Skip to main content

On the reality of the quantum state

Matthew F. Pusey‚ Jonathan Barrett and Terry Rudolph

Abstract

Quantum states are the key mathematical objects in quantum theory. It is therefore surprising that physicists have been unable to agree on what a quantum state represents. There are at least two opposing schools of thought, each almost as old as quantum theory itself. One is that a pure state is a physical property of system, much like position and momentum in classical mechanics. Another is that even a pure state has only a statistical significance, akin to a probability distribution in statistical mechanics. Here we show that, given only very mild assumptions, the statistical interpretation of the quantum state is inconsistent with the predictions of quantum theory. This result holds even in the presence of small amounts of experimental noise, and is therefore amenable to experimental test using present or near-future technology. If the predictions of quantum theory are confirmed, such a test would show that distinct quantum states must correspond to physically distinct states of reality.

ISSN
1745−2473
Journal
Nature Physics
Month
may
Number
6
Pages
3
Publisher
Nature Publishing Group
Volume
8
Year
2012