
Will Deflation Lead to Depletion?
On Non-Monotone Fixed Point Inductions�

Erich Grädel
Aachen University

Stephan Kreutzer
University of Edinburgh

Abstract

We survey logical formalisms based on inflationary and
deflationary fixed points, and compare them to the (more
familiar) logics based on least and greatest fixed points.

1. Dictionary

Deflation: reduction in size, importance, or effectiveness;
contraction of economic activity resulting in a decline of
prices; the erosion of soil by the wind.

Depletion: the exhaustion of a principal substance, espe-
cially a natural resource; a reduction in number or quantity
so as to endanger the ability to function.

2. Introduction

Fixed point logics extend a basic logical formalism (like
first-order logic, conjunctive queries, or propositional
modal logic) by constructors for defining fixed points of
relational operators. The most influential fixed point for-
malisms in computer science are based on least and greatest
fixed points of monotone operators.
– The modal�-calculusL� is the extension of propositional
modal logic by least and greatest fixed points. In terms of
expressive power, it subsumes a variety of modal and tem-
poral logics used in verification, in particular LTL, CTL,
CTL�, PDL and also many logics from other areas of com-
puter science. On the other hand,L� has a rich theory, and
is well-behaved in model-theoretic and algorithmic terms.
– LFP, the extension of first-order logic by least and greatest
fixed points, is of crucial importance in finite model theory
and descriptive complexity, in particular due to its tight con-
nection to polynomial-time computability.

In finite model theory and, to a lesser extent, in database
theory, a number of other fixed point constructs have been

studied, allowing the definition of fixed points of opera-
tors that are not necessarily monotone. Here, we will focus
on inflationary and deflationary fixed point inductions and
compare them to least and greatest fixed points. We will
also show a number of examples and scenarios in which de-
flationary fixed points arise in a natural way.

It turns out that IFP, the extension of first-order logic
by inflationary and deflationary fixed points, has precisely
the same expressive power as LFP. This has been known
for some time for finite structures [9], but has been estab-
lished only recently for the general case [13, 14]. In fi-
nite model theory, LFP and IFP have, due to their expres-
sive equivalence, often be used interchangeably. Neverthe-
less, we argue that least and inflationary fixed points have
quite different properties. This becomes particularly appar-
ent in the context of modal logic. Indeed the inflationary
modal fixed point logic MIC has far more expressive power
and very different algorithmic and structural properties than
the modal�-calculus. Finally, we will discuss appropriate
model checking games for inflationary fixed point logics.

3. Greatest and Deflationary Fixed Points

In LFP, greatest fixed points are defined by formulae[gfpRx : '(R; x)℄(a) saying thata is contained in the
greatest setR satisfyingR = fx : '(R; x)g. To make
sure that this set exists, we require that the relation variableR appears only positively in'. This guarantees that the op-
eratorF' : R 7! fx : '(R; x)g is monotone on every struc-
ture (which means thatR � R0 impliesF'(R) � F'(R0)),
and it is a classical observation, attributed to Knaster and
Tarski, that monotone operators always have a greatest (and
a least) fixed point. Moreover, the greatest fixed point can
be obtained by an iterative process. Starting with the set
of all tuples of appropriate arity in the structure under con-
sideration, we repeatedly apply the operatorF' to obtain a�This research has been partially supported by the European Research Training Network “Games and Automata for Synthesisand Validation” (GAMES)

decreasing (possibly transfinite) series of stages which con-
verges to the greatest fixed point. A slightly different variant
permits also simultaneous fixed point inductions over sev-
eral formulae, but it can be shown that this does not provide
more expressive power.

Deflationary fixed points, on the other hand, can be built
with formulae'(R; x) that need not be positive inR. Start-
ing withR = Ak, we can still define a decreasing sequence
of stages by iteratively taking the intersection of the current
stageR with F'(R). This sequence as well must eventually
converge to a fixed point (not necessarily ofF', but of the
associated deflationary operatorR 7! R \ F'(R)), which
we call the deflationary fixed point of'. We write[dfpRx : '(R; x)℄(a)
to express thata is contained in the deflationary fixed point
of '. It is easy to see that for monotone operators, the great-
est and the deflationary fixed points coincide. However,
non-monotone operators do not necessarily have a greatest
fixed point, and if it exists, it need not by identical with the
deflationary fixed point. We next discuss some scenarios
where deflationary fixed points arise naturally.

3.1. Bisimulation

Let K = (V;E; P1; : : : ; Pm) be a transition system with a
binary transition relationE and unary predicatesPi. Bisim-
ilarity on K is the maximal equivalence relation� on V
such that any two equivalent nodes satisfy the same unary
predicatesPi and have edges into the same equivalence
classes. To put it differently,� is the greatest fixed point
of the refinement operatorF : P(V �V)! P(V �V)withF : Z 7! f(u; v) 2 V � V :^i�m Piu$ Piv^ 8u0(Euu0 ! 9v0(Evv0 ^ Zu0v0))^ 8v0(Evv0 ! 9u0(Euu0 ^ Zu0v))g:

For some applications one is interested to have not only
the bisimulation relation� but also a linear order on the
bisimulation quotientK=�. That is, we want to define a
pre-order4 onK such thatu � v iff u 4 v andv 4 u. We
can again do this via a fixed point construction, by defining
a sequence4� of pre-orders (where� ranges over ordinals)
such that4�+1 refines4� and4�, for limit ordinals�, is
the intersection of the pre-orders4� with � < �. Letu 41 v :() ^i�mPiu! �Piv __j<i(:Pju ^ Piv)�
(i.e. if the truth values of thePi at u are lexicographically
smaller or equal than those atv), and for any�, letu �� v :() u 4� v ^ v 4� u:
To define the refinement, we say that the��-classC sepa-
ratestwo nodesu andv, if precisely one of the two nodes

has an edge intoC. Now, let u 4�+1 v if, and only if,u 4� v and there is an edge fromv (and hence none fromu) into the smallest��-class (wrt. 4�) that separatesu
from v (if it exists). Since the sequence of the pre-orders4� is decreasing, it must indeed reach a fixed point4, and
it is not hard to show that the corresponding equivalence
relation is precisely the bisimilarity relation�.

The point that we want to stress here is that4 is a de-
flationary fixed point of a non-monotone induction. Indeed,
the refinement operator on pre-orders is not monotone and
does, in general, not have a greatest fixed point.

3.2. Iterated Relativisation

LetA be a relational structure and'(x) a specification that
should be satisfied by all elements. If this is not the case we
can try to throw away all elements ofA that do not satisfy', i.e. to relativizeA to the substructureAj' induced byfa : A j= '(a)g. Unfortunately, it need not be the case thatAj' j= 8x'(x). Indeed, the removal of some elements may
have the effect that others do no longer satisfy'. But we
can of course iterate this relativisation procedure and define
a (possibly transfinite) sequence of substructuresA�, withA0 = A, A�+1 = A� j' andA� = T�<� A� for limit or-
dinals�. This sequence reaches a fixed pointA1 which
satisfies8x'(x) — but it may be empty.

This process of iterated relativisation is definable by a
fixed point induction inA. Let'jZ be the syntactic relativi-
sation of' to a new set variableZ, obtained by replacing
inductively all subformulae9y� by 9y(Zy ^ �) and8y�
by 8y(Zy ! �). Iterated relativisation means repeated
application of the operatorF : Z 7! fa : AjZ j= '(a)g = fa : A j= Za ^ 'jZ(a)g
starting withZ = A (the universe ofA). Note thatF is de-
flationary but not necessarily monotone. Thus, the question
whetherA1 is empty or not is one instance of the problem
in the title: does deflation lead to depletion?

In logics with inflationary and deflationary fixed points
(the universe of)A1 is uniformly definable inA by a for-
mula of form [dfpZx : 'jZ ℄(x) (see Sections 4 and 5 for
precise definitions).

Question. Is it also definable using just least and greatest
fixed points of monotone operators?

3.3. Knowledge and Public Announcement

Iterated relativisation has a natural meaning also in epis-
temic logics, i.e. logics of knowledge. For background we
refer to [7]. Basic epistemic logic (for a groupA of agents
and a set of atomic propositionsfPb : b 2 Bg) is just propo-
sitional modal logic, interpreted on possible-world models,
i.e., Kripke structuresK = (V; (Ea : a 2 A); (Pb : b 2B)), where each possibility relationEa is an equivalence

relation. The intended meaning of[a℄' is “agenta knows'”, which is true in a worldv 2 V if ' holds in all worldsw that agenta considers possible in worldv.
A key concept in epistemic logics iscommon knowledge.

A proposition' is common knowledge at a worldv (in
short:K; v j= C') if everybody knows', and everybody
knows that everybody knows', and everybody knows that
everybody knows that everybody knows Clearly, com-
mon knowledge is a greatest fixed point. In the modal�-
calculus,C' is defined by�X:' ^Va2A[a℄X .

Suppose now that somebody (who is trusted by all
agents) publicly announces'. One would think that by this
action,' has become common knowledge, since everybody
has learned that' is true and everybody has learned that ev-
erybody has learned, and so on. Indeed, the announcement
changes the state of knowledge of the agents, and thus in-
duces an update of the model: all worlds which currently
do not satisfy' are eliminated, in other words,K is rel-
ativised to'. Epistemic logics with public announcement
(as considered for instance in [2, 15]) admit formulae['!℄
expressing that holds after announcement of', i.e., af-
ter the model has been relativised to'. Of course this can
easily be captured via syntactic relativisation so it does not
go beyond basic epistemic logic (if common knowledge is
present, it has to be expanded as a greatest fixed point before
relativisation).

However, it is important to note that in the updated modelKj',' is notnecessarily common knowledge. Consider an-
nouncements involving ignorance like:[a℄[b℄ (“a consid-
ers it possible thatb does not know ”). Removal of those
worlds where this is false may have the effect that at others,
agenta now knows thatb knows, so the announced state-
ment becomes false there by its very announcement. But
if somebody keeps announcing' after each relativisation
step, we have a process of iterated relativisation that will
eventually restrict the model to the deflationary fixed point(dfpX 'jX). We can again ask if this fixed point is
definable by monotone inductions, but this time in a more
specific scenario.

Question. Let' be a formula of basic epistemic logic (with
or without common knowledge). Is the iterated relativisa-
tion by' definable in the modal�-calculus?

We are grateful to Johan van Benthem for asking this
question and for pointing out to us the connection between
public announcement and relativisation. We will answer the
question in Section 5.

4. Fixed Point Extensions of First-Order Logic

The first systematic studies of least and inflationary fixed
points on abstract structures appeared in the 1970s, see
[1, 16, 17]. At that time the focus was on monotone and

non-monotone inductions over first-order formulae. No ex-
plicit fixed point operators were added to the language of
first-order logic, fixed points were not being nested, and not
interleaved with other logical operations. Despite these dif-
ferences with the fixed point logics as they are studied to-
day, many methods fundamental to today’s theory of fixed
point logics originate from the work done at that time.

Fixed point logics in the modern sense appeared inde-
pendently in several areas of logic in computer science,
such as database theory, finite model theory, and verifica-
tion. Their importance comes from the observation that re-
cursion or unbounded iteration can be modelled elegantly
by fixed point constructs. We will briefly recall some basic
definitions here. For a more extensive introduction to fixed
point extensions of first-order logic, see [6, 8].

A formula'(R; x) with a freek-ary second-order vari-
able and a freek-tuple of first-order variablesx defines, on
every structureA, a relational operatorF' : P(Ak) !P(Ak) takingR � Ak to the setfa : (A; R) j= '(a)g.
Fixed point extensions of first-order logic are obtained by
adding toFO explicit constructs to form fixed points of de-
finable operators. The type of fixed points that are used de-
termines the expressive power but also the algorithmic com-
plexity of the resulting logics. The most important of these
extensions are least fixed point logic(LFP) and inflationary
fixed point logic(IFP).

The inflationary fixed point of any operatorF :P(Ak) ! P(Ak) is defined as the fixed point of the in-
creasing sequence of sets(R�)�2Ord defined asR0 := ;;R�+1 := R� [F (R�); andR� := S�<�R� for limit ordinals�.

Thedeflationary fixed pointof F is constructed in the dual
way starting withAk as the initial stage and taking intersec-
tions at successor and limit ordinals.

Definition 4.1. Inflationary fixed point logic(IFP) is
obtained fromFO by allowing formulae of the form[ifpRx : '(R; x)℄(x) and [dfpRx : '(R; x)℄(x), for arbi-
trary ', defining the inflationary and deflationary fixed
point of the operator induced by'.

Much more popular than inflationary fixed point logics
are logics that are based on least and greatest fixed points of
monotone operators (i.e., operators that preserve inclusion).
Every monotone operator has a least and a greatest fixed
point, which can be defined as, respectively, the intersection
and the union, of all fixed points, but which can also be con-
structed by transfinite induction. For the least fixed point,
thestagesare defined byX0 := ;, X�+1 := F (X�), andX� := S�<�X� for limit ordinals�. By the monotonicity
of F , the sequence of stages increases until it reaches the
least fixed point.

However, the property of a formula' to define a mono-
tone operator is undecidable. As a decidable syntax is an
essential feature of a logic, one guarantees monotonicity ofF' by the condition that the fixed point variableR must
occur only positive in the formula'(R; x).
Definition 4.2. Least fixed point logic(LFP) is obtained
from FO by allowing formulae[lfpRx : '(R; x)℄(x) and[gfpRx : '(R; x)℄(x), for LFP-formulae' positive inR,
defining the least and the greatest fixed point of'.

The dualities between least and greatest fixed points, and
between inflationary and deflationary fixed points, imply[gfpRx : ℄(t) � :[lfpRx :: [R=:R℄℄(t)[dfpRx : ℄(t) � :[ifpRx :: [R=:R℄℄(t):
Hence every LFP- or IFP-formula can be brought intonega-
tion normal form, where negation applies to atoms only.

Clearly, if'(R; x) is positive inR, then the stages of the
least and the inflationary fixed point induction coincide, and
so do the fixed points. It follows immediately that LFP is
contained in IFP.

Least and inflationary fixed point logic as introduced
here are of central concern in finite model theory and de-
scriptive complexity. This is due to the close relationship
with computational complexity classes. This correspon-
dence is made precise in the results by Immerman and Vardi
[10, 20] who showed that LFP, as well as IFP, characterise
polynomial time computability on (ordered) finite struc-
tures.

Definition 4.3. A logicL captures a complexity classC on
a domainD of finite structures if the model checking prob-
lem for every fixed formula ofL on structures fromD is in
the complexity classC, and if every class of structures inD,
whose membership problem is inC, is definable onD by a
sentence ofL.

Theorem 4.4 (Immerman, Vardi). LFPandIFPboth cap-
ture PTIME on the class of ordered finite structures.

Similar results have been established for most major
complexity classes using extensions of first-order logic by
different fixed point constructs. Capturing results are a cen-
tral concern of finite model theory; they allow the trans-
fer of methods from logic to complexity theory and vice
versa. A major limitation though is the restriction to or-
dered structures. Most of the known capturing results fail
in the absence of a linear order. For instance, it is easily
seen that without an ordering LFP falls short of capturing
all of PTIME. A typical example of this failure is the class
of finite sets of even cardinality, that can of course easily be
decided in polynomial time, but is not definable in LFP.

Since both logics capture PTIME, IFP and LFP are equiv-
alent on ordered finite structures. What about unordered

structures? It was shown by Gurevich and Shelah [9] that
the equivalence of IFP and LFP holds on all finite structures.
Their proof does not work on infinite structures, and indeed,
there are some important aspects in which least and infla-
tionary inductions behave differently. For instance, there
are first-order operators (on arithmetic, for instance) whose
inflationary fixed point is not definable as the least fixed
point of a first-order operator. Hence it was conjectured by
many that IFP might be more powerful than LFP. However,
Kreutzer [13] could show recently that IFP is equivalent
to LFP on arbitrary structures. Both proofs, by Gurevich-
Shelah and Kreutzer, rely on constructions showing that the
stage comparison relationsof inflationary inductions are
definable bylfp-inductions.

Definition 4.5. For every monotone or inflationary opera-
tor F : P(Ak) ! P(Ak), with stagesX� converging to a
fixed pointX1, theF -rankof a tuplea is jajF := minf� :a 2 X�g if a 2 X1, andjajF = 1, otherwise. Thestage
comparison relationsofF are defined bya �F b iff jajF � jbjF <1a �F b iff jajF < jbjF :

Given a formula'(R; x), we write�' and�' for the
stage comparison relations ofF', and�inf' and�inf' for the
stage comparison relations of the associated inflationary op-
eratorG' : R 7! R [fa : A j= '(R; a)g.
Example 4.6. For the formula'(T; x; y) := Exy _ 9z(Exz ^Tzy) the relation�' on a graph(V;E) is distance comparison:(a; b) �' (
; d) iff dist(a; b) < dist(
; d):

Stage Comparison Theorems deal with the definability of
stage comparison relations. For instance, Moschovakis [16]
proved that the stage comparison relations�' and�' of
any positive first-order formula' are definable by a simul-
taneous induction over positive first-order formulae. For the
equivalence results on IFP and LFP one needs a Stage Com-
parison Theorem for IFP-inductions.

We first observe that the stage comparison relations for
IFP inductions are easily definable in IFP (see [17]). In-
deed, for any formula'(T; x), the relation�inf' is defined
by the formula[ifpx � y : '[Tu=u � x℄(x) ^ :'[Tu=u � x℄(y)℄(x; y);
where'[Tu=u � x℄(x) denotes the formula obtained from' by replacing in' every atomTu by the atomu � x
defining the set of tuples of rank less thanx.

However, what one needs to show is that the stage com-
parison relation for IFP-inductions is in fact LFP-definable.

Theorem 4.7 (Inflationary Stage Comparison).For any
formula'(R; x) in FO or LFP, the stage comparison rela-
tion�inf' is definable inLFP. On finite structures it is even
definable in positiveLFP.

We only sketch the main ideas of the proof; for details,
see [6, 9] in the case of finite structures and [13, 14] for
the more difficult construction in the general case. Con-
sider again the IFP-formula := [ifpx � y : '[Tu=u �x℄(x) ^ :'[Tu=u � x℄(y)℄(x; y) above defining the rela-
tion�inf' . As ' is used both positively and negatively in
the fixed point relation� also occurs both positively and
negatively. To turn this into an LFP-definition, purely posi-
tive in�, one has to replace the negative occurrences of�
by positive definitions. If we are only concerned with finite
structures, there is an elegant trick for doing this.

On finite structures, closure ordinals are always finite.
Suppose that the inflationary fixed point of'(T; x) is
reached at stagen onA. For each non-zero ordinal� � n,
we can choose a tuplea of rank� and define the stageT�
by fb : b �inf' ag and its complement byfb : a �inf' bg. The
idea, now, is to simultaneously define the two stage com-
parison relations�inf' and�inf' . Suppose the relations have
been defined up to some stage�. To define the next stage�+1, one can existentially quantify over a tuplez of rank�
and replace in'(T; x) every positive occurrence of an atomTu by the atomu � z, defining the stageT�, and every
negative occurrence ofTu by z � u defining the comple-
ment ofT�. In this way, the next stage of the induction on� and� can be defined.

If also infinite structures are considered, this trick does
no longer work. The problem is that at limit stages�, there
is no tuplez of rank exactly� which could be used to define
the next stage. (Recall thatT � is just the union of all lower
stages.) So one has to construct a positive definition for the
complement of a stageT� in a different way. A solution
to this is to define a second formula#(�; x; y) which, for
any given interpretation of� by a stage��, defines again�� from scratch, but by a positive fixed point induction on
a new relationQ using� only negatively. Once such a for-
mula is defined, we can replace every negative reference to
the fixed point variable� by the formula#. As # is nega-
tive in� using it negatively results in a formula positive in� and thus in a proper LFP-definition. Essentially,# can
be defined similarly to the formula given above, using
for every negative reference to the stage comparison rela-
tion the outer fixed point variable�, and for every positive
reference the inner variableQ. Strictly speaking, however,
such a formula# does not always exist. Still, using this idea
one can show that the stage comparison relation�inf' can be
defined in LFP. Note, however, that the stage comparison
relation is defined by two nested fixed points the inner of
which occurs negatively. We will see below that this cannot
be avoided.

From this result, the equivalence of LFP and IFP follows
easily.

Theorem 4.8 (Kreutzer). For everyIFP-formula there is
an equivalentLFP-formula.

Proof. [ifpRx : '(R; x)℄(x) � '(fy : y �inf' xg; x).
Alternation hierarchies for LFP and IFP. Stage com-
parison theorems have also other interesting consequences.
For instance, Moschovakis’ Theorem implies that on finite
structures, greatest fixed points can be expressed using only
least fixed points (that do not occur in the scope of nega-
tion). The proof uses, again, that on finite structures there
are tuplesa of maximal rank with respect to�inf' and for
any sucha, the fixed point of' consists of allb �inf' a and
its complement of the elementsb such thata �inf' b. Since
the set of tuples with maximal rank maximal is definable,
one can express every greatest fixed point by a least fixed
point. This gives a simple normal form for LFP and IFP on
finite structures (see [10]).

However, this approach fails on infinite structures. Fixed
points may be reached at limit stages and there may be no
elements of maximal rank. And indeed, on infinite struc-
tures the alternation hierarchy of least and greatest fixed
points is strict (see [16] and [3]). For IFP though, the
alternation hierarchy collapses, i.e. any deflationary fixed
point can be translated to an inflationary fixed point. This
is particularly simple if simultaneous inductions over sev-
eral formulae are permitted (see also Definition 5.1 below).
Indeed:[ifpRx : '(R; x)℄(x) is equivalent to the formula[ifpPx : S℄(x), whereS := � Rx '(R; x)Px 8y(Ry $ '(R; y)) ^ :Rx:
The induction onS builds up the inflationary fixed point
of ' in R and, once this fixed point has been reached,
i.e., 8y(Ry $ '(R; y)) becomes true, adds toP all tu-
ples not inR. It is known that simultaneous inductions can
be translated to simple ones for both LFP and IFP.

Interestingly, if we are not interested in the alternation of
least and greatest (inflationary and deflationary) fixed points
but in the nesting of fixed points of the same kind, the situa-
tion is in some sense reversed: nested least fixed points can
always be replaced by a single one (of larger arity), whereas
this fails for inflationary fixed points. Indeed, every defla-
tionary fixed point can be translated to an inflationary one.
Thus, if nested inflationary fixed points could be reduced to
a single fixed point we would prove that every IFP-formula
is equivalent to a formula with only one fixed point oper-
ator. A simple diagonalisation argument shows that this is
impossible.

On the other hand, it is known that every LFP-formula of
the form[lfp Rx : '(R; x)℄ such that' contains a positive
subformula# := [lfp Qy : (Q;R; y)℄(y) is equivalent to
the simultaneous fixed point[lfpRx : S℄ of the systemS := � Rx '(R; x; #(u)=Qu)Qy (Q;R; y)

which can easily be expressed by a single least fixed point
of larger arity.

In finite model theory, due to the Gurevich-Shelah Theo-
rem, the two logics LFP and IFP have often been used inter-
changeably. However, there are significant differences that
are sometimes overlooked. Despite the equivalence of IFP
and LFP, inflationary and deflationary inductions are more
powerful concepts than monotone inductions. The trans-
lation from IFP-formulae to equivalent LFP-formulae can
make the formulae much more complicated, requires an in-
crease of the arity of fixed point variables and, in the case
of infinite structures, introduces alternations between least
and greatest fixed points. Indeed it is often much more con-
venient to use inflationary or deflationary inductions in ex-
plicit constructions, the advantage being that one is not re-
stricted to inductions over positive formulae. A case in point
is the linear order on the bisimulation quotient that we de-
fined in Section 3.1. By the equivalence of IFP and LFP the
deflationary induction defining this order can be translated
into a definition based on least fixed points only. However,
it is not at all clear how to do this directly, or whether it can
be done at all without increasing the arity of the fixed point
variables.

5. Modal Fixed Point Logics

Given the close relationship between LFP and IFP, and the
importance of the�-calculus, it is natural to study also the
properties and expressive power of inflationary fixed points
in modal logic. We assume familiarity with propositional
modal logic ML and the�-calculusL�. For a Kripke struc-
tureK and a formula', we write [['℄℄K for the set of el-
ements ofK at which' is true. An analogue of IFP for
modal logic is themodal iteration calculusMIC introduced
in [4], which extends basic multi-modal logic by simultane-
ous inflationary (and deflationary) inductions.

Definition 5.1. The modal iteration calculus MIC ex-
tends propositional modal logic by the following rule: if'1; : : : ; 'k are formulae of MIC, andX1; : : : ; Xk are
propositional variables, thenS :=8><>: X1 '1

...Xk 'k
is a systemof rules, and(ifpXi : S) and (dfpXi : S)
are formulae of MIC. IfS consists of a single ruleX '
we simplify the notation and write(ifpX ') instead of(ifpX : X '), and similarly fordfp.

We just describe the semantics forifp-formulae. On
each Kripke structureK, the systemS defines, for each or-

dinal�, a tupleX� = (X�1 ; : : : ; X�k) of sets of states, viaX0i := ;;X�+1i := X�i [[['i℄℄(K;X�);X�i := [�<�X�i if � is a limit ordinal.

We call (X�1 ; : : : ; X�k) the stage� of the inflationary in-
duction ofS onK. As the stages are increasing (i.e.X�i �X�i for any� < �), this induction reaches a fixed point(X11 ; : : : ; X1k). Now we put[[(ifpXi : S)℄℄K := X1i :

It is clear that MIC is a modal logic in the sense that
it is invariant under bisimulation. In fact, on every class
of bounded cardinality, inflationary fixed points can be un-
wound to obtain an equivalent infinitary modal formulae.
As a consequence, MIC has the tree model property. It is
also clear that MIC is at least as expressive asL�. Given
that the corresponding extensions of first-order logic by
least and inflationary fixed points are equivalent, it is natural
to ask whether the step from the�-calculus to a correspond-
ing non-monotone fixed point calculus does indeed produce
something new. In particular, we can pose the following
questions.

(1) Is MIC more expressive thanL�?
(2) Does MIC have the finite model property?
(3) What are the algorithmic properties of MIC? Is the sat-
isfiability problem decidable? Can model checking be per-
formed efficiently (as efficiently as forL�)?
(4) Can we eliminate, as in the�-calculus and as in IFP, si-
multaneous inductions without losing expressive power?
(5) What is the relationship of MIC with monadic second-
order logic (MSO) and with finite automata?
(6) Is MIC the bisimulation-invariant fragment of any natu-
ral logic?

In [4] it is shown that indeed, the modal iteration calcu-
lus MIC has much greater expressive power thanL�. But
greater expressive power comes at a cost: the calculus is
algorithmically much less manageable.

Expressive power. Whereas the�-calculus has the finite
model property, we can axiomatise trees of infinite height
in MIC. A well-founded tree is a tree satisfying the formulaifpX 2X . The heighth(v) of a nodev in a well-
founded treeT is an ordinal, namely the least strict upper
bound of the heights of its children. For any nodev in a treeT , we writeT (v) for the subtree ofT with rootv. We first
show that the nodes of finite height and the nodes of height! are definable in MIC.

Lemma 5.2. LetS be the systemX 2false _ (2X ^3:Y)Y X:
Then, on every treeT , [[ifpX : S℄℄T = [[ifpY : S℄℄T =fv : h(v) < !g.

Proof. By induction we see that for eachi < !,X i = fv :h(v) < ig andY i = X i�1 = fv : h(v) < i � 1g. As a
consequenceX! = Y ! = fv : h(v) < !g. One further
iteration shows thatX!+1 = Y !+1 = X!.

With the systemS exhibited in Lemma 5.2 we obtain the
formulae

finite-height:= (ifpX : S)!-height:= :finite-height̂ 2finite-height

which define, respectively, the nodes of finite height and
the nodes of height!. Note that!-height is a satisfiable
formula all of whose models are infinite.

Proposition 5.3. The finite model property fails for MIC.

MIC versus MSO. There is another interesting aspect
showing that MIC has more expressive power thanL�.
The modal�-calculus is contained in monadic second-order
logic MSO, in particular, allL�-definable languages are
regular. On the other side, it is shown in [4] that there are
MIC-definable languages that are not even context-free. It
follows that MIC is not contained in MSO.

Concerning the expressive power of MIC on finite words,
we remark that all languages in DTIME(O(n)) are MIC-
definable. On the other hand, as MIC has linear space
data complexity, all languages definable in MIC are context-
sensitive.

A further interesting example separating MIC from MSO
is related to the process of iterated relativisation described
in Sections 3.2 and 3.3. Let' := haitrue _ (r $ [b℄false).
The iterated relativisation by' is described by the MIC-
formula := (dfpX 'jX).
Lemma 5.4. No formula inMSO is equivalent to .

Proof. To see this, consider the formula (or equivalently,
the process of iterated relativisation defined by') on finite
treesT (n;m), consisting of a rootr with two branches at-
tached: a branch of lengthn of a-transitions, and a branch
of lengthm of b-transitions. The rootr is identified by the
atomic proposition that is also denotedr.

It is easy to see thatT (n;m); r j= iff n � m. Indeed
after k � min(m;n) relativisation steps,T (n;m) is re-
duced toT (n�k;m�k). Further, note thatT (n;m); r j= '
if, and only if,n > 0 orm = 0.

Hence, ifn < m, then the firstm relativisation steps
produce the treeT (0;m�n), and the following step will re-
move the root. Further iterations will then reduce the struc-
ture to the empty set. However, ifn � m, then the firstm relativisation steps produceT (n�m; 0), andm further
steps will reduce the tree toT (0; 0), that is to the tree con-
sisting just of the root, and this is the fixed point.

On the other side, a straightforward pumping arguments
shows that no finite tree automaton can accept precisely

those treesT (n;m) for whichn � m. Since every MSO-
sentence is equivalent, on trees, to a finite automaton, is
not equivalent to any MSO-formula.

Hence, no formula in the modal�-calculus is equivalent
to . It is not difficult to modify this example so that it also
works for epistemic logics (i.e. Kripke structures where the
accessibility relations are equivalence relations).

Corollary 5.5. Epistemic logics with iterated public an-
nouncement cannot be embedded into the modal�-calculus.

Janin and Walukiewicz [11] have shown that every prop-
erty of transition systems that is invariant under bisimula-
tion and definable in MSO, can actually be defined inL�.
Thus, the�-calculus gives a precise characterisation of the
bisimulation invariant properties definable in MSO, or, to
put it more concisely,L� is the bisimulation-invariant frag-
ment of MSO. The question arises whether we can similarly
characterise MIC as the bisimulation invariant fragment of
some natural extension of MSO.

Given that the monadic fragment M-LFP of LFP coin-
cides with MSO on trees and thus, the bisimulation invariant
fragments of M-LFP and MSO fall together, a natural ques-
tion is whether MIC is the bisimulation invariant fragment
of M-IFP, the monadic fragment of IFP. However this was
refuted in [5]; it turned out that the bisimulation invariant
fragment of M-IFP is far more expressive than MIC.

Another natural candidate is the multi-dimensional�-
calculus introduced by Otto [18], which characterises the
bisimulation-invariant fragment of PTIME. However, al-
though MIC is much more expressive thanL�, it falls
short of defining all bisimulation-invariant polynomial-time
properties. In particular, as shown in [4], bisimulation itself
is not definable in MIC. Hence it is open, whether MIC can
be characterised in this way.

Algorithmic properties. The two fundamental algorith-
mic problems related to a logic are the satisfiability problem
and model checking. For the modal�-calculus, satisfiabil-
ity is decidable in EXPTIME and model checking is known
to be in NP\ co-NP (and conjectured by many to be solv-
able in polynomial time). Unfortunately, MIC has much
less convenient algorithmic properties.

Theorem 5.6. The satisfiability problem for MIC is unde-
cidable. In fact, it is not even in the arithmetical hierarchy.

To prove this, one can again work with well-founded
trees, and show that arithmetic on the heights is definable
in MIC. For details, see [4]. Furthermore it has recently
been shown by Miller and Moss [15], that even very small
fragments of MIC are undecidable, and in fact�11-hard. It
suffices to add to basic propositional logic the process of
iterated relativisation, i.e. a very restricted form of defla-
tionary fixed points.

Theorem 5.7. The logic of iterated public announcement is
undecidable, even without common knowledge.

The straightforward bottom-up evaluation method shows
that model checking for MIC is polynomial-time in the size
of the structure and polynomial space in the size of the
formula. Unfortunately, this naive approach cannot be im-
proved essentially [4].

Theorem 5.8. The expression complexity of MIC-model
checking isPSPACE-complete, even without simultaneous
inductions and even on very simple structures with just two
elements.

We finally remark that although simultaneous fixed point
inductions in LFP, IFP, or the modal�-calculus can be elim-
inated without losing expressive power, this is not the case
for MIC. However, all the expressiveness and complexity
results for MIC that we mentioned survive if only simple
inductions are permitted.

We have seen that in the context of modal logic, infla-
tionary and deflationary fixed points are much stronger than
least and greatest fixed points, and MIC has very different
structural properties compared toL�. However, in terms
of algorithmic properties we pay a (high) price for this in-
creased expressive power. Indeed the complexity results
that we have shown probably exclude MIC as useful for-
malism for, say, hardware verification.

6. Games for Inflationary Fixed Points

Model checking problems, for almost any logic, can be
reformulated as strategy problems for appropriate model
checking games. With a formula and a structureA we as-
sociate a gameG(A;) played by two players,Verifier and
Falsifier. Verifier (sometimes also called Player 0) tries to
prove thatA j= , whereas Falsifier (also called Player 1)
tries to establish that the formula is false. For first-order
logic or propositional modal logic, evaluation games are
very simple in the sense that winning conditions areposi-
tional, and that the games arewell-founded, i.e. all possible
plays are finite (regardless of whether the input structure is
finite or infinite).

The appropriate model checking games for LFP and for
the modal�-calculus are parity games. These are infinite
games where positions have apriority, and the winner of
an infinite play is determined according to whether the least
priority seen infinitely often during the play is even or odd.
It is open whether winning sets and winning strategies for
parity games can be computed in polynomial time. The best
algorithms known today are polynomial in the size of the
game, but exponential with respect to the number of priori-
ties. Competitive model checking algorithms for the modal

�-calculus work by solving the strategy problem for the as-
sociated parity game (see, e.g., [12]).

The question arises whether one can generalise parity
games to appropriate evaluation games for IFP and MIC.
Note that there is a trivial possibility to define a model
checking game for IFP, namely to unwind all fixed points
and take the associated first-order game. But this is unsat-
isfactory in several respects. The main problem is the ex-
plosion of the game graph: for each fixed point of arityk
the number of positions increases by a factornk (wheren
is the size of the input structure). Hence, even if we only
have monadic fixed points (as is the case for MIC), the size
of the game graph would be exponential in the number of
fixed point operators.

We would like instead to define a model checking game
with (essentially) the same game graphs as for least fixed
point logics, and take care of the increased power by differ-
ent winning conditions.

Let us recall the definitions of model checking games for
ML and the modal�-calculus (the games for FO and LFP
are analogous). Consider a Kripke structureK = (V; (Ea :a 2 A); (Pb : b 2 B)) and a formula 2 L� which we
may assume to be in negation normal form andwell-named,
in the sense that every fixed-point variable is bound only
once.

The gameG(K;) is a parity game whose positions are
pairs ('; v) such that' is a subformula of , andv is a
node ofK. Player 0 (Verifier) moves at positions associ-
ated to disjunctions and formulaehai'. From a position(' _ #; v) she moves to either('; v) or (#; v) and from a
position(hai'; v) she can move to any position(';w) such
that(v; w) 2 Ea. In addition, Verifier is supposed to move
at atomic false positions, i.e., at positions(Pb; v) wherev 62 Pb and(:Pb; v) wherev 2 Pb. However, these posi-
tions do not have successors, so Verifier loses at atomic false
positions. Dually, Player 1 (Falsifier) moves at conjunctions
and formulae[a℄', and loses at atomic true positions. The
rules described so far determine the model checking game
for ML-formulae and it is easily seen that Verifier has a
winning strategy in this gameG(K;) starting at position(; v) if, and only if,K; v j= .

For formulae inL�, we also have positions(�X:'; v)
(where� 2 f�; �g) and(X; v), for fixed-point variablesX .
At these positions there is a unique move (by Falsifier, say)
to ('; v), i.e. to the formula defining the fixed point. The
priority labelling assigns odd priorities to�-variables and
even priorities to�-variables. Further, ifX;X 0 are fixed-
point variables of different kind withX 0 depending onX
(which means thatX occurs free in the formula definingX 0), thenX-positions get lower priority thanX 0-positions.
The remaining positions, not associated with fixed-point
variables, do not have a priority (or have the maximal one).

For more details and explanations, and for the proof that the
construction is correct, see e.g. [8, 19].

Theorem 6.1.K; v j= if, and only if, Verifier has a win-
ning strategy for the parity gameG(K;) from position(; v).

For LFP an analogous construction works, but the game
graph may become much larger, especially if the width
of the formulae (the maximal number of free variables in
subformulae) is large. For LFP-formulae where both the
alternation depth and the width are bounded, the model
checking problem can be solved in polynomial time (for
instance via solving the model checking game). However,
the model checking problem for LFP is EXPTIME-complete
for formulae of unbounded width, even if there is only one
application of an LFP-operator. The important unresolved
case concerns LFP-formulae with bounded width, but un-
bounded alternation depth. This includes the�-calculus,
since every formula ofL� can be translated into an equiva-
lent LFP-formula of width two. In fact the following three
problems are algorithmically equivalent, in the sense thatif
one of them admits a polynomial-time algorithm, then all
of them do.

(1) Computing winning sets in parity games.

(2) The model checking problem for LFP-formulae of
width at mostk, for anyk � 2.

(3) The model checking problem for the modal�-
calculus.

A game for MIC. For simplicity we will focus on MIC-
formulae with a single fixed point, of form := (ifpX ') where' is in propositional modal logic. We always as-
sume that formulae are in negation normal form, and write# for the negation normal form of:#.

Let := ifpX ', where' is a formula inML.
In general,' can have positive or negative occurrences of
the fixed point variableX . We use the notation'(X;X) to
separate positive and negative occurrences ofX . Fix a finite
transition systemK. The model checking gameG(K;) is
defined as follows. The positions are pairs(#; v) such thatv is a node ofK and# is either or a subformula ofX _'
orX ^ '. Any position of form(X; v) or (X; v) is called
anX-position.

The game graph allows for the usual moves in theML-
game, i.e. Verifier moves from a position('1 _ '2; u) to('1; u) or ('2; u) and so forth. In addition, we have regen-
eration moves and backtrack moves.

Regeneration moves. As in games forL�, when a play
reaches a fixed point variable, then it proceeds to the for-
mula defining that fixed point. Here this means that from
positions(X;w) Verifier proceeds to(X _ ';w) and from
positions(X;w) Falsifier proceeds to(X ^ ';w).

Backtrack moves. From positions(X;w), instead of re-
generation, Verifier can also reset the game to the initial po-
sition (; v), and Falsifier can do the same at(X;w). This
is called a backtrack move. The winning condition ensures
that only one backtrack move will occur in a play.

Winning condition.

(1) Infinite plays are won by Falsifier.

(2) Any player loses immediately when she backtracks
a second time.

(3) Suppose that after the play has gone through� X-positions, one of the players has back-
tracked. After that, when� further X-positions(Y1; u1); : : : ; (Y�; u�) have been visited the play
ends. Falsifier has won, ifY� = X , and Verifier has
won if Y� = X.

(4) Whenever a player cannot move, she loses.

We claim that Verifier has a winning strategy for the
gameG(K;) if K; v j= and Falsifier has a winning strat-
egy ifK; v 6j= . Since these games are determined (which
is immediate from general facts on infinite games) the con-
verse assertions hold as well.

To prove our claim, we look at the ML-formulae'�
defining the stages of the induction. Let'0 = false
and'�+1 = '� _ '('�; '�). On finite structures �W�<! '�. Consider the situation after a backtracking move
prior to which� X-positions have been visited and suppose
thatK; v j= '� . A winning strategy for Verifier in an ML-
model checking gameG(K; '�) (from position ('� ; v))
translates in the obvious way into a (non-positional) strategy
for the gameG(K;) from position(; v) with the follow-
ing properties: Any play that is consistent with this strat-
egy will either be winning for Verifier before� X-positions
have been seen, or the�-thX-position will be negative.

Similarly, if K; v 6j= '� then Falsifier has a winning
strategy forG(K; '�), and this strategy translates into a
strategy for the gameG(K;) by which Falsifier forces the
play (after backtracking) from position(; v) to a positive�-thX-position, unless she wins before� X-positions have
been seen.

Lemma 6.2. Suppose that a play onG(K;) has been
backtracked to the initial position(; v) after � X-
positions have been visited. Verifier has a winning strategy
for the remaining game if, and only if,K; v j= '� and Fal-
sifier has a strategy to win the remaining game if, and only
if, K; v 6j= '� .

From this we obtain the desired result.

Theorem 6.3. If K; v j= , then Verifier wins the gameG(K;) from position(; v). If K; v 6j= , then Falsifier
wins the gameG(K;) from position(; v).

Proof. Suppose first thatK; v j= . Then there is some or-
dinal� < ! such thatK; v j= '�. We construct a winning
strategy for Verifier in the gameG(K;) starting at position(; v).

From(; v) the game proceeds to(X_'; v). At this po-
sition, Verifier chooses the node(X; v) until this node has
been visited�-times. After that, she backtracks and moves
to ('; v). By Lemma 6.2, sinceK; v j= '�, Verifier has a
strategy to win the remaining play.

Now suppose thatK; v 6j= . If, after� X-positions, one
of the players backtracks, then Falsifier has a winning strat-
egy for the remaining game, sinceK; v 6j= '�. Hence, the
only possibility for Verifier to win the game in a finite num-
ber of moves is to avoid positions(X;w) where Falsifier
can backtrack.

Consider the formulae'�f , with '0f = false and'�+1f = '('�f ; false). They define the stages ofifpX '(X; false), which is obtained from by replacing nega-
tive occurrences ofX by false . If Verifier could force a
finite winning play, with� � 1 positions of form(X;w)
and without positions(X; v), then she would in fact have
a winning strategy for the model checking gameG(K; '�f).
Since �f implies'�, it would follow thatK; v j= '�. But
this is impossible sinceK; v 6j= .

There are several possible generalisations to a class of
games that are powerful enough for arbitrary inflationary
fixed points. Here is one possibility.

The set-up is essentially the same as for a parity games.
We assume that the priority labelling
 : V ! N is partial
(i.e. not all nodes have a priority), but so that on any infinite
play there are infinitely many nodes in the range of
. In
addition to the usual moves along edges there are backtrack
moves:

From any nodev 2 V� of priority p, Player� can back-
track to a nodeu of the same priority provided that� u has already be seen in the play,� betweenu andv, no node of priority< p has been

played,� since the last node of smaller priority, there has not
yet been a backtrack move from a node of priorityp.

Suppose that a player has backtracked from a nodev of
priority p, and that� is the number of nodes of priorityp
between the last node of smaller priority (or the beginning)
andv. If, after the backtracking, it happens that� positionsu1; : : : ; u� of priority p, and no node of priority< p are
visited, then the player whose turn it is at nodeu� loses
immediately.

Finally the winner of infinite plays is determined by the
parity condition.

It is not too difficult to show that model checking prob-
lems for arbitrary formulae from MIC and IFP can indeed
be translated to games of this form. However, we have to

defer a detailed analysis of the logical and algorithmic prop-
erties of this kind of games to a subsequent paper.

References

[1] P. Aczel. An introduction to inductive definitions. In J.Bar-
wise, editor,Handbook of Mathematical Logic, volume 90
of Studies in Logic, pages 739 –782. North-Holland, 1977.

[2] J. van Benthem. One is a lonely number. Technical Report
ILLC Research Report PP-2003-07, Institute for Logic, Lan-
guage and Computation, University of Amsterdam, 2003.

[3] J. Bradfield. The modal�-calculus alternation hierarchy is
strict. Theoretical Computer Science, 195:133–153, 1998.

[4] A. Dawar, E. Grädel, and S. Kreutzer. Inflationary fixed
points in modal logic.ACM Transactions on Computational
Logic, 2003. To appear.

[5] A. Dawar and S. Kreutzer. Generalising automaticity to
modal properties of finite structures. InProc. 22nd FSTTCS,
LNCS 2556, pages 109–120. Springer, 2002.

[6] H.-D. Ebbinghaus and J. Flum. Finite Model Theory.
Springer, 2nd edition edition, 1999.

[7] R. Fagin, J. Halpern, Y. Moses, and M. Vardi.Reasoning
About Knowledge. MIT Press, 1995.

[8] E. Grädel. Finite model theory and descriptive complex-
ity. In Finite Model Theory and Its Applications. Springer-
Verlag, 2003. To appear.

[9] Y. Gurevich and S. Shelah. Fixed-point extensions of first-
order logic.Annals of Pure and Applied Logic, 32:265–280,
1986.

[10] N. Immerman. Relational queries computable in polynomial
time. Information and Control, 68:86–104, 1986.

[11] D. Janin and I. Walukiewicz. On the expressive com-
pleteness of the propositional mu-calculus with respect to
monadic second order logic. InProc. of 7th International
Conference on Concurrency Theory CONCUR ’96, LNCS
1119, pages 263–277. Springer-Verlag, 1996.

[12] M. Jurdziński. Small progress measures for solving parity
games. InSTACS 2000, volume 1770 ofLNCS, pages 290–
301. Springer, 2000.

[13] S. Kreutzer. Expressive equivalence of least and inflation-
ary fixed point logic. InProceedings of 17th IEEE Symp. on
Logic in Computer Science LICS02, pages 403–410, 2002.

[14] S. Kreutzer.Pure and Applied Fixed Point Logic. PhD the-
sis, Aachen University, 2002.

[15] J. Miller and L. Moss. The undecidability of iterated modal
relativization. Manuscript, Indiana University, 2003.

[16] Y. Moschovakis. Elementary induction on abstract struc-
tures. North Holland, 1974.

[17] Y. Moschovakis. On non-monotone inductive definability.
Fundamentae Mathematica, 82(82):39–83, 1974.

[18] M. Otto. Bisimulation-invariant Ptime and higher-
dimensional mu-calculus.Theoretical Computer Science,
224:237–265, 1999.

[19] C. Stirling. Bisimulation, model checking and other games.
Notes for the Mathfit instructional meeting on games and
computation. Edinburgh, 1997.

[20] M. Vardi. The complexity of relational query languages. In
Proceedings of the 14th ACM Symposium on the Theory of
Computing, pages 137–146, 1982.

