
A strongly polynomial-time algorithm for weighted
general factors with three feasible degrees
Shuai Shao #Ñ

School of Computer Science and Technology, University of Science and Technology of China, China

Stanislav Živný # Ñ

Department of Computer Science, University of Oxford, UK

Abstract
General factors are a generalization of matchings. Given a graph G with a set π(v) of feasible
degrees, called a degree constraint, for each vertex v of G, the general factor problem is to find a
(spanning) subgraph F of G such that degF (v) ∈ π(v) for every v of G. When all degree constraints
are symmetric ∆-matroids, the problem is solvable in polynomial time. The weighted general factor
problem is to find a general factor of the maximum total weight in an edge-weighted graph. Strongly
polynomial-time algorithms are only known for weighted general factor problems that are reducible
to the weighted matching problem by gadget constructions.

In this paper, we present a strongly polynomial-time algorithm for a type of weighted general
factor problems with real-valued edge weights that is provably not reducible to the weighted matching
problem by gadget constructions. As an application, we obtain a strongly polynomial-time algorithm
for the terminal backup problem by reducing it to the weighted general factor problem.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases matchings, factors, edge constraint satisfaction problems, terminal backup
problem, delta matroids

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.57

Related Version Full Version: https://arxiv.org/abs/2301.11761

Funding The research leading to these results has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 714532). This research was also funded by UKRI EP/X024431/1. All data is provided
in full in the results section of this paper. Part of the work was done while the first author was a
postdoctoral research associate at the University of Oxford.

1 Introduction

A matching in an undirected graph is a subset of the edges that have no vertices in common,
and it is perfect if its edges cover all vertices of the graph. Graph matching is one of the
most studied problems both in graph theory and combinatorial optimization, with beautiful
structural results and efficient algorithms described, e.g., in the monograph of Lovász and
Plummer [38] and in relevant chapters of standard textbooks [43, 34]. In particular, the
weighted (perfect) matching problem is to find a (perfect) matching of the maximum total
weight for a given graph of which each edge is assigned a weight. This problem can be solved
in polynomial time by the celebrated Edmonds’ blossom algorithm [14, 15]. Since then, a
number of more efficient algorithms have been developed [20, 35, 31, 8, 22, 27, 24, 23, 26, 29].
Table III of [10] gives a detailed review of these algorithms.

The f -factor problem is a generalization of the perfect matching problem in which one is
given a non-negative integer f(v) for each vertex v ∈ V of G = (V, E). The task is to find a

© Shuai Shao and Stanislav Živný;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 57; pp. 57:1–57:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shao10@ustc.edu.cn
http://staff.ustc.edu.cn/~wwwucuc/
https://orcid.org/0000-0003-0935-2929
mailto:standa.zivny@cs.ox.ac.uk
https://www.cs.ox.ac.uk/standa.zivny/
https://orcid.org/0000-0002-0263-159X
https://doi.org/10.4230/LIPIcs.ISAAC.2023.57
https://arxiv.org/abs/2301.11761
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

57:2 Weighted general factors with three feasible degrees

(spanning) subgraph F = (VF , EF) of G such that degF (v) = f(v) for every v ∈ V .1 The
case f(v) = 1 for every v ∈ V is the perfect matching problem. This problem, as well as the
weighted version, can be solved efficiently by a gadget reduction to the perfect matching
problem [16]. In addition, Tutte gave a characterization of graphs having an f -factor [47],
which generalizes his characterization theorem for perfect matchings [46]. Subsequently, the
study of graph factors has attracted much attention with many variants of graph factors, e.g.,
b-matchings, [a, b]-factors, (g, f)-factors, parity (g, f)-factors, and anti-factors introduced,
and various types of characterization theorems proved for the existence of such factors. We
refer the reader to the book [1] and the survey [40] for a comprehensive treatment of the
developments on the topic of graph factors.

In the early 1970s, Lovász introduced a generalization of the above factor problems [36, 37],
for which we will need a few definitions. For any nonnegative integer n, let [n] denote
{0, 1, . . . , n}. A degree constraint D of arity n is a subset of [n].2 We say that a degree
constraint D has a gap of length k if there exists p ∈ D such that p + 1, . . . , p + k /∈ D

and p + k + 1 ∈ D. An instance of the general factor problem (GFP) [36, 37] is given by a
graph G = (V, E) and a mapping π that maps every vertex v ∈ V to a degree constraint
π(v) ⊆ [degG(v)] of arity degG(v). The task is to find a subgraph, if one exists, F of G

such that degF (v) ∈ π(v) for every v ∈ V . The case π(v) = {0, 1} for every v ∈ V is the
matching problem, and the case π(v) = {1} for every v ∈ V is the perfect matching problem.
Cornuéjols showed that the GFP is solvable in polynomial time if each degree constraint has
gaps of length at most 1 [7]. When a degree constraint having a gap of length at least 2
occurs, the GFP is NP-complete [37, 7] except for the case when all constraints are either
0-valid or 1-valid. A degree constraint D of arity k is 0-valid if 0 ∈ D, and 1-valid if k ∈ D.
When all constraints are 0-valid, the empty graph is a factor. When all constraints are
1-valid, the underlying graph is a factor of itself. In both cases, the GFP is trivially tractable.

In this paper, we consider the weighted general factor problem (WGFP) where each edge
is assigned a real-valued weight and the task is to find a general factor of the maximum total
weight. We suppose that each degree constraint has gaps of length at most 1 for which the
unweighted GFP is known to be polynomial-time solvable. Some cases of the WGFP are
reducible to the weighted matching or perfect matching problem by gadget constructions,
and hence are polynomial-time solvable. In these cases, the degree constraints are called
matching-realizable (see Definition 18). For instance, the degree constraint D = [b] where
b > 0, for b-matchings is matching realizable [48]. The weighted b-matching problem is
interesting in its own right in combinatorial optimization and has been well studied with
many elaborate algorithms developed [41, 39, 21, 3, 25]. Besides b-matchings, Cornuéjols
showed that the parity interval constraint D = {g, g + 2, . . . , f} where f ≥ g ≥ 0 and
f ≡ g mod 2, is matching realizable [7], and Szabó showed that the interval constraint
D = {g, g + 1, . . . , f} where f ≥ g ≥ 0, for (g, f)-factors is matching realizable [45]. Thus,
the WGFP where each degree constraint is an interval or a parity interval is reducible to
the weighted matching problem (with some vertices required to have degree exactly 1) and
hence solvable in polynomial-time by Edmonds’ algorithm, although Szabó gave a different
algorithm for this problem [45]. By reducing the WGFP with interval and parity interval
constraints to the weighted (g, f)-factor problem, a faster algorithm was obtained in [11]

1 In graph theory, a graph factor is usually a spanning subgraph. Here, without causing ambiguity, we
allow F to be an arbitrary subgraph including the empty graph and we adapt the convention that
degF (v) = 0 if v ∈ V \ VF .

2 We always associate a degree constraint with an arity. Two degree constraints are different if they have
different arities although they may be the same set of integers.

S. Shao and S. Živný 57:3

based on Gabow’s algorithm [21].
In [45], Szabó further conjectured that the WGFP is solvable in polynomial time without

requiring each degree constraint should be an interval or a parity interval, as long as each
degree constraint has gaps of length at most 1. To prove the conjecture, a natural question
is then the following: Are there other WGFPs that are polynomial-time solvable by a gadget
reduction to weighted matchings? In other words, are there other degree constraints that are
matching realizable? In this paper, we show that the answer is no.

▶ Theorem 1. A degree constraint with gaps of length at most 1 is matching realizable if
and only if it is an interval or a parity interval.

Previous results beyond matchings realizable degree constraints With the answer
to the above question being negative, new algorithms need to be devised for the WGFP with
degree constraints that are not intervals or parity intervals. Unlike the weighted matching
problem and the weighted b-matching problem for which various types of algorithms have been
developed, only a few algorithms have been presented for the more general and challenging
WGFP: For the cardinality version of WGFP, i.e., the WGFP where each edge is assigned
weight 1, Dudycz and Paluch introduced a polynomial-time algorithm for this problem with
degree constrains having gaps of length at most 1, which leads to a pseudo-polynomial-time
algorithm for the WGFP with non-negative integral edge weights [11].

The algorithm in [11] is based on a structural result showing that if a factor is not optimal,
then a factor of larger weight can be found by a local search, which can be done in polynomial
time. However, it is not clear how much larger the weight of the new factor is. In order to
get an optimal factor, the algorithm needs to repeat local searches iteratively until no better
factors can be found, and the number of local searches is bounded by the total edge weight,
which makes the algorithm pseudo-polynomial-time. Later, in an updated version [12], by
carefully assigning edge weights, the algorithm was improved to be weakly polynomial-time
with a running time O(log Wmn6), where W is the largest edge weight, m is the number of
edges and n is the number of vertices. Later, Kobayash extended the algorithm to a more
general setting called jump system intersections [33].
Our main contribution Independently of [12], in this paper, we make a step towards
a strongly polynomial-time algorithm for the WGPF. Let p ≥ 0 be an arbitrary integer.
Consider the following two types of degree constraints {p, p + 1, p + 3} and {p, p + 2, p + 3} (of
arbitrary arity). We will call them type-1 and type-2 respectively. These are the “smallest”
degree constraints that are not matching realizable.

▶ Theorem 2. There is a strongly polynomial-time algorithm for the WGFP with real-valued
edge weights where each degree constraint is an interval, a parity interval, a type-1, or a
type-2 (of arbitrary arities). The algorithm runs in time O(n6) for a graph with n vertices.

The requirement of degree constraints in our result may look overly specific. However,
the scope of our algorithm is not narrow. First, our result implies a complexity dichotomy for
the WGFP on all subcubic graphs (see the following Theorem 3), which for many is a large
and interesting class of graphs. More importantly, there are interesting problems arising from
applied areas that are encompassed by the WGPF with constraints considered in this paper.

For instance, the terminal backup problem from network design is the following problem.
Given a graph consisting of terminal nodes, non-terminal nodes, and edges with non-negative
costs. The goal is to find a subgraph with the minimum total cost such that each terminal node
is connected to at least one other terminal node (for the purpose of backup in applications).
It is known that an optimal solution of the terminal backup problem consists of edge-disjoint

ISAAC 2023

57:4 Weighted general factors with three feasible degrees

paths containing 2 terminals and stars containing 3 terminals [49]. In other words, in an
optimal subgraph of the terminal backup problem, each terminal node has degree 1 and each
non-terminal node has degree 0, 2 or 3. Thus, the terminal backup problem can be expressed
as a WGFP with degree constraints {1} and {0, 2, 3} (both of arbitrary arities). A weakly
polynomial-time algorithm was given for the terminal backup problem in [2]. Our result
gives a strongly polynomial-time algorithm for this problem.

In addition, our algorithm gives a tractability result for the WGFP with degree constraints
that are provably not matching realizable, thus going beyond existing algorithms. The
algorithm is a recursive algorithm, reducing the problem to a smaller sub-problem of itself
by fixing the parity of degree constraints on vertices. Its correctness is based on a delicate
structural result, which is stronger than that of [12].3 Equipped with this result, our algorithm
can directly find an optimal factor (not just a better one) of an instance of a larger size
by performing only one local search from an optimal factor of a smaller instance. Here,
the important part is not how to find a better factor by local search (the main result of
[12]) but rather how to ensure that the better factor obtained by only one local search is
actually optimal under certain assumptions. This is the key to making our algorithm strongly
polynomial. In addition, as a by-product, we give a simple proof of the result of [12] for the
special case of WGFP with interval, parity interval, type-1 and type-2 degree constraints by
reducing the problem to WGFP on subcubic graphs and utilizing the equivalence between
2-vertex connectivity and 2-edge connectivity of subcubic graphs.
Relation with (edge) constraint satisfaction problems The graph factor problem is
encompassed by a special case of the Boolean constraint satisfaction problem (CSP), called
edge-CSP, in which every variable appears in exactly two constraints [30, 17]. When every
constraint is symmetric (i.e, the value of the constraint only depends on the Hamming weight
of its input), the Boolean edge-CSP is a graph factor problem.

For general Boolean edge-CSPs, Feder showed that the problem is NP-complete if a
constraint that is not a ∆-matroid occurs, except for those that are tractable by Schaefer’s
dichotomy theorem for Boolean CSPs [42]. In a subsequent line of work [9, 28, 18, 13],
tractability of Boolean edge-CSPs has been established for special classes of ∆-matroids,
most recently for even ∆-matroids [32]. A complete complexity classification of Boolean edge-
CSPs is still open with the conjecture that all ∆-matroids are tractable. A degree constraint
(i.e., a symmetric constraint) is a ∆-matroid if and only if it has gaps of length at most 1.
Thus, the above conjecture holds for symmetric Boolean edge-CSPs by Cornuéjols’ result on
the general factor problem [7]. A complexity classification for weighted Boolean edge-CSPs
is certainly a more challenging goal: The complexity of weighted Boolean edge-CSPs with
even ∆-matroids as constraints is still open. Our result in Theorem 2 gives a tractability
result for weighted Boolean edge-CSPs with certain symmetric ∆-matroids as constraints.
Combining our main result with known results on Boolean valued CSPs [6], we obtain a
complexity dichotomy for weighted Boolean edge-CSPs with symmetric constraints of arity
no more than 3, i.e., the WGFP on subcubic graphs.

Let D be a degree constraint of arity at most 3. If D ̸= {0, 3}, then D is an interval, a
parity interval, a type-1, or a type-2. Thus, if the constraint {0, 3} (of arity 3) does not occur,
then the WGFP is strongly polynomial-time solvable by our main theorem. Otherwise, the
constraint {0, 3} occurs. In this case, for a vertex v labeled by {0, 3}, the three edges incident

3 The result in [12] holds for the more general WGFP with all degree constraints having gaps of length
at most 1, while our result only works for the WGFP with interval, parity interval, type-1 and type-2
degree constraints.

S. Shao and S. Živný 57:5

to it must take the same assignments in a feasible factor (i.e., the three edges are all either
present or absent in any factor). Thus, the vertex v can be viewed as a Boolean variable
and it appears in three other degree constraints connected to it. By viewing all vertices with
{0, 3} as variables appearing three times and the other edges as variables appearing twice,
the WGFP becomes a special case of valued CSPs where some variables appear three times
and the other variables appear twice. It is known that once variables are allowed to appear
three times in a CSP, then they can appear arbitrarily many times [9]. Thus, the WGPF
with {0, 3} occurring is equivalent to a standard (non-edge) CSP [19]. By the dichotomy
theorem for valued CSPs [6], one can check that the problem is tractable if and only if for
every degree constraint D of arity k ≤ 3, D ⊆ {0, k}. Thus, we have the following complexity
dichotomy.

▶ Theorem 3. The WGFP on subcubic graphs is strongly polynomial-time solvable if
1. the degree constraint {0, 3} of arity 3 does not occur,
2. or for every degree constraint D of arity k ≤ 3, D ⊆ {0, k}.
Otherwise, the problem is NP-hard.

Organization In Section 2, we present basic definitions and notation. In Section 3, we
describe our algorithm and give a structural result for the WGFP that ensures the correctness
and the strongly polynomial-time running time of our algorithm. In Section 4, we introduce
basic augmenting subgraphs as an analogy of augmenting paths for weighed matchings and
give a proof of the structural result. The proof is based on a result regarding the existence
of certain basic factors for subcubic graphs, for which we give a proof sketch in Section 5.
Finally, we discuss matching realizability and its relation with ∆-matroids in Appendix A.
All omitted proofs can be found in the full version [44].

2 Preliminaries

Let D be a (possibly infinite) set of degree constraints.

▶ Definition 4. The weighted general factor problem parameterized by D, denoted by
WGFP(D), is the following computational problem. An instance is a triple Ω = (G, π, ω),
where G = (V, E) is a graph, π : V → D assigns to every v ∈ V a degree constraint Dv ∈ D

of arity degG(v), and ω : E → R assigns to every e ∈ E a real-valued weight w(e) ∈ R. The
task is to find, if one exists, a general factor F of G such that the total weight of edges in F

is maximized.
The general factor problem GFP(D) is the decision version of WGFP(D); i.e., deciding

whether a general factor exists or not.

Suppose that Ω = (G, π, ω) is a WGFP instance. If F is a general factor of G under π,
then we say that F is a factor of Ω, denoted by F ∈ Ω. In terms of this inclusion relation,
Ω can be viewed as a set of subgraphs of G. We extend the edge weight function ω to
subgraphs of G. For a subgraph H of G, its weight ω(H) is

∑
e∈E(H) ω(e) (ω(H) = 0 if H

is the empty graph). If H contains an isolated vertex v, then ω(H) = ω(H ′), where H ′ is
the graph obtained from H by removing v. Moreover, H ∈ Ω if and only if H ′ ∈ Ω. In the
following, without other specification, we always assume that a factor does not contain any
isolated vertices. The optimal value of Ω, denoted by Opt(Ω), is maxF ∈Ω ω(F). We define
Opt(Ω) = −∞ if Ω has no factor. A factor F of Ω is optimal in Ω if ω(F) = Opt(Ω).

ISAAC 2023

57:6 Weighted general factors with three feasible degrees

For a WGFP instance Ω′ = (G′, π′, ω′), where G′ ⊆ G4 and ω′ is the restriction of ω

on the edges of G′, we say Ω′ is a sub-instance of Ω, denoted by Ω′ ⊆ Ω, if F ∈ Ω for
every F ∈ Ω′. In particular, Ω′ is a subset of Ω by viewing them as two sets of subgraphs
of G. If Ω′ ⊆ Ω, then Opt(Ω′) ≤ Opt(Ω). For two WGFP instances Ω1 = (G, π1, ω) and
Ω2 = (G, π2, ω), we use Ω1 ∪ Ω2 to denote the union of factors of these two instances, i.e.,
Ω1 ∪ Ω2 = {F ⊆ G | F ∈ Ω1 or F ∈ Ω2}, and Ω1 ∩ Ω2 to denote the intersection, i.e.,
Ω1 ∩ Ω2 = {F ⊆ G | F ∈ Ω1 and F ∈ Ω2}. Note that Ω1 ∪ Ω2 and Ω1 ∩ Ω2 are sets of
subgraphs of G and may not define WGFP instances on G.

We use G1 and G2 to denote the set of degree constraints that are intervals and parity
intervals, respectively, and T1 and T2 to denote the set of degree constraints that are type-1
and type-2, respectively. Let G = G1 ∪ G2 and T = T1 ∪ T2. In this paper, we study the
problem WGFP(G ∪ T).

Let H1 = (V1, E1) and H2 = (V2, E2) be two subgraphs of G. The symmetric difference
graph H1∆H2 is the induced subgraph of G induced by the edge set E1∆E2. Note that there
are no isolated vertices in a symmetric difference graph. When E1 ∩E2 = ∅, we may write
H1∆H2 as H1 ∪H2. When E2 ⊆ E1, we may write H1∆H2 as H1\H2. A subcubic graph is
defined to be a graph where every vertex has degree 1, 2 or 3. Unless stated otherwise, we
use VG and EG to denote the vertex set and the edge set of a graph G, respectively.

3 Algorithm

We give a recursive algorithm for the problem WGFP(G ∪ T), using the problems WGFP(G)
and the decision problem GFP(G ∪ T) as oracles.

Given an instance Ω = (G, π, ω) of WGFP(G ∪ T), we define the following sub-instances
of Ω = (G, π, ω) that will be used in the recursion. Recall that VG denotes the vertex set of
the graph G. Let TΩ denote the set {v ∈ VG | π(v) ∈ T}. (We may omit the subscript Ω of
TΩ when it is clear from the context.)

For every vertex v ∈ TΩ, we split the instance Ω in two by splitting the degree constraint
π(v) in two parity intervals. More precisely, we define

D0
v = {pv + 1, pv + 3} and D1

v = {pv} if π(v) = {pv, pv + 1, pv + 3} ∈ T1;
D0

v = {pv, pv + 2} and D1
v = {pv + 3} if π(v) = {pv, pv + 2, pv + 3} ∈ T2.

We have D0
v, D1

v ∈ G2. For i ∈ {0, 1} and v ∈ TΩ, we define Ωi
v = (G, πi

v, ω) to be the
sub-instance of Ω where πi

v(x) = π(x) for every x ∈ VG\{v} and πi
v(v) = Di

v. Then, for
every v ∈ TΩ, we have Ω0

v ∩ Ω1
v = ∅ and Ω0

v ∪ Ω1
v = Ω. Moreover, TΩ0

v
= TΩ1

v
= TΩ\{v}.

Let F be a factor of Ω. Similarly to above, one can partition Ω into 2|TΩ| many sub-
instances according to F such that each one is an instance of WGFP(G) – for each v ∈ TΩ, we
choose one of the two splits of π(v) as above. (We note that the algorithm will not consider
all exponentially many sub-instances.) In detail, for every vertex v ∈ TΩ, we define DF

v = Di
v

where degF (v) ∈ Di
v as follows:

DF
v = {pv} if π(v) = {pv, pv + 1, pv + 3} ∈ T1 and degF (v) = pv,

DF
v = {pv + 1, pv + 3} if π(v) = {pv, pv + 1, pv + 3} ∈ T1 and degF (v) ̸= pv;

DF
v = {pv + 3} if π(v) = {pv, pv + 2, pv + 3} ∈ T2 and degF (v) = pv + 3,

DF
v = {pv, pv + 2} if π(v) = {pv, pv + 2, pv + 3} ∈ T2 and degF (v) ̸= pv + 3.

4 We use the term “subgraph” and notation G′ ⊆ G throughout for the standard meaning of a “normal”
subgraph i.e., if G = (V ′, E′) and G = (V, E) then G′ ⊆ G means V ′ ⊆ V and E′ ⊆ E.

S. Shao and S. Živný 57:7

By definition, degF (v) ∈ DF
v ⊆ π(v) and DF

v ∈ G2. In fact, DF
v is the maximal set such

that degF (v) ∈ DF
v ⊆ π(v) and DF

v ∈ G2. One can also check that for every v ∈ TΩ,
π(v)\DF

v ∈ G2, and moreover for every p ∈ DF
v and q ∈ π(v)\DF

v , p ̸≡ q mod 2.
For every W ⊆ TΩ, we define ΩF

W = (G, πF
W , ω) to be the sub-instance of Ω where

πF
W (v) = π(v)\DF

v for v ∈W , πF
W (v) = DF

v for v ∈ TΩ\W , and πF
W (v) = π(v) for v ∈ V \TΩ.

Then for every W , ΩF
W is an instance of WGFP(G). Moreover, we have ∪W ⊆T ΩF

W = Ω and
ΩF

W1
∩ ΩF

W2
= ∅ for every W1 ̸= W2. Thus, {ΩF

W }W ⊆TΩ is a partition of Ω (viewed as a set
of subgraphs of G). When W = ∅, we write ΩF

W as ΩF .
Our algorithm is given in Algorithm 1.

Algorithm 1 Finding an optimal factor for an instance of WGFP(G ∪ T)

1 Function Decision:
Input : An instance Ω = (G, π, ω) of WGFP(G ∪ T).
Output : A factor of Ω, or “No” if Ω has no factor.

2 Function Optimization:
Input : An instance Ω = (G, π, ω) of WGFP(G).
Output : An optimal factor of Ω, or “No” if Ω has no factor.

3 Function Main:
Input : An instance Ω = (G, π, ω) of WGFP(G ∪ T).
Output : An optimal factor F ∈ Ω, or “No” if Ω has no factor.

4 T ← {v ∈ V | π(v) ∈ T};
5 if T is the empty set then
6 return Optimization (Ω);
7 else
8 Arbitrarily pick u ∈ T ;
9 if Decision (Ω0

u) returns “No” then
10 return Main (Ω1

u);
11 else
12 F opt ← Main (Ω0

u);
13 foreach v ∈ T do
14 // Elements of T can be traversed in an arbitrary order.
15 W ← {u} ∪ {v};
16 if Optimization(ΩF opt

W) ̸= “No” then F ′ ← Optimization(ΩF opt

W);
17 if ω(F ′) > ω(F opt) then F opt ← F ′;
18 end
19 return F opt;
20 end
21 end

The key that makes our algorithm running strongly polynomial-time is the following
structural result (Theorem 5) for the problem WGFP(G ∪ T). It says that given an optimal
factor F of Ω0

u for some u ∈ TΩ, if F is not optimal in Ω, then we can directly find an optimal
factor of Ω by searching at most n sub-instances of Ω which are in WGFP(G). Note that
the number of searches is independent of the edge weights. Thus, the problem of finding an
optimal factor in Ω can be reduced to finding an optimal factor in Ω0

u, where there is one
fewer vertex u with constraints in T. By recursively reducing an instance to another with
fewer vertices with constraints in T, we eventually get an instance of WGFP(G) which can

ISAAC 2023

57:8 Weighted general factors with three feasible degrees

be solved in polynomial-time. This leads to a strongly polynomial-time algorithm for finding
an optimal factor.

▶ Theorem 5. Suppose that Ω = (G, π, ω) is an instance of WGFP(G ∪ T), F is a factor of
Ω and F is optimal in Ω0

u for some u ∈ TΩ. Then a factor F ′ is optimal in Ω if and only if
ω(F ′) ≥ ω(F) and ω(F ′) ≥ Opt(ΩF

W) for every W where u ∈W ⊆ TΩ and |W | = 1 or 2.
In other words, if F is not optimal in Ω, then there is an optimal factor of Ω which

belongs to ΩF
W for some W where u ∈W ⊆ TΩ and |W | = 1 or |W | = 2.

▶ Remark 6. This result is stronger than the main result (Theorem 2) of [12], and it is not
simply implied by [12]. To clarify this, we give a simple proof outline of Theorem 5 here.

In order to prove Theorem 5, it suffices to prove the direction that if ω(F ′) ≥ ω(F) and
ω(F ′) ≥ Opt(ΩF

W) for every W where u ∈ W ⊆ TΩ and |W | = 1 or 2, then F ′ is optimal
in Ω. We prove this by contradiction. Suppose that F ′ is not optimal in Ω, and F ∗ is an
optimal factor of Ω. Then, ω(F ∗) > ω(F ′) ≥ Opt(ΩF

W) for every W ⊆ TΩ where |W | ≤ 2.
Also, ω(F ∗) /∈ Ω0

u since ω(F ∗) > ω(F) = Opt(Ω0
u). Thus, degF ∗(u) ̸≡ degF (u) mod 2.

By [12], a canonical path M ⊆ F ∆F ∗ with positive weight5 can be found, and then F ∆M

is a factor of Ω with larger weight than F and F ∆M ∈ ΩF
W for some W ⊆ TΩ where |W | ≤ 2.

However, this does not lead to a contradiction. To get a contradiction, we need to show
that the positive weighted canonical path M (a basic augmenting subgraph) further satisfies
degM (u) ≡ 0 mod 2. Then, degF ∆M (u) ≡ degF (u) mod 2. Thus, F∆M is a factor with
larger weight than F and F∆M ∈ Ω0

u, which contradicts with F being optimal in Ω0
u.

The existence of a basic augmenting subgraph M satisfying degM (u) ≡ 0 mod 2 is
formally stated in the second property of Lemma 12. The main technical part of the paper
(Section 5.2 of the full paper) is devoted to prove it. In Section 5 of this short version, we
give an example to illustrate the proof ideas. The existence of such a basic augmenting
subgraph is highly non-trivial. In fact, it does not hold anymore after a subtle change of
the condition “F is optimal in Ω0

u” to “F is optimal in Ω1
u” for some u ∈ TΩ. We give the

following example (see Figure 1) to show this.

Figure 1 An example that violates Theorem 5 when F is optimal in Ω1
u instead of Ω0

u

In this instance, π(u) = π(v) = π(t) = {0, 1, 3} (denoted by hollow nodes) and π(s) =
{0, 2, 3} (denoted by the solid node), and ω(C1) = ω(pvs) = ω(psu) = ω(p′

su) = ω(put) =
ω(C2) = 1. Inside the cycles C1 and C2, and the paths pvs, psu, put, and p′

su, there are
other vertices of degree 2 with the degree constraint {0, 2} so that the graph G is simple.
We omit these vertices of degree 2 in Figure 1. In this case, TΩ = {u, v, s, t}. Consider the
sub-instance Ω1

u = (G, π1
u, ω). We have π1

u(u) = D1
u = {0} since π(u) = {0, 1, 3}. Then, the

only factor F of Ω1
u is the empty graph (assuming there are no isolated vertices in factors),

and F is not optimal in Ω. Also, the only optimal factor of Ω is the graph G and G ∈ ΩF
TΩ

where |TΩ| = 4. Clearly, degG(u) ̸≡ degF (u) mod 2. One can check that for any factor F ′ of
Ω with larger weight than F , degF ′(u) ̸≡ degF (u) mod 2. In other words, there is no basic
augmenting subgraph M such that degM (u) ≡ 0 mod 2. Moreover, one can check that in

5 See definition 3 of [12]. They are defined as basic augmenting subgraphs (Definition 11) in this paper.

S. Shao and S. Živný 57:9

this case, Theorem 5 also does not hold. In other words, the existence of a basic augmenting
subgraph satisfying degM (u) ≡ 0 mod 2 is crucial for the correctness of Theorem 5.

Using Theorem 5, we now prove that Algorithm 1 is correct.

▶ Lemma 7. Given an instance Ω = (G, π, ω) of WGFP(G,T), Algorithm 1 returns either
an optimal factor of Ω, or “No” if Ω has no factor.

Proof. Recall that for an instance Ω = (G, π, ω), we define TΩ = {v ∈ VG | π(v) ∈ T} where
VG is the vertex set of G . We prove the correctness by induction on the |TΩ|.

If |TΩ| = 0, Ω is an instance of WGFP(G). Algorithm 1 simply returns Optimization
(Ω). By the definition of the function Optimization, the output is correct.

Suppose that Algorithm 1 returns correct results for all instances Ω′ of WGFP(G,T)
where |TΩ′ | = k. We consider an instance Ω of WGFP(G,T) where |TΩ| = k + 1. Algorithm 1
first calls the function Decision (Ω0

u) for some arbitrary u ∈ T .
We first consider the case that Decision (Ω0

u) returns “No”. By the definition, Ω0
u has no

factor. Moreover, since Ω = Ω0
u ∪ Ω1

u, we have F ∈ Ω if and only if F ∈ Ω1
u. Then, a factor

F ∈ Ω1
u is optimal in Ω if and only if it is optimal in Ω1

u. Note that Ω1
u is an instance of

WGFP(G,T) where |TΩ1
u
| = k. By the induction hypothesis, Algorithm 1 returns a correct

result Main (Ω1
u) for the instance Ω1

u, which is also a correct result for the instance Ω.
Now, we consider the case that Decision (Ω0

u) returns a factor of Ω0
u. Then, Main (Ω0

u)
returns an optimal factor F of Ω0

u. After the loop (lines 13 to 17) in Algorithm 1, we get a
factor F opt of Ω such that ω(F opt) ≥ Opt(ΩF

W) for every u ∈W ⊆ TΩ where |W | = 1 (when
u = v) or |W | = 2 (when u ̸= v) and ω(F opt) ≥ ω(F). By Theorem 5, F opt is an optimal
factor of Ω. Thus, Algorithm 1 returns a correct result. ◀

Now, we consider the time complexity of Algorithm 1. The size of an instance is defined
to be the number of vertices of the underlying graph of the instance.

▶ Lemma 8. Run Algorithm 1 on an instance Ω = (G, π, ω) of size n. Then,
the algorithm will stop the recursion after at most n recursive steps;
the algorithm will call Decision at most n many times, call Optimization at most
n(n+1)

2 + 1 many times, and perform at most n(n+1)
2 many comparisons;

the algorithm runs in time O(n6).

Proof. Let Ωk = (G, πk, ω) be the instance after k many recursive steps. Here Ω0 = Ω. Recall
that TΩk = {v ∈ V | πk(v) ∈ T}. For an instance Ωk with |TΩk | > 0, the recursive step will
then go to the instance (Ωk)0

u or (Ωk)1
u for some u ∈ TΩk . Thus, Ωk+1 = (Ωk)0

u or (Ωk)1
u. In

both cases, TΩk+1 = TΩk\{u} and hence |TΩk+1 | = |TΩk |−1. By design, the algorithm will stop
the recursion and return Optimization (Ωm) when it reaches an instance Ωm with |TΩm | = 0.
Thus, #recursive steps = m = |TΩ| − 0 ≤ |V | = n. To prove the second item, we consider the
number of operations inside the recursive step for the instance Ωk = (G, πk, ω). Note that k ≤
n and |TΩk | = |TΩ|−k ≤ n−k. If |TΩk | = 0, then the algorithm will simply call Optimization
once. If |TΩk | > 0, then inside the recursive step, the algorithm will call Decision once,
and call Optimization once or |TΩk | many times depending on the answer of Decision.
Moreover, in the later case, the algorithm will also perform |TΩk | many comparisons. Thus,
we have #calls of Decision =

∑
|TΩk |>0 1 =

∑|TΩ|
i=1 1 = |TΩ| ≤ n, #calls of Optimization ≤

1+
∑

|TΩk |>0 |TΩk | = 1+
∑|TΩ|

i=1 i ≤ n(n+1)
2 +1, and #comparisons ≤

∑
|TΩk |>0 |TΩk | ≤ n(n+1)

2 .

Let tMain(n) denote the running time of Algorithm 1 on an instance of size n, and tDec(n) and
tOpt(n) denote the running time of algorithms for functions Decision and Optimization,
respectively. Then, tDec(n) = O(n4) by the algorithm in [7] and tOpt(n) = O(n4) by the
algorithm in [11]. Thus, tMain(n) ≤ ntDec(n) + n(n+1)+2

2 tOpt(n) + n(n+1)
2 = O(n6). ◀

ISAAC 2023

57:10 Weighted general factors with three feasible degrees

4 Proof of Theorem 5

In this section, we give a proof of Theorem 5. The general strategy is that starting with
a non-optimal factor F of an instance Ω = (G, ω, π), we want to find a subgraph H of G

such that by taking the symmetric difference F∆H, we get another factor of Ω with larger
weight. The existence of such subgraphs is trivial (Lemma 10). However, the challenge is
how to find one efficiently. As an analogy of augmenting paths in the weighted matching
problem, we introduce basic augmenting subgraphs (Definition 11) for the weighted graph
factor problem, which can be found efficiently. We will show that given a non-optimal
factor F , a basic augmenting subgraph always exists (Lemma 12, property 1). Then, we can
efficiently improve the factor F to another factor with larger weight. As shown in [12], this
already gave a weakly polynomial-time algorithm. However, the existence of basic augmenting
subgraphs is not enough to get a strongly polynomial-time algorithm, which requires the
number of improvement steps being independent of edge weights. Thus, in order to prove
Theorem 5, which leads to a strongly polynomial-time algorithm, we further establish that
there exists a basic augmenting subgraph that satisfies certain stronger properties under
suitable assumptions (Lemma 12, property 2). This result will imply Theorem 5.

▶ Definition 9 (F -augmenting subgraphs). Suppose that F is a factor of an instance Ω =
(G, π, ω). A subgraph H of G is F -augmenting if F∆H ∈ Ω and ω(F∆H)− ω(F) > 0.

▶ Lemma 10. Suppose that F is a factor of an instance Ω. If F is not optimal in Ω, then
there exists an F -augmenting subgraph.

Proof. Since F is not optimal, there is some F ′ ∈ Ω such that ω(F ′) > ω(F). Let H = F ∆F ′.
We have F∆H = F ′ ∈ Ω and ω(H) = ω(F ′)− ω(F) > 0. Thus, H is F -augmenting. ◀

Recall that for an instance Ω = (G, π, ω) of WGFP(G,T), TΩ is the set {v ∈ VG | π(v) ∈ T}.
For two factors F, F ∗ ∈ Ω, we define T F ∆F ∗

Ω = {v ∈ TΩ | degF ∆F ∗(v) ≡ 1 mod 2}.

▶ Definition 11 (Basic augmenting subgraphs). Suppose that F and F ∗ are factors of an
instance Ω = (G, π, ω) and ω(F) < ω(F ∗). An F -augmenting subgraph H = (VH , EH) is
(F, F ∗)-basic if H ⊆ F∆F ∗, |V odd

H | ≤ 2, and V odd
H ∩ TΩ ⊆ T F ∆F ∗

Ω where V odd
H = {v ∈ VH |

degH(v) ≡ 1 mod 2}.

▶ Lemma 12. Suppose that F and F ∗ are two factors of an instance Ω = (G, π, ω).

1. If ω(F ∗) > ω(F), then there exists an (F, F ∗)-basic subgraph.
2. If ω(F ∗) > Opt(ΩF

W) for every W ⊆ T F ∆F ∗

Ω with |W | ≤ 2, and T F ∆F ∗

Ω contains a vertex
u such that F ∈ Ω0

u (i.e., degF (u) ∈ D0
u), then there exists an (F, F ∗)-basic subgraph H

where degH(u) ≡ 0 mod 2.

▶ Remark 13. The first property of Lemma 12 implies the following: a factor F ∈ Ω is
optimal if and only if ω(F) ≥ Opt(ΩF

W) for every W ⊆ TΩ with |W | ≤ 2. This is a special
case of the main result (Theorem 2) of [12] where the authors consider the WGFP for all
constraints with gaps of length at most 1. The second property of Lemma 12 is more refined
than the first property and it implies our main result (Theorem 5). In this paper, as a
by-product of the proof of property 2, we give a simple proof of Theorem 2 of [12] for the
special case WGFP(G ∪ T) based on certain properties of subcubic graphs.

Using the second property of Lemma 12, we can prove Theorem 5.

S. Shao and S. Živný 57:11

▶ Theorem (Theorem 5). Suppose that F is a factor of an instance Ω = (G, π, ω), and F is
optimal in Ω0

u for some u ∈ TΩ. Then a factor F ′ is optimal in Ω if and only if ω(F ′) ≥ ω(F)
and ω(F ′) ≥ Opt(ΩF

W) for every W where u ∈W ⊆ TΩ and |W | = 1 or 2.

Proof. If F ′ is optimal in Ω, then clearly ω(F ′) ≥ ω(F) and ω(F ′) ≥ Opt(ΩF
W) for every W

where u ∈ W ⊆ TΩ and |W | = 1 or 2. Thus, to prove the theorem, it suffices to prove the
other direction. Since ω(F ′) ≥ ω(F) and F is optimal in Ω0

u, we have ω(F ′) ≥ Opt(ΩF
W) for

every W ⊆ TΩ where u /∈W and |W | ≤ 2. Also, since ω(F ′) ≥ Opt(ΩF
W) for every W where

u ∈W ⊆ TΩ and |W | = 1 or 2, we have ω(F ′) ≥ Opt(ΩF
W) for every W ⊆ TΩ where |W | ≤ 2.

For a contradiction, suppose that F ′ is not optimal in Ω. Let F ∗ be an optimal factor of Ω.
Then, ω(F ∗) > ω(F ′). Thus, ω(F ∗) > ω(F ′) ≥ Opt(ΩF

W) for every W ⊆ TΩ where |W | ≤ 2.
Also, F ∗ /∈ Ω0

u since ω(F ∗) > ω(F) and F is optimal in Ω0
u. Thus, degF ∗(u) ̸≡ degF (u)

mod 2. Then, T F ∆F ∗

Ω contains the vertex u such that F ∈ Ω0
u. By Lemma 12, there exists an

(F, F ∗)-basic subgraph H where degH(u) ≡ 0 mod 2. Let F ′′ = F∆H. Then F ′′ ∈ Ω and
ω(F ′′) > ω(F). Also, F ′′ ∈ Ω0

u since degF ′′(u) ≡ degF (u) mod 2. This is a contradiction
with F being optimal in Ω0

u. ◀

Now it suffices to prove Lemma 12. By a type of normalization maneuver, we can transfer
any instance of WGFP(G,T) to an instance of WGFP(G,T) defined on subcubic graphs, called
a key instance (Definition 14). Recall that a subcubic graph is a graph where every vertex
has degree 1, 2 or 3. For key instances, there are five possible forms of basic augmenting
subgraphs, called basic factors (Definition 15). Then, the crux of the proof of Lemma 12 is
to establish the existence of certain basic factors of key instances (Theorem 16). For a proof
of Lemma 12 using Theorem 16, please refer to the proof of Lemma 4.4 in the full paper.

▶ Definition 14 (Key instance). A key instance Ω = (G, π, ω) is an instance of WGFP(G,T)
where G is a subcubic graph, and for every v ∈ VG, π(v) = {0, 1} if degG(v) = 1, π(v) = {0, 2}
if degG(v) = 2, and π(v) = {0, 1, 3} (i.e., type-1) or {0, 2, 3} (i.e., type-2) if degG(v) = 3.
We say a vertex v of degree 3 is of type-1 or type-2 if π(v) is type-1 or type-2 respectively.
We say a vertex v of any degree is 1-feasible or 2-feasible if 1 ∈ π(v) or 2 ∈ π(v) respectively.

▶ Definition 15 (Basic factor). Let Ω be a key instance. A factor of Ω is a basic factor if it is
in one of the following five forms: a path, a cycle, a tadpole graph (i.e., a graph consisting
of a cycle and a path such that they intersect at one endpoint of the path), a dumbbell graph
(i.e., a graph consisting of two vertex disjoint cycles and a path such that the path intersects
with each cycle at one of its endpoints), and a theta graph (i.e., a graph consisting of three
vertex disjoint paths with the same two endpoints).

▶ Theorem 16. Suppose that Ω = (G, π, ω) is a key instance.
1. If ω(G) > 0, then there is a basic factor F of Ω such that ω(F) > 0.
2. If ω(G) > 0, ω(G) > ω(F) for every basic factor F of Ω, and G contains a vertex u with

degG(u) = 1 or degG(u) = 3 and π(u) = {0, 2, 3}, then there is a basic factor F ∗ of Ω
such that ω(F ∗) > 0 and degF ∗(u) ≡ 0 mod 2. (Recall that degF ∗(u) = 0 if u /∈ VF ∗ .)

▶ Remark 17. For the second property of Theorem 16, the requirement of π(u) = {0, 2, 3}
when degG(u) = 3 is crucial. Consider the instance Ω = (G, π, ω) as shown in Figure 1. Note
that Ω is a key instance. and π(u) = {0, 1, 3}. In this case where π(u) = {0, 1, 3}, it can be
checked that the second property does not hold.

ISAAC 2023

57:12 Weighted general factors with three feasible degrees

5 Proof Sketch of Theorem 16

In this section, we give a proof sketch of Theorem 16 and we focus on the proof of the second
property using the first property. Omitted proofs can be found in Section 5 of the full paper.

Proof sketch. By property 1 of Theorem 16, there exists at least one basic factor of Ω such
that its weight is positive. Among all such basic factors, we pick an F such that ω(F) is
the largest. Consider the graph G′ = G\F , i.e., the subgraph of G induced by the edge set
EG\EF . We consider the instance Ω′ = (G′, π′, ω′) where for every x ∈ VG′ , π′(x) = {0, 1} if
degG′(x) = 1, π′(x) = {0, 2} if degG′(x) = 2 and π′(x) = π(x) if degG′(x) = 3, and ω′ is the
weight function ω restricted to G′. Note that Ω′ is also a key instance, but it is not necessarily
a sub-instance of Ω. Since ω(G) > ω(F), we have ω′(G′) = ω(G′) = ω(G) − ω(F) > 0.
Without causing ambiguity, we may simply write ω′ as ω in the instance Ω′. By property 1 of
Theorem 16, there exists a basic factor F ′ of Ω′ such that ω(F ′) > 0. Since EF ′ ⊆ EG\EF ,
F and F ′ are edge-disjoint. Let H = F ∪ F ′, which is the subgraph of G induced by the
edge set EF ∪ EF ′ . We will show that we can find a subgraph F ∗ of H such that F ∗ is the
desired basic factor of Ω satisfying ω(F ∗) > 0 and degF ∗(u) ≡ 0 mod 2.

First, we show that H is a factor of Ω. Let V∩ = VF ∩ VF ′ . We show that for every
x ∈ VH\V∩, degH(x) ∈ π(x). If x ∈ VF \V∩, then degH(x) = degF (x). Since F ∈ Ω,
degF (x) ∈ π(x). Then, degH(x) ∈ π(x). If x ∈ VF ′\V∩, then degH(x) = degF ′(x). Since
x /∈ VF and G′ = G\F , degG′(x) = degG(x). Then, by the definition of Ω′, we have
π′(x) = π(x). Since F ′ is a factor of Ω′, degF ′(x) ∈ π′(x). Thus, degH(x) ∈ π(x). Now,
we consider vertices in V∩. Since F and F ′ are edge disjoint, for every x ∈ V∩ we have
degH(x) = degF (x) + degF ′(x) ≤ degG(x) ≤ 3. Also, degF (x), degF ′(x) ≥ 1 since F and F ′

are subcubic graphs which have no isolated vertices.
If degF (x) = 1, then 1 ∈ π(x). The vertex x is 1-feasible. Thus, degG(x) ̸= 2. Since
degG(x) > degF (x) = 1, degG(x) = 3. Then, degG′(x) = degG(x) − degF (x) = 2,
π′(x) = {0, 2} and degF ′(x) = 2.
If degF (x) = 2, then degG(x) = 3 since degG(x) > degF (x). Then, degG′(x) = degG(x)−
degF (x) = 1, π′(x) = {0, 1} and degF ′(x) = 1.

Thus, for every x ∈ V∩, degH(x) = degF (x) + degF ′(x) = 3 ∈ π(x). Thus, H is a factor of Ω.
Then, we finish the proof by a careful analysis of possible forms of F and F ′, and possible

intersection vertices in V∩. Here, we give an example where F is a tadpole graph with a
vertex u of degree 3 and a vertex v of degree 1 to illustrate this. Since degF (u) = 3, by
assumption, π(u) = {0, 2, 3}. Also, since degF (v) = 1 ∈ π(v), v is 1-feasible.

Consider possible vertices in V∩. Recall that for every x ∈ V∩, degF (x) = 1 and
degF ′(x) = 2, or degF (x) = 2 and degF ′(x) = 1. Since degF (u) = 3 = degG(u), we have
u /∈ V∩. Also, consider the possible forms of F ′. We show that F ′ is not a cycle. For a
contradiction, suppose that F ′ is a cycle. Then, all vertices of F ′ have degree 2. Thus, the
only possible vertex in V∩ is v. If V∩ = ∅, then for every x ∈ VF ′ , degF ′(x) = degH(x) ∈ π(x).
Thus, F ′ is a basic factor of Ω where ω(F ′) > 0 and degF ′(u) = 0. We are done. Otherwise,
V∩ = {v}. Then, degF (v) = 1 and degF ′(v) = 2. Since F is a tadpole graph, the graph H is
a dumbbell graph where u and v are the two vertices of degree 3. Thus, H is a basic factor
of Ω. Since ω(F ′) > 0, we have ω(H) = ω(F) + ω(F ′) > ω(F) which leads to a contraction
with F being a basic factor with the largest weight. Thus, F ′ is a basic factor which is not a
cycle. By Definition 15, F ′ contains exactly two vertices of odd degree, denoted by s and t.
Then, we have V∩ ⊆ {v, s, t}.

Recall that F is a tadpole graph consisting of a path and a cycle. We use C to denote the
cycle part of F , and VC denotes its vertex set. Consider {s, t}∩VC . Now, we handle possible

S. Shao and S. Živný 57:13

subcases according to intersection vertices appearing in VC . There are three subcases. Below,
for two points x and y, we use pxy or p′

xy to denote a path with endpoints x and y.

1. {s, t} ⊆ VC . Then, degF (s) = degF (t) = degC(s) = degC(t) = 2. In this case, degH(u) =
degH(s) = degH(t) = 3 and π(u) = π(s) = π(t) = {0, 2, 3}. Also, degF ′(s) = degF ′(t) =
1. Thus, F ′ is a path with endpoints s and t. Note that in this case, it is possible that
v ∈ VF ′ . If v ∈ VF ′ , then degH(v) = 3 and π(v) = {0, 1, 3}; otherwise, degH(v) = 1 and
π(v) = {0, 1} or {0, 1, 3}. The points u, s, and t split C into three paths, pus, pst, ptu.
Then, C = pus ∪ pst ∪ ptu. (See Figure 2.) If ω(C) > 0, then we are done since C is a
basic factor of Ω and degC(u) = 2. Thus, we may assume that ω(C) ≤ 0.

Figure 2 The two possible forms of graph H when {s, t} ∈ VC . Hollow nodes denote 1-feasible
vertices, and solid nodes denote 2-feasible vertices; red-colored lines denote paths in F , and blue-
colored lines denote paths in F ′.

Consider the graph H1 = H\pst = (F\pst) ∪ F ′. Note that VH1 = (VH\Vpst
) ∪ {s, t}.

For every x ∈ VH1\{s, t}, we have degH1(x) = degH(x) ∈ π(x) since H is a factor of Ω.
Also, degH1(s) = 2 ∈ π(s) and degH1(t) = 2 ∈ π(t). Thus, H1 is a factor of Ω. Also,
H1 is a tadpole graph if degH(v) = 1 or a theta graph if degH(v) = 3. Thus, in both
cases, H1 is a basic factor of Ω. Since F is a basic factor of Ω with the largest weight,
we have ω(F) ≥ ω(H1) = ω(F) − ω(pst) + ω(F ′). Thus, ω(pst) ≥ ω(F ′) > 0. Since
ω(C) = ω(pst) + ω(pus) + ω(ptu) ≤ 0, ω(pus) + ω(ptu) < 0. Without loss of generality,
we may assume that ω(pus) < 0. Then, consider the graph H2 = H\pus. Similarly, one
can check that H2 is a factor of Ω, and degH2(u) = 2. Also, H2 is a tadpole graph if
degH(v) = 1, or a theta graph if degH(v) = 3. Thus, H2 is a basic factor of Ω. Moreover,
ω(H2) = ω(H)− ω(pus) > 0. We are done.

2. {s, t} ∩ VC = {s} or {t}. Without loss of generality, we may assume that s ∈ VC . Then,
degH(u) = degH(s) = 3 and π(u) = π(s) = {0, 2, 3}. If ω(C) > 0, then we are done since
C is a basic factor of Ω and degC(u) = 2. Thus, we may assume that ω(C) ≤ 0. Vertices
s and u split C into two paths pus and p′

us. Since ω(C) = ω(pus) + ω(p′
us) ≤ 0, among

them at least one is non-positive. Without loss of generality, we assume that ω(pus) ≤ 0.
Consider the graph H ′ = H\pus. We have ω(H ′) = ω(H)−ω(pus) > 0, and degH′(u) = 2.
Similar to the above case, one can check that H ′ is a factor of Ω. However, it is not
clear whether H ′ is a basic factor of Ω. Consider the sub-instance Ω′

H = (H ′, πH′ , ωH′)
of Ω defined on the subgraph H ′ of G where πH′(x) = π(x)∩ [degH′(x)] ⊆ π(x) for every
x ∈ VH′ and ωH′ is the restriction of ω on EH′ (we may write ωH′ as ω for simplicity).
Since ω(H ′) > 0, by property 1 of Theorem 16, there is a basic factor F ∗ ∈ ΩH′ such
that ω(F ∗) > 0. Then, degF ∗(u) ∈ πH′(u) = {0, 2}. Now, F ∗ is a basic factor of Ω.

3. {s, t} ∩ VC = ∅. In this case, the cycle C does not intersect with F ′. Then, by viewing
the cycle C as an enlargement of the vertex u, this case is similar to the case that F is a
path with endpoints u and v, which is proved separately. Please refer to the full paper
for its proof. ◀

ISAAC 2023

57:14 Weighted general factors with three feasible degrees

A ∆-Matroids and Matching Realizability

A ∆-matroid is a family of sets obeying an axiom generalizing the matroid exchange axiom.
Formally, a pair M = (U,F) is a ∆-matroid if U is a finite set and F is a collection of subsets
of U satisfying the following: for any X, Y ∈ F and any u ∈ X∆Y in the symmetric difference
of X and Y , there exits a v ∈ X∆Y such that X∆{u, v} belongs to F [4]. A ∆-matroid is
symmetric if, for every pair of X, Y ⊆ U with |X| = |Y |, we have X ∈ F if and only if Y ∈ F.
A ∆-matroid is even if for every pair of X, Y ⊆ U , |X| ≡ |Y | mod 2.

Suppose that U = {u1, u2, . . . , un}. A subset V ⊆ U can be encoded by a binary string
αV of n-bits where the i-th bit of αV is 1 if ui ∈ V and 0 if ui /∈ V . Then, a ∆-matroid
M = (U,F) can be represented by a relation RM of arity |U | which consists of binary strings
that encode all subsets in F. Such a representation is unique up to a permutation of variables
of the relation. A degree constraint D of arity n can be viewed as an n-ary symmetric
relation which consists of binary strings with the Hamming weight d for every d ∈ D. By
the definition of ∆-matroids, it is easy to check that a degree constraint D (as a symmetric
relation) represents a ∆-matroid if and only if D has all gaps of length at most 1.

▶ Definition 18 (Matching Gadget). A gadget using a set D of degree constraints consists
of a graph G = (U ∪ V, E) where degG(u) = 1 for every u ∈ U and there are no edges
between vertices in U , and a mapping π : V → D. A matching gadget is a gadget where
D = {{0, 1}, {1}}. A degree constraint D of arity n is matching realizable if there exists a
matching gadget (G = (U ∪ V, E), π : V → {{0, 1}, {1}}) such that |U | = n and for every
k ∈ [n], k ∈ D if and only if for every W ⊆ U with |W | = k, there exists a matching
F = (VF , EF) of G such that VF ∩ U = W and for every v ∈ V where π(v) = {1}, v ∈ VF .

The definition of matching realizability can be extended to a relation R of arity n by
requiring the set U of n vertices in a matching gadget to represent the n variables of R. If
R is realizable by a matching gadget G = (U ∪ V, E), then for every α ∈ {0, 1}n, α ∈ R if
and only if there is a matching F = (VF , EF) of G such that VF ∩ U is exactly the subset of
U encoded by α (i.e., for every ui ∈ U , ui ∈ VF if and only if αi = 1), and for every v ∈ V

where π(v) = {1}, v ∈ VF . Note that the matching realizability of a relation is invariant
under a permutation of its variables. We say that a ∆-matroid is matching realizable if the
relation representing it is matching realizable.6

The following result generalizes Lemma A.1 of [32].

▶ Lemma 19. Suppose that M = (U,F) is a matching realizable ∆-matroid, and V1, V2 ∈
F. Then, V1∆V2 can be partitioned into single variables S1, . . . , Sk and pairs of vari-
ables P1, . . . , Pℓ such that for every P = Si1 ∪ · · · ∪ Sir ∪ Pj1 ∪ · · · ∪ Pjt ({i1, . . . , ir} ⊆
[k], {j1, . . . , jt} ⊆ [ℓ]), V1∆P ∈ F and V2∆P ∈ F.

▶ Theorem 20. A degree constraint D of gaps of length at most 1 is matching realizable if
and only if all its gaps are of the same length 0 or 1.

Proof. By the gadget constructed in the proof of [7, Theorem 2], if a degree constraint has
all gaps of length 1 then it is matching realizable.7 We give the following gadget (Figure 3)

6 This definition of matching realizability for ∆-matroids is different from the one that is usually used for
even ∆-matroids [5, 13, 32], in which the gadget is only allowed to use the constraint {1} for perfect
matchings, and hence the resulting ∆-matroid must be even.

7 We remark that [7] includes gadgets for other types of degree constraints, including type-1 and type-2,
but only under a more general notion of gadget constructions that involve edges and triangles. The
gadget that only involves edges is a matching gadget defined in this paper.

S. Shao and S. Živný 57:15

to realize a degree constraint D with all gaps of length 0, which generalizes the gadget in [48].
Suppose that D = {p, p + 1, . . . , p + r} of arity n where n ≥ p + r ≥ p ≥ 0. Consider the
following graph G = (U ∪ V, E): U consists of n vertices of degree 1, and V consists of two
parts V1 with |V1| = n and V2 with |V2| = n− p; the induced subgraph G(V) of G induced
by V is a complete bipartite graph between V1 and V2, and the induced subgraph G(U ∪ V1)
of G induced by U ∪ V1 is a bipartite perfect matching between U and V1. Every vertex in
V1 is labeled by the constraint {1}. There are r vertices in V2 labeled by {0, 1} and the other
n− p− r vertices in V2 labeled by {1}. One can check that this gadget realizes D.

Figure 3 A matching gadget realizing D = {p, p + 1, . . . , p + r} of arity n

For the other direction, without loss of generality, we may assume that {p, p+1, p+3} ⊆ D

and p + 2 /∈ D. Since D has gaps of length at most 1, it can be associated with a symmetric
∆-matroid M = (U,F). Then, there is V1 ∈ F with |V1| = p and V2 ∈ F with |V2| = p + 3.
Since M is symmetric, we may pick V2 = V1 ∪ {v1, v2, v3} for some {v1, v2, v3} ∩ V1 = ∅.
Let S = V1∆V2 = {v1, v2, v3}. By Lemma 19, S can be partitioned into single variables
and/or pairs of variables such that for any union P of them, V2\P ∈ F. Since |S| = 3, there
exists at least a single variable xi in the partition of S such that V2\{vi} ∈ F. Note that
|V2\{vi}| = p + 2. Thus, p + 2 ∈ D. A contradiction. ◀

References
1 Jin Akiyama and Mikio Kano. Factors and factorizations of graphs: Proof techniques in factor

theory, volume 2031. Springer, 2011.
2 Elliot Anshelevich and Adriana Karagiozova. Terminal backup, 3d matching, and covering

cubic graphs. SIAM Journal on Computing, 40(3):678–708, 2011.
3 Richard P. Anstee. A polynomial algorithm for b-matchings: an alternative approach. Inform-

ation Processing Letters, 24(3):153–157, 1987.
4 André Bouchet. Greedy algorithm and symmetric matroids. Mathematical Programming,

38(2):147–159, 1987. doi:10.1007/BF02604639.
5 André Bouchet. Matchings and ∆-matroids. Discrete Applied Mathematics, 24(1-3):55–62,

1989.
6 David A Cohen, Martin C Cooper, Peter G Jeavons, and Andrei A Krokhin. The complexity

of soft constraint satisfaction. Artificial Intelligence, 170(11):983–1016, 2006.
7 Gérard Cornuéjols. General factors of graphs. Journal of Combinatorial Theory, Series B,

45(2):185–198, 1988. doi:10.1016/0095-8956(88)90068-8.
8 William H. Cunningham and Alfred B. Marsh. A primal algorithm for optimum matching. In

Polyhedral Combinatorics, pages 50–72. Springer, 1978.

ISAAC 2023

https://doi.org/10.1007/BF02604639
https://doi.org/10.1016/0095-8956(88)90068-8

57:16 Weighted general factors with three feasible degrees

9 Víctor Dalmau and Daniel K. Ford. Generalized satisfability with limited occurrences per
variable: A study through delta-matroid parity. In Proceedings of the 28th International
Symposium on Mathematical Foundations of Computer Science (MFCS’03), volume 2747,
pages 358–367. Springer, 2003. doi:10.1007/978-3-540-45138-9_30.

10 Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching. Journal
of the ACM, 61(1):1–23, 2014. doi:10.1145/2529989.

11 Szymon Dudycz and Katarzyna Paluch. Optimal general matchings. Lecture Notes in Computer
Science, 11159 LNCS:176–189, 2018. doi:10.1007/978-3-030-00256-5_15.

12 Szymon Dudycz and Katarzyna Paluch. Optimal general matchings. arXiv:1706.07418v3,
version 3, 2021. URL: https://arxiv.org/abs/1706.07418.

13 Zdeněk Dvořák and Martin Kupec. On Planar Boolean CSP. In Proceedings of the 42nd
International Colloquium on Automata, Languages and Programming (ICALP’15), volume
9134, pages 432–443. Springer, 2015. doi:10.1007/978-3-662-47672-735.

14 Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of research
of the National Bureau of Standards B, 69(125-130):55–56, 1965.

15 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:449–467, 1965.
doi:10.4153/CJM-1965-045-4.

16 Jack Edmonds and Ellis L Johnson. Matching: A well-solved class of integer linear programs.
In Combinatorial Structures and Their Applications, pages 89–92. Gordon & Breach, New
York, 1970.

17 Tomás Feder. Fanout limitations on constraint systems. Theoretical Computer Science,
255(1-2):281–293, 2001. doi:10.1016/S0304-3975(99)00288-1.

18 Tomás Feder and Daniel K. Ford. Classification of bipartite Boolean constraint satisfaction
through Delta-matroid intersection. SIAM J. Discrete Math., 20(2):372–394, 2006. doi:
10.1137/S0895480104445009.

19 Tomás Feder and Moshe Y. Vardi. The Computational Structure of Monotone Monadic SNP
and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM Journal on
Computing, 28(1):57–104, 1998. doi:10.1137/S0097539794266766.

20 Harold N. Gabow. Implementation of algorithms for maximum matching on nonbipartite
graphs. PhD thesis, Stanford University, 1974.

21 Harold N. Gabow. An efficient reduction technique for degree-constrained subgraph and
bidirected network flow problems. In Proceedings of the fifteenth annual ACM symposium on
Theory of computing, pages 448–456, 1983.

22 Harold N. Gabow. A scaling algorithm for weighted matching on general graphs. In Proceedings
of the 26th Annual IEEE Symposium on Foundations of Computer Science (FOCS’85), pages
90–100, 1985.

23 Harold N. Gabow. Data structures for weighted matching and nearest common ancestors with
linking. In Proceedings of the first annual ACM-SIAM symposium on Discrete algorithms,
pages 434–443, 1990.

24 Harold N. Gabow, Zvi Galil, and Thomas H. Spencer. Efficient implementation of graph
algorithms using contraction. Journal of the ACM (JACM), 36(3):540–572, 1989.

25 Harold N. Gabow and Piotr Sankowski. Algebraic algorithms for b-matching, shortest
undirected paths, and f -factors. In Proceedings of the 54th IEEE Annual Symposium on
Foundations of Computer Science (FOCS’13), pages 137–146, 2013.

26 Harold N. Gabow and Robert E. Tarjan. Faster scaling algorithms for general graph matching
problems. Journal of the ACM (JACM), 38(4):815–853, 1991.

27 Zvi Galil, Silvio Micali, and Harold N. Gabow. An O(EV \ log V) algorithm for finding a
maximal weighted matching in general graphs. SIAM Journal on Computing, 15(1):120–130,
1986.

28 James F. Geelen, Satoru Iwata, and Kazuo Murota. The linear delta-matroid parity prob-
lem. Journal of Combinatorial Theory, Series B, 88(2):377–398, 2003. doi:10.1016/
S0095-8956(03)00039-X.

https://doi.org/10.1007/978-3-540-45138-9_30
https://doi.org/10.1145/2529989
https://doi.org/10.1007/978-3-030-00256-5_15
https://arxiv.org/abs/1706.07418
https://doi.org/10.1007/978-3-662-47672-7 35
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.1016/S0304-3975(99)00288-1
https://doi.org/10.1137/S0895480104445009
https://doi.org/10.1137/S0895480104445009
https://doi.org/10.1137/S0097539794266766
https://doi.org/10.1016/S0095-8956(03)00039-X
https://doi.org/10.1016/S0095-8956(03)00039-X

S. Shao and S. Živný 57:17

29 Chien-Chung Huang and Telikepalli Kavitha. Efficient algorithms for maximum weight
matchings in general graphs with small edge weights. In Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1400–1412. SIAM, 2012.

30 Gabriel Istrate. Looking for a version of Schaefer’s dichotomy theorem when each variable
occurs at most twice. Technical report, University of Rochester, 1997. UR CSD/TR652.

31 Aleksandr V. Karzanov. Efficient implementations of Edmonds’ algorithms for finding match-
ings with maximum cardinality and maximum weight. Studies in Discrete Optimization, pages
306–327, 1976.

32 Alexandr Kazda, Vladimir Kolmogorov, and Michal Rolínek. Even delta-matroids and the
complexity of planar Boolean CSPs. ACM Transactions on Algorithms (TALG), 15(2):1–33,
2018.

33 Yusuke Kobayashi. Optimal general factor problem and jump system intersection. In Interna-
tional Conference on Integer Programming and Combinatorial Optimization, pages 291–305.
Springer, 2023.

34 Bernhard Korte and Jens Vygen. Combinatorial optimization: Theory and Algorithms,
volume 21. Springer, 2018.

35 Eugene L. Lawler. Combinatorial optimization: networks and matroids. Holt, Reinhart and
Winston, New York., 1976.

36 László Lovász. The factorization of graphs. In Combinatorial Structures and Their Applications,
pages 243–246. Gordon & Breach, New York, 1970.

37 László Lovász. The factorization of graphs. II. Acta Mathematica Academiae Scientiarum
Hungarica, 23(1-2):223–246, 1972. doi:10.1007/BF01889919.

38 László Lovász and Michael D. Plummer. Matching theory, volume 367. American Mathematical
Soc., 2009.

39 Alfred B. Marsh. Matching algorithms. PhD thesis, The Johns Hopkins University, 1979.
40 Michael D. Plummer. Graph factors and factorization: 1985–2003: a survey. Discrete

Mathematics, 307(7-8):791–821, 2007.
41 William R. Pulleyblank. Faces of Matching Polyhedra. PhD thesis, University of Waterloo,

1973.
42 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the tenth

annual ACM symposium on Theory of computing, pages 216–226, 1978.
43 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer,

2003.
44 Shuai Shao and Stanislav Živný. A Strongly Polynomial-Time Algorithm for Weighted General

Factors with Three Feasible Degrees. arXiv:2301.11761, 2023. URL: https://arxiv.org/
abs/2301.11761.

45 Jácint Szabó. Good characterizations for some degree constrained subgraphs. Journal of
Combinatorial Theory, Series B, 99(2):436–446, 2009. doi:10.1016/J.JCTB.2008.08.009.

46 William Thomas Tutte. The factorization of locally finite graphs. Canadian Journal of
Mathematics, 2:44–49, 1950.

47 William Thomas Tutte. The factors of graphs. Canadian Journal of Mathematics, 4:314–328,
1952.

48 William Thomas Tutte. A short proof of the factor theorem for finite graphs. Canadian
Journal of mathematics, 6:347–352, 1954.

49 Dahai Xu, Elliot Anshelevich, and Mung Chiang. On survivable access network design:
Complexity and algorithms. In IEEE INFOCOM 2008-The 27th Conference on Computer
Communications, pages 186–190. IEEE, 2008.

ISAAC 2023

https://doi.org/10.1007/BF01889919
https://arxiv.org/abs/2301.11761
https://arxiv.org/abs/2301.11761
https://doi.org/10.1016/J.JCTB.2008.08.009

	1 Introduction
	2 Preliminaries
	3 Algorithm
	4 Proof of Theorem 5
	5 Proof Sketch of Theorem 16
	A -Matroids and Matching Realizability

