or with the first and last elements equal. Write

Δ𝑛
A = {(𝑥1, . . . , 𝑥𝑛) | 𝑥1, . . . , 𝑥𝑛 ∈ 𝐴, |{𝑥1, . . . , 𝑥𝑛}| ≤ 2} i.e. Δ𝑛

A contains all the 𝑛-ary tuples that

contain at most two distinct elements.

Lemma 23. (A,B) is additive if for every 𝑝, 𝑞 ∈ 𝐴 we have

ΓA ⊨A,B (𝑝, 𝑝, 𝑞).
Proof. For 𝑝, 𝑞 ∈ 𝐴, suppose ℎ𝑞𝑝 is the function that witnesses ΓA ⊨A,B (𝑝, 𝑝, 𝑞). Define, for

𝑋,𝑌 ∈ 𝐵𝐴2

,

(𝑋 + 𝑌 ) (𝑞, 𝑝) = ℎ𝑞𝑝 (𝑡𝑥𝑦𝑧 | (𝑥,𝑦, 𝑧) ∈ ΓA),
where 𝑡𝑠𝑠𝑠 = 𝑋 (𝑠, 𝑠), 𝑡𝑟𝑠𝑠 = 𝑋 (𝑠, 𝑟 ) and 𝑡𝑠𝑟𝑠 = 𝑌 (𝑠, 𝑟 ), for 𝑠, 𝑟 ∈ 𝐴. (This defines 𝑡𝑥𝑦𝑧 for all (𝑥,𝑦, 𝑧) ∈
ΓA.)
We claim that this shows the additivity of (A,B). Consider any polymorphism 𝑓 ∈ Pol

(𝑛) (A,B)
and disjoint 𝑆,𝑇 ⊆ [𝑛]. Write 𝜋 : [𝑛] → [3] for the function that takes 𝑆 to 1,𝑇 to 2, and [𝑛] \ (𝑆∪𝑇 )
to 3. By the definition of ℎ𝑞𝑝 and that of taking minors, we have

(𝑓 𝑝 (𝑆 ∪𝑇 )) (𝑞, 𝑝) = 𝑓𝑞𝑝 (𝑆 ∪𝑇 ) = 𝑓 𝜋 (𝑝, 𝑝, 𝑞) = ℎ𝑞𝑝 (𝑓 𝜋 (𝑥,𝑦, 𝑧) | (𝑥,𝑦, 𝑧) ∈ ΓA).
Now, let 𝑡𝑥𝑦𝑧 = 𝑓 𝜋 (𝑥,𝑦, 𝑧). Observe that 𝑡𝑠𝑠𝑠 = 𝑓 𝜋 (𝑠, 𝑠, 𝑠) = 𝑓 𝑝 (𝑆) (𝑠, 𝑠). Also, 𝑡𝑟𝑠𝑠 = 𝑓 𝜋 (𝑟, 𝑠, 𝑠) =

𝑓 𝑝 (𝑆) (𝑠, 𝑟 ), and 𝑡𝑠𝑟𝑠 = 𝑓 𝜋 (𝑠, 𝑟, 𝑠) = 𝑓 𝑝 (𝑇 ) (𝑠, 𝑟 ). Thus we deduce that
(𝑓 𝑝 (𝑆 ∪𝑇 )) (𝑞, 𝑝) = ℎ𝑞𝑝 (𝑡𝑥𝑦𝑧 | (𝑥,𝑦, 𝑧) ∈ ΓA) = (𝑓 𝑝 (𝑆) + 𝑓 𝑝 (𝑇 )) (𝑞, 𝑝).

Thus,

𝑓 𝑝 (𝑆 ∪𝑇 ) = 𝑓 𝑝 (𝑆) + 𝑓 𝑝 (𝑇 ),
as required by Definition 14. □

Lemma 24. Assuming 𝐴 = [𝑎], (A,B) is dependent if we have
Δ𝑎
A ⊨A,B (1, . . . , 𝑎).

Proof. Suppose ℎ witnesses that Δ𝑎
A ⊨A,B (1, . . . , 𝑎). Note that every tuple in Δ𝑎

A can be seen as a

function from [𝑎] to some 𝑆 ⊆ 𝐴 for 0 < |𝑆 | ≤ 2. In other words ℎ takes a tuple of elements from 𝐵,

indexed by functions 𝛼 : 𝐴 → 𝑆, 𝑆 ∈ 𝐴≤2
. Equivalently, we see that for any 𝑎-ary polymorphism 𝑓 ,

𝑓 (1, . . . , 𝑎) = ℎ(𝑓 (𝛼 (1), . . . , 𝛼 (𝑎)) | 𝛼 : 𝐴 → 𝑆, 𝑆 ∈ 𝐴≤2).
The type of this function (not coincidentally) is exactly the same as the function that ought to

witness the dependency of (A,B); and indeed, we claim that it does in fact witness this.

In other words, we must show that, for any 𝑓 ∈ Pol
(𝑛) (A,B) and 𝑥1, . . . , 𝑥𝑛 ∈ 𝐴 we have that

𝑓 (𝑥1, . . . , 𝑥𝑛) = ℎ(𝑓 (𝛼 (𝑥1), . . . , 𝛼 (𝑥𝑛)) | 𝐴 → 𝑆, 𝑆 ∈ 𝐴≤2).

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.



On the complexity of symmetric vs. functional PCSPs 1:11

Observe that for any 𝑥1, . . . , 𝑥𝑛 , there exists a function 𝜋 : [𝑛] → [𝑎] such that 𝑓 (𝑥1, . . . , 𝑥𝑛) =

𝑓 𝜋 (1, . . . , 𝑎); namely 𝜋 (𝑖) = 𝑥𝑖 . Furthermore 𝑓 𝜋 is an 𝑎-ary polymorphism; thus

𝑓 (𝑥1, . . . , 𝑥𝑛) = 𝑓 𝜋 (1, . . . , 𝑎) = ℎ(𝑓 𝜋 (𝛼 (1), . . . , 𝛼 (𝑎)) | 𝛼 : 𝐴 → 𝑆, 𝑆 ∈ 𝐴≤2)
= ℎ(𝑓 (𝛼 (𝑥1), . . . , 𝛼 (𝑥𝑛)) | 𝐴 → 𝑆, 𝑆 ∈ 𝐴≤2),

as required. □

We now move on to a syntactic description of the formal proof system.

Definition 25. Fix some 𝑛 ∈ N. Fix also some relation 𝑅A of A. For sets of 𝑛-ary tuples 𝑆 ⊆ 𝐴𝑛

and 𝑡 ∈ 𝐴𝑛
, we define 𝑆 ⊢A,𝑅A 𝑡 as the minimal relation that satisfies the following.

(1) If 𝑆 ⊆ 𝑇 and 𝑆 ⊢ 𝑡 then 𝑇 ⊢ 𝑡 .
(2) 𝑡 ⊢ 𝑡 .
(3) If 𝑆 ⊢ 𝑡 and 𝑡,𝑇 ⊢ 𝑡 ′ then 𝑆,𝑇 ⊢ 𝑡 ′.
(4) If there exists a matrix with 𝑛 columns and 𝑟 rows, whose rows are 𝑡1, . . . , 𝑡𝑟 , and whose

columns are tuples of 𝑅A, then 𝑡2, . . . , 𝑡𝑟 ⊢ 𝑡1.
We omit A, 𝑅A if they are obvious from context.

Remark 26. Suppose 𝑅A has arity 𝑟 . Any judgement of the form 𝑆 ⊢A,𝑅A 𝑡 must have a finite proof

using the rules above by minimality. From this proof, we can create a proof-tree where the vertices
are 𝑛-ary tuples of 𝐴, the root is 𝑡 , the leaves belong to 𝑆 , and every non-leaf has 𝑟 − 1 children

such that if 𝑡1 is the non-leaf and 𝑡2, . . . , 𝑡𝑟 are its children, then the matrix whose rows are 𝑡1, . . . , 𝑡𝑟
has as its columns only tuples of 𝑅A. To create this tree, proceed inductively on the proof, from

the conclusion backwards. The first and second rule do not modify the proof tree. The third rule

corresponds to recursively constructing a subtree. The final rule is the only one that adds new

vertices to the proof tree.

Lemma 27. If 𝑆 ⊢A,𝑅A 𝑡 then 𝑆 ⊨A,B 𝑡 for any symmetric A and functional B.

Proof. By minimality, it is sufficient to show that ⊨A,B satisfies all the rules satisfied by ⊢A,𝑅A ,

which we do now rule-by-rule. For the following assume always that all tuples are of arity 𝑛.

(1) Suppose 𝑆 ⊆ 𝑇 and 𝑆 ⊨ 𝑡 . Thus there exists a function ℎ : 𝐴𝑆 → 𝐴 such that, for any

polymorphism 𝑓 ∈ Pol
(𝑛) (A,B), we have

𝑓 (𝑡) = ℎ(𝑓 (𝑢) | 𝑢 ∈ 𝑆).
Now, we define the function ℎ′ : 𝐴𝑇 → 𝐴 as follows:

ℎ′ (𝑥𝑢 | 𝑢 ∈ 𝑇 ) = ℎ(𝑥𝑢 | 𝑢 ∈ 𝑆).
In other words, ℎ′ ignores all inputs in 𝑇 \ 𝑆 and otherwise acts like ℎ. We claim that ℎ′

witnesses that 𝑇 ⊨ 𝑡 : for any polymorphism 𝑓 ∈ Pol
(𝑛) (A,B), we have

𝑓 (𝑡) = ℎ(𝑓 (𝑢) | 𝑢 ∈ 𝑆) = ℎ′ (𝑓 (𝑢) | 𝑢 ∈ 𝑇 ) .
(2) For any tuple 𝑡 , we have 𝑡 ⊨ 𝑡 ; indeed, the identity function id𝐵 : 𝐵 → 𝐵 witnesses this fact.

(3) Suppose 𝑆 ⊨ 𝑡 and 𝑡,𝑇 ⊨ 𝑢, as witnessed by ℎ : 𝐵𝑆 → 𝐵 and ℎ′ : 𝐵𝑡+𝑇 → 𝐵. If 𝑡 ∈ 𝑇 then

𝑇 ⊨ 𝑢 and we have by the first rule that 𝑆,𝑇 ⊨ 𝑢 as required; thus suppose 𝑡 ∉ 𝑇 . We will thus

interpret ℎ′ as having signature ℎ′ : 𝐵 → 𝐵𝑇 → 𝐵. With this interpretation, by definition, for

any polymorphism 𝑓 ∈ Pol
(𝑛) (A,B), we have
𝑓 (𝑡) = ℎ(𝑓 (𝑣) | 𝑣 ∈ 𝑆)
𝑓 (𝑢) = ℎ′ (𝑓 (𝑡)) (𝑓 (𝑣) | 𝑣 ∈ 𝑇 ).

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:12 Tamio-Vesa Nakajima and Stanislav Živný

Now define ℎ′′ : 𝐵𝑆∪𝑇 → 𝐵 in the following way:

ℎ′′ (𝑥𝑣 | 𝑣 ∈ 𝑆 ∪𝑇 ) = ℎ′ (ℎ(𝑥𝑣 | 𝑣 ∈ 𝑆)) (𝑥𝑣 | 𝑣 ∈ 𝑇 ).

We find that, for any 𝑓 ∈ Pol
(𝑛) (A,B),

𝑓 (𝑢) = ℎ′ (𝑓 (𝑡)) (𝑓 (𝑣) | 𝑣 ∈ 𝑇 ) = ℎ′ (ℎ(𝑓 (𝑣) | 𝑣 ∈ 𝑆)) (𝑓 (𝑣) | 𝑣 ∈ 𝑇 )
= ℎ′′ (𝑓 (𝑣) | 𝑣 ∈ 𝑆 ∪𝑇 ).

Thus we find that 𝑆,𝑇 ⊨ 𝑢, as required.
(4) Suppose 𝑅A has arity 𝑟 , and suppose there exists a matrix with 𝑛 columns and 𝑟 rows, whose

rows are 𝑡1, . . . , 𝑡𝑟 , and whose columns are tuples of 𝑅A. Let ℎ : 𝐵{𝑡2,...,𝑡𝑟 } → 𝐵 be defined as

follows, interpreting an element of 𝐵{𝑡2,...,𝑡𝑟 }
as an (𝑟 − 1)-ary tuple in the natural way:

ℎ(𝑥2, . . . , 𝑥𝑟 ) = 𝑅B (𝑥2, . . . , 𝑥𝑟 ).

Now, we claim that ℎ witnesses that 𝑡2, . . . , 𝑡𝑟 ⊨ 𝑡1. Indeed, for any 𝑛-ary polymorphism

𝑓 ∈ Pol
(𝑛) (A,B), we have that (𝑓 (𝑡1), . . . , 𝑓 (𝑡𝑟 )) ∈ 𝑅B, and thus

𝑓 (𝑡1) = 𝑅B (𝑓 (𝑡2), . . . , 𝑓 (𝑡𝑟 )) = ℎ(𝑓 (𝑡2), . . . , 𝑓 (𝑡𝑟 )) = ℎ(𝑓 (𝑢) | 𝑢 ∈ {𝑡2, . . . , 𝑡𝑟 }).

Thus we conclude that ⊨A,B satisfies the rules of ⊢A,𝑅A , which implies our conclusion. □

For a relation 𝑅, we define its support supp(𝑅) as the elements that appear in at least one tuple

of 𝑅. Formally,

supp(𝑅) =
ar(𝑅)⋃
𝑖=1

{𝑎𝑖 | (𝑎1, . . . , 𝑎ar(𝑅) ) ∈ 𝑅}.

Lemma 28. Suppose that 𝑆 ⊢A,𝑅A 𝑡 and 𝑥 ∈ supp(𝑅A). Then 𝑆 × supp(𝑅A) ⊢A,𝑅A (𝑡, 𝑥).11

Proof. We show this by induction on the formal proof that proves that 𝑆 ⊢A,𝑅A 𝑡 . Based on the

last step in the proof used to prove this fact, we have the following cases.

(1) Suppose 𝑆 ′ ⊆ 𝑆 and 𝑆 ′ ⊢ 𝑡 . By the inductive hypothesis, we know that that 𝑆 ′ × supp(𝑅A) ⊢
(𝑡, 𝑥). As 𝑆 ′ × supp(𝑅A) ⊆ 𝑆 × supp(𝑅A), then 𝑆 × supp(𝑅A) ⊢ (𝑡, 𝑥) as required.

(2) Suppose 𝑆 = {𝑡}. In this case the result is immediate, as 𝑆 × supp(𝑅A) ⊇ {(𝑡,𝑢)} ⊢ (𝑡,𝑢).
(3) Suppose 𝑆 = 𝑋 ∪ 𝑌 , 𝑋 ⊢ 𝑠 and 𝑠, 𝑌 ⊢ 𝑡 . By the inductive hypothesis, for 𝑦 ∈ supp(𝑅A),

𝑋 × supp(𝑅A) ⊢ (𝑠,𝑦) and {(𝑠,𝑦) | 𝑦 ∈ supp(𝑅A)}, 𝑌 × supp(𝑅A) ⊢ (𝑡, 𝑥). We can therefore

deduce, by this rule applied | supp(𝑅A) | times, that 𝑆×supp(𝑅A) = (𝑋∪𝑌 )×supp(𝑅A) ⊢ (𝑡, 𝑥).
(4) Suppose that 𝑆 = {𝑡2, . . . , 𝑡𝑟 } and there exists a matrix whose rows are 𝑡, 𝑡2, . . . , 𝑡𝑟 and all of

whose columns are elements of 𝑅A. Suppose (𝑥, 𝑥2, . . . , 𝑥𝑟 ) ∈ 𝑅A. Then by applying this rule

we find that (𝑡2, 𝑥), . . . , (𝑡𝑟 , 𝑥𝑟 ) ⊢ (𝑡, 𝑥), which implies that 𝑆 × supp(𝑅A) ⊢ (𝑡, 𝑥).
Thus our conclusion follows. □

Any tuple 𝑥 ∈ 𝐴𝑛
can be seen as a function from [𝑛] to 𝐴. Thus for any function 𝜋 : [𝑚] → [𝑛],

we let 𝑥 ◦ 𝜋 ∈ 𝐴𝑚
be the tuple which, at position 𝑖 , has value 𝑥𝜋 (𝑖 ) . For a set of tuples 𝑆 ∈ 𝐴𝑛

, we

let 𝑆 ◦ 𝜋 = {𝑥 ◦ 𝜋 | 𝑥 ∈ 𝑆}.

Lemma 29. Suppose 𝑆 ⊆ 𝐴𝑛, 𝑡 ∈ 𝐴𝑛 and 𝜋 : [𝑚] → [𝑛]. If 𝑆 ⊢A,𝑅A 𝑡 then 𝑆 ◦ 𝜋 ⊢A,𝑅A 𝑡 ◦ 𝜋 .

11
Here, if 𝑡 = (𝑡1, . . . , 𝑡𝑟 ) then (𝑡, 𝑥 ) = (𝑡1, . . . , 𝑡𝑟 , 𝑥 ) , and likewise 𝑆 × supp(𝑅A ) = { (𝑠1, . . . , 𝑠𝑟 , 𝑥 ) | (𝑠1, . . . , 𝑠𝑟 ) ∈ 𝑆, 𝑥 ∈

supp(𝑅A ) }.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.



On the complexity of symmetric vs. functional PCSPs 1:13

Proof. First, consider any matrix𝑀 whose rows are 𝑟1, . . . , 𝑟𝑛 and whose columns are 𝑐1, . . . , 𝑐𝑚 .

If we create a matrix𝑀 ′
whose rows are 𝑟1 ◦ 𝜎, . . . , 𝑟𝑛 ◦ 𝜎 for some 𝜎 : [𝑘] → [𝑚], we observe that

the columns of this new matrix are 𝑐𝜎 (1) , . . . , 𝑐𝜎 (𝑘 ) . Thus, the columns of 𝑀 ′
are a subset of the

columns of𝑀 .

Consider the proof tree that proves that 𝑆 ⊢A,𝑅A 𝑡 . If a vertex is labeled by a tuple 𝑢, transform it

into a vertex labeled by 𝑢 ◦ 𝜋 . By the previous observation, this remains a valid proof tree, whose

leaves belong to 𝑆 ◦ 𝜋 and whose root is 𝑡 ◦ 𝜋 . Thus 𝑆 ◦ 𝜋 ⊢ 𝑡 ◦ 𝜋 . □

3.4 Super-connectedness
Rather than dealing directly with additivity and dependency, we will instead deal with a notion

that implies them.

Definition 30. We say thatA is super-connected ifA has a relation 𝑅A such that, for every 𝑥,𝑦, 𝑧 ∈ 𝐴
(perhaps even with |{𝑥,𝑦, 𝑧}| < 3), we have

ΓA ⊢A,𝑅A (𝑥,𝑦, 𝑧).

Super-connectedness is a very useful concept: it implies both additivity and dependency.

Lemma 31. If A is super-connected then (A,B) is additive for functional B where A → B.

Proof. An immediate consequence of Lemma 23 and Lemma 27. □

Lemma 32. If A is super-connected then (A,B) is dependent for functional B where A → B.

We first prove two simple propositions. Assume for them that A is super-connected, witnessed

by relation 𝑅A, and that |𝐴| > 1.

Proposition 33. supp(𝑅A) = 𝐴.

Proof. Suppose for contradiction that this is not the case. Let 𝑥 ∈ 𝐴 \ supp(𝑅A), and take 𝑦 ∈ 𝐴
such that 𝑥 ≠ 𝑦. Now,

ΓA ⊢A,𝑅A (𝑥, 𝑥,𝑦) .
Consider any proof tree concluding in this judgement. The root vertex cannot have any children,

since no matrix containing (𝑥, 𝑥,𝑦) can have its columns belong to 𝑅A, as 𝑥 ∉ supp𝑅A. Thus (𝑥, 𝑥,𝑦)
is a leaf vertex in the tree, and (𝑥, 𝑥,𝑦) ∈ ΓA. This is not possible, as 𝑥 ≠ 𝑦. □

Proposition 34. For any 𝑥1, . . . , 𝑥𝑛 ∈ 𝐴, we have that Δ𝑛
A ⊢ (𝑥1, . . . , 𝑥𝑛).

Proof. We prove this fact by induction. We do induction over the lexicographical ordering

on {(𝑛,𝑑) ∈ N2 | 𝑛 ≥ 𝑑}. For any (𝑛,𝑑) ∈ N2
with 𝑛 ≥ 𝑑 we prove that Δ𝑛

A ⊢ (𝑥1, . . . , 𝑥𝑛)
whenever |{𝑥1, . . . , 𝑥𝑛}| ≤ 𝑑 . As our base case, note that the result is immediate when 𝑛 ≤ 2, as

(𝑥1, . . . , 𝑥𝑛) ∈ Δ𝑛
A in this case. Thus suppose 𝑛 ≥ 3.

First suppose that 𝑥1, . . . , 𝑥𝑛 contains a duplicated pair of values, say 𝑥𝑛−1 = 𝑥𝑛 . Now, define

𝜋 : [𝑛− 1] → [𝑛], where 𝜋 (𝑖) = 𝑖 . By the inductive hypothesis, we know that Δ𝑛−1
A ⊢ (𝑥1, . . . , 𝑥𝑛−1).

Thus, by Lemma 29, Δ𝑛−1
A ◦𝜋 ⊢ (𝑥1, . . . , 𝑥𝑛−1) ◦𝜋 = (𝑥1, . . . , 𝑥𝑛−1, 𝑥𝑛−1) = (𝑥1, . . . , 𝑥𝑛). Furthermore,

every tuple of Δ𝑛−1
A ◦ 𝜋 contains at most 2 values, so it belongs to Δ𝑛

A. Thus in this case Δ𝑛
A ⊢

(𝑥1, . . . , 𝑥𝑛).
Now suppose that 𝑥1, . . . , 𝑥𝑛 are all distinct. Since A is super-connected, we find that ΓA ⊢

(𝑥1, 𝑥2, 𝑥3). Thus by Lemma 28, we find that ΓA × supp(𝑅A)𝑛−3 ⊢ (𝑥1, . . . , 𝑥𝑛). By Proposition 33,

supp(𝑅A) = 𝐴, so ΓA × 𝐴𝑛−3 ⊢ (𝑥1, . . . , 𝑥𝑛). But, every tuple 𝑡 ∈ ΓA × 𝐴𝑛−3
contains at most 𝑛 − 1

distinct values, so we can apply the inductive hypothesis to them, and find that Δ𝑛
A ⊢ 𝑡 . Thus

Δ𝑛
A ⊢ (𝑥1, . . . , 𝑥𝑛), as required. This completes the proof. □

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:14 Tamio-Vesa Nakajima and Stanislav Živný

Proof of Lemma 32. Δ𝑎
A ⊢ (1, . . . , 𝑎) by Proposition 34. Thus, by Lemma 27 we have that Δ𝑎

A ⊨A,B
(1, . . . , 𝑎), and therefore dependency follows by Lemma 24. □

Lemma 35. Suppose A has a symmetric relation 𝑅A of arity at least 3 with diam(𝐴, 𝑅A) ≤ 1. Then A
is super-connected.

Proof. Take 𝑥,𝑦, 𝑧 ∈ 𝐴; we must show that ΓA ⊢ (𝑥,𝑦, 𝑧). We have several cases.

𝒙 = 𝒛 or 𝒚 = 𝒛. In this case (𝑥,𝑦, 𝑧) ∈ ΓA, so there is nothing left to be proved.

𝒙 = 𝒚 ≠ 𝒛. In this case dist𝑅A (𝑥, 𝑧) = 1, so there exists an edge (𝑥, 𝑧, 𝑎3, . . . , 𝑎𝑟 ) ∈ 𝑅A. Consider
the matrices

𝑀 =

©«

𝑥 𝑥 𝑧

𝑧 𝑎3 𝑥

𝑎3 𝑧 𝑎3
𝑎4 𝑎4 𝑎4
...

...
...

𝑎𝑟 𝑎𝑟 𝑎𝑟

ª®®®®®®®®¬
, 𝑁 =

©«

𝑧 𝑎3 𝑥

𝑥 𝑧 𝑧

𝑎3 𝑥 𝑎3
𝑎4 𝑎4 𝑎4
...

...
...

𝑎𝑟 𝑎𝑟 𝑎𝑟

ª®®®®®®®®¬
.

Thus we deduce that (𝑧, 𝑎3, 𝑥), ΓA ⊢ (𝑥, 𝑥, 𝑧) and ΓA ⊢ (𝑧, 𝑎3, 𝑥), and thus ΓA ⊢ (𝑥, 𝑥, 𝑧) =

(𝑥,𝑦, 𝑧).
𝒙 ≠ 𝒚,𝒚 ≠ 𝒛, 𝒙 ≠ 𝒛. In this case dist𝑅A (𝑥, 𝑧) = dist𝑅A (𝑥,𝑦) = 1, so there must exist edges

(𝑥, 𝑧, 𝑎3, . . . , 𝑎𝑟 ), (𝑥,𝑦, 𝑏3, . . . , 𝑏𝑟 ) ∈ 𝑅A. Consider the following matrix

©«

𝑥 𝑦 𝑧

𝑧 𝑥 𝑥

𝑎3 𝑏3 𝑎3
...

...
...

𝑎𝑟 𝑏𝑟 𝑎𝑟

ª®®®®®®¬
.

Thus we find that (𝑧, 𝑥, 𝑥), (𝑎3, 𝑏3, 𝑎3), . . . , (𝑎𝑟 , 𝑏𝑟 , 𝑎𝑟 ) ⊢ (𝑥,𝑦, 𝑧), whence ΓA ⊢ (𝑥,𝑦, 𝑧).
Thus our conclusion follows in all cases. □

Lemma 36. If A has a connected symmetric relation 𝑅A of arity 3 then A is super-connected.

Proof. We see (𝐴, 𝑅A) as a connected 3-uniform hypergraph. For 𝑥,𝑦 ∈ 𝐴 recall that dist(𝑥,𝑦) is
the distance between 𝑥 and 𝑦 in this hypergraph. We show that ΓA ⊢A,𝑅A (𝑥,𝑦, 𝑧) for all 𝑥,𝑦, 𝑧 ∈ 𝐴
by lexicographic induction on minmax(dist(𝑥, 𝑧), dist(𝑦, 𝑧)) (i.e. we first order by the minimum,

and in case of equality the maximum). In all the cases that follow assume dist(𝑥, 𝑧) ≤ dist(𝑦, 𝑧).
dist (𝒙, 𝒛) = 0. In this case (𝑥,𝑦, 𝑧) = (𝑥,𝑦, 𝑥) ∈ ΓA so there is nothing left to prove.

dist (𝒙, 𝒛) = dist (𝒚, 𝒛) = 1. In this case, there exists edges (𝑥, 𝑎, 𝑧), (𝑦,𝑏, 𝑧). Now consider the

following matrices:

𝑀 =
©«
𝑥 𝑦 𝑧

𝑧 𝑧 𝑥

𝑎 𝑏 𝑎

ª®¬ , 𝑁 =
©«
𝑧 𝑧 𝑥

𝑎 𝑥 𝑧

𝑥 𝑎 𝑎

ª®¬ , 𝑃 =
©«
𝑎 𝑥 𝑧

𝑥 𝑧 𝑥

𝑧 𝑎 𝑎

ª®¬ .
Thus we conclude that (𝑎, 𝑏, 𝑎), (𝑧, 𝑧, 𝑥) ⊢ (𝑥,𝑦, 𝑧), (𝑎, 𝑥, 𝑧), (𝑥, 𝑎, 𝑎) ⊢ (𝑧, 𝑧, 𝑥) and also

(𝑥, 𝑧, 𝑥), (𝑧, 𝑎, 𝑎) ⊢ (𝑎, 𝑥, 𝑧), from where the conclusion follows.

dist (𝒚, 𝒛) > dist (𝒙, 𝒛) = 1. In this case, there exist edges (𝑥, 𝑎, 𝑧) and (𝑦,𝑏,𝑦′)with dist(𝑦′, 𝑧) =
dist(𝑦, 𝑧) − 1. Furthermore, as dist(𝑦′, 𝑧) > 0, there exists an edge (𝑦′, 𝑐, 𝑑) such that

dist(𝑐, 𝑧), dist(𝑑, 𝑧) ≤ dist(𝑦′, 𝑧) ≤ dist(𝑦, 𝑧) − 1,

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.



On the complexity of symmetric vs. functional PCSPs 1:15

Now consider matrices

𝑀 =
©«
𝑥 𝑦 𝑧

𝑎 𝑏 𝑎

𝑧 𝑦′ 𝑥

ª®¬ , 𝑁 =
©«
𝑧 𝑦′ 𝑥

𝑎 𝑐 𝑎

𝑥 𝑑 𝑧

ª®¬ .
Hence (𝑧,𝑦′, 𝑥), ΓA ⊢ (𝑥,𝑦, 𝑧) and (𝑥, 𝑑, 𝑧), ΓA ⊢ (𝑧,𝑦′, 𝑥). Since dist(𝑑, 𝑧) < dist(𝑦, 𝑧) we can
apply the inductive hypothesis to (𝑥, 𝑑, 𝑧), so ΓA ⊢ (𝑥,𝑦, 𝑧) as required.

dist (𝒚, 𝒛) ≥ dist (𝒙, 𝒛) > 1. In this case, there exist edges (𝑥, 𝑎, 𝑥 ′), (𝑧, 𝑏, 𝑧′) such that it is true

that dist(𝑎, 𝑧′), dist(𝑏, 𝑥 ′) < dist(𝑥, 𝑧) — take edges from 𝑥, 𝑧 towards the other one. (Such

edges only exist when dist(𝑥, 𝑧) > 1 as assumed.) Furthermore, by connectedness, an edge

(𝑦, 𝑐, 𝑑) exists. Thus consider the matrix

©«
𝑥 𝑦 𝑧

𝑎 𝑐 𝑧′

𝑥 ′ 𝑑 𝑏

ª®¬ .
Hence (𝑎, 𝑐, 𝑧′), (𝑥, 𝑑, 𝑏) ⊢ (𝑥,𝑦, 𝑧). By induction ΓA ⊢ (𝑎, 𝑐, 𝑧′) and ΓA ⊢ (𝑥 ′, 𝑑, 𝑏), so we have

ΓA ⊢ (𝑥,𝑦, 𝑧).
Thus we find by induction that A is super-connected. □

Lemma 37. If A has a connected symmetric relation 𝑅A of arity 4 then A is super-connected.

Proof. We see (𝐴, 𝑅A) as a connected 4-uniform hypergraph. We show that ΓA ⊢A,𝑅A (𝑥,𝑦, 𝑧)
for all 𝑥,𝑦, 𝑧 ∈ 𝐴 by lexicographic induction on minmax(dist(𝑥, 𝑧), dist(𝑦, 𝑧)). In all the cases that

follow assume dist(𝑥, 𝑧) ≤ dist(𝑦, 𝑧).
dist (𝒙, 𝒛) = 0. In this case (𝑥,𝑦, 𝑧) = (𝑥,𝑦, 𝑥) ∈ ΓA so there is nothing left to prove.

dist (𝒙, 𝒛) = dist (𝒚, 𝒛) = 1. In this case, there exists edges (𝑥, 𝑎, 𝑎′, 𝑧), (𝑦,𝑏, 𝑏′, 𝑧). Now consider

the following matrices:

𝑀 =

©«
𝑥 𝑦 𝑧

𝑧 𝑧 𝑥

𝑎 𝑏 𝑎

𝑎′ 𝑏′ 𝑎′

ª®®®¬ , 𝑁 =

©«
𝑧 𝑧 𝑥

𝑎 𝑥 𝑧

𝑥 𝑎 𝑎

𝑎′ 𝑎′ 𝑎′

ª®®®¬ , 𝑃 =

©«
𝑎 𝑥 𝑧

𝑥 𝑧 𝑥

𝑧 𝑎 𝑎

𝑎′ 𝑎′ 𝑎′

ª®®®¬ .
Hence, ΓA ⊢ (𝑥,𝑦, 𝑧).

dist (𝒚, 𝒛) > dist (𝒙, 𝒛) = 1. In this case, there exist edges (𝑥, 𝑎, 𝑎′, 𝑧) and (𝑦,𝑏, 𝑏′, 𝑦′) such that

dist(𝑦′, 𝑧) = dist(𝑦, 𝑧) − 1. Furthermore, as dist(𝑦′, 𝑧) > 0, there exists an edge (𝑦′, 𝑐, 𝑑, 𝑒)
such that

dist(𝑐, 𝑧), dist(𝑑, 𝑧), dist(𝑒, 𝑧) ≤ dist(𝑦′, 𝑧) ≤ dist(𝑦, 𝑧) − 1,

Now consider matrices

𝑀 =

©«
𝑥 𝑦 𝑧

𝑎 𝑏 𝑎

𝑎′ 𝑏′ 𝑎′

𝑧 𝑦′ 𝑥

ª®®®¬ , 𝑁 =

©«
𝑧 𝑦′ 𝑥

𝑎 𝑐 𝑎

𝑎′ 𝑑 𝑎′

𝑥 𝑒 𝑧

ª®®®¬ .
Hence (𝑧,𝑦′, 𝑥), ΓA ⊢ (𝑥,𝑦, 𝑧) and (𝑥, 𝑑, 𝑧), ΓA (𝑧,𝑦′, 𝑥). Since dist(𝑑, 𝑧) < dist(𝑦, 𝑧) we can

apply the inductive hypothesis to (𝑥, 𝑑, 𝑧), so ΓA ⊢ (𝑥,𝑦, 𝑧) as required.
dist (𝒚, 𝒛) ≥ dist (𝒙, 𝒛) > 1. In this case, there exist edges (𝑥, 𝑎, 𝑎′, 𝑥 ′), (𝑧, 𝑏, 𝑏′, 𝑧′) such that

it is true that dist(𝑎, 𝑧′), dist(𝑎′, 𝑧′), dist(𝑏, 𝑥 ′), dist(𝑏′, 𝑥 ′) < dist(𝑥, 𝑧) — take edges from

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:16 Tamio-Vesa Nakajima and Stanislav Živný

𝑥, 𝑧 towards the other one. Furthermore, as dist(𝑦, 𝑧) > 2 there exist edges (𝑦, 𝑐, 𝑐′, 𝑦′) and
(𝑦′, 𝑑, 𝑑 ′, 𝑦′′), with dist(𝑦′′, 𝑧) = dist(𝑦, 𝑧) − 2. Thus consider the matrices

𝑀 =

©«
𝑥 𝑦 𝑧

𝑎′ 𝑐 𝑧′

𝑥 ′ 𝑐′ 𝑏′

𝑎 𝑦′ 𝑏

ª®®®¬ , 𝑁 =

©«
𝑎 𝑦′ 𝑏

𝑎′ 𝑑 𝑧′

𝑥 ′ 𝑑 ′ 𝑏′

𝑥 𝑦′′ 𝑧

ª®®®¬ .
Note that dist(𝑎′, 𝑧′), dist(𝑥 ′, 𝑏′) < dist(𝑥, 𝑧), and furthermore dist(𝑦′′, 𝑧) < dist(𝑦, 𝑧), so by

induction ΓA ⊢ (𝑥,𝑦, 𝑧).
Thus we find by induction that A is super-connected. □

With all of this, we are finally ready to prove Theorem 12 and Theorem 13.

Proof of Theorem 12 and Theorem 13. The structures from Theorem 12 are super-connected

by Lemma 35. The structures from Theorem 13 are super-connected by Lemma 36 and Lemma 37.

This is sufficient for additivity by Lemma 31 and for dependency by Lemma 32. □

4 Dichotomy
In this section we will prove our main result.

Theorem 1. Let A be a symmetric structure and B be a functional structure such that A → B. Assume
that (A,B) is dependent and additive. Then, either PCSP(A,B) is solvable in polynomial time by AIP
and is finitely tractable, or PCSP(A,B) is NP-hard.

Before proving Theorem 1, we will prove three interesting corollaries.

Corollary 2. Let A be a Boolean symmetric structure and B be a functional structure such that
A → B. Then, either PCSP(A,B) is solvable in polynomial time by AIP and is finitely tractable, or
PCSP(A,B) is NP-hard.

For the proof of Corollary 2, we will need a simple lemma.

Lemma 38. Suppose A is Boolean and symmetric, B is functional, and every relation of A is either
binary or contains only constant tuples. Then, PCSP(A,B) is solvable in polynomial time by AIP and
is finitely tractable.

Proof. Consider any ℎ : A → B. Suppose ℎ(0) = ℎ(1). Then every relation in B contains a

constant tuple of the form (ℎ(0), . . . , ℎ(0)); in this case, PCSP(A,B) is trivially solved by AIP and is

finitely tractable. Thus supposeℎ(0) ≠ ℎ(1). Any empty relation inA can be removed (together with

the corresponding relation in B) as it does not affect Pol(A,B) and the complexity of PCSP(A,B).
Since B is functional, the binary relations of A that do not contain only constant tuples must be

the binary disequality. To see why, consider any relation 𝑅A in A that contains the tuple (0, 1). 𝑅A
cannot contain (0, 0) or (1, 1), since the corresponding relation 𝑅B in B contains (ℎ(0), ℎ(1)) and if

it contained (ℎ(0), ℎ(0)) or (ℎ(1), ℎ(1)) it would not be functional. Since A is symmetric, 𝑅A also

contains the tuple (1, 0). Thus 𝑅A = {(0, 1), (1, 0)} is the disequality relation. It follows that every

relation in A is either a binary disequality, or consists only of constant tuples. In this case, CSP(A)
is solved by AIP and thus PCSP(A,B) is solved by AIP and is finitely tractable. □

Proof of Corollary 2. If A contains only binary relations or relations that contain only con-

stant tuples, the conclusion follows by Lemma 38. Otherwise, A has a relation 𝑅A of arity at least 3

with a non-constant tuple i.e. for which diam(𝐴, 𝑅A) = 1, and the conclusion follows from Theo-

rem 1 together with super-connectivity of such structures (cf. Lemma 35): super-connectedness

implies additivity (cf. Lemma 31) and dependency (cf. Lemma 32). □

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.



On the complexity of symmetric vs. functional PCSPs 1:17

Corollary 3. Let A be a symmetric structure and B be a functional structure such that A → B.
Assume that both A and B have exactly one relation of arity at most 4. Then, either PCSP(A,B) is
solvable in polynomial time, or PCSP(A,B) is NP-hard.

Proof. First, observe that the conclusion holds trivially if 𝑅B has arity 1 as in this case CSP(B)
is trivially tractable. Second, suppose 𝑅B has arity 2. In this case we claim that CSP(B) is solvable
in polynomial time. Indeed, an easy modification of the algorithm for 2-colouring will solve this

problem. Thus PCSP(A,B) is tractable in this case.

Now, suppose that 𝑅B has arity 3 or 4. The conclusion holds for connected A by the super-

connectedness of structures A that have a relation of arity 3 or 4 that is connected. Thus suppose

that A is not connected, and that its connected components are A1, . . . ,A𝑘 i.e. A = A1 + · · · + A𝑘 .

If PCSP(A𝑖 ,B) is NP-hard for some 𝑖 ∈ [𝑘] then PCSP(A,B) will also be NP-hard (since there is

a trivial reduction from PCSP(A𝑖 ,B) to PCSP(A,B), as A𝑖 → A). Thus suppose PCSP(A𝑖 ,B) is
solvable in polynomial time for all 𝑖 ∈ [𝑘]. Consider any input hypergraph X = X1 + · · · +X𝑛 , where

X1, . . . ,X𝑛 are connected. Since the homomorphic image of a connected hypergraph is connected, if

X𝑖 → A thenX𝑖 → A𝑗 for some 𝑗 ∈ [𝑘]. Thus, for the decision version of PCSP(A,B), it is sufficient

to see if, for all 𝑖 ∈ [𝑛] there exists some 𝑗 ∈ [𝑘] such that X𝑖 is a Yes-instance of PCSP(A𝑗 ,B). If
so then X is a Yes-instance overall. For the search version something similar happens: see if we

can produce a homomorphism X𝑖 → B for each X𝑖 by running the algorithm for PCSP(A𝑗 ,B) for
each A𝑗 , and combine these homomorphisms to find a homomorphism A → B. □

Remark 39. Unlike in all other results in this paper, solvability by AIP is not proved in Corollary 3,

only polynomial-time solvability. As far as we know, it well may be that the PCSPs considered

in Corollary 3 are not solved by AIP (or even BLP + AIP). The way that tractability is deduced in

the proof of Corollary 3 is as follows: If A1, . . . ,A𝑘 are connected and PCSP(A𝑖 ,B) is tractable,
then PCSP(A1 + · · · + A𝑘 ,B) is tractable. We give a concrete example of a template with a single

symmetric relation of arity 6 that shows that this reduction does not preserve solvability by AIP, or

even by BLP + AIP. Note however that Corollary 3 only applies to relations of arity at most 4, so

the corollary might still be strengthened to show solvability by AIP.

Let Z′ = {𝑥 ′ | 𝑥 ∈ Z} be a disjoint copy of Z. Then, let B = A1 + A2, where

A1 = ({0, 1}; {(𝑥1, . . . , 𝑥6) | 𝑥1 + · · · + 𝑥6 ≡ 1 (mod 2)}),
A2 = ({0′, 1′, 2′}; {(𝑥1, . . . , 𝑥6) | 𝑥1 + · · · + 𝑥6 ≡ 2

′ (mod 3
′)}) .

Note that A1,A2,B are all functional and symmetric. Furthermore, PCSP(A1,B) and PCSP(A2,B)
are solved by AIP by Theorem 8: a (2𝑘 + 1)-ary alternating polymorphism is

(𝑥1, 𝑦1, . . . , 𝑥𝑘 , 𝑦𝑘 , 𝑥𝑘+1) ↦→ 𝑥1 − 𝑦1 + · · · + 𝑥𝑘 − 𝑦𝑘 + 𝑥𝑘+1 (mod 𝑚),
where𝑚 = 2 forA1 and𝑚 = 3

′
forA2. We will now show that BLP + AIP fails to solve PCSP(B,B) =

CSP(B); to see why, suppose that it does solve it. Thus, by Theorem 9, Pol(B,B) should contain a

2-block symmetric polymorphism of arity 5, say 𝑓 ∈ Pol
(5) (B,B). For the ease of notation, suppose

that the first block of symmetry of 𝑓 contains the first 3 inputs, and the second block of symmetry

contains the last 2 inputs (rather than the blocks being based on parity). Now consider the following

matrix ©«

1
′

0
′

0
′

1 0

0
′

1
′

0
′

0 1

0
′

0
′

1
′

1 0

1
′

0
′

0
′

0 1

0
′

1
′

0
′

1 0

0
′

0
′

1
′

0 1

ª®®®®®®®¬
ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:18 Tamio-Vesa Nakajima and Stanislav Živný

Every column of this matrix is an element of 𝑅B; thus 𝑓 applied to every row gives a tuple of 𝑅B.

But, due to block-symmetry, the image of every row through 𝑓 is the same! This contradicts the

lack of constant tuples in B.
The non-solvability of PCSP(B,B) by AIP is relevant in view of Conjecture 5 — it shows that the

“AIP being a universal algorithm for PCSP(1-in-3,−)” part of Conjecture 5 cannot be extended to

arbitrary symmetric templates. We believe that it might hold true for any connected A with one

symmetric relation.

Corollary 4. LetA be a symmetric structure and B be a functional structure such thatA → B. Assume
that A has a relation 𝑅A of arity at least 3 for which diam(𝐴, 𝑅A) ≤ 1. Then, either PCSP(A,B) is
solvable in polynomial time by AIP and is finitely tractable, or PCSP(A,B) is NP-hard.

Proof. Such structures are super-connected by Lemma 35, which implies additivity and depen-

dency of (A,B) by Lemma 31 and Lemma 32, respectively. □

Wewill nowmove on to a proof of Theorem 1. Suppose (A,B) is dependent and additive. Suppose
generally that 𝐴 = [𝑎].

Definition 40. Consider a polymorphism 𝑓 ∈ Pol
(𝑛) (A,B). We call it 𝑘-degenerate if there exist

𝑥1, . . . , 𝑥𝑘 ∈ range(𝑓 𝑝 ) such that for any 𝑆1, . . . , 𝑆𝑘 ⊆ [𝑛] for which 𝑓 𝑝 (𝑆𝑖 ) = 𝑥𝑖 we have that not all
𝑆𝑖 are disjoint. Note that no polymorphism can be 1-degenerate as a single set is a disjoint family.

For any polymorphism 𝑓 ∈ Pol
(𝑛) (A,B), we call a set 𝑆 ⊆ [𝑛] a hard set if, for any 𝑇 ⊇ 𝑆 , we

have 𝑓 𝑝 (𝑇 ) ≠ 𝑓 𝑝 (∅).12

We will prove Theorem 1 using the following two cases. For the following, define 𝑁𝑑 = max(1 +
|𝐵 |𝑎2𝑎2𝑟max , 3) and 𝑁ℎ = |𝐵 |𝑎2 , where 𝑟max is the maximum arity of any relation in A.

Theorem 41. If Pol(A,B) contains a polymorphism that is not 𝑘-degenerate, for any 𝑘 ≤ 𝑁𝑑 , and
that has no hard sets of size at most 𝑁ℎ , then PCSP(A,B) is solved by AIP and is finitely tractable.

Theorem 42. If every polymorphism within Pol(A,B) is 𝑘-degenerate for some 𝑘 ≤ 𝑁𝑑 , or has a
hard set of size at most 𝑁ℎ , then PCSP(A,B) is NP-hard.

These two theorems will be proved in their own sections later.

Proof of Theorem 1. A result of Theorem 41 and Theorem 42. □

Remark 43. The following turns out to be an equivalent characterisation of the solvability of

PCSP(A,B) for symmetric A and functional B. Suppose A has domain 𝐴 and relations 𝑅A
1
, . . . , 𝑅A

𝑘
.

For any positive integer𝑚, define a structure A𝑚 in the following way. The domain of A𝑚 is the

free Z𝑚-module of functions Z𝐴𝑚 . We will write elements of this module as formal sums of the form∑
𝑎∈𝐴 𝑥𝑖𝑎, where 𝑥𝑖 ∈ Z𝑚 and {𝑎 | 𝑎 ∈ 𝐴} is a basis for Z𝐴𝑚 . Extend the map 𝑥 ↦→ 𝑥 to tuples of

functions, in the following way: (𝑥1, . . . , 𝑥𝑛) = (𝑥1, . . . , 𝑥𝑛). To define the relation 𝑅
A𝑚

𝑘
, consider

the set of tuples of functions 𝑆 = {𝑡 | 𝑡 ∈ 𝑅A
𝑘
}. Tuples of functions also form a free Z𝑚-module; thus

take 𝑅
A𝑚

𝑘
to be the minimal affine space containing 𝑆 . Equivalently, 𝑅

A𝑚

𝑘
is the set of tuples that are

equivalent to some 𝑡 ∈ 𝑅A
𝑘
modulo {𝑡 − 𝑡 ′ | 𝑡, 𝑡 ′ ∈ 𝑅A

𝑘
}, if the set of tuple of functions from Z𝐴𝑚 is

seen as merely an Abelian group.

With the relational structure A𝑚 thus defined, and noting that A → A𝑚 always via the homo-

morphism 𝑥 ↦→ 𝑥 , we note that our result is equivalent to the following: for symmetric A and

functional B where (A,B) is additive and dependent, PCSP(A,B) is solvable in polynomial time if

12
These two notions are similar to those of unbounded antichains and fixing sets in [20]. The notion of hard-set is similar to

the notion of an 𝑓 (∅)-avoiding set from [18, 31].

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.



On the complexity of symmetric vs. functional PCSPs 1:19

and only if A → A𝑚 → B for some positive integer𝑚. That this condition is sufficient is clear, as

CSP(A𝑚) is solved by AIP as per Lemma 10. Necessity follow from our proof of Theorem 41 and

Theorem 42.

We note also that A𝑚 can also be described as a free structure [6]. Namely, define Z𝑚 to be a

minion such that

Z (𝑛)
𝑚 = {(𝑥𝑛, . . . , 𝑥𝑛) | 0 ≤ 𝑥1, . . . , 𝑥𝑛 < 𝑚,

𝑛∑︁
𝑖=1

𝑥𝑖 ≡ 1 (mod 𝑚)},

and let minoring be defined as follows. For 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ Z (𝑛)
𝑚 , and for 𝜋 : [𝑛] → [𝑛′], define

𝑦 = 𝑥𝜋 by 𝑦𝑖 =
∑

𝜋 ( 𝑗 )=𝑖 𝑥 𝑗 mod𝑚. With this in mind, it can be seen that A𝑚 = FZ𝑚
(A).

4.1 Proof of Theorem 41
In this section we assume that Pol

(𝑛) (A,B) has a polymorphism 𝑓 of arity 𝑛 that is not 𝑘-degenerate

for 𝑘 at most 𝑁𝑑 , and has no hard sets of size at most 𝑁ℎ . Given this, we will prove that PCSP(A,B)
is solved by AIP and is finitely tractable.

Definition 44. Define 0 = 𝑓 𝑝 (∅) and 1 = 𝑓 𝑝 ( [𝑛]).

Lemma 45. (range(𝑓 𝑝 ), +, 0) forms a group.13

Proof. We prove this in a few parts.

Closure, well-definedness. Consider 𝑥,𝑦 ∈ range(𝑓 𝑝 ). As 𝑓 is not 2-degenerate, there exist
disjoint 𝑆,𝑇 such that 𝑓 𝑝 (𝑆) = 𝑥, 𝑓 𝑝 (𝑇 ) = 𝑦. Thus 𝑥 + 𝑦 = 𝑓 𝑝 (𝑆) + 𝑓 𝑝 (𝑇 ) = 𝑓 𝑝 (𝑆 ∪ 𝑇 ) ∈
range(𝑓 𝑝 ), so + is closed and well-defined.

Associativity. Consider any 𝑥,𝑦, 𝑧 ∈ range(𝑓 𝑝 ). Since 𝑓 is not 3-degenerate, there exist disjoint
𝑆,𝑇 ,𝑈 ⊆ [𝑛] such that 𝑓 𝑝 (𝑆) = 𝑥, 𝑓 𝑝 (𝑇 ) = 𝑦, 𝑓 𝑝 (𝑈 ) = 𝑧. Thus,

𝑥 + (𝑦 + 𝑧) = 𝑥 + 𝑓 (𝑇 ∪𝑈 ) = 𝑓 (𝑆 ∪ (𝑇 ∪𝑈 )) = 𝑓 ((𝑆 ∪𝑇 ) ∪𝑈 ) = 𝑓 (𝑆 ∪𝑇 ) + 𝑧 = (𝑥 + 𝑦) + 𝑧.
Identity element. Consider any 𝑥 ∈ range(𝑓 𝑝 ). Suppose 𝑓 𝑝 (𝑆) = 𝑥 for some 𝑆 ⊆ [𝑛]. Thus,
𝑥 + 0 = 𝑓 𝑝 (𝑆 ∪ ∅) = 𝑓 𝑝 (𝑆) = 𝑥 .

Inverses. Consider any 𝑥 ∈ range(𝑓 𝑝 ). Suppose that 𝑓 (𝑆) = 𝑥 ; by Lemma 17, some 𝑇 ⊆ 𝑆

exists with size at most |𝐵 |𝑎2 such that 𝑓 𝑝 (𝑇 ) = 𝑓 𝑝 (𝑆) = 𝑥 . Since 𝑓 has no hard sets of size at

most 𝑁ℎ = |𝐵 |𝑎2 , 𝑇 is not a hard set, and thus some𝑈 ⊇ 𝑇 exists such that 𝑓 𝑝 (𝑈 ) = 0. Thus

𝑥 + 𝑓 𝑝 (𝑈 \𝑇 ) = 𝑓 𝑝 (𝑇 ) + 𝑓 𝑝 (𝑈 \𝑇 ) = 𝑓 𝑝 (𝑈 ) = 0, so 𝑥 has an inverse.

Thus we conclude that (range(𝑓 𝑝 ), +, 0) is a group. □

Definition 46. Let 𝐺 be the Abelian subgroup of (range(𝑓 𝑝 ), +, 0) generated by 1 = 𝑓 𝑝 ( [𝑛]). Let
𝑚 be the order of 1 in 𝐺 . Thus 𝐺 � Z𝑚 . Note that𝑚 ≤ | range(𝑓 𝑝 ) | ≤ |𝐵 |𝑎2 . We will identify Z𝑚
with 𝐺 (e.g. we allow ourselves to write 1 + 1 = 2, provided𝑚 ≥ 3, where 1, 2 ∈ range(𝑓 𝑝 )).

Define the Abelian group (𝐻, +) = 𝐺𝑎
. We will identify 𝐻 with Z𝑎𝑚 . We will also define 0 to be

the 0 element in 𝐻 as well as 𝐺 .

For any 𝑖 ∈ [𝑎], define 𝑖 ∈ 𝐻 as the unit vector that has a 1 at position 𝑖 . For some tuple

(𝑥1, . . . , 𝑥𝑟 ) ∈ [𝑎]𝑟 , define (𝑥1, . . . , 𝑥𝑟 ) = (𝑥1, . . . , 𝑥𝑟 ) ∈ 𝐻𝑟
. Define 0 to be the zero vector in 𝐻𝑟

as

well.
14

13
This group happens to be Abelian, but this is not needed for the proof.

14
We can see the elements of 𝐻 as frequency vectors modulo𝑚. Indeed, for 𝑥1, . . . , 𝑥𝑛 ∈ [𝑎], 𝑥1 + · · · + 𝑥𝑛 counts the

number of appearances of 1, 2, . . . , 𝑎 modulo𝑚 among 𝑥1, . . . , 𝑥𝑛 . In line with this, the elements of𝐻𝑟
can be seen as tuples

of 𝑟 frequency vectors. Under this view, for 𝑡1, . . . , 𝑡𝑛 ∈ [𝑎]𝑟 , the sum 𝑡1 + · · · + 𝑡𝑛 is a tuple of 𝑟 frequency vectors, where

the 𝑖-th frequency vector counts the frequencies of the elements of [𝑎] among the 𝑖-th elements of the tuples 𝑡1, . . . , 𝑡𝑛 ,

modulo𝑚.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:20 Tamio-Vesa Nakajima and Stanislav Živný

For any relation 𝑅A of A of arity 𝑟 , define𝑀 (𝑅A) to be the subgroup of 𝐻𝑟
generated by 𝑝 − 𝑞

for 𝑝, 𝑞 ∈ 𝑅A. Since 𝐻𝑟
is Abelian,𝑀 (𝑅A) is a normal subgroup.

Lemma 47. Fix some relation 𝑅A of A; suppose it has arity 𝑟 . Let 𝑡 be some tuple of 𝑅A. Define
𝑀 = 𝑀 (𝑅A). Consider any (𝑎1, . . . , 𝑎𝑟 ) ∈ 𝐻𝑟 such that (𝑎1, . . . , 𝑎𝑟 ) ≡ 𝑡 mod 𝑀 . There exists a matrix
(𝑥𝑖 𝑗 ) with 𝑁 ≤ 𝑁𝑑 columns and 𝑟 rows, where 𝑁 ≡ 1 mod𝑚, with elements in [𝑎], such that each
column is a tuple of 𝑅A, and, for each row 𝑖 , we have

𝑁∑︁
𝑗=1

𝑥𝑖 𝑗 = 𝑎𝑖 .

Proof. Note that every element in 𝐻𝑟
has order that divides𝑚 (since 𝐻𝑟 � (𝐺𝑎)𝑟 � (Z𝑎𝑚)𝑟 ).

Thus, since (𝑎1, . . . , 𝑎𝑟 ) ≡ 𝑡 mod 𝑀 , and since𝑀 is generated by 𝑝 − 𝑞 for 𝑝, 𝑞 ∈ 𝑅A, it follows that
there exist coefficients 𝑐𝑝𝑞 ∈ {0, . . . ,𝑚 − 1} for 𝑝, 𝑞 ∈ 𝑅A such that

(𝑎1, . . . , 𝑎𝑟 ) = 𝑡 +
∑︁

𝑝,𝑞∈𝑅A

𝑐𝑝𝑞 (𝑝 − 𝑞) = 𝑡 +
∑︁

𝑝,𝑞∈𝑅A

𝑐𝑝𝑞𝑝 + (𝑚 − 𝑐𝑝𝑞)𝑞. (1)

This indicates the matrix we will use: let (𝑥𝑖 𝑗 ) be a matrix whose first column is 𝑡 , and, for

each 𝑝, 𝑞 ∈ 𝑅A, has 𝑐𝑝𝑞 columns equal to 𝑝 and 𝑚 − 𝑐𝑝𝑞 columns equal to 𝑞. Clearly we use

𝑁 = 1 +𝑚 |𝑅A |2 ≤ 1 + |𝐵 |𝑎2𝑎2𝑟max ≤ 𝑁𝑑 columns, and 𝑁 ≡ 1 mod𝑚. To see why

∑𝑁
𝑗=1 𝑥𝑖 𝑗 = 𝑎𝑖

for each 𝑖 , note that this condition is equivalent to (𝑎1, . . . , 𝑎𝑟 ) =
∑𝑁

𝑗=1 𝑐 𝑗 , where 𝑐1, . . . , 𝑐𝑁 are

the columns of the matrix. But this is precisely Equation (1). Thus we have created the required

matrix. □

Lemma48. Suppose 𝑓 = ℎ◦𝑓 ★. For every𝑁 ≤ 𝑁𝑑 such that𝑁 ≡ 1 mod𝑚, the functionℎ𝑁 : 𝐴𝑁 → 𝐵

defined by

ℎ𝑁 (𝑥1, . . . , 𝑥𝑁 ) = ℎ
(

𝑁∑︁
𝑖=1

𝑥𝑖

)
is a polymorphism of (A,B).

Proof. By assumption, 𝑓 is not 𝑁 -degenerate. Thus there exist disjoint subsets 𝑆1, . . . , 𝑆𝑁 of [𝑛]
where 𝑓 𝑝 (𝑆1) = · · · = 𝑓 𝑝 (𝑆𝑁 ) = 𝑓 𝑝 ( [𝑛]) = 1. Let 𝑇 = [𝑛] \ (𝑆1 ∪ . . . ∪ 𝑆𝑁 ). Note that 𝑆1, . . . , 𝑆𝑁 ,𝑇
form a partition of [𝑛]. Furthermore,

1 = 𝑓 𝑝 ( [𝑛]) = 𝑓 𝑝 (𝑆1) + · · · + 𝑓 𝑝 (𝑆𝑁 ) + 𝑓 𝑝 (𝑇 ) = 𝑁 + 𝑓 𝑝 (𝑇 ) = 1 + 𝑓 𝑝 (𝑇 ).
The last equation holds as 𝑁 ≡ 1 mod𝑚, and addition is done in 𝐺 � Z𝑚 . Thus 𝑓

𝑝 (𝑇 ) = 0.

Let 𝜋 : [𝑛] → [𝑁 + 1] be a function that takes 𝑥 ∈ 𝑆𝑖 to 𝑖 and 𝑥 ∈ 𝑇 to 𝑁 + 1. Consider the

polymorphism 𝑓 𝜋 . Since 𝑓 = ℎ ◦ 𝑓 ★, by the definition of 𝑓 ★ we can see that

𝑓 𝜋 (𝑈1, . . .𝑈𝑎) = ℎ(𝑓 𝑝 (𝜋−1 (𝑈1)), . . . , 𝑓 𝑝 (𝜋−1 (𝑈𝑎))) .
Now consider 𝑓 𝑝 (𝜋−1 (𝑈 )). Note that 𝜋−1 (𝑈 ) = 𝑇𝑈 ∪⋃

𝑖∈𝑈∩[𝑁 ] 𝑆𝑖 , where 𝑇𝑈 = 𝑇 if 𝑁 + 1 ∈ 𝑈 , and

𝑇𝑈 = ∅ otherwise. Thus

𝑓 𝑝 (𝜋−1 (𝑈 )) = 𝑓 𝑝 ©«𝑇𝑈 ∪
⋃

𝑖∈𝑈∩[𝑁 ]
𝑆𝑖

ª®¬ = 𝑓 𝑝 (𝑇𝑈 ) +
∑︁

𝑖∈𝑈∩[𝑁 ]
𝑓 𝑝 (𝑆𝑖 )

= 0 +
∑︁

𝑖∈𝑈∩[𝑁 ]
1 = |𝑈 ∩ [𝑁 ] | mod𝑚,

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.



On the complexity of symmetric vs. functional PCSPs 1:21

where |𝑈 ∩ [𝑁 ] | mod𝑚 is taken as an element of Z𝑚 � 𝐺 . In other words,

𝑓 𝜋 (𝑈1, . . . ,𝑈𝑎) = ℎ( |𝑈1 ∩ [𝑁 ] | mod𝑚, . . . , |𝑈𝑎 ∩ [𝑁 ] | mod𝑚).
Suppose now that 𝑈1, . . . ,𝑈𝑎 are the set family representation of the input vector 𝑥1, . . . , 𝑥𝑁+1
(i.e. 𝑥𝑖 = 𝑗 if and only if 𝑖 ∈ 𝑈 𝑗 ) and consider the sum

∑𝑁
𝑖=1 𝑥𝑖 . The 𝑗-th coordinate of this sum is

the number of 𝑗 ’s that appear in 𝑥1, . . . , 𝑥𝑁 , modulo𝑚, i.e. |𝑈 𝑗 ∩ [𝑁 ] | mod𝑚. Thus we see that the

equation above is equivalent to

𝑓 𝜋 (𝑥1, . . . , 𝑥𝑁+1) = ℎ
(

𝑁∑︁
𝑖=1

𝑥𝑖

)
.

This polymorphism ignores 𝑥𝑁+1, so we find that the function

(𝑥1, . . . , 𝑥𝑁 ) ↦→ ℎ

(
𝑁∑︁
𝑖=1

𝑥𝑖

)
is also a polymorphism. But this is just ℎ𝑁 , which is thus a polymorphism as required. □

We can now prove the main theorem in this subsection.

Proof of Theorem 41. We will show that (A,B) admits a homomorphic sandwich A → E → B,
where E is a relational structure whose domain is 𝐻 , and where each relation will be of the form (i)

𝑐 +𝑀 for some 𝑐 ∈ 𝐻𝑟
and𝑀 ◁𝐻𝑟

, or (ii) empty. By Lemma 10 this implies our desired conclusion.

The homomorphism A → E will be given by the map 𝑔(𝑥) = 𝑥 . The homomorphism E → B will be

given by any function ℎ for which 𝑓 = ℎ ◦ 𝑓 ★. (Recall that such a function exists by Lemma 20.) We

will construct E relation by relation, showing along the way that 𝑔 andℎ are in fact homomorphisms.

Consider some relation 𝑅A of A, of arity 𝑟 , that corresponds to a relation 𝑅B of B, and 𝑅E in E. If
𝑅A is empty then we can simply set 𝑅E to be empty, and then 𝑔 and ℎ map tuples of 𝑅A to tuples of

𝑅E, and then to tuples of 𝑅B vacuously. Thus, suppose 𝑡 = (𝑡1, . . . , 𝑡𝑟 ) is some tuple of 𝑅A, and let

𝑀 = 𝑀 (𝑅A). Then we set 𝑅E = 𝑡 +𝑀 ; in other words, a tuple 𝑥 ∈ 𝐻𝑟
will belong to this relation if

and only if 𝑥 ≡ 𝑡 mod 𝑀 .

We first show that 𝑔 maps 𝑅A to 𝑅E = 𝑡 +𝑀 . Indeed, consider any tuple 𝑥 ∈ 𝑅A. We know that

𝑔(𝑥) = 𝑥 by definition. Thus, 𝑔(𝑥) = 𝑥 = 𝑡 + (𝑥 − 𝑡) ∈ 𝑡 +𝑀 . Thus 𝑔 maps 𝑅A to 𝑡 +𝑀 .

We now show that ℎ maps 𝑅E = 𝑡 +𝑀 to 𝑅B. Consider any tuple (𝑎1, . . . , 𝑎𝑟 ) ∈ 𝑡 +𝑀 . By Lemma 47

there exists some matrix 𝑋 = (𝑥𝑖 𝑗 ) with 𝑁 ≤ 𝑁𝑑 columns and 𝑟 rows, where 𝑁 ≡ 1 mod𝑚, such

that each column is an element of 𝑅A, and for each 𝑖 ∈ [𝑟 ] we have
𝑁∑︁
𝑗=1

𝑥𝑖 𝑗 = 𝑎𝑖 .

Furthermore, by Lemma 48, the function ℎ𝑁 : 𝐴𝑁 → 𝐵 given by

ℎ𝑁 (𝑥1, . . . , 𝑥𝑁 ) = ℎ
(

𝑁∑︁
𝑖=1

𝑥𝑖

)
is a polymorphism. Note now that

(ℎ(𝑎1), . . . , ℎ(𝑎𝑟 )) =
(
ℎ

(
𝑁∑︁
𝑗=1

𝑥1𝑗

)
, . . . , ℎ

(
𝑁∑︁
𝑗=1

𝑥𝑟 𝑗

))
= (ℎ𝑁 (𝑥11, . . . , 𝑥1𝑁 ), . . . , ℎ𝑁 (𝑥𝑟1, . . . , 𝑥𝑟𝑁 )) ∈ 𝑅B .

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:22 Tamio-Vesa Nakajima and Stanislav Živný

The last inclusion holds since the tuple in question is the result of applying ℎ𝑁 , a polymorphism of

(A,B), to the rows of a matrix whose columns are elements in 𝑅A.

Thus we note that A → E → B for some structure E that satisfies the conditions in Lemma 10.

In conclusion, PCSP(A,B) is solved by AIP and is finitely tractable. □

4.2 Proof of Theorem 42
In this section we will prove that PCSP(A,B) is NP-hard if each polymorphism 𝑓 ∈ Pol(A,B) is
𝑘-degenerate for some 𝑘 at most 𝑁𝑑 , or has a hard set of size at most 𝑁ℎ .

Lemma 49. If 𝑓 ∈ Pol(A,B) then 𝑓 cannot have more than |𝐵 |𝑎2 disjoint hard sets.

Proof. Equivalently we show that any family G of more than |𝐵 |𝑎2 disjoint sets contains a non-
hard set. Apply Lemma 16 to G to find a nonempty subfamily {𝐺1, . . .} such that 𝑓 𝑝 (

⋃
𝑖 𝐺𝑖 ) = 𝑓 𝑝 (∅).

Thus 𝐺𝑖 ∈ G is not a hard set. □

Lemma 50. Suppose 𝑓 ∈ Pol
(𝑛) (A,B) and 𝜋 : [𝑛] → [𝑚]. Then (𝑓 𝜋 )𝑝 = 𝑓 𝑝 ◦ 𝜋−1.

Proof. Note that 𝑓𝑖 𝑗 (𝑆) = 𝑓 (𝑇1, . . . ,𝑇𝑎) where 𝑇𝑗 = 𝑆 , 𝑇𝑖 = [𝑛] \ 𝑆 , and all the other inputs are ∅.
Now, (𝑓 𝜋 )𝑖 𝑗 (𝑆) = 𝑓 𝜋 (𝑇1, . . . ,𝑇𝑎) = 𝑓 (𝜋−1 (𝑇1), . . . , 𝜋−1 (𝑇𝑎)) = 𝑓𝑖 𝑗 (𝜋−1 (𝑆)), and so (𝑓 𝜋 )𝑖 𝑗 = 𝑓𝑖 𝑗 ◦𝜋−1

.

Our conclusion follows by applying this fact for each 𝑖, 𝑗 ∈ 𝐴. □

Lemma 51. Suppose 𝑓 ∈ Pol
(𝑛) (A,B) and 𝜋 : [𝑛] → [𝑚]. If 𝑆 is a hard set of 𝑓 then 𝜋 (𝑆) is a hard

set of 𝑓 𝜋 .

Proof. We prove this by contrapositive. Suppose 𝜋 (𝑆) is not a hard set of 𝑓 𝜋 . Then some

𝑇 ⊇ 𝜋 (𝑆) exists such that (𝑓 𝜋 )𝑝 (𝑇 ) = (𝑓 𝜋 )𝑝 (∅). So (𝑓 𝑝 ) (𝜋−1 (𝑇 )) = (𝑓 𝜋 )𝑝 (𝑇 ) = (𝑓 𝜋 )𝑝 (∅) =

(𝑓 𝑝 ) (𝜋−1 (∅)) = 𝑓 𝑝 (∅). Thus 𝑓 𝑝 (𝜋−1 (𝑇 )) = 𝑓 𝑝 (∅), and 𝑆 is not a hard set, as 𝑆 ⊆ 𝜋−1 (𝑇 ). □

Let Mℎ denote the subset of Pol(A,B) whose polymorphisms have hard sets of size at most

𝑁ℎ . LetM𝑥1,...,𝑥𝑘 denote the subset of Pol(A,B) whose polymorphisms are 𝑘-degenerate, yet not

(𝑘 − 1)-degenerate, where 𝑥1, . . . , 𝑥𝑘 ∈ 𝐵𝐴2

are witnesses to this degeneracy. By assumption, and as

no polymorphism is 1-degenerate,

Pol(A,B) = Mℎ ∪
𝑁𝑑⋃
𝑘=2

⋃
𝑥1∈range(𝑓 𝑝 )

. . .
⋃

𝑥𝑘 ∈range(𝑓 𝑝 )
M𝑥1,...,𝑥𝑘 . (2)

Lemma 52. There exists some assignment 𝐼 that takes 𝑓 ∈ M (𝑛)
ℎ

to a subset of [𝑛] of size at most |𝐵 |2𝑎2

such that, whenever 𝑔 ∈ M (𝑚)
ℎ

and 𝑔 = 𝑓 𝜋 for some 𝜋 : [𝑛] → [𝑚], we have that 𝜋 (𝐼 (𝑓 )) ∩ 𝐼 (𝑔) ≠ ∅.

Proof. To construct 𝐼 (𝑓 ), let 𝑆1, . . . be a maximal sequence of disjoint hard sets of 𝑓 of size at

most |𝐵 |𝑎2 , constructed greedily, and then set 𝐼 (𝑓 ) to be the union of these sets. Since there can be

at most |𝐵 |𝑎2 disjoint hard sets by Lemma 49, it follows that |𝐼 (𝑓 ) | ≤ |𝐵 |2𝑎2 .
Consider now any 𝑓 , 𝑔 ∈ Mℎ such that 𝑔 = 𝑓 𝜋 . Note that 𝐼 (𝑓 ) contains within it a hard set 𝑆 of

size at most |𝐵 |𝑎2 . Thus 𝜋 (𝐼 (𝑓 )) ⊇ 𝜋 (𝑆), which is a hard set of size at most |𝐵 |𝑎2 by Lemma 51, and

thus must intersect 𝐼 (𝑔) by maximality. It follows that 𝜋 (𝐼 (𝑓 )) ∩ 𝐼 (𝑔) ≠ ∅. □

Lemma 53. For𝑘 ≥ 2, 𝑥1, . . . , 𝑥𝑘 ∈ range(𝑓 𝑝 ), there exists some assignment 𝐼 that takes 𝑓 ∈ M (𝑛)
𝑥1,...,𝑥𝑘

to a subset of [𝑛] of size at most 𝑘 |𝐵 |𝑎2 such that, whenever 𝑔 ∈ M (𝑚)
𝑥1,...,𝑥𝑘 and 𝑔 = 𝑓 𝜋 for some

𝜋 : [𝑛] → [𝑚] we have that 𝜋 (𝐼 (𝑓 )) ∩ 𝐼 (𝑔) ≠ ∅.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.



On the complexity of symmetric vs. functional PCSPs 1:23

Proof. To construct 𝐼 (𝑓 ), take 𝑆1, . . . , 𝑆𝑘−1 to be disjoint sets such that 𝑓 𝑝 (𝑆𝑖 ) = 𝑥𝑖 , and take 𝑇

to be any set such that 𝑓 (𝑇 ) = 𝑥𝑘 . Such sets exist since 𝑓 is not (𝑘 − 1)-degenerate, and we can take

all of these sets to be of size at most |𝐵 |𝑎2 , by replacing them with the subsets given by Lemma 17.

Let 𝐼 (𝑓 ) be the union of 𝑆1, . . . , 𝑆𝑘−1,𝑇 . Note that |𝐼 (𝑓 ) | ≤ 𝑘 |𝐵 |𝑎
2

.

Consider now any 𝑓 , 𝑔 ∈ M𝑥1,...,𝑥𝑘 such that 𝑔 = 𝑓 𝜋 . Note that 𝐼 (𝑓 ) contains within it disjoint

sets 𝑆1, . . . , 𝑆𝑘−1 such that 𝑓
𝑝 (𝑆𝑖 ) = 𝑥𝑖 , and 𝐼 (𝑔) contains within it a set𝑇 such that 𝑔𝑝 (𝑇 ) = 𝑥𝑘 . Now,

𝑓 𝑝 (𝜋−1 (𝑇 )) = (𝑓 𝜋 )𝑝 (𝑇 ) = 𝑔𝑝 (𝑇 ) = 𝑥𝑘 , and thus by the 𝑘-degeneracy of 𝑓 and the disjointness of

𝑆1, . . . , 𝑆𝑘−1 it follows that 𝜋
−1 (𝑇 ) and 𝑆1, . . . , 𝑆𝑘−1 must intersect. It follows that 𝜋 (𝐼 (𝑓 )) ∩ 𝐼 (𝑔) ≠ ∅,

as required. □

Proof of Theorem 42. We see in (2) that Pol(A,B) is the union of𝑚 = 1 + ∑𝑁𝑑

𝑘=2
( |𝐵 |𝑎2 )

𝑘
sets,

each of which has an assignment 𝐼 that satisfies the condition of Theorem 11 if we take 𝐶 =

max(𝑁𝑑 |𝐵 |𝑎
2

, |𝐵 |2𝑎2 ). Thus PCSP(A,B) is NP-hard. □

5 BLP+AIP = AIP when A has one balanced relation
In this section we prove Theorem 6 and Corollary 7. Recall that we call a relation 𝑅 balanced if

there exists a matrix𝑀 whose columns are tuples of 𝑅, where each tuple of 𝑅 appears as a column

(possibly a multiple times), and where the rows of𝑀 are permutations of each other.

Theorem 6. Let A be any structure with a single relation. If the relation in A is balanced then, for
any B such that A → B, BLP + AIP solves PCSP(A,B) if and only if AIP solves it.

Suppose that 𝐴 = [𝑎], and the relation of A is 𝑅 = 𝑅A. Furthermore suppose that each element in

[𝑎] appears in 𝑅 (otherwise these elements can just be eliminated from 𝐴). Suppose 𝐴 ≠ ∅, 𝑅 ≠ ∅
(otherwise the conclusion is trivially true). We name the columns of the matrix that witness the

balancedness of 𝑅 as 𝑡1, . . . , 𝑡𝑁 ∈ 𝑅.
For any 𝑖 ∈ [𝑎], let 𝑖 be a unit vector in Z𝑎 ; i.e., it has a 1 at position 𝑖 . For any tuple (𝑎1, . . . , 𝑎𝑟 ) ∈

𝐴𝑟
, let (𝑎1, . . . , 𝑎𝑟 ) = (𝑎1, . . . , 𝑎𝑟 ) ∈ (Z𝑎)𝑟 . Let 𝑅 = {𝑡 | 𝑡 ∈ 𝑅} ⊆ (Z𝑎)𝑟 . (We see the elements of Z𝑎

as frequency vectors, and the elements of (Z𝑎)𝑟 as tuples of frequency vectors.) Endow all of these

with additive structure. For any sets of vectors 𝐴, 𝐵, we let 𝐴 + 𝐵 = {𝑥 + 𝑦 | 𝑥 ∈ 𝐴,𝑦 ∈ 𝐵} and
𝐴 − 𝐵 = {𝑥 −𝑦 | 𝑥 ∈ 𝐴,𝑦 ∈ 𝐵}. For any 𝑘 ∈ Z, we denote by 𝑘𝑅 the set of sums of 𝑘 vectors from 𝑅.

Lemma 54. (𝑘 + 1)𝑅 − 𝑘𝑅 + 𝑘∑
𝑖 𝑡𝑖 ⊆ (𝑘𝑁 + 1)𝑅.

Proof. If 𝑥 ∈ (𝑘 + 1)𝑅 − 𝑘𝑅 + 𝑘∑
𝑖 𝑡𝑖 , it can be written as a sum of 𝑘 + 1 vectors from 𝑅, minus 𝑘

vectors from 𝑅, plus 𝑘 copies of each vector 𝑡𝑖 . Since each tuple of 𝑅 appears among 𝑡1, . . . , 𝑡𝑁 , the

last 𝑘𝑁 vectors in the sum above include at least 𝑘 copies of each vector in 𝑅. By removing the 𝑘

subtracted vectors from the 𝑘 copies of each vector from 𝑅, we find that 𝑥 can be written as a sum

of 𝑘 + 1 − 𝑘 + 𝑘𝑁 = 𝑘𝑁 + 1 vectors from 𝑅, i.e. 𝑥 ∈ (𝑘𝑁 + 1)𝑅. □

For any 𝑘 ∈ Z, we define 𝑆𝑘 ⊆ Z𝑎 to be the set of sequences of integers that sum up to 𝑘 , with

non-negative coordinates.

Lemma 55. If (A,B) has a 2-block-symmetric polymorphism 𝑓 of arity 2𝑘 +1 then there exists a func-
tion 𝑔 : 𝑆𝑘 ×𝑆𝑘+1 → 𝐵 such that (𝑔(𝑥1, 𝑦1), . . . , 𝑔(𝑥𝑟 , 𝑦𝑟 )) ∈ 𝑅B for all (𝑥1, . . . , 𝑥𝑟 ) ∈ 𝑘𝑅, (𝑦1, . . . , 𝑦𝑟 ) ∈
(𝑘 + 1)𝑅.
Proof. To compute 𝑔(𝑥,𝑦), create two sequences of elements in [𝑎], of lengths 𝑘 and 𝑘 + 1,

whose frequencies correspond to 𝑥 and 𝑦 respectively (i.e. the sequence for 𝑥 = (𝑥1, . . . , 𝑥𝑎)
has 𝑥𝑖 appearances of 𝑖), and interleave these to create a sequence 𝑎1, . . . 𝑎2𝑘+1. Then 𝑔(𝑥,𝑦) =

𝑓 (𝑎1, . . . , 𝑎2𝑘+1). To see why this function satisfies the required condition, suppose (𝑥1, . . . , 𝑥𝑟 ) ∈ 𝑘𝑅

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:24 Tamio-Vesa Nakajima and Stanislav Živný

and (𝑦1, . . . , 𝑦𝑟 ) ∈ (𝑘 + 1)𝑅. Thus we can, by definition, create matrices 𝑀 and 𝑁 , with 𝑘 and

𝑘 + 1 columns respectively, and 𝑟 rows, where each column is an element of 𝑅, and each row 𝑖 has

frequencies corresponding to 𝑥𝑖 and 𝑦𝑖 respectively. Interleave the columns of these matrices to

create a matrix 𝐴. Apply 𝑓 to the rows of 𝐴. We find that the image of row 𝑖 of 𝐴 is 𝑔(𝑥𝑖 , 𝑦𝑖 ) by
the symmetry of 𝑓 ; furthermore, the images of the rows of 𝐴 must form a tuple of 𝑅B, since 𝑓 is a

polymorphism. This is the desired conclusion. □

Lemma56. Assume that there exists a function 𝑓 : (𝑆𝑘+1−𝑆𝑘 ) → 𝐵 for which (𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑟 )) ∈ 𝑅B

for any 𝑥1, . . . , 𝑥𝑟 ∈ 𝑆𝑘+1 − 𝑆𝑘 with (𝑥1, . . . , 𝑥𝑟 ) ∈ (𝑘 + 1)𝑅 −𝑘𝑅. Then, PCSP(A,B) has an alternating
polymorphism of arity 2𝑘 + 1.

Proof. If such a function exists, then

𝑔(𝑥1, . . . , 𝑥2𝑘+1) = 𝑓 (𝑥1 + 𝑥3 + · · · + 𝑥2𝑘+1 − 𝑥2 − 𝑥4 − · · · − 𝑥2𝑘 )

is the required polymorphism. □

Proof of Theorem 6. By Theorem 8, AIP solves PCSP(A,B) if and only if Pol(A,B) contains
alternating operations of all odd arities. By Theorem 9, BLP + AIP solves PCSP(A,B) if and only if

Pol(A,B) contains 2-block-symmetric operations of all odd arities. As any alternating operation is

2-block-symmetric, it follows that any PCSP solved by AIP is also solved by BLP + AIP.
15
It suffices

to show that 2-block-symmetric operations in Pol(A,B) imply alternating operations.

Fix some natural number 𝑘 ; we will now show that there exists an alternating operation in

Pol(A,B) of arity 2𝑘 + 1. Since Pol(A,B) contains a 2-block-symmetric operation of arity 2𝑘𝑁 + 1,

let 𝑓 : 𝑆𝑘𝑁 ×𝑆𝑘𝑁+1 → 𝐵 be the function given by Lemma 55. We will construct the function required

by Lemma 56 in order to prove the existence of an alternating polymorphism.

Consider the vector 𝑣 =
∑

𝑖 𝑡𝑖 ∈ (Z𝑎)𝑟 . We claim that 𝑣 is a constant vector. To see why this is

the case, observe that one way to compute

∑
𝑖 𝑡𝑖 is to make 𝑡1, . . . , 𝑡𝑁 into the columns of a matrix,

and then to compute the frequencies of each element of [𝑎] in each row. Element 𝑖 of 𝑣 is a tuple,

where component 𝑗 is the number of appearances of 𝑗 in row 𝑖 in this matrix. But, since 𝑡1, . . . , 𝑡𝑁
witness the balancedness of 𝑅, these frequencies are equal for each row. Thus 𝑣 is indeed a constant

vector; suppose that 𝑣 = (𝑐, . . . , 𝑐) for some 𝑐 ∈ 𝑆𝑁 . Note that each element in [𝑎] appears in some

tuple of 𝑅 by assumption, and each tuple of 𝑅 appears in the sum

∑
𝑖 𝑡𝑖 . Thus each coordinate in

𝑐 ∈ Z𝑎 is at least 1.
The function we are interested in is 𝑔 : (𝑆𝑘+1 − 𝑆𝑘 ) → 𝐵, where 𝑔(𝑥) = 𝑓 (𝑘𝑐, 𝑥 + 𝑘𝑐). First note

that these inputs are legal inputs for the function 𝑓 . To see why, note first that 𝑐 ∈ 𝑆𝑁 and thus

𝑘𝑐 ∈ 𝑆𝑘𝑁 . Second, consider 𝑥 + 𝑘𝑐 . As 𝑥 ∈ 𝑆𝑘+1 − 𝑆𝑘 , the components in 𝑥 sum up to 1. Since the

components in 𝑘𝑐 sum up to 𝑘𝑁 , it follows that the components in 𝑥 + 𝑘𝑐 sum up to 1 + 𝑘𝑁 as

required. Furthermore, all the components of 𝑥 + 𝑘𝑐 are non-negative: each component of 𝑥 is at

least −𝑘 , whereas each component of 𝑐 is at least 1, and thus each component of 𝑘𝑐 is at least 𝑘 .

Thus 𝑥 + 𝑘𝑐 ∈ 𝑆𝑘𝑁+1.
Why does 𝑔 satisfy the conditions from Lemma 56? Consider any 𝑥1, . . . , 𝑥𝑟 ∈ 𝑆𝑘+1 − 𝑆𝑘 such that

(𝑥1, . . . , 𝑥𝑟 ) ∈ (𝑘 + 1)𝑅 − 𝑘𝑅. Note that

(𝑘𝑐, . . . , 𝑘𝑐) = 𝑘 (𝑐, . . . , 𝑐) = 𝑘
∑︁
𝑖

𝑡𝑖 ∈ 𝑘𝑁𝑅,

(𝑥1 + 𝑘𝑐, . . . , 𝑥𝑟 + 𝑘𝑐) = (𝑥1, . . . , 𝑥𝑟 ) + 𝑘 (𝑐, . . . , 𝑐) ∈ (𝑘 + 1)𝑅 − 𝑘𝑅 + 𝑘
∑︁
𝑖

𝑡𝑖 ⊆ (𝑘𝑁 + 1)𝑅,

15
This also directly follows from the definitions of the AIP and BLP + AIP algorithms [10].

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.



On the complexity of symmetric vs. functional PCSPs 1:25

due to Lemma 54. Thus, since 𝑓 satisfies the conditions in Lemma 55,

(𝑔(𝑥1), . . . , 𝑔(𝑥𝑟 )) = (𝑓 (𝑘𝑐, 𝑥1 + 𝑘𝑐) , . . . , 𝑓 (𝑘𝑐, 𝑥𝑟 + 𝑘𝑐)) ∈ 𝑅𝐵 .
Thus (𝑔(𝑥1), . . . , 𝑔(𝑥𝑟 )) ∈ 𝑅B, as required. □

Theorem 6 does not generalise to structures with multiple relations (even just two), as the

following examples show.

Example 57. Consider a Boolean symmetric template A that has two balanced (and in fact even

symmetric) relations, namely 𝑅A = {(0)} and 𝑄A = {(0, 1), (1, 0), (1, 1)}, which are unary and

binary, respectively. Then CSP(A) is solved by BLP + AIP, and indeed by BLP, since the symmetric

operation max(𝑥1, . . . , 𝑥𝑛) is a polymorphism for any 𝑛 [6], but not by AIP. This is because A fails

to have any alternating non-unary polymorphisms, even of arity 3: suppose 𝑓 (𝑥,𝑦, 𝑧) is such a

polymorphism. Then 𝑓 (1, 1, 0) = 𝑓 (0, 0, 0) = 𝑓 (0, 1, 1) as 𝑓 is alternating; and 𝑓 (0, 0, 0) = 0 due to

𝑅A. However, due to 𝑄A
, 𝑓 (1, 1, 0) and 𝑓 (0, 1, 1) cannot both be 0. This contradiction implies our

conclusion.

One cannot simply remove the balancedness condition from Theorem 6, as the following example

shows.

Example 58. Let A be a Boolean template with relation 𝑆A = {(0, 0, 1), (0, 1, 0), (0, 1, 1)}. Note that
𝑆A is not balanced. Then CSP(A) is solved by BLP + AIP, and indeed by BLP, since the symmetric

operation max(𝑥1, . . . , 𝑥𝑛) is a polymorphism for any 𝑛 [6], but not by AIP. A fails to have any

alternating polymorphism, even of arity 3, for exactly the same reason as the problem from

Example 57. (The identities that would result from 𝑅A in that example now result from the first

component in each tuple in 𝑆A, and the identities that would result from 𝑄A
in that example now

result from the last two components in each tuple in 𝑆A.)

On the other hand, there are templates that are unbalanced for which AIP and BLP + AIP have

equivalent power, as the following example shows.

Example 59. Consider a Boolean template A that has one relation 𝑃A = {(0, 1)}. Then CSP(A) is
solved byAIP and byBLP + AIP, since the alternating operation𝑥1+· · ·+𝑥𝑛 mod 2 is a polymorphism

of A for every odd 𝑛. This is in spite of the fact that 𝑃A is unbalanced.

We now prove Corollary 7.

Corollary 7. Suppose that 𝐺 is a transitive group of permutations, of order 𝑟 . Further, suppose that
A is a relational structure with one relation, of arity 𝑟 , that is preserved by 𝐺 . Then, for any A → B,
BLP + AIP solves PCSP(A,B) if and only if AIP does.

Proof. Let 𝑅 be the relation of A, of arity 𝑟 . It is sufficient to show that 𝑅 is balanced. Let𝑀 be a

matrix whose columns are the tuples of 𝑅. Suppose that the rows of𝑀 are 𝑟1, . . . , 𝑟𝑛 . We show that

row 𝑖 is a permutation of row 𝑗 , for arbitrary 𝑖, 𝑗 ∈ [𝑟 ].
Represent the elements of𝐺 as permutation matrices. Let 𝜋 ∈ 𝐺 be a permutation (matrix) that

sends 𝑖 to 𝑗 (it exists by transitivity). Consider 𝜋𝑀 . Note that no two columns of 𝜋𝑀 can be equal,

since then two columns of 𝜋−1𝜋𝑀 = 𝑀 would be equal, which is false. Furthermore each column

of 𝜋𝑀 is a tuple of 𝑅, and thus a column of𝑀 , since 𝑅 is preserved by 𝜋 . Thus we see that 𝜋𝑀 can

be seen as𝑀 but with its columns permuted. In other words, for some permutation matrix 𝜎 , we

have 𝜋𝑀 = 𝑀𝜎𝑇 .

Now, let us look at row 𝑗 in 𝜋𝑀 = 𝑀𝜎𝑇 . In 𝜋𝑀 this is 𝑟𝑖 (since 𝜋 sends 𝑖 to 𝑗 ). In 𝑀𝜎𝑇 this is

𝑟 𝑗𝜎
𝑇
. Thus 𝑟𝑖 = 𝑟 𝑗𝜎

𝑇
, i.e. row 𝑖 of𝑀 and row 𝑗 of𝑀 are permutations of each other. We conclude

that 𝑅 is balanced, as required. □

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:26 Tamio-Vesa Nakajima and Stanislav Živný

Corollary 7 applies to fewer structures than Theorem 6, as shown in the next example.

Remark 60. Consider any digraph A with edge relation 𝐸A that is strongly connected but not

symmetric. Then 𝐸A is balanced (cf. Appendix A). On the other hand, the unique transitive permu-

tation group with degree 2 (i.e. the group containing the identity permutation and the permutation

swapping two elements) does not preserve 𝐸A.

6 Conclusion
Our first result classifies certain PCSP(A,B), where A and B are symmetric and B is functional, into

being either NP-hard or solvable in polynomial time. This is the first step towards the following

more general problem.

Problem 61. Classify the complexity of PCSP(A,B) for functional B.

Looking more specifically at the case PCSP(1-in-3,B), we note that our proof of Theorem 1

implies that, for functional B, we have that PCSP(1-in-3,B) is tractable if and only if Eqn𝑚,1 → B
for some𝑚 ≤ |𝐵 |, where Eqn𝑚,1 is a relational structure over {0, . . . ,𝑚−1}with one ternary relation
defined by 𝑥 +𝑦+𝑧 ≡ 1 mod𝑚. By using the Chinese remainder theorem, Eqn𝑚,1 = Eqn

3
𝑝 ,1×Eqn𝑞,1,

where 𝑞 is coprime to 3. Since this latter template contains a constant tuple (namely (𝑥, 𝑥, 𝑥) where
𝑥 is the inverse of 3 modulo 𝑞), we find that, for functional B, PCSP(1-in-3,B) is tractable if and
only if Eqn

3
𝑝 ,1 → B.

Looking at non-functional templates PCSP(1-in-3,B) that are tractable, all the examples the au-

thors are aware of are either tractable for the same reason as a functional template is (i.e. Eqn
3
𝑝 ,1 →

B), or because they include the not-all-equal predicate (i.e. NAE → B). Thus, we pose the following
problem.

Problem 62. Is PCSP(1-in-3,B) tractable if and only if Eqn
3
𝑝 ,1 × NAE → B for some 𝑝?

Problem 62 has a link with the problem of determining the complexity of PCSP(1-in-3,C+
𝑘
),

where C+
𝑘
is a ternary symmetric template on domain [𝑘] which contains tuples of the form

(1, 1, 2), . . . , (𝑘 − 1, 𝑘 − 1, 𝑘), (𝑘, 𝑘, 1), as well as all tuples of three distinct elements (rainbow tuples).

Such templates are called cyclic, with the cycle being 1 → · · · → 𝑘 → 1.

The link is the following: Eqn
3
𝑝 ,1 × NAE is a template containing one cycle of length 2 × 3

𝑝
,

together with certain rainbow tuples — in other words, Eqn
3
𝑝 ,1 × NAE → C+

2×3𝑝 . Likewise, Eqn3𝑝 ,1
has a cycle of length 3

𝑝
and some rainbow tuples, i.e. Eqn

3
𝑝 ,1 → C+

3
𝑝 . That PCSP(1-in-3,C+

𝑘
) is

tractable whenever 𝑘 = 3
𝑝
or 𝑘 = 2 × 3

𝑝
was first observed in [11]. If Problem 62 were answered

in the affirmative then we would have that PCSP(1-in-3,C+
𝑘
) is tractable if and only if 𝑘 = 3

𝑝
or

𝑘 = 2× 3
𝑝
. In particular, this would mean that PCSP(1-in-3,C+

4
) is NP-hard, as conjectured in [5].

16

Answering Problem 62 in the affirmative would resolve Conjecture 5, i.e., PCSP(1-in-3,B)
would be tractable (via AIP) if and only if Eqn

3
𝑝 ,1 × NAE → B. Perhaps determining whether

this equivalence is true might be easier than resolving Conjecture 5; thus we pose the following

problem.

Problem 63. Is PCSP(1-in-3,B) solved by AIP if and only if Eqn
3
𝑝 ,1 × NAE → B for some 𝑝?

There already exists such a characterisation for the power of AIP using an infinite structure [6].

In particular, if we let Z be an infinite structure whose domain is Z, and with a tuple (𝑥,𝑦, 𝑧) in the

relation if and only if 𝑥 +𝑦 + 𝑧 = 1, then PCSP(1-in-3,B) is solved by AIP if and only if Z → B. We

are interested in a finite template of this kind.

16
Our structure C+

4
is called Č+

in [5].

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.



On the complexity of symmetric vs. functional PCSPs 1:27

Turning from problems to algorithms, our second result shows us that, for certain problems of

the form PCSP(A,B) where B need not be functional, and A,B have one relation, AIP and BLP + AIP

have the same power. A natural question is for which other templates is it true?

Problem 64. For which templates (A,B) do AIP and BLP + AIP have the same power?

Equivalently [6, 10], for which templates (A,B) does the existence of 2-block symmetric opera-

tions of all odd arities in Pol(A,B) imply the existence of alternating operations of all odd arities in

Pol(A,B)?

We remark that the recent work [16] does not answer any problem from this section, and the

results from [16] are consistent with positive answers to Problem 62 and Problem 63.

Acknowledgments
We would like to thank the anonymous referees of both the conference [29] and this full version of

the paper. This work was supported by UKRI EP/X024431/1 and a Clarendon Fund Scholarship.

References
[1] Martin Aigner and Günter M. Ziegler. 2009. Proofs from THE BOOK (4th ed.). Springer Publishing Company,

Incorporated, Germany.

[2] Kristina Asimi and Libor Barto. 2021. Finitely Tractable Promise Constraint Satisfaction Problems. In Proc. 46th
International Symposium on Mathematical Foundations of Computer Science (MFCS’21) (LIPIcs, Vol. 202). Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 11:1–11:16. https://doi.org/10.4230/LIPIcs.MFCS.2021.11

[3] Albert Atserias and Víctor Dalmau. 2022. Promise Constraint Satisfaction and Width. In Proc. 2022 ACM-SIAM
Symposium on Discrete Algorithms (SODA’22). SIAM, USA, 1129–1153. https://doi.org/10.1137/1.9781611977073.48

arXiv:2107.05886

[4] Per Austrin, Venkatesan Guruswami, and Johan Håstad. 2017. (2+𝜖)-Sat Is NP-hard. SIAM J. Comput. 46, 5 (2017),
1554–1573. https://doi.org/10.1137/15M1006507

[5] Libor Barto, Diego Battistelli, and Kevin M. Berg. 2021. Symmetric Promise Constraint Satisfaction Problems: Beyond

the Boolean Case. In Proc. 38th International Symposium on Theoretical Aspects of Computer Science (STACS’21) (LIPIcs,
Vol. 187). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 10:1–10:16. https://doi.org/10.4230/

LIPIcs.STACS.2021.10 arXiv:2010.04623

[6] Libor Barto, Jakub Bulín, Andrei A. Krokhin, and Jakub Opršal. 2021. Algebraic approach to promise constraint

satisfaction. J. ACM 68, 4 (2021), 28:1–28:66. https://doi.org/10.1145/3457606 arXiv:1811.00970

[7] Libor Barto and Marcin Kozik. 2022. Combinatorial Gap Theorem and Reductions between Promise CSPs. In Proc.
2022 ACM-SIAM Symposium on Discrete Algorithms (SODA’22). SIAM, USA, 1204–1220. https://doi.org/10.1137/1.

9781611977073.50 arXiv:2107.09423

[8] Joshua Brakensiek and Venkatesan Guruswami. 2021. Promise Constraint Satisfaction: Algebraic Structure and a

Symmetric Boolean Dichotomy. SIAM J. Comput. 50, 6 (2021), 1663–1700. https://doi.org/10.1137/19M128212X

arXiv:1704.01937

[9] Joshua Brakensiek and Venkatesan Guruswami. 2021. The Quest for Strong Inapproximability Results with Perfect

Completeness. ACM Trans. Algorithms 17, 3 (2021), 27:1–27:35. https://doi.org/10.1145/3459668

[10] Joshua Brakensiek, Venkatesan Guruswami, Marcin Wrochna, and Stanislav Živný. 2020. The power of the combined

basic LP and affine relaxation for promise CSPs. SIAM J. Comput. 49 (2020), 1232–1248. Issue 6. https://doi.org/10.
1137/20M1312745 arXiv:1907.04383

[11] Alex Brandts. 2022. Promise Constraint Satisfaction Problems. Ph. D. Dissertation. University of Oxford. https:

//ora.ouls.ox.ac.uk/objects/uuid:5efeff56-d5c8-42e8-9bd2-95243a1367ad

[12] Alex Brandts, Marcin Wrochna, and Stanislav Živný. 2021. The complexity of promise SAT on non-Boolean domains.

ACM Trans. Comput. Theory 13, 4 (2021), 26:1–26:20. https://doi.org/10.1145/3470867 arXiv:1911.09065

[13] Alex Brandts and Stanislav Živný. 2022. Beyond PCSP(1-in-3,NAE). Inf. Comput. 289, Part A (2022), 104954. https:

//doi.org/10.1016/j.ic.2022.104954 arXiv:2104.12800

[14] Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. 2005. Classifying the Complexity of Constraints using Finite

Algebras. SIAM J. Comput. 34, 3 (2005), 720–742. https://doi.org/10.1137/S0097539700376676

[15] Andrei A. Bulatov. 2017. A Dichotomy Theorem for Nonuniform CSPs. In Proc. 58th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’17). IEEE, USA, 319–330. https://doi.org/10.1109/FOCS.2017.37 arXiv:1703.03021

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/10.4230/LIPIcs.MFCS.2021.11
https://doi.org/10.1137/1.9781611977073.48
https://arxiv.org/abs/2107.05886
https://doi.org/10.1137/15M1006507
https://doi.org/10.4230/LIPIcs.STACS.2021.10
https://doi.org/10.4230/LIPIcs.STACS.2021.10
https://arxiv.org/abs/2010.04623
https://doi.org/10.1145/3457606
https://arxiv.org/abs/1811.00970
https://doi.org/10.1137/1.9781611977073.50
https://doi.org/10.1137/1.9781611977073.50
https://arxiv.org/abs/2107.09423
https://doi.org/10.1137/19M128212X
https://arxiv.org/abs/1704.01937
https://doi.org/10.1145/3459668
https://doi.org/10.1137/20M1312745
https://doi.org/10.1137/20M1312745
https://arxiv.org/abs/1907.04383
https://ora.ouls.ox.ac.uk/objects/uuid:5efeff56-d5c8-42e8-9bd2-95243a1367ad
https://ora.ouls.ox.ac.uk/objects/uuid:5efeff56-d5c8-42e8-9bd2-95243a1367ad
https://doi.org/10.1145/3470867
https://arxiv.org/abs/1911.09065
https://doi.org/10.1016/j.ic.2022.104954
https://doi.org/10.1016/j.ic.2022.104954
https://arxiv.org/abs/2104.12800
https://doi.org/10.1137/S0097539700376676
https://doi.org/10.1109/FOCS.2017.37
https://arxiv.org/abs/1703.03021


1:28 Tamio-Vesa Nakajima and Stanislav Živný

[16] Lorenzo Ciardo, Marcin Kozik, Andrei Krokhin, Tamio-Vesa Nakajima, and Stanislav Živný. 2024. 1-in-3 vs. Not-All-

Equal: Dichotomy of a broken promise. arXiv:2302.03456v2

[17] Lorenzo Ciardo and Stanislav Živný. 2023. CLAP: A New Algorithm for Promise CSPs. SIAM J. Comput. 52, 1 (2023),
1–37. https://doi.org/10.1137/22m1476435 arXiv:2107.05018

[18] Irit Dinur, Oded Regev, and Clifford Smyth. 2005. The Hardness of 3-Uniform Hypergraph Coloring. Comb. 25, 5
(2005), 519–535. https://doi.org/10.1007/s00493-005-0032-4

[19] Tomás Feder and Moshe Y. Vardi. 1998. The Computational Structure of Monotone Monadic SNP and Constraint

Satisfaction: A Study through Datalog and Group Theory. SIAM J. Comput. 28, 1 (1998), 57–104. https://doi.org/10.

1137/S0097539794266766

[20] Miron Ficak, Marcin Kozik, Miroslav Olšák, and Szymon Stankiewicz. 2019. Dichotomy for Symmetric Boolean PCSPs.

In Proc. 46th International Colloquium on Automata, Languages, and Programming (ICALP’19), Vol. 132. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 57:1–57:12. https://doi.org/10.4230/LIPIcs.ICALP.2019.57

arXiv:1904.12424

[21] Marek Filakovský, Tamio-Vesa Nakajima, Jakub Opršal, Gianluca Tasinato, and Uli Wagner. 2024. Hardness of Linearly

Ordered 4-Colouring of 3-Colourable 3-Uniform Hypergraphs. In Proc. 41st International Symposium on Theoretical
Aspects of Computer Science (STACS’24) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 289). 34:1–34:19.
https://doi.org/10.4230/LIPIcs.STACS.2024.34 arXiv:2312.12981

[22] M. R. Garey and D. S. Johnson. 1976. The Complexity of Near-Optimal Graph Coloring. J. ACM 23, 1 (1976), 43–49.

https://doi.org/10.1145/321921.321926

[23] Venkatesan Guruswami and Sai Sandeep. 2020. d-To-1 Hardness of Coloring 3-Colorable Graphs with O(1) Colors. In

Proc. 47th International Colloquium on Automata, Languages, and Programming (ICALP’20) (LIPIcs, Vol. 168). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 62:1–62:12. https://doi.org/10.4230/LIPIcs.ICALP.

2020.62

[24] Pavol Hell and Jaroslav Nešetřil. 1990. On the Complexity of 𝐻 -coloring. J. Comb. Theory, Ser. B 48, 1 (1990), 92–110.

https://doi.org/10.1016/0095-8956(90)90132-J

[25] Peter G. Jeavons. 1998. On the Algebraic Structure of Combinatorial Problems. Theor. Comput. Sci. 200, 1-2 (1998),
185–204. https://doi.org/10.1016/S0304-3975(97)00230-2

[26] Andrei Krokhin and Jakub Opršal. 2022. An Invitation to the Promise Constraint Satisfaction Problem. ACM SIGLOG
News 9, 3 (2022), 30–59. https://doi.org/10.1145/3559736.3559740

[27] Andrei A. Krokhin, Jakub Opršal, Marcin Wrochna, and Stanislav Živný. 2023. Topology and adjunction in promise

constraint satisfaction. SIAM J. Comput. 52, 1 (2023), 38–79. https://doi.org/10.1137/20m1378223 arXiv:2003.11351

[28] Tamio-Vesa Nakajima and Stanislav Živný. 2022. Linearly Ordered Colourings of Hypergraphs. ACM Trans. Comput.
Theory 14, 3–4 (2022), 12:1–12:19. https://doi.org/10.1145/3570909 arXiv:2204.05628

[29] Tamio-Vesa Nakajima and Stanislav Živný. 2023. Boolean symmetric vs. functional PCSP dichotomy. In Proc. 38th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS’23). IEEE, 1–12. https://doi.org/10.1109/LICS56636.

2023.10175746

[30] Thomas Schaefer. 1978. The complexity of satisfiability problems. In Proc. 10th Annual ACM Symposium on the Theory
of Computing (STOC’78). ACM, USA, 216–226. https://doi.org/10.1145/800133.804350

[31] Marcin Wrochna. 2022. A note on hardness of promise hypergraph colouring. arXiv:2205.14719

[32] Dmitriy Zhuk. 2020. A Proof of the CSP Dichotomy Conjecture. J. ACM 67, 5 (2020), 30:1–30:78. https://doi.org/10.

1145/3402029 arXiv:1704.01914

A Deferred proof
Lemma 65. A digraph A is balanced if and only if it is a disjoint union of strongly connected
components.

Proof. If the relation of A is balanced, then there exists a collection of tours of A containing

every edge at least once. These exist since the multi-digraph formed by the columns of the matrix

witnessing the balancedness of the relation ofA is Eulerian. Thus, considering the tour that contains

some edge (𝑢, 𝑣), we see that there exists a walk from 𝑣 to 𝑢. It follows that every weakly connected

component of A is strongly connected, or equivalently A is the disjoint union of strongly connected

components.

IfA is the disjoint union of strongly connected components, thenwe create amatrix that witnesses

the balancedness of the relation of A. Consider any edge (𝑢, 𝑣) of A. Take the cycle formed by (𝑢, 𝑣)
together with the path from 𝑣 to 𝑢. Add all of these edges to the matrix as columns. The resulting

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://arxiv.org/abs/2302.03456v2
https://doi.org/10.1137/22m1476435
https://arxiv.org/abs/2107.05018
https://doi.org/10.1007/s00493-005-0032-4
https://doi.org/10.1137/S0097539794266766
https://doi.org/10.1137/S0097539794266766
https://doi.org/10.4230/LIPIcs.ICALP.2019.57
https://arxiv.org/abs/1904.12424
https://doi.org/10.4230/LIPIcs.STACS.2024.34
https://arxiv.org/abs/2312.12981
https://doi.org/10.1145/321921.321926
https://doi.org/10.4230/LIPIcs.ICALP.2020.62
https://doi.org/10.4230/LIPIcs.ICALP.2020.62
https://doi.org/10.1016/0095-8956(90)90132-J
https://doi.org/10.1016/S0304-3975(97)00230-2
https://doi.org/10.1145/3559736.3559740
https://doi.org/10.1137/20m1378223
https://arxiv.org/abs/2003.11351
https://doi.org/10.1145/3570909
https://arxiv.org/abs/2204.05628
https://doi.org/10.1109/LICS56636.2023.10175746
https://doi.org/10.1109/LICS56636.2023.10175746
https://doi.org/10.1145/800133.804350
https://arxiv.org/abs/2205.14719
https://doi.org/10.1145/3402029
https://doi.org/10.1145/3402029
https://arxiv.org/abs/1704.01914


On the complexity of symmetric vs. functional PCSPs 1:29

matrix contains each edge at least once; furthermore every vertex appears the same number of

times in the first and the second row (since the edges form cycles). Thus A is balanced. □

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2024.


	Abstract
	1 Introduction
	2 Preliminaries
	3 Additivity and dependency
	3.1 Additivity
	3.2 Dependency
	3.3 Formal system
	3.4 Super-connectedness

	4 Dichotomy
	4.1 Proof of Theorem 42
	4.2 Proof of Theorem 43

	5 BLP+AIP = AIP when A has one balanced relation
	6 Conclusion
	Acknowledgments
	References
	A Deferred proof

