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Abstract studied, allowing the definition of fixed points of opera-

tors that are not necessarily monotone. Here, we will focus
We survey logical formalisms based on inflationary and on inflationary and deflationary fixed point inductions and
deflationary fixed points, and compare them to the (more compare them to least and greatest fixed points. We will
familiar) logics based on least and greatest fixed points.  also show a number of examples and scenarios in which de-
flationary fixed points arise in a natural way.

It turns out that IFP, the extension of first-order logic
1. Dictionary by inflationary and deflationary fixed points, has precisely
the same expressive power as LFP. This has been known
Deflation: reduction in size, importance, or effectiveness; for some time for finite structures [9], but has been estab-
contraction of economic activity resulting in a decline of lished only recently for the general case [13, 14]. In fi-
prices; the erosion of soil by the wind. nite model theory, LFP and IFP have, due to their expres-
sive equivalence, often be used interchangeably. Neverthe
less, we argue that least and inflationary fixed points have
quite different properties. This becomes particularlyapp
ent in the context of modal logic. Indeed the inflationary
] modal fixed point logic MIC has far more expressive power
2. Introduction and very different algorithmic and structural propertiest
the modalu-calculus. Finally, we will discuss appropriate
Fixed point logics extend a basic logical formalism (like model checking games for inflationary fixed point logics.
first-order logic, conjunctive queries, or propositional
modal logic) by constructors for defining fixed points of
relational operators. The most influential fixed point for- 3. Greatest and Deflationary Fixed Points
malisms in computer science are based on least and greatest
fixed points of monotone operators.
— The modaj:-calculusL,, is the extension of propositional  In LFP, greatest fixed points are defined by formulae
modal logic by least and greatest fixed points. In terms of [gfp RZ . ¢(R,Z)](a) saying thata is contained in the
expressive power, it subsumes a variety of modal and tem-greatest seRR satisfyingR = {Z : ¢(R,Z)}. To make
poral logics used in verification, in particular LTL, CTL, sure that this set exists, we require that the relation kbia
CTL*, PDL and also many logics from other areas of com- R appears only positively ip. This guarantees that the op-
puter science. On the other haig, has a rich theory, and  eratorF,, : R — {T : ¢(R, )} is monotone on every struc-
is well-behaved in model-theoretic and algorithmic terms. ture (which means that C R' impliesF,(R) C F,(R')),
— LFP, the extension of first-order logic by least and graates and it is a classical observation, attributed to Knaster and
fixed points, is of crucial importance in finite model theory Tarski, that monotone operators always have a greatest (and
and descriptive complexity, in particular due to its tighhe a least) fixed point. Moreover, the greatest fixed point can
nection to polynomial-time computability. be obtained by an iterative process. Starting with the set
In finite model theory and, to a lesser extent, in databaseof all tuples of appropriate arity in the structure under-con
theory, a number of other fixed point constructs have beensideration, we repeatedly apply the operdigrto obtain a

Depletion: the exhaustion of a principal substance, espe-
cially a natural resource; a reduction in number or quantity
so as to endanger the ability to function.
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decreasing (possibly transfinite) series of stages whioh co has an edge int6’. Now, letu <,41 v if, and only if,
verges to the greatest fixed point. A slightly different aati 1 <, v and there is an edge from(and hence none from
permits also simultaneous fixed point inductions over sev-u) into the smallest-,-class (wrt. <,) that separates
eral formulae, but it can be shown that this does not providefrom v (if it exists). Since the sequence of the pre-orders

more expressive power. < Is decreasing, it must indeed reach a fixed painand
Deflationary fixed points, on the other hand, can be built it is not hard to show that the corresponding equivalence
with formulaey(R, T) that need not be positive iR. Start- relation is precisely the bisimilarity relation.

ing with R = A*, we can still define a decreasing sequence  The point that we want to stress here is tkais a de-

of stages by iteratively taking the intersection of the entr  flationary fixed point of a non-monotone induction. Indeed,
stageR with F,(R). This sequence as well must eventually the refinement operator on pre-orders is not monotone and
converge to a fixed point (not necessarilyfof, but of the does, in general, not have a greatest fixed point.

associated deflationary opera®r— R N F,(R)), which

we call the deflationary fixed point gf. We write 3.2. lterated Relativisation

[dfp RT . ¢(R,T)](a) Let 2l be a relational structure angz) a specification that
should be satisfied by all elements. If this is not the case we

to express thai is contained in the deflationary fixed point N v 0 throw aw Il elements aff that do not safi
of . Itiseasytoseethatformonotoneoperators,thegreat-Ca y to throw away afl elements at do not satisfy

est and the deflationary fixed points coincide. However, @ Igl io reIauwSe?l tto th(te lsut.)tstruc(;urélt\% w;ﬂuced b)t/h i
non-monotone operators do not necessarily have a greate @ -~ |\; ‘p(a)}'l O? o:jutr;]a ey 1 nele an N | € caste a
fixed point, and if it exists, it need not by identical with the | | V(). Indeed, the removal of some elements may

deflationary fixed point. We next discuss some scenarioshave ]Ehe effec_'i thatt (:Lhers Idfc)' no ![Qnger sat(lj,sfyBut (\]’hvg f
where deflationary fixed points arise naturally. can ot course iterate this retativisation procedure anteet

a (possibly transfinite) sequence of substruct@téswith

AT = A AT = AP, andA* = );_, AP for limit or-
dinalsA. This sequence reaches a fixed palitt which
Let = (V,E, P, ..., Py) be a transition system with a  satisfiesvzy(z) — but it may be empty.

binary transition relatio? and unary predicatefs;. Bisim- This process of iterated relativisation is definable by a
ilarity on K is the maximal equivalence relatiea on V' fixed point induction irdl. Lety| be the syntactic relativi-
such that any two equivalent nodes satisfy the same unarysation of to a new set variabl&, obtained by replacing
predicatesP’; and have edges into the same equivalenceinductively all subformulaéya by 3y(Zy A a) andVya
classes. To put it differently is the greatest fixed point by vy(Zy — a). lterated relativisation means repeated

of the refinement operatd? : P(V xV) — P(V x V) with application of the operator

F:Zw—{(u,v)eV xV: /\,< Pu < P F:Z={a: Az EFela)}={a:A=Zanp|z(a)}
- starting withZ = A (the universe ofl). Note thatF' is de-
flationary but not necessarily monotone. Thus, the question

3.1. Bisimulation

AU (Buu' — ' (Evv' A Zu'v'))

AV (Evv' = 3u/ (Buu' A Zu'v))}. whether(* is empty or not is one instance of the problem
For some applications one is interested to have not onlyin the title: does deflation lead to depletion?
the bisimulation relation~ but also a linear order on the In logics with inflationary and deflationary fixed points

bisimulation quotientC/... That is, we want to define a (the universe ofR(*° is uniformly definable irkl by a for-
pre-orders on K such thatu ~ v iff u < v andv 5 u. We mula of form[dfp Zz . ¢|z](z) (see Sections 4 and 5 for
can again do this via a fixed point construction, by defining precise definitions).

a sequence,, of pre-orders (whera ranges over ordinals)
such thatg,; refines<, and<x,, for limit ordinals }, is
the intersection of the pre-ordegs, with o < A. Let

Question. Is it also definable using just least and greatest
fixed points of monotone operators?

usivie N\ Pu— (pﬂ} v \/ (=P pﬂ,)) 3.3. Knowledge and Public Announcement
ism J<i Iterated relativisation has a natural meaning also in epis-
(i.e. if the truth values of th@, atu are lexicographically ~ t€mic logics, i.e. logics of knowledge. For background we
smaller or equal than those)t and for anya, let refer to [7]. Basp epIStem.I(.: logic (for a grqu@of agents
and a set of atomic propositiofi®; : b € B})is just propo-
U~a V= USa VAV Sa U sitional modal logic, interpreted on possible-world magel
To define the refinement, we say that thg-classC' sepa- i.e., Kripke structure&’ = (V,(E, : a € A),(P, : b €

ratestwo nodesu andw, if precisely one of the two nodes B)), where each possibility relatiof, is an equivalence



relation. The intended meaning ff]p is “agenta knows non-monotone inductions over first-order formulae. No ex-
¢", which is true in a worldv € V' if ¢ holds in all worlds plicit fixed point operators were added to the language of

w that agent: considers possible in world first-order logic, fixed points were not being nested, and not
A key concept in epistemic logicsc@mmon knowledge  interleaved with other logical operations. Despite thake d
A propositiony is common knowledge at a world (in ferences with the fixed point logics as they are studied to-

short: K,v = Cy) if everybody knowsp, and everybody  day, many methods fundamental to today’s theory of fixed
knows that everybody knows, and everybody knows that point logics originate from the work done at that time.
everybody knows that everybody knows .... Clearly, com-  Fixed point logics in the modern sense appeared inde-
mon knowledge is a greatest fixed point. In the mqgdal pendently in several areas of logic in computer science,
calculusCy is defined by X.po A A, 4[a] X. such as database theory, finite model theory, and verifica-
Suppose now that somebody (who is trusted by all tion. Their importance comes from the observation that re-
agents) publicly announces One would think that by this  cursion or unbounded iteration can be modelled elegantly
action, has become common knowledge, since everybodyby fixed point constructs. We will briefly recall some basic
has learned that is true and everybody has learned that ev- definitions here. For a more extensive introduction to fixed
erybody has learned, and so on. Indeed, the announcemengoint extensions of first-order logic, see [6, 8].
changes the state of knowledge of the agents, and thus in- A formula ¢(R,T) with a freek-ary second-order vari-
duces an update of the model: all worlds which currently able and a freé-tuple of first-order variables defines, on

do not satisfyy are eliminated, in other wordg; is rel- every structure, a relational operatof, : P(A*) —
ativised top. Epistemic logics with public announcement P(A*) taking R C A* to the set{@ : (A, R) = ¢(@)}.

(as considered for instance in [2, 15]) admit formulaky Fixed point extensions of first-order logic are obtained by
expressing that) holds after announcement g¢f i.e., af- adding toFO explicit constructs to form fixed points of de-

ter the model has been relativisedgo Of course this can  finable operators. The type of fixed points that are used de-
easily be captured via syntactic relativisation so it dogs n  termines the expressive power but also the algorithmic com-
go beyond basic epistemic logic (if common knowledge is plexity of the resulting logics. The most important of these
present, it has to be expanded as a greatest fixed point beforextensions are least fixed point logld=P) and inflationary
relativisation). fixed point logic(IFP).

However, itis important to note that in the updated model ~ The inflationary fixed point of any operatoF
K|,, ¢ is notnecessarily common knowledge. Consider an- P(A*) — P(A*) is defined as the fixed point of the in-

nouncements involving ignorance likéa][b]y (“a consid- creasing sequence of sé®*),corq defined as
ers it possible that does not know)”). Removal of those 0

worlds where this is false may have the effect that at others, R =0

agenta now knows thab knows, so the announced state- Re*l = RYUF(R®), and_ )

ment becomes false there by its very announcement. But R = Uaca R forlimit ordinals A.

if somebody keeps announciggafter each relativisation
step, we have a process of iterated relativisation that will
eventually restrict the model to the deflationary fixed point
(dfp X + ¢|x). We can again ask if this fixed point is
definable by monotone inductions, but this time in a more Definition 4.1. Inflationary fixed point logic(IFP) is
specific scenario. obtained fromFO by allowing formulae of the form
[ifp RT . p(R,T)|(T) and [dfp RT . ¢(R,T)](T), for arbi-
trary ¢, defining the inflationary and deflationary fixed
point of the operator induced hy.

Thedeflationary fixed poindf F' is constructed in the dual
way starting withA* as the initial stage and taking intersec-
tions at successor and limit ordinals.

Question. Lety be a formula of basic epistemic logic (with
or without common knowledge). Is the iterated relativisa-
tion by definable in the modal-calculus?

Much more popular than inflationary fixed point logics
are logics that are based on least and greatest fixed points of
monotone operators (i.e., operators that preserve imcijsi
Every monotone operator has a least and a greatest fixed
point, which can be defined as, respectively, the intersecti
. ) ) ) . and the union, of all fixed points, but which can also be con-
4. Fixed Point Extensions of First-Order LogiC  structed by transfinite induction. For the least fixed point,

the stagesare defined byX° := ), X°+! .= F(X?), and
The first systematic studies of least and inflationary fixed X* :=(J,_, X for limit ordinals. By the monotonicity
points on abstract structures appeared in the 1970s, seef F', the sequence of stages increases until it reaches the
[1, 16, 17]. At that time the focus was on monotone and least fixed point.

We are grateful to Johan van Benthem for asking this
guestion and for pointing out to us the connection between
public announcement and relativisation. We will answer the
guestion in Section 5.



However, the property of a formulato define a mono-  structures? It was shown by Gurevich and Shelah [9] that
tone operator is undecidable. As a decidable syntax is anthe equivalence of IFP and LFP holds on all finite structures.
essential feature of a logic, one guarantees monotonitity o Their proof does not work on infinite structures, and indeed,

F, by the condition that the fixed point variableé must
occur only positive in the formula(R, 7).

Definition 4.2. Least fixed point logiqLFP) is obtained
from FO by allowing formulag[lfp RZ . o(R, T)](Z) and
[gfp RT . (R, 7)](T), for LFP-formulaey positive inR,
defining the least and the greatest fixed poinpof

there are some important aspects in which least and infla-
tionary inductions behave differently. For instance, ¢her
are first-order operators (on arithmetic, for instance) seho
inflationary fixed point is not definable as the least fixed
point of a first-order operator. Hence it was conjectured by
many that IFP might be more powerful than LFP. However,
Kreutzer [13] could show recently that IFP is equivalent

The dualities between least and greatest fixed points, and® LFP on arbitrary structures. Both proofs, by Gurevich-

between inflationary and deflationary fixed points, imply

[efp Rz . (1) = —[lfp Rz . ~¢[R/-R](t)
[dfp Rz .4](F) = —[ifp RT. ~y[R/-R]|(D).

Hence every LFP- or IFP-formula can be brought imga-
tion normal form where negation applies to atoms only.

Clearly, if o(R, T) is positive inR, then the stages of the
least and the inflationary fixed point induction coincided an
so do the fixed points. It follows immediately that LFP is
contained in IFP.

Least and inflationary fixed point logic as introduced
here are of central concern in finite model theory and de-
scriptive complexity. This is due to the close relationship
with computational complexity classes. This correspon-

Shelah and Kreutzer, rely on constructions showing that the
stage comparison relationsf inflationary inductions are
definable bylfp-inductions.

Definition 4.5. For every monotone or inflationary opera-
tor F : P(A*) — P(AF), with stagesY® converging to a
fixed pointX*°, the F'-rankof a tuplea is |a|p := min{a :
ae€ X*}ifae X, and|a|r = oo, otherwise. Thatage
comparison relationsf F' are defined by

iff
iff

ESFE |E‘F§|E‘F<OO

a<pb |E‘F<|E‘F.

Given a formulap(R,T), we write <, and <,, for the
stage comparison relations B}, andg';jf and <'£f for the
stage comparison relations of the associated inflationary o

dence is made precise in the results by Immerman and VardleratorGw "R RU{a: % = o(R,a)}.

[10, 20] who showed that LFP, as well as IFP, characterise

polynomial time computability on (ordered) finite struc-
tures.

Definition 4.3. A logic £ captures a complexity clagson

a domainD of finite structures if the model checking prob-
lem for every fixed formula af on structures fronD is in
the complexity class, and if every class of structures,
whose membership problem isdnis definable orD by a
sentence of.

Theorem 4.4 (Immerman, Vardi). LFP andIFP both cap-
ture PTIME on the class of ordered finite structures.

Similar results have been established for most major
complexity classes using extensions of first-order logic by
different fixed point constructs. Capturing results arera ce
tral concern of finite model theory; they allow the trans-
fer of methods from logic to complexity theory and vice
versa. A major limitation though is the restriction to or-
dered structures. Most of the known capturing results fail
in the absence of a linear order. For instance, it is easily
seen that without an ordering LFP falls short of capturing
all of PTIME. A typical example of this failure is the class

Example 4.6. For the formulap(T, z,y) := Ezy V 3z(Ezxz A
Tzy) the relation<,, on a graph'V, E) is distance comparison:

(a,b) <, (c,d) iff dist(a,b) < dist(c, d).

Stage Comparison Theorems deal with the definability of
stage comparison relations. For instance, Moschovak]s [16
proved that the stage comparison relatishs and <, of
any positive first-order formula are definable by a simul-
taneous induction over positive first-order formulae. Rer t
equivalence results on IFP and LFP one needs a Stage Com-
parison Theorem for IFP-inductions.

We first observe that the stage comparison relations for
IFP inductions are easily definable in IFP (see [17]). In-
deed, for any formulg (T, ), the relation<1" is defined
by the formula

07 < 7. ¢[T5/7 < 7)@) A ~[T5/7 < 7)(7)](z. 7).

wherey|[Tw/u < Z|(Z) denotes the formula obtained from

@ by replacing ing every atomTw by the atomz < T
defining the set of tuples of rank less than

However, what one needs to show is that the stage com-
parison relation for IFP-inductions is in fact LFP-defirabl

of finite sets of even cardinality, that can of course eaglly b Theorem 4.7 (Inflationary Stage Comparison).For any

decided in polynomial time, but is not definable in LFP.
Since both logics captureriME, IFP and LFP are equiv-

formulay(R,7) in FO or LFP, the stage comparison rela-
tion <" is definable inLFP. On finite structures it is even

[

alent on ordered finite structures. What about unordereddefinable in positivé FP.



We only sketch the main ideas of the proof; for details, Proof. [ifp RT.¢(R,Z)]|(Z) = ¢({7: ¥ <i£f 7},7). O
see [6, 9] in the case of finite structures and [13, 14] for
the more difficult construction in the general case. Con- Alternation hierarchies for LFP and IFP. Stage com-
sider again the IFP-formula := [ifpT < 7. ¢[Tu/u < parison theorems have also other interesting consequences
7)(T) A ~p[Tu/u < 7|(y)](T,y) above defining the rela-  For instance, Moschovakis’ Theorem implies that on finite
tion <. As ¢ is used both positively and negativelydn  structures, greatest fixed points can be expressed using onl
the fixed point relation< also occurs both positively and  |east fixed points (that do not occur in the scope of nega-
negatively. To turn this into an LFP-definition, purely posi  tion). The proof uses, again, that on finite structures there
tive in <, one has to replace the negative occurrences of  are tuplesz of maximal rank with respect tg:'”f and for

by positive definitions. If we are only concerned with finite any sucha, the fixed point ofy consists of alb <|nf 7 and
structures, there is an elegant trick for doing this.

On finite structures, closure ordinals are always finite.
Suppose that the inflationary fixed point @f7T,z) is
reached at stage on?l. For each non-zero ordinal < n,
we can choose a tupteof rank« and define the stagé®
by {b: b <"} and its complement bb : @ <" b}. The
idea, now, is to simultaneously define the two stage com-
parison relations<!" and<". Suppose the relations have
been defined up to some stage To define the next stage
a+ 1, one can existentially quantify over a tuplef ranka
and replace ip(T, T) every positive occurrence of an atom
Tu by the atomu < Z, defining the stagd'®, and every
negative occurrence dfu by Z < @ defining the comple-
ment of T'*. In this way, the next stage of the induction on
< and< can be defined.

If also infinite structures are considered, this trick does
no longer work. The problem is that at limit stageghere
is no tuplez of rank exactlyA which could be used to define _ { R « ¢(R,7)

its complement of the elemenisuch tha@ <'£f b. Since

the set of tuples with maximal rank maximal is definable,
one can express every greatest fixed point by a least fixed
point. This gives a simple normal form for LFP and IFP on
finite structures (see [10]).

However, this approach fails on infinite structures. Fixed
points may be reached at limit stages and there may be no
elements of maximal rank. And indeed, on infinite struc-
tures the alternation hierarchy of least and greatest fixed
points is strict (see [16] and [3]). For IFP though, the
alternation hierarchy collapses, i.e. any deflationarydfixe
point can be translated to an inflationary fixed point. This
is particularly simple if simultaneous inductions oversev
eral formulae are permitted (see also Definition 5.1 below).
Indeed—[ifp RZ . ¢(R, T)|(T) is equivalent to the formula
[ifp PZ : S|(Z), where

the next stage. (Recall th@t" is just the gnion of a_II. lower PZ « Vy(Ry  ¢(R,Y)) ARz

stages.) So one has to construct a positive definition for the

complement of a stagé® in a different way. A solution  The induction onS builds up the inflationary fixed point

to this is to define a second formuld<, Z,y) which, for of ¢ in R and, once this fixed point has been reached,
any given interpretation ok by a stage<®, defines again  i.e., V§(Ry + ¢(R,7)) becomes true, adds 8B all tu-

<2 from scratch, but by a positive fixed point induction on ples notinR. It is known that simultaneous inductions can
a new relatior) using=< only negatively. Once such a for- be translated to simple ones for both LFP and IFP.

mula is defined, we can replace every negative reference to Interestingly, if we are not interested in the alternatibn o
the fixed point variable< by the formulad. As ¥ is nega- least and greatest (inflationary and deflationary) fixedgsoin
tive in < using it negatively results in a formula positive in  but in the nesting of fixed points of the same kind, the situa-
< and thus in a proper LFP-definition. Essentiallycan tion is in some sense reversed: nested least fixed points can
be defined similarly to the formula given above, using always be replaced by a single one (of larger arity), whereas
for every negative reference to the stage comparison relathis fails for inflationary fixed points. Indeed, every defla-
tion the outer fixed point variable, and for every positive  tionary fixed point can be translated to an inflationary one.
reference the inner variab{@. Strictly speaking, however, Thus, if nested inflationary fixed points could be reduced to
such a formula? does not always exist. Still, using thisidea a single fixed point we would prove that every IFP-formula
one can show that the stage comparison reIat:i@hcan be is equivalent to a formula with only one fixed point oper-
defined in LFP. Note, however, that the stage comparisonator. A simple diagonalisation argument shows that this is
relation is defined by two nested fixed points the inner of impossible.

which occurs negatively. We will see below that this cannot ~ On the other hand, it is known that every LFP-formula of

be avoided. the form[lfp RZ.p(R,T)] such thaty contains a positive
From this result, the equivalence of LFP and IFP follows subformulay := [Ifp Q7.4 (Q, R.v)](y) is equivalent to
easily. the simultaneous fixed poififp RZ : S| of the system

0(w)/Qu)

Theorem 4.8 (Kreutzer). For everylFP-formula there is g .- { RT + ¢(R,Z,
Sl QY w@ R,7)

an equivalent. FP-formula.



which can easily be expressed by a single least fixed pointdinal o, a tuplefa = (X7,..., X)) of sets of states, via
of larger arity. X0 .=

In finite model theory, due to the Gurevich-Shelah Theo- Xf“ = X&U [[%]](zc,?)’

rem, the two logics LFP and IFP have often been used inter-
changeably. However, there are significant differences tha XP = U Xf if a is a limit ordinal.

are sometimes overlooked. Despite the equivalence of IFP B<a

and LFP, inflationary and deflationary inductions are more We call (X', ..., X¥) the stagen of the inflationary in-
powerful concepts than monotone inductions. The trans-duction ofS on K. As the stages are increasing (i C
lation from IFP-formulae to equivalent LFP-formulae can Xf for anya < f), this induction reaches a fixed point
make the formulae much more complicated, requires an in-(X°, ..., X°). Now we put](ifp X; : S)]* := X°.
crease of the arity of fixed point variables and, in the case

S ) g It is clear that MIC is a modal logic in the sense that
of infinite structures, introduces alternations betweeastle

: ) e it is invariant under bisimulation. In fact, on every class
and greatest fixed points. Indeed it is often much more con- ¢ 1,5 ,nded cardinality, inflationary fixed points can be un-

venient to use inflationary or deflationary inductions in €X- \yound to obtain an equivalent infinitary modal formulae.
plicit constructions, the advantage being that one is notre pq 4 consequence, MIC has the tree model property. It is
stricted to inductions over positive formulae. A case impoi 5150 clear that MIC is at least as expressivelgs Given

is the linear order on the bisimulation quotient that we de- 4t the corresponding extensions of first-order logic by
fined in Section 3.1. By the equivalence of IFP and LFP the 055t and inflationary fixed points are equivalent, it is reitu
deflationary induction defining this order can be translated ;, 55k whether the step from thecalculus to a correspond-
into a definition based on least fixed points only. However, ing non-monotone fixed point calculus does indeed produce

itis not at all cle_ar how to dothis directly, orwhet_her it €an something new. In particular, we can pose the following
be done at all without increasing the arity of the fixed point questions.

variables. .
(1) Is MIC more expressive thah,?

(2) Does MIC have the finite model property?

(3) What are the algorithmic properties of MIC? Is the sat-
isfiability problem decidable? Can model checking be per-
Given the close relationship between LFP and IFP, and theformed efficiently (as efficiently as fdt,,)?

importance of the:-calculus, it is natural to study also the (4) Can we eliminate, as in thecalculus and as in IFP, si-
properties and expressive power of inflationary fixed points multaneous inductions without losing expressive power?

5. Modal Fixed Point Logics

in modal logic. We assume familiarity with propositional
modal logic ML and thg:-calculusL,,. For a Kripke struc-
ture K and a formulap, we write [¢]* for the set of el-
ements offC at which is true. An analogue of IFP for
modal logic is themodal iteration calculus/IC introduced

in [4], which extends basic multi-modal logic by simultane-
ous inflationary (and deflationary) inductions.

Definition 5.1. The modal iteration calculus MIC ex-

tends propositional modal logic by the following rule: if
©1,--.,pr are formulae of MIC, andXy,...,X; are

propositional variables, then

X1 <~ o

S =

Xk < ¢k

is a systemof rules, and(ifp X; : S) and (dfp X; : 5)
are formulae of MIC. IfS consists of a single rul& <+ ¢
we simplify the notation and writdfp X < ¢) instead of
(ifp X : X « ¢), and similarly fordfp.

We just describe the semantics fidfp-formulae. On
each Kripke structur&’, the systent' defines, for each or-

(5) What is the relationship of MIC with monadic second-
order logic (MSO) and with finite automata?

(6) Is MIC the bisimulation-invariant fragment of any natu-
ral logic?

In [4] it is shown that indeed, the modal iteration calcu-
lus MIC has much greater expressive power tiign But
greater expressive power comes at a cost: the calculus is
algorithmically much less manageable.

Expressive power. Whereas thg:-calculus has the finite
model property, we can axiomatise trees of infinite height
in MIC. A well-founded tree is a tree satisfying the formula
ifpX « OX. Theheighth(v) of a nodev in a well-
founded tre€] is an ordinal, namely the least strict upper
bound of the heights of its children. For any nade a tree

T, we write 7 (v) for the subtree of” with rootv. We first
show that the nodes of finite height and the nodes of height
w are definable in MIC.

Lemma 5.2. Let S be the system

X < Ofalse V (OX A O=Y)

Y « X.
Then, on every tred, [ifp X : S]7 = [ifpY : S]7 =
{v:h(v) <w}.



Proof. By induction we see that for eaéhx w, X' = {v :
h(v) < i}andY? = Xi=1 = {v : h(v) <i—1}. Asa
consequenc&® = Y* = {v : h(v) < w}. One further
iteration shows thak “+! = y«+! = xv, O

With the systent exhibited in Lemma 5.2 we obtain the
formulae
finite-height:= (ifp X : S)
w-height:= —finite-heightA Ofinite-height

which define, respectively, the nodes of finite height and

the nodes of height. Note thatw-height is a satisfiable
formula all of whose models are infinite.

Proposition 5.3. The finite model property fails for MIC.

MIC versus MSO. There is another interesting aspect
showing that MIC has more expressive power thian

The modal-calculus is contained in monadic second-order

logic MSO, in particular, allL,-definable languages are

regular. On the other side, it is shown in [4] that there are
MIC-definable languages that are not even context-free. It

follows that MIC is not contained in MSO.

Concerning the expressive power of MIC on finite words,

we remark that all languages inTIME(O(n)) are MIC-
definable.

sensitive.

A further interesting example separating MIC from MSO
is related to the process of iterated relativisation dbscri
in Sections 3.2 and 3.3. Let:= (a)true V (r < [b]false).
The iterated relativisation by is described by the MIC-
formulay := (dfp X + ¢|x).

Lemma 5.4. No formula inMSO is equivalent tap.

Proof. To see this, consider the formula(or equivalently,
the process of iterated relativisation definedA)yon finite
treesT'(n, m), consisting of a root with two branches at-
tached: a branch of lengthof a-transitions, and a branch
of lengthm of b-transitions. The root is identified by the
atomic proposition that is also denoted

It is easy to see thdft(n,m),r = ¢ iff n > m. Indeed
after ¥k < min(m,n) relativisation steps]'(n,m) is re-
ducedtdl'(n—k, m—k). Further, note thaf'(n, m),r |= ¢
if, and only if,n > 0 orm = 0.

Hence, ifn < m, then the firstm relativisation steps
produce the tre® (0, m —n), and the following step will re-
move the root. Further iterations will then reduce the struc
ture to the empty set. However,if > m, then the first
m relativisation steps produ@(n — m, 0), andm further
steps will reduce the tree (0, 0), that is to the tree con-
sisting just of the root, and this is the fixed point.

On the other hand, as MIC has linear space
data complexity, all languages definable in MIC are context-

those treeq’(n, m) for whichn > m. Since every MSO-
sentence is equivalent, on trees, to a finite automatads,
not equivalent to any MSO-formula. O

Hence, no formula in the modatcalculus is equivalent
to ¢. Itis not difficult to modify this example so that it also
works for epistemic logics (i.e. Kripke structures where th
accessibility relations are equivalence relations).

Corollary 5.5. Epistemic logics with iterated public an-
nouncement cannot be embedded into the madallculus.

Janin and Walukiewicz [11] have shown that every prop-
erty of transition systems that is invariant under bisimula
tion and definable in MSO, can actually be defined jn
Thus, theu-calculus gives a precise characterisation of the
bisimulation invariant properties definable in MSO, or, to
put it more conciselyL,, is the bisimulation-invariant frag-
ment of MSO. The question arises whether we can similarly
characterise MIC as the bisimulation invariant fragment of
some natural extension of MSO.

Given that the monadic fragment M-LFP of LFP coin-
cides with MSO on trees and thus, the bisimulation invariant
fragments of M-LFP and MSO fall together, a natural ques-
tion is whether MIC is the bisimulation invariant fragment
of M-IFP, the monadic fragment of IFP. However this was
refuted in [5]; it turned out that the bisimulation invarian
fragment of M-IFP is far more expressive than MIC.

Another natural candidate is the multi-dimensiopal
calculus introduced by Otto [18], which characterises the
bisimulation-invariant fragment of #ME. However, al-
though MIC is much more expressive thdn,, it falls
short of defining all bisimulation-invariant polynomiaire
properties. In particular, as shown in [4], bisimulaticseif
is not definable in MIC. Hence it is open, whether MIC can
be characterised in this way.

Algorithmic properties. The two fundamental algorith-
mic problems related to a logic are the satisfiability prable
and model checking. For the modaicalculus, satisfiabil-
ity is decidable in EPTIME and model checking is known
to be in NPN co-NP (and conjectured by many to be solv-
able in polynomial time). Unfortunately, MIC has much
less convenient algorithmic properties.

Theorem 5.6. The satisfiability problem for MIC is unde-
cidable. In fact, it is not even in the arithmetical hieraych

To prove this, one can again work with well-founded
trees, and show that arithmetic on the heights is definable
in MIC. For details, see [4]. Furthermore it has recently
been shown by Miller and Moss [15], that even very small
fragments of MIC are undecidable, and in fagt-hard. It
suffices to add to basic propositional logic the process of

On the other side, a straightforward pumping argumentsiterated relativisation, i.e. a very restricted form of defl
shows that no finite tree automaton can accept preciselytionary fixed points.



Theorem 5.7. The logic of iterated public announcementis p-calculus work by solving the strategy problem for the as-
undecidable, even without common knowledge. sociated parity game (see, e.g., [12]).

The question arises whether one can generalise parity
games to appropriate evaluation games for IFP and MIC.
Note that there is a trivial possibility to define a model
checking game for IFP, namely to unwind all fixed points
and take the associated first-order game. But this is unsat-
isfactory in several respects. The main problem is the ex-

Theorem 5.8. The expression complexity of MIC-model Plosion of the game graph: for each fixed point of akty
checking isPsPACEcomplete, even without simultaneous the number of positions increases by a faatbr(wheren

inductions and even on very simple structures with just two is the size of the input structure). Hence, even if we only
elements. have monadic fixed points (as is the case for MIC), the size

of the game graph would be exponential in the number of

We finally remark that although simultaneous fixed point fixed point operators.
inductionsin LFP, IFP, or the modatcalculus can be elim- We would like instead to define a model checking game
inated without losing expressive power, this is not the caseyith (essentially) the same game graphs as for least fixed

for MIC. However, all the expressiveness and complexity point logics, and take care of the increased power by differ-
results for MIC that we mentioned survive if only simple  ent winning conditions.

inductions are permitted.

The straightforward bottom-up evaluation method shows
that model checking for MIC is polynomial-time in the size
of the structure and polynomial space in the size of the
formula. Unfortunately, this naive approach cannot be im-
proved essentially [4].

Let us recall the definitions of model checking games for

We have seen that in the context of modal logic, infla- ML and the modalu-calculus (the games for FO and LFP
tionary and deflationary fixed points are much stronger than analogous). Consider a Kripke structigre= (V, (E, :
least and greatest fixed points, and MIC has very differenta e A).(F - b.e B)) and & formulap € L wh;ch \(;ve

) . 7]

s:cru::turg:]pr.opemes gompared Ig,. hH?]wevgr, |fn teiz_ms., may assume to be in negation normal form amil-named
ot algorithmic prqpernes we pay a (high) price or_t IS iy the sense that every fixed-point variable is bound only
creased expressive power. Indeed the complexity results

once.
that we have shown probably exclude MIC as useful for- . . .
malism for, say, hardware verification. The gamej(K., ¢)) is @ parity game whose positions are

pairs (p, v) such thaty is a subformula of), andv is a
node of . Player O (Verifier) moves at positions associ-
6. Games for Inflationary Fixed Points ated to disjunctions and formulgde)y. From a position
(¢ V 9,v) she moves to eithgfp, v) or (¥, v) and from a

Model checking problems, for almost any logic, can be position({a)¢, v) she can move to any positi¢p, w) such
reformulated as strategy problems for appropriate modelthat(v, w) € E,. In addition, Verifier is supposed to move
checking games. With a formulaand a structurél we as- at atomic false positions, i.e., at positio(\B,,v) where
sociate a gamé (2, 1) played by two playersyerifierand v ¢ Py and(—Fy,v) wherev € P,. However, these posi-
Falsifier. Verifier (sometimes also called Player 0) tries to tions do not have successors, so Verifier loses at atome fals
prove thatl = ¢, whereas Falsifier (also called Player 1) positions. Dually, Player 1 (Falsifier) moves at conjunacsio
tries to establish that the formula is false. For first-order and formulaga]y, and loses at atomic true positions. The
logic or propositional modal logic, evaluation games are rules described so far determine the model checking game
very simple in the sense that winning conditions posi- for ML-formulaey and it is easily seen that Verifier has a
tional, and that the games aneell-foundedli.e. all possible  winning strategy in this gamé(K, ) starting at position
plays are finite (regardless of whether the input structaire i (¢, v) if, and only if, IC, v |= .
finite or infinite). For formulae inL,, we also have positionS\X.¢, v)

The appropriate model checking games for LFP and for (whereX € {u, v}) and(X,v), for fixed-point variablesy .
the modalu-calculus are parity games. These are infinite At these positions there is a unique move (by Falsifier, say)
games where positions havepeority, and the winner of  to (p,v), i.e. to the formula defining the fixed point. The
an infinite play is determined according to whether the least priority labelling assigns odd priorities te-variables and
priority seen infinitely often during the play is even or odd. even priorities tou-variables. Further, ifX, X’ are fixed-
It is open whether winning sets and winning strategies for point variables of different kind withiX’ depending onX
parity games can be computed in polynomial time. The best(which means thaX occurs free in the formula defining
algorithms known today are polynomial in the size of the X'), thenX-positions get lower priority thaiX’'-positions.
game, but exponential with respect to the number of priori- The remaining positions, not associated with fixed-point
ties. Competitive model checking algorithms for the modal variables, do not have a priority (or have the maximal one).



For more details and explanations, and for the proof that theBacktrack moves. From positions( X, w), instead of re-

construction is correct, see e.g. [8, 19].

Theorem 6.1. K, v |= ¢ if, and only if, Verifier has a win-
ning strategy for the parity gamég(k,«) from position

(¥, 0).

For LFP an analogous construction works, but the game
graph may become much larger, especially if the width
of the formulae (the maximal number of free variables in
subformulae) is large. For LFP-formulae where both the
alternation depth and the width are bounded, the model
checking problem can be solved in polynomial time (for
instance via solving the model checking game). However,
the model checking problem for LFP iXETIME-complete
for formulae of unbounded width, even if there is only one
application of an LFP-operator. The important unresolved
case concerns LFP-formulae with bounded width, but un-
bounded alternation depth. This includes jhealculus,
since every formula of,, can be translated into an equiva-
lent LFP-formula of width two. In fact the following three
problems are algorithmically equivalent, in the senseithat
one of them admits a polynomial-time algorithm, then all
of them do.

(1) Computing winning sets in parity games.

(2) The model checking problem for LFP-formulae of
width at mostk, for anyk > 2.

(3) The model checking problem for the modat
calculus.

A game for MIC. For simplicity we will focus on MIC-
formulae with a single fixed point, of form := (ifp X «+

) wherey is in propositional modal logic. We always as-
sume that formulae are in negation normal form, and write
19 for the negation normal form efd.

Lety = ifpX « ¢, wherey is a formula inML.

In general,p can have positive or negative occurrences of
the fixed point variablel. We use the notatiop(X, X) to
separate positive and negative occurrences.ofix a finite
transition systeniC. The model checking gam®(K, ¢) is
defined as follows. The positions are pditsv) such that

v is a node ofC andd is eithery) or a subformula ofX Vv ¢
or X A . Any position of form(X,v) or (X, v) is called

an X -position.

The game graph allows for the usual moves in Xiike-
game, i.e. Verifier moves from a positigp; V o5, u) to
(¢1,u) or (p2,u) and so forth. In addition, we have regen-
eration moves and backtrack moves.

Regeneration moves. As in games forL,,, when a play
reaches a fixed point variable, then it proceeds to the for-
mula defining that fixed point. Here this means that from
positions(X, w) Verifier proceeds t¢X V ¢, w) and from
positions(X , w) Falsifier proceeds toX A 3, w).

generation, Verifier can also reset the game to the initial po
sition (¢, v), and Falsifier can do the same(af, w). This

is called a backtrack move. The winning condition ensures
that only one backtrack move will occur in a play.

Winning condition.
(1) Infinite plays are won by Falsifier.

(2) Any player loses immediately when she backtracks
a second time.

(3) Suppose that after the play has gone through
a X-positions, one of the players has back-
tracked. After that, whenx further X-positions
(Y1,u1),...,(Ya,u,) have been visited the play
ends. Falsifier has won, ¥, = X, and Verifier has

won if Y, = X.
(4) Whenever a player cannot move, she loses.

We claim that Verifier has a winning strategy for the
gameG (K, ) if K,v = ¢ and Falsifier has a winning strat-
egy if K, v (= 9. Since these games are determined (which
is immediate from general facts on infinite games) the con-
verse assertions hold as well.

To prove our claim, we look at the ML-formulag®
defining the stages of the induction. Lef = false
and 2t = >V p(p®,%*). On finite structureg) =
V<o ¢*. Consider the situation after a backtracking move
prior to which X -positions have been visited and suppose
thatC,v |= ¢°. A winning strategy for Verifier in an ML-
model checking gam& (K, ¢°) (from position (¢, v))
translates in the obvious way into a (non-positional) syt
for the gamej (K, ) from position(z), v) with the follow-
ing properties: Any play that is consistent with this strat-
egy will either be winning for Verifier beforg@ X -positions
have been seen, or tifeth X -position will be negative.

Similarly, if K,v [~ ¢° then Falsifier has a winning
strategy forG(K, ¢?), and this strategy translates into a
strategy for the gamé(K, ¢) by which Falsifier forces the
play (after backtracking) from positiofi), v) to a positive
B-th X-position, unless she wins befgseX -positions have
been seen.

Lemma 6.2. Suppose that a play o6(K,«) has been
backtracked to the initial position(y,v) after 8 X-
positions have been visited. Verifier has a winning strategy
for the remaining game if, and only i, v = ¢° and Fal-
sifier has a strategy to win the remaining game if, and only
if, IC, v £ ©F.

From this we obtain the desired result.

Theorem 6.3. If K,v = 1, then Verifier wins the game
G(K,v) from position(y,v). If K,v = ¢, then Falsifier

wins the gam& (KC, 1) from position(y, v).



Proof. Suppose first that, v |= ¢. Then there is some or-  defer a detailed analysis of the logical and algorithmigpro
dinala < w such thatC, v |= ¢*. We construct a winning  erties of this kind of games to a subsequent paper.
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