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Abstract. Many program optimisations involve transforming a pro-
gram in direct style to an equivalent program in continuation-passing
style. This paper investigates the theoretical underpinnings of this trans-
formation in the categorical setting of monads. We argue that so-called
absolute Kan Extensions underlie this program optimisation. It is known
that every Kan extension gives rise to a monad, the codensity monad, and
furthermore that every monad is isomorphic to a codensity monad. The
end formula for Kan extensions then induces an implementation of the
monad, which can be seen as the categorical counterpart of continuation-
passing style. We show that several optimisations are instances of this
scheme: Church representations and implementation of backtracking us-
ing success and failure continuations, among others. Furthermore, we
develop the calculational properties of Kan extensions, powers and ends.
In particular, we propose a two-dimensional notation based on string
diagrams that aims to support effective reasoning with Kan extensions.
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1 Introduction

Say you have implemented some computational effect using a monad, and you
note that your monadic program is running rather slow. There is a folklore trick
to speed it up: transform the monad M into continuation-passing style.

typeCa = ∀z . (a →M z) →M z

instanceMonad Cwhere
return a = λc → c a
m >>= k = λc → m (λa → k a c)

The type constructor C is a monad, regardless of M. The origins of this trick seem
to be unknown. It is implicit in Hughes’ tutorial on designing a pretty-printing
library [18], which introduces a related construction called context-passing style.
Interestingly, Hughes makes C parametric in the type variable z , rather than
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locally quantifying over z . Presumably, this is because no Haskell system sup-
ported rank-2 types at the time of writing the paper. Only in 1996 Augustsson
added support for local universal quantification to the Haskell B. Compiler (hbc
0.9999.0) and I started using it.

My goal was to provide a fast implementation of backtracking in Haskell—
the first promising results were detailed in a long technical report [12]. Briefly,
the idea is to use two continuations, a success and a failure continuation. Failure
and choice can then be implemented as follows.

typeBa = ∀z . (a → z → z) → z → z

fail ∶ Ba
fail = λs f → f

(∣) ∶ Ba → Ba → Ba
m ∣ n = λs f → m s (n s f )

We shall see later that this implementation of backtracking is an instance of the
trick. This particular application can be traced back to a paper by Mellish and
Hardy [29], who showed how to integrate Prolog into the POPLOG environment.
Their setting is an imperative one; Danvy and Filinski [9] explained how to recast
the approach in purely functional terms. Since then the trick has made several
appearances in the literature, most notably [13, 8, 33, 20, 28].

The purpose of this paper is to justify the trick and explain its far-reaching
applications. There is no shortage of proofs in the aforementioned papers, but
no work relates the original monad M to the improved monad C. Since the
transformation is labelled ‘program optimisation’, one would hope that M is
isomorphic to C, but sadly this is not the case. We shall see that Ma is instead
isomorphic to ∀z . (a → R z) → R z for some magic functor R related to M.

The proofs will be conducted in a categorical setting. We will argue that
continuations are an implementation of a categorical concept known as a right
Kan extension, Kan extension for short. For the most part, we will prove and
program against the specification of a Kan extension. This is in contrast to the
related work, including my papers, which take the rank-2 types as the point of
departure. (One could argue that this violates one of the fundamental princi-
ples of computer science, that we should program against an interface, not an
implementation.) It should come as little surprise that all of the necessary cate-
gorical concepts and results appear either explicitly or implicitly in Mac Lane’s
masterpiece [27]. In fact, the first part of this paper solves Exercise X.7.3 of the
textbook. Specifically, we show that

– a Kan extension gives rise to a monad, the so-called codensity monad,
thereby solving Exercise X.7.3(a);

– every monad is isomorphic to a codensity monad, solving Exercise X.7.3(c);
– we show that Kan extensions can be implemented using ends and powers

[27, Section X.4], which we argue is the gist of continuation-passing style.

Combined these results provide a powerful optimisation scheme. Although the
categorical results are known, none of the papers cited above seems to note
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the intimate relationship. This paper sets out to fill this gap, showing the rele-
vance of the categorical construction to programming. Furthermore, it aims to
complement Mac Lane’s diagrammatic reasoning by a calculational approach.
Specifically, the paper makes the following original contributions:

– we demonstrate that many program optimisations are instances of the opti-
misation scheme: Church representations etc;

– we develop the calculational properties of Kan extensions, powers and ends;
– to support effective reasoning, we propose a two-dimensional notation for

Kan extensions based on string diagrams.

It is the last aspect I am most excited about. The algebra of programming has
aptly demonstrated the power of equational reasoning for program calculation.
However, one-dimensional notation reaches its limits when it comes to reasoning
about natural transformations, as we will set out to do. Natural transformations
are a 2-categorical concept, which lends itself naturally to a two-dimensional
notation. Many laws, which otherwise have to be invoked explicitly, are built
into the notation.

The remainder of the paper is structured as follows. Section 2 introduces
some background, notably adjunctions and monads. The knowledgeable reader
may safely skip the material, except perhaps for Section 2.2, which introduces
string diagrams. Section 3 defines the notion of a Kan extension and suggests a
two-dimensional notation based on string diagrams. Section 4 applies the nota-
tion to show that every Kan extension induces a monad, the codensity monad.
Sections 5 and 6 move on to discuss the existence of Kan extensions. Section 5
proves that every adjunction induces a Kan extension, and that every monad is
isomorphic to a codensity monad. Section 6 derives the so-called end formula for
Kan extensions. The development requires the categorical notions of powers and
ends, which are introduced in Sections 6.1 and 6.2, respectively. The framework
has a multitude of applications, which Section 7 investigates. Finally, Section 8
reviews related work and Section 9 concludes.

A basic knowledge of category theory is assumed. Appendix A summarises
the main facts about composition of functors and natural transformations.

2 Background

2.1 Adjunction

The notion of an adjunction was introduced by Daniel Kan in 1958 [23]. Ad-
junctions have proved to be one of the most important ideas in category theory,
predominantly due to their ubiquity. Many mathematical constructions turn out
to be adjoint functors that form adjunctions, with Mac Lane [27, p.vii] famously
saying, “Adjoint functors arise everywhere.” From the perspective of program
calculation, adjunctions provide a unified framework for program transforma-
tion. As with every deep concept, there are various ways to define the notion of
an adjunction. The simplest is perhaps the following:
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Let L and R be categories. The functors L ∶ L ← R and R ∶ L → R are
adjoint, written L ⊣ R and depicted

L
≺

L

�
R

≻ R ,

if and only if there is a bijection between the hom-sets

⌊−⌋ ∶ L (LA,B) ≅ R(A,RB) ∶ ⌈−⌉ , (1)

that is natural both in A and B . The functor L is said to be a left adjoint for R,
while R is L’s right adjoint. The isomorphism ⌊−⌋ is called the left adjunct with
⌈−⌉ being the right adjunct. (The notation ⌊−⌋ for the left adjunct is chosen as
the opening bracket resembles an ‘L’. Likewise—but this is admittedly a bit
laboured—the opening bracket of ⌈−⌉ can be seen as an angular ‘r’. )

That ⌊−⌋ and ⌈−⌉ are mutually inverse can be captured using an equivalence.

f = ⌈g⌉ ⇐⇒ ⌊f ⌋ = g (2)

The left-hand side lives in L , and the right-hand side in R.
Let us spell out the naturality properties of the adjuncts: ⌈g⌉ ⋅ Lh = ⌈g ⋅ h⌉

and R k ⋅ ⌊f ⌋ = ⌊k ⋅ f ⌋. The formulæ imply ⌈id⌉ ⋅ Lh = ⌈h⌉ and R k ⋅ ⌊id⌋ = ⌊k⌋.
Consequently, the adjuncts are uniquely defined by their images of the identity:
ε = ⌈id⌉ and η = ⌊id⌋. An alternative definition of adjunctions is based on these
two natural transformations, which are called the counit ε ∶ L○R →̇ Id and the
unit η ∶ Id →̇R○L of the adjunction. The units must satisfy the so-called triangle
identities:

ε○L ⋅ L○η = idL , (3a)

R○ε ⋅ η○R = idR . (3b)

The diagrammatic rendering explains the name triangle identities.

L○R○L

L ≺
idL

≺
ε○L

L

≺
L○η

R○L○R

R ≺
idR

≺
R○
ε

R

≺
η○R

Remark 1. To understand concepts in category theory it is helpful to look at
a simple class of categories: preorders, reflexive and transitive relations. Every
preorder gives rise to a category whose objects are the elements of the preorder
and whose arrows are given by the ordering relation. These categories are special
as there is at most one arrow between two objects. Reflexivity provides the
identity arrow, transitivity allows us to compose two arrows. A functor between
two preorders is a monotone function, a mapping on objects that respects the
underlying ordering: a ⩽ b Ô⇒ f a ⩽ f b. A natural transformation between two
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monotone functions corresponds to a point-wise ordering: f ⩽̇ g ⇐⇒ ∀ x . f x ⩽
g x . When appropriate we shall specialise the development to preorders.

The preorder equivalent of an adjunction is a Galois connection. Let L and R
be preorders. The maps l ∶ L ← R and r ∶ L → R form a Galois connection
between L and R if and only if

l a ⩽ b in L ⇐⇒ a ⩽ r b in R , (4)

for all a ∈R and b ∈ L.
An instructive example of a right adjoint is the floor function ⌊−⌋ ∶ R → Z

(not to be confused with the notation for left adjuncts), whose left adjoint is the
inclusion map ι ∶ Z→ R. We have

ιn ⩽ x in R ⇐⇒ n ⩽ ⌊x ⌋ in Z ,

for all n ∈ Z and x ∈ R. The inclusion map also has a left adjoint, the ceiling
function ⌈−⌉ ∶ R→ Z.

The definition of an adjunction in terms of the units corresponds to the
following property: the maps l ∶ L ← R and r ∶ L → R form a Galois connection
between L and R if and only if l and r are monotone, l ⋅ r ⩽̇ id and id ⩽̇ r ⋅ l . Since
in a preorder there is at most one arrow between two objects, we furthermore
have r ⋅ l ⋅ r ≅̇ r and l ≅̇ l ⋅ r ⋅ l .

In general, to interpret a category-theoretic result in the setting of preorders,
we only consider the types of the arrows: for example, the bijection (1) simplifies
to (4). Conversely, an order-theoretic proof can be interpreted as a typing deriva-
tion. Category theory has been characterised as coherently constructive lattice
theory [2], and to generalise an order-theoretic result we additionally have to im-
pose coherence conditions—the triangle identities in the case of adjunctions. ◻

2.2 String Diagram

Throughout the paper we shall recast natural transformations and their prop-
erties in two-dimensional notation, based on string diagrams [31]. Categories,
functors and natural transformations form a so-called 2-category, which lends it-
self naturally to a two-dimensional notation. From a calculational point of view,
two-dimensional notation is attractive because several laws, notably the inter-
change law (56), are built into the notation. When we use one-dimensional no-
tation, we have to invoke these laws explicitly. (For similar reasons we routinely
use one-dimensional notation for objects and arrows: the monoidal properties of
identity and composition are built into the notation.)

Here are the string diagrams for the units of an adjunction.

εL

R

Id

L R
η

R

L

Id

LR
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A string diagram is a planar graph. A region in the graph corresponds to a cat-
egory, a line corresponds to a functor, and a point (usually drawn as a small
circle) corresponds to a natural transformation. For readability lines are implic-
itly directed, and we stipulate that the flow is from right to left for horizontal
composition, β○α, and from top to bottom for vertical composition β ⋅ α. The
counit ε has two incoming functors, L and R, and no outgoing functor—the
dotted line hints at the identity functor, which is usually omitted. A natural
transformation of type F○G○H →̇ T○U, for example, would be shown as a point
with three incoming arrows (from above) and two outgoing arrows (to below).

Diagrams that differ only in the vertical position of natural transformations
are identified—this is the import of the interchange law (56).

E D C
γ

α

K F

L G

=
E D C
γ α

K F

L G

= E D C

γ

α

K F

L G

Thus, γ○G ⋅ K○α, γ○α and L○α ⋅ γ○F correspond to the same diagram. For
turning a string diagram into standard notation it is helpful to draw horizontal
lines through the points that denote natural transformations. Each of these lines
corresponds to a horizontal composition, where a vertical line that crosses the
horizontal line is interpreted as the identity on the respective functor. This step
yields γ○G and K○α for the diagram on the left. The vertical composition of
these terms then corresponds to the diagram.

To reduce clutter we shall usually not label or colour the regions. Also, iden-
tity functors (drawn as dotted lines above) and identity natural transformations
are omitted. With these conventions the string diagrams for the units simplify
to half circles.

L

ε

R

R

η

L

A cup signifies the counit ε and a cap the unit η.
It is important to keep in mind that, unlike a commutative diagram, a string

diagram is a term, not a property. Properties such as the triangle identities
(3a)-(3b) are still written as equations.

L

L

R

ε

η

=

L

L

(5a)

R

R

L

η

ε

=

R

R

(5b)
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The triangle identities have an appealing visual interpretation: they allow us to
pull a twisted string straight.

Remark 2. There is an alternative, perhaps more traditional two-dimensional
notation, where categories are shown as points, functors as lines and natural
transformations as regions (often labelled with a double arrow).

L R L
L R L R

Id

Id

⇒

ε

⇐η
= R

L

L

Id

Id

L

R

ε

η

The traditional diagram on the left is the Poincaré dual of the string diagram on
the right: d-dimensional objects on the left are mapped to (2 − d)-dimensional
objects on the right, and vice versa. ◻

2.3 Monad

To incorporate computational effects such as IO, Haskell has adopted the cate-
gorical concept of a monad [30]. As with adjunctions, there are several ways to
define the notion. The following is known as the monoidal definition.

A monad consists of an endofunctor M and natural transformations

η ∶ Id→M ,

µ ∶M○M→M .

From the perspective of Haskell, a monad is a mechanism that supports effectful
computations. A monadic program is an arrow of type A → MB , where the
monad is wrapped around the target. The operations that come with a monad
organise effects: the unit η (also called “return”) creates a pure computation,
the multiplication µ (also called “join”) merges two layers of effects. The two
operations have to work together:

µ ⋅ η○M = idM , (6a)

µ ⋅M○η = idM , (6b)

µ ⋅ µ○M = µ ⋅M○µ . (6c)

The unit laws (6a) and (6b) state that merging a pure with a potentially effectful
computation gives the effectful computation. The associative law (6c) expresses
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that the two ways of merging three layers of effects are equivalent.

M○M

M
id

≻

η○
M ≻

M

µ

≻

M○M
µ

≻
M○η ≻

M○M○M
M○µ

≻ M○M

M○M

µ○M

⋎
µ

≻ M

µ

⋎

In two-dimensional notation, the natural transformations correspond to con-
structors of binary leaf trees: η creates a leaf, µ represents a fork. The monad
laws correspond to transformations on binary trees: the unit laws allow us to
prune or to add leaves and the associative law captures a simple tree rotation.

M

M

=

M

M

=

M

M

(7a)

M M M

M

=

MMM

M

(7b)

Every adjunction L ⊣ R induces a monad [17]:

M = R○L , (8a)

η = η , (8b)

µ = R○ε○L . (8c)

The monad operations have simple implementations in terms of the units: the
unit of the adjunction serves as the unit of the monad; the multiplication is
defined in terms of the counit. We will prove this result twice, a first time using
one-dimensional notation and a second time using two-dimensional notation.

The unit laws (6a)–(6b) are consequences of the triangle identities (3a)–(3b).

µ ⋅ η○M
= { definitions (8a)–(8c) }

R○ε○L ⋅ η○R○L
= { −○L functor (54c) }

(R○ε ⋅ η○R)○L
= { triangle identity (3b) }

idR○L
= { −○L functor (54c) }

idR○L
= { definition of M (8a) }

idM

µ ⋅M○η
= { definitions (8a)–(8c) }

R○ε○L ⋅ R○L○η
= { R○− functor (54a) }

R○(ε○L ⋅ L○η)
= { triangle identity (3a) }

R○idL

= { R○− functor (54a) }
idR○L

= { definition of M (8a) }
idM
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The associative law (6c) follows from the coherence property of horizontal com-
position, the interchange law (56).

µ ⋅ µ○M
= { definition of M (8a) and µ (8c) }

R○ε○L ⋅ R○ε○L○R○L
= { R○− and −○L functors (54b) and (54d) }

R○(ε ⋅ ε○L○R)○L
= { interchange law (56): Id○ε ⋅ ε○(L○R) = ε○ε = ε○Id ⋅ (L○R)○ε }

R○(ε ⋅ L○R○ε)○L
= { R○− and −○L functors (54b) and (54d) }

R○ε○L ⋅ R○L○R○ε○L
= { definition of M (8a) and µ (8c) }
µ ⋅M○µ

The proofs using one-dimensional notation exhibit a lot of noise. In contrast,
the proofs in two-dimensional notation carve out the essential steps. For the unit
laws, we use the triangle identities.

R

R L

ε

R

η

L

(5a)=

R

R

L

L
(5b)=

L

LR

ε

L

η

R

The associative law requires no proof as the diagrams for the left- and the
right-hand side are identified.

R

R

L

ε

R L

ε

R L

L

=
R

R

L

ε

R L

ε

R L

L

In other words, the one-dimensional proof only contains administrative steps.

Remark 3. The preorder equivalent of a monad is a closure operator. Let P be a
preorder. A map m ∶ P → P is a closure operator on P if it is extensive, id ⩽̇ m,
and idempotent, m ⋅ m ≅̇ m. (The latter condition can be weakened to m ⋅ m ⩽̇ m
since m ⩽̇ m ⋅ id ⩽̇ m ⋅ m as composition is monotone.)

A Galois connection l ⊣ r between L and R induces a closure operator m =
r ⋅ l on R. For example, the composition of inclusion ι ∶ Z → R and the ceiling
function ⌈−⌉ ∶ R→ Z is a closure operator on R. ◻



10 Ralf Hinze

3 Kan Extension—Specification

The continuation types shown in the introduction implement so-called right Kan
extensions. This section specifies the concept formally. As to be expected, the
specification will be quite different from the implementation.

Let J ∶ C → D be a functor. You may want to think of J as an inclusion
functor. The functor part of the right Kan extension G/J ∶ D → E extends a
functor G ∶ C → E to the whole of D .

C

D

J

⋎
G/J ≻ E

G

≻

It is worth pointing out that the functors J and G play quite different roles
(see also Remark 4), which is why G/J is called the right Kan extension of G
along J. The notation G/J is taken from relation algebra (see also Remark 5) and
emphasises the algebraic properties of Kan extensions. (Mac Lane [27] writes
RanJ G for right Kan extensions and LanJ G for left ones, a notation we do not
use). Again, there are various ways to define the concept. The shortest is this:

The functor G/J is the (functor part of the) right Kan extension of G along J
if and only if there is a bijection between the hom-sets

E C (F○J,G) ≅ E D(F,G/J) , (9)

that is natural in the functor F ∶ D → E .
If we instantiate the bijection to F ∶= G/J, we obtain as the image of the

identity id ∶ E D(G/J,G/J) a natural transformation run ∶ E C ((G/J)○J,G). The
transformation eliminates a right Kan extension and is called the unit of the
extension. An alternative definition of Kan extensions builds solely on the unit,
which is an example of a universal arrow:

The right Kan extension of G along J consists of a functor written G/J ∶ D → E
and a natural transformation run ∶ E C ((G/J)○J,G). These two things have to
satisfy the following universal property : for each functor F ∶ D → E and for each
natural transformation α ∶ E C (F○J,G) there exists a natural transformation
[α] ∶ E D(F,G/J) (pronounce “shift α”) such that

α = run ⋅ β○J ⇐⇒ [α] = β , (10)

for all β ∶ E D(F,G/J). The equivalence witnesses the bijection (9) and expresses
that there is a unique way to factor α into a composition of the form run ⋅ β○J.

A universal property such as (10) has three immediate consequences that are
worth singling out. If we substitute the right-hand side into the left-hand side,
we obtain the computation law :

α = run ⋅ [α]○J . (11)



Art and Dan Explain an Old Trick 11

Instantiating β in (10) to the identity idG/J and substituting the left- into the
right-hand side, yields the reflection law :

[run] = id . (12)

Finally, the fusion law allows us to fuse a shift with a natural transformation to
form another shift:

[α] ⋅ γ = [α ⋅ γ○J] , (13)

for all γ ∶ E D(F̂, F̌). The fusion law states that shift is natural in the functor F.
For the proof we reason

[α] ⋅ γ = [α ⋅ γ○J]
⇐⇒ { universal property (10) }

α ⋅ γ○J = run ⋅ ([α] ⋅ γ)○J
⇐⇒ { −○J functor (54d) }

α ⋅ γ○J = run ⋅ [α]○J ⋅ γ○J
⇐⇒ { computation (11) }

α ⋅ γ○J = α ⋅ γ○J .

As all universal concepts, right Kan extensions are unique up to isomorphism.
This is a consequence of naturality: let G/1J and G/2J be two Kan extensions.
Since the string of isomorphisms

E D(F,G/1J) ≅ E C (F○J,G) ≅ E D(F,G/2J)

is natural in F, the principle of indirect proof [15] implies that G/1J ≅ G/2J.
There is also a simple calculational proof, which nicely serves to illustrate the
laws above. The isomorphism is given by

[run1]2 ∶ G/1J ≅ G/2J ∶ [run2]1 . (14)

We show [run1]2 ⋅ [run2]1 = id . The proof of the other half proceeds completely
analogously.

[run1]2 ⋅ [run2]1
= { fusion (13) }

[run1 ⋅ [run2]1○J]2
= { computation (11) }

[run2]2
= { reflection (12) }

id
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Remark 4. If the Kan extension along J exists for every G, then −/J itself can
be turned into a functor, so that the bijection E C (F○J,G) ≅ E D(F,G/J) is also
natural in G. In other words, we have an adjunction −○J ⊣ −/J. If furthermore
the adjunction −○J ⊣ −/J exists for every J—we have an adjunction with a
parameter—then there is a unique way to turn =/− into a higher-order bifunctor
of type (DC )op × E C → E D , so that the bijection is also natural in J [27, Th.
IV.7.3, p102]. ◻

Turning to the two-dimensional notation, the unit run is drawn as a solid
circle ● (diagram on the left below). This convention allows us to omit the label
run to avoid clutter. More interesting is the diagrammatic rendering of [α]. My
first impulse was to draw a dotted box around α, pruning J and relabelling G to
G/J (diagram in the middle).

G/J

run

J

G

F

α J

G

G/J

F

α J

]

G[

G/J

However, as we shall see in a moment, the diagram on the right is a better choice.
The F branch is left untouched; the J and G branches are enclosed in square
brackets ( ] and [ ). Computation (11) and reflection (12) are then rendered as
follows.

F

α J

]

G[

G/J run

J

G

=
F

α

J

G

(15)

G/J

J

]

G[

G/J

run
=

G/J

G/J

(16)

Seen as a graph transformation, the computation law (15) allows us to replace
the node labelled run by the sub-graph α. The reflection law (16) means that
we can cut off a ‘dead branch’, a run node enclosed in brackets. The fusion law
is the most interesting one—it shows the advantage of the bracket notation.

F̂

γ

F̌ α J

G

G/J

=

F̂

γ

F̌ α

J

G

G/J

F̂

γ

F̌ α J

]

G[

G/J

=

F̂

γ

F̌ α

J

]

G[

G/J
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If we used the box notation, then fusion would allow us to shift γ in and out of the
box. The bracket notation on the other hand incorporates the fusion law—recall
that diagrams that differ only in the vertical position of natural transformations
are identified—and is thus our preferred choice. (As an aside, the box notation
is advantageous if we choose to label the regions: the category inside the box to
the right of J and G is C , whereas the category outside the box to the right of F
and G/J is D . A compromise is to draw only the lower right compartment of the
box as shown on the right below.)

F

α J

G

G/J

CE

D

D

E

F

α J

G

G/J

C

D

E

It is important to note that the computation law (15) contains universally
quantified variables: it holds for all functors F and for all natural transforma-
tions α, the latter denoted by a hollow circle ○ for emphasis. This is in contrast to
all of the other two-dimensional laws we have seen before: the triangle identities
and the monad laws involve only constants. When the computation law (15) is
invoked, we have to substitute a subgraph for α and a bundle of strings for F. In
particular, if F is replaced by Id, then the bundle is empty. The two-dimensional
matching process is actually not too difficult: essentially one has to watch out
for a solid circle (●) to the right below of a closing bracket ( [ ).

Finally, let us record that the diagrammatic reasoning is complete since com-
putation, reflection and fusion imply the universal property (10). ‘⇐Ô’: This
implication amounts to the computation law (11). ‘Ô⇒’: We reason

[run ⋅ β○J]
= { fusion (13) }

[run] ⋅ β
= { reflection (12) }
β .

Remark 5. We can specialise Kan extensions to the preorder setting, if we equip
a preorder with a monoidal structure: an associative operation that is monotone
and that has a neutral element. Consider as an example the integers equipped
with multiplication ∗. The bijection (9) then corresponds to the equivalence

m ∗ k ⩽ n ⇐⇒ m ⩽ n ÷ k ,

which specifies integer division ÷ for k > 0. The equivalence uniquely defines
division since the ordering relation is antisymmetric. The notation for Kan ex-
tensions is, in fact, inspired by this instance.
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We obtain more interesting examples if we generalise monoids to categories.
For instance, Kan extensions correspond to so-called factors in relation algebra,
which are also known as residuals or weakest postspecifications [16].

F ⋅ J ⊆ G ⇐⇒ F ⊆ G / J (17)

Informally, G / J is the weakest (most general) postspecification that approx-
imates G after specification J has been met. Again, the universal property
uniquely defines G / J since the subset relation is antisymmetric. The type of
run corresponds to the computation law

(G / J ) ⋅ J ⊆ G . (18)

(Kan extensions, integer quotients and factors are, in fact, instances of a
more general 2-categorical concept. Actually, the development in this and in the
following two sections can be readily generalised to 2-categories. Relation algebra
is a simple instance of a 2-category where the vertical categories are preorders.
A ‘monoidal preorder’ such as the integers with multiplication is an even simpler
instance where the horizontal category is a monoid and the vertical category is
a preorder.) ◻

4 Codensity Monad

The right Kan extension of J along J is a monad, M = J/J, the so-called codensity
monad of J. To motivate the definition of the monad operations, let us instantiate
the Kan bijection (9) to G ∶= J:

DC (F○J, J) ≅ DD(F,M) . (19)

Recall that the bijection is natural in the functor F. For the return of the monad
we set F to the identity functor, which suggests that return is just the transpose
of the identity. The unit run of the Kan extension has type M○J→̇J. To define the
multiplication of the monad, we instantiate F to M○M, which leaves us with the
task of providing a natural transformation of type M○M○J →̇ J: the composition
run ⋅M○run will do nicely. To summarise, the codensity monad of J is given by

M = J/J , (20a)

η = [id] , (20b)

µ = [run ⋅M○run] . (20c)

Of course, we have to show that the data satisfies the monad laws. As in the
previous section, we provide two proofs, one using traditional notation and one
using two-dimensional notation.
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For the unit laws (6a)–(6b) we reason

µ ⋅ η○M
= { definition of µ (20c) }

[run ⋅M○run] ⋅ η○M
= { fusion (13) }

[run ⋅M○run ⋅ η○M○J]
= { interchange law (56) }

[run ⋅ η○J ⋅ run]
= { definition of η (20b) }

[run ⋅ [id]○J ⋅ run]
= { computation (11) }

[run]
= { reflection (12) }

id ,

µ ⋅M○η
= { definition of µ (20c) }

[run ⋅M○run] ⋅M○η
= { fusion (13) }

[run ⋅M○run ⋅M○η○J]
= { M○− functor (54b) }

[run ⋅M○(run ⋅ η○J)]
= { definition of η (20b) }

[run ⋅M○(run ⋅ [id]○J)]
= { computation (11) }

[run ⋅M○id]
= { M○− functor (54a) }

[run]
= { reflection (12) }

id .

All of the basic identities are used: reflection (12), computation (11) and fu-
sion (13).

For the associative law (6c) we show that both sides of the equation simplify
to [run ⋅M○run ⋅M○M○run], which merges three layers of effects:

µ ⋅ µ○M
= { definition of µ (20c) }

[run ⋅M○run] ⋅ µ○M
= { fusion (13) }

[run ⋅M○run ⋅ µ○M○J]
= { interchange law (56) }

[run ⋅ µ○J ⋅M○M○run]
= { definition of µ (20c) }

[run ⋅ [run ⋅M○run]○J ⋅M○M○run]
= { computation (11) }

[run ⋅M○run ⋅M○M○run]

µ ⋅M○µ
= { definition of µ (20c) }

[run ⋅M○run] ⋅M○µ
= { fusion (13) }

[run ⋅M○run ⋅M○µ○J]
= { M○− functor (54b) }

[run ⋅M○(run ⋅ µ○J)]
= { definition of µ (20c) }

[run ⋅M○(run ⋅ [run ⋅M○run]○J)]
= { computation (11) }

[run ⋅M○(run ⋅M○run)]
= { M○− functor (54b) }

[run ⋅M○run ⋅M○M○run] .
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Turning to the second set of proofs, here are the two-dimensional counterparts
of the natural transformations involved.

run =
M J

J

[α] =

F

α J

]

J[

M

η =

]
[

M

µ =

M M

]

[

M

Diagrammatically, η indeed resembles a leaf, whereas µ is a nested fork with
one branch cut off. For the calculations it is useful to specialise the computation
law (15) and the reflection law (16) to G ∶= J.

F

α J

]

J[

M

J

J

=
F

α

J

J

(21)

M

J
]

J[

M

=

M

M

(22)

Recall that (21) holds for all functors F and for all natural transformations α.

Now, to show the unit laws we simply combine computation and reflection.

]
[

M

]

[

M

(21)=

M

]
[

M

(22)=

M

M

(22)=

M

]
[

M

(21)=

M

]
[ ]

[

M

To follow the graph transformations involving (21), first identify the occurrence
of a closing bracket ( [ ) which leads to a solid circle (●) below. Then replace the
solid circle (●) by the graph enclosed in ] and [ , additionally removing the
brackets. The instances of (21) above are in a sense extreme: F is in both cases
instantiated to Id and α to id .
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For the proof of associativity, we invoke the computation law twice.

M M

]

[

M

]

[

M

(21)=

M M M

]

[

M

(21)=

M M M

]

[

M

[ ]

Now, F is instantiated to M○M and α to run ⋅M○run. Again, the two-dimensional
proofs carve out the essential steps.

Remark 6. Continuing Remark 5, let us specialise the above to relational alge-
bra. The factor J / J is a closure operator. The proofs correspond to the typing
derivations of η = [id] and µ = [run ⋅M○run]. Specifically, to prove Id ⊆ J /J we
appeal to the universal property (17) which leaves us with Id ⋅ J ⊆ J . Likewise,
to prove (J /J ) ⋅ (J /J ) ⊆ (J /J ) if suffices to show that (J /J ) ⋅ (J /J ) ⋅ J ⊆ J .
The obligation can be discharged using the computation law (18), twice. ◻

5 Absolute Kan Extension—Implementation

So far we have been concerned with general properties of right Kan extensions.
Let us now turn our attention to the existence of extensions, which in computer-
science terms is the implementation. A general result is this: if R is a right
adjoint, then the right Kan extension along R exists for any functor G. To prove
the result we take a short detour.

Adjunctions can be lifted to functor categories: if L ⊣ R is an adjunction then
both L○− ⊣ R○− and −○R ⊣ −○L are adjunctions. (Recall that both K○− and −○E
are functors, see Appendix A.) Since pre-composition is post-composition in the
opposite category, the two statements are actually dual—note that L and R are
flipped in the adjunction −○R ⊣ −○L. For reasons to become clear in a moment,
let us focus on pre-composition:

if L
≺

L

�
R

≻ R then X R ≺
−○R
�
−○L≻

X L .

For the proof of this fact we establish the equivalence

α = G○ε ⋅ β○R ⇐⇒ α○L ⋅ F○η = β , (23)

for all functors F and G and for all natural transformations α ∶ F○R → G and
β ∶ F → G○L. This equivalence amounts to (2) phrased in terms of the units.
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We show the implication from left to right, the proof for the opposite direction
proceeds completely analogously.

(G○ε ⋅ β○R)○L ⋅ F○η
= { −○L functor (54d) }

G○ε○L ⋅ β○R○L ⋅ F○η
= { interchange law (56) }

G○ε○L ⋅ G○L○η ⋅ β
= { G○− functor (54b) }

G○(ε○L ⋅ L○η) ⋅ β
= { assumption: triangle identity (3a) }

G○idL ⋅ β
= { identity }
β

If we write the equivalence (23) using two-dimensional notation,

α

F R

G

=

F R

L

ε

G

β ⇐⇒

G L

η
F

α
R = β

G L

F

then the proof becomes more perspicuous. For the left-to-right direction we focus
on the left-hand side of the equivalence and put a cap on the R branches (on
both sides of the equation) and then pull the L string straight down (on the
right-hand side of the equation). Conversely, for the right-to-left direction we
place a cup below the L branches and then pull the R string straight up.

Returning to the original question of existence of right Kan extensions, we
have established

X R(F○R,G) ≅ X L (F,G○L) , (24)

which is an instance of the Kan bijection (9). In other words, G○L is the right Kan
extension of G along R. To bring the definition of unit and shift to light, we align
the equivalence (23) with the universal property of right Kan extensions (10).
We obtain

G/R = G○L , (25a)

run = G○ε , (25b)

[α] = α○L ⋅ F○η . (25c)

Since the bijection (24) is also natural in G, the right Kan extension along R
exists for every G.
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The unit run and [α] are rendered as follows.

run =
G

G

L

ε

R
[α] =

G L

η
F

α
R

To shift α ∶ F○R →̇G we simply put a cap on the rightmost branch labelled R.
Two special cases of (25a) are worth singling out: L = Id/R and R○L = R/R.

Thus, the left adjoint can be expressed as a right Kan extension—L = Id/R is
a so-called absolute Kan extension [27, p.249]. Very briefly, G/J is an absolute
Kan extension if and only if it is preserved by any functor: F○(G/J) and F○run
is the Kan extension of F○G along J. The associativity of horizontal composition
implies that the Kan extension G○R is indeed absolute. Moreover, the monad
induced by the adjunction L ⊣ R coincides with the codensity monad of R:

(R○L, η,R○ε○L) = (R/R, [id], [run ⋅M○run]) . (26)

It remains to show that the two alternative definitions of unit and multiplication
actually coincide. For the unit, the proof is straightforward.

[id]
= { definition of [−] (25c) }

id ○L ⋅ Id○η
= { identity (54c) and (55d) }
η

The proof for the multiplication rests on the triangle identity (3b).

[run ⋅M○run]
= { definition of [−] (25c) }

(run ⋅M○run)○L ⋅M○M○η
= { −○L functor (54d) }

run○L ⋅M○run○L ⋅M○M○η
= { definition of run (25b) }

R○ε○L ⋅M○R○ε○L ⋅M○M○η
= { definition of M (25a) }

R○ε○L ⋅M○R○ε○L ⋅M○R○L○η
= { M○R○− functor (54b) }

R○ε○L ⋅M○R○(ε○L ⋅ L○η)
= { triangle identity (3b) }

R○ε○L
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As before, the two-dimensional proofs are much shorter. For the unit, F ∶= Id,
there is nothing to do—putting a cap on idR is just the cap. For the multipli-
cation, F ∶= R○L○R○L, the proof collapses to a single application of the triangle
identity—note that run ⋅M○run = R○ε○ε.

R

R

L

ε

R L

ε

R

η

L

(5a)=
R

R

L

ε

R L

L

As an intermediate summary, we have shown that every monad is isomor-
phic to a codensity monad! This perhaps surprising result follows from the fact
that every monad is induced by an adjoint pair of functors—this was shown
independently by Kleisli [24] and Eilenberg and Moore [10].

L

R

R

⋎

⊢ L

⋏

R/R ≻ R

R

≻

Remark 7. To connect the development above to relation algebra, we first have
to adopt the notion of an adjunction. The relations L and R are adjoint if
and only if L ⋅ R ⊆ Id and Id ⊆ R ⋅ L. In relation algebra this implies R = L○,
where (−)○ is the converse operator. Thus, left adjoints are exactly the functions,
simple and entire arrows (denoted by a lower-case letter below). The lifting of
adjunctions to functor categories corresponds to the so-called shunting rules for
functions [3].

l ⋅ F ⊆ G ⇐⇒ F ⊆ l○ ⋅ G
F ⋅ l○ ⊆ G ⇐⇒ F ⊆ G ⋅ l

Specifically, bijection (24) corresponds to the latter equivalence. Using the prin-
ciple of indirect proof, it is then straightforward to show that G ⋅ l = G / l○. In
particular, l = Id / l○ and l○ ⋅ l = l○ / l○. ◻

6 Kan Extension as an End—Implementation

Let us now turn to the heart of the matter. There is an elegant formula, the end
formula, which describes right Kan extensions in terms of powers and ends [27,
p.242].

(G/J) (A ∶ D) = ∀Z ∶ C . ΠD(A, JZ ) . GZ (27)

The object on the right, which lives in E , can be interpreted as a generalised
continuation type. This can be seen more clearly if we write both the hom-set
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D(A, JZ ) and the power ΠD(A, JZ ) . GZ as function spaces: (A → JZ ) →
GZ . Informally, an element of (G/J)A is a polymorphic function that given a
continuation of type A→ JZ yields an element of type GZ for all Z .

The purpose of this section is to prove the end formula and to derive the
associated implementations of run and shift. To keep the paper sufficiently self-
contained, we first introduce powers in Section 6.1 and ends in Section 6.2. (Some
reviewers wondered why string diagrams do not appear beyond this point. The
reason is simple: to be able to use string diagrams we have to know that the
entities involved are functors and natural transformations. Here we set out to
establish these properties. More pointedly, we use string diagrams if we wish to
prove something against the specification of Kan extensions. Here, we aim to to
prove an implementation correct.) The reader who is not interested in the details
may wish to skip to Section 7, which investigates applications of the framework.

Remark 8. The end formula can be derived using a calculus of ends [27]—the
calculus is introduced in [7]. The details are beyond the scope of this paper. ◻

6.1 Background: Power

Let C be a category. The power [27, p.70] of a set A ∶ Set and an object X ∶ C
consists of an object written ΠA . X ∶ C and a function π ∶ A → C (ΠA . X ,X ).
These two things have to satisfy the following universal property : for each ob-
ject B ∶ C and for each function g ∶ A → C (B ,X ), there exists an arrow
(
a

a ∈A . g(a)) ∶ C (B ,ΠA . X ) (pronounce “split g”) such that

f = (
a
â ∈A . g(â)) ⇐⇒ (λ ǎ ∈A . π(ǎ) ⋅ f ) = g , (28)

for all f ∶ C (B ,ΠA . X ).
The power ΠA . X is an iterated product of the object X indexed by elements

of the set A. The projection π(a) is an arrow in C that selects the component
whose index is a; the arrow

a
a ∈ A . g(a) creates an iterated product, whose

components are determined by the function g . A note on notation: the mediating
arrow

a
a ∈A . g(a) is a binding construct as this allows us to leave the definition

of g implicit. The notation also makes explicit that a ranges over a set. (The
power ΠA . X is sometimes written X A, a notation we do not use.) Furthermore,
we use λ for function abstraction and −(=) for function application in Set.

As an example, for a two-element set, say, A ∶= {0,1}, the power ΠA . X
specialises to X×X with π(0) = outl , π(1) = outr and

a
a∈A . g(a) = g(0)△g(1).

In Set, the power ΠA . X is the set of all functions from A to X , that is,
ΠA . X = A → X . The projection π is just reverse function application: π(a) =
λ g ∶ A → X . g(a); split is given by

a
a ∈ A . g(a) = λ b ∈ B . λa ∈ A . g(a)(b),

that is, it simply swaps the two arguments of the curried function g .
The universal property (28) has three immediate consequences that are used

repeatedly in the forthcoming calculations. If we substitute the left-hand side
into the right-hand side, we obtain the computation law

π(ǎ) ⋅ (
a
â ∈A . g(â)) = g(ǎ) , (29)
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for all ǎ ∈A. Instantiating f in (28) to the identity idΠA . X and substituting the
right- into the left-hand side, yields the reflection law

id = (
a

a ∈A . π(a)) . (30)

Finally, the fusion law allows us to fuse a split with an arrow to form another
split (the proof is left as an exercise to the reader):

(
a

a ∈A . g(a)) ⋅ k = (
a

a ∈A . g(a) ⋅ k) . (31)

The fusion law states that
a
∶ (A→ C (B ,X )) → C (B ,ΠA . X ) is natural in B .

If the power ΠA . X exists for every set A ∶ Set, then there is a unique way
to turn Π− . X into a functor of type Set→ C op so that π ∶ A→ C (ΠA . X ,X )
is natural in A. We calculate

C (Πh . X ,X ) ⋅ π = π ⋅ h
⇐⇒ { definition of hom-functor C (−,X ) }

(λa ∈A . π(a) ⋅ (Πh . X )) = π ⋅ h
⇐⇒ { universal property (28) }

Πh . X = (
a

a ∈A . π(h(a))) ,

which suggests that the arrow part of Π− . X is defined

Πh . X = (
a

a ∈A . π(h(a))) . (32)

In other words, we have an adjoint situation: Π− . X ⊣ C (−,X ).

C op ≺
Π− . X

�
C (−,X )≻

Set

Since the hom-functor C (−,X ) is contravariant, Π− . X is contravariant, as well.
Moreover, Π− . X is a left adjoint, targeting the opposite category C op.

C op(ΠA . X ,B) ≅ Set(A,C (B ,X )) (33)

The units of the adjunction are given by εB =
a

a ∈ C (B ,Y ) . a and ηA =
λa ∈ A . π(a), that is, η = π. A contravariant adjoint functor such as Π− . X
gives rise to two monads: C (Π− . X ,X ) is a monad in Set and ΠC (−,X ) . X
is a comonad in C op and consequently a monad in C . Both monads can be seen
as continuation monads. Let us spell out the details for the second monad: its
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unit is the counit (!) of the adjunction, for the multiplication we calculate

µA

= { definition of µ (8c) }
((Π− . X )○η○(C (−,X )))A

= { definition of horizontal composition ○ }
Πη (C (A,X )) . X

= { definition of Πh . X (32) }
a

a ∈C (A,X ) . π(η (C (A,X )) (a))
= { definition of η, see above }

a
a ∈C (A,X ) . π(π(a)) .

To summarise, the continuation monad K = (Π− . X )○(C (−,X )) is defined

KA = ΠC (A,X ) . X ,

K f =
a

k . π(k ⋅ f ) ,

η =
a

k . k ,

µ =
a

k . π(π(k)) .

This is the abstract rendering of the monad C from the introduction with
MA = X a constant functor. The correspondence can be seen more clearly, if
we specialise the ambient category C to Set. We obtain

K f =
a

k . π(k ⋅ f ) = λm . λ k . π(k ⋅ f )m = λm . λ k . m (k ⋅ f )
η =

a
k . k = λa . λ k . k a ,

µ =
a

k . π(π(k)) = λm . λ k . π(π(k))m = λm . λ k . m (λa . a k) ,

which is exactly the Haskell code given in the introduction—recall that join and
bind are related by join m = m >>= id . For the full story—M an arbitrary functor,
not necessarily constant—we need to model the universal quantifier in the type
of C, which is what we do next in Section 6.2.

If the adjunction Π− . X ⊣ C (−,X ) exists for every X ∶ C , then there is a
unique way to turn Π− . = ∶ Setop × C → C into a bifunctor so that (33) is also
natural in X [27, Th. IV.7.3, p102]. The arrow part of the bifunctor is defined

Πh . p = (
a

a ∈A . p ⋅ π(h(a))) , (34)

for all h ∶ A→ B and for all p ∶ C (X ,Y ).

6.2 Background: End

Ends capture polymorphic functions as objects. Before we can define the notion
formally, we first need to introduce the concept of a dinatural transformation
[27, p.218].
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Let S,T ∶ C op × C → D be two parallel functors. A dinatural transformation
δ ∶ S →̈ T is a collection of arrows: for each object A ∶ C there is an arrow
δA ∶ S (A,A) → T (A,A), such that

T (id ,h) ⋅ δ Â ⋅ S (h, id) = T (h, id) ⋅ δ Ǎ ⋅ S (id ,h) , (35)

for all h ∶ C (Â, Ǎ). A component of a dinatural transformation instantiates
both arguments of the bifunctors to the same object, which explains the term
dinaturality, a contraction of the more unwieldy diagonal naturality.

A natural transformation α ∶ S →̇ T can be turned into a dinatural trans-
formation δ ∶ S →̈ T by setting δA = α (A,A). There is an identity dinatural
transformation, but, unfortunately, dinatural transformations do not compose
in general. However, they are closed under composition with a natural trans-
formation: (α ⋅ δ)A = α (A,A) ⋅ δA where δ ∶ S →̈ T and α ∶ T →̇ U, and
(δ ⋅ α)A = δA ⋅ α (A,A) where α ∶ S →̇T and δ ∶ T →̈U.

A dinatural transformation ω ∶ ∆A →̈T from a constant functor, ∆A X = A,
is called a wedge. For wedges, the dinaturality condition (35) simplifies to

T (id ,h) ⋅ ω Â = T (h, id) ⋅ ω Ǎ , (36)

for all h ∶ C (Â, Ǎ).
Now, the end [27, p.222] of a functor T ∶ C op × C → D consists of an object

written EndT ∶ D and a wedge App ∶ ∆(EndT) →̈ T. These two things have to
satisfy the following universal property: for each object A and for each wedge
ω ∶∆A →̈T, there exists an arrow Λω ∶ D(A,EndT) such that

ω = App ⋅∆g ⇐⇒ Λω = g , (37)

for all g ∶ D(A,EndT). Note that on the left a dinatural transformation, App, is
composed with a natural transformation, ∆g defined ∆g X = g .

The end EndT is also written ∀X ∶ C . T (X ,X ), which supports the intuition
that an end is a polymorphic type. The wedge App models type application: the
component App A ∶ EndT → T (A,A) instantiates a given end to the object A.
Accordingly, Λ is type abstraction—to emphasise this point we also write Λ
using a binder: ΛZ . ωZ serves as alternative notation for Λω.

The universal property (37) has the usual three consequences. If we substitute
the right-hand side into the left-hand side, we obtain the computation law :

ω = App ⋅∆(Λω) . (38)

Instantiating g in (37) to the identity idEndT and substituting the left- into the
right-hand side, yields the reflection law :

ΛApp = id . (39)

Finally, the fusion law allows us to fuse a ‘type abstraction’ with an arrow to
form another ‘type abstraction’ (the proof is left as an exercise to the reader):

Λω ⋅ h = Λ (ω ⋅∆h) . (40)
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If all the necessary ends exist, we can turn End into a higher-order functor of
type DC op×C → D . The object part maps a bifunctor to its end; the arrow part
maps a natural transformation α ∶ S →̇ T to an arrow Endα ∶ D(EndS,EndT).
There is a unique way to define this arrow so that type application App ∶
∆(EndT) →̈T is natural in T:

α ⋅ App = App ⋅∆(Endα) . (41)

We simply appeal to the universal property (37)

α ⋅ App = App ⋅∆(Endα) ⇐⇒ Endα = Λ (α ⋅ App) ,

which suggests that the arrow part of End is defined

Endα = Λ (α ⋅ App) . (42)

The proof that End indeed preserves identity and composition is again left as an
exercise to the reader.

6.3 End formula

Equipped with the new vocabulary we can now scrutinise the end formula (27),
(G/J) (A ∶ D) = ∀Z ∶ C . Π D (A, JZ ) . GZ , more closely. This definition is
shorthand for G/J = End○T where

TA (Z−, Z+) = Π D (A, JZ−) . GZ+ , (43)

is a higher-order functor of type D → DC op×C . (As an aside, Z− and Z+ are
identifiers ranging over objects. The superscripts indicate variance: Z− is an
object of C op and Z+ is an object of C .) Clearly, G/J thus defined is a functor.
It is useful to explicate its action on arrows.

∀Z ∶ C .∏D(f , JZ ) . GZ

= { definition of End (42) }
ΛZ ∶ C . (∏D(f , JZ ) . GZ ) ⋅ App Z

= { definition of ∏− . Y (32) }
ΛZ ∶ C . (

a
c ∈D(Ǎ, JZ ) . π(c ⋅ f )) ⋅ App Z

= { fusion (31) }
ΛZ ∶ C .

a
c ∈D(Ǎ, JZ ) . π(c ⋅ f ) ⋅ App Z

Let us record the definition.

(G/J) f = ΛZ ∶ C .
a

c ∈D(Ǎ, JZ ) . π(c ⋅ f ) ⋅ App Z (44)

The unit run ∶ E C ((G/J)○J,G) of the right Kan extension is defined

run A = π(idJA) ⋅ App A . (45)
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The end is instantiated to A and then the component whose index is the identity
idJA is selected. A number of proof obligations arise. We have to show that run is
a natural transformation and that it satisfies the universal property (10) of right
Kan extensions. For the calculations, the following property of run, a simple
program optimisation, proves to be useful. Let f ∶ D(A, JB), then

run B ⋅ (G/J) f = π(f ) ⋅ App B . (46)

We reason

run B ⋅ (G/J) f

= { definition of run (45) }
π(idJB) ⋅ App B ⋅ (G/J) f

= { definition of G/J (44) }
π(idJB) ⋅ App B ⋅ (ΛZ ∶ C .

a
c ∈D(JB , JZ ) . π(c ⋅ f ) ⋅ App Z )

= { computation (38) }
π(idJB) ⋅ (

a
c ∈D(JB , JB) . π(c ⋅ f ) ⋅ App B)

= { computation (29) }
π(f ) ⋅ App B .

The naturality of run follows from the dinaturality of App.

run Ǎ ⋅ (G/J) (Jh)
= { property of run (46) }
π(Jh) ⋅ App Ǎ

= { App is dinatural, see below }
Gh ⋅ π(idJ Â) ⋅ App Â

= { definition of run (45) }
Gh ⋅ run Â

To comprehend the second step let us instantiate the dinaturality condition (36)
to App ∶∆(End (TA)) →̈TA. Let h ∶ C (Ẑ , Ž ), then

TA (id ,h) ⋅ App Ẑ = TA (h, id) ⋅ App Ž

⇐⇒ { definition of T (43) }
(
a

a ∈A . Gh ⋅ π(a)) ⋅ App Ẑ = (
a

a ∈A . π(Jh ⋅ a)) ⋅ App Ž

⇐⇒ { fusion (31) }
(
a

a ∈A . Gh ⋅ π(a) ⋅ App Ẑ ) = (
a

a ∈A . π(Jh ⋅ a) ⋅ App Ž )
Ô⇒ { left-compose with π(idJA) and computation (29) }

Gh ⋅ π(idJA) ⋅ App Ẑ = π(Jh) ⋅ App Ž .
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Next we show that run satisfies the universal property (10) of right Kan
extensions. Along the way we derive the definition of shift. Let α ∶ E C (F○J,G)
and β ∶ E D(F,G/J), then

α = run ⋅ β○J
⇐⇒ { equality of natural transformations }

∀A ∶ C . αA = run A ⋅ β (JA)
⇐⇒ { Yoneda Lemma: E (F (JA),GA) ≅ D(−, JA) →̇ E (F−,GA) }

∀A ∶ C ,B ∶ D . ∀c ∶ D(B , JA) . αA ⋅ F c = run A ⋅ β (JA) ⋅ F c

⇐⇒ { β is natural }
∀A ∶ C ,B ∶ D . ∀c ∶ D(B , JA) . αA ⋅ F c = run A ⋅ (G/J) c ⋅ βB

⇐⇒ { property of run (46) }
∀A ∶ C ,B ∶ D . ∀c ∶ D(B , JA) . αA ⋅ F c = π(c) ⋅ App A ⋅ βB

⇐⇒ { universal property of powers (28) }
∀A ∶ C ,B ∶ D . (

a
c ∈D(B , JA) . αA ⋅ F c) = App A ⋅ βB

⇐⇒ { universal property of ends (37) }
∀B ∶ D . (ΛA ∶ C .

a
c ∈D(B , JA) . αA ⋅ F c) = βB

⇐⇒ { define [α]B = ΛA ∶ C .
a

c ∈D(B , JA) . αA ⋅ F c }
∀B ∶ D . [α]B = βB

⇐⇒ { equality of natural transformations }
[α] = β .

Each of the steps is fairly compelling, except perhaps the second one, which
rests on the Yoneda Lemma [27, p.61]. Its purpose is to introduce the functor
application F c so that the naturality of β can be utilised. Thus, shift is defined

[α]A = ΛZ ∶ C .
a

c ∈D(A, JZ ) . αZ ⋅ F c . (47)

Two remarks are in order. First, the body of the type abstraction, that is
a

c ∈
D(A, JZ ) . αZ ⋅ F c is a dinatural transformation because it equals App Z ⋅
βA = (App ⋅∆(βA))Z —see derivation above—which is dinatural in Z . Second,
[α] itself is a natural transformation because β is one by assumption.

Let us now turn our attention to the implementation of the codensity monad
of a functor J. Combining (20a) with the end formula (27) gives

CA = ∀Z ∶ C . Π D (A, JZ ) . JZ .

The instance of the end formula on the right is commonly regarded as the co-
density monad. This view is partially justified since the end formula provides
a general implementation of right Kan extensions, subject to the existence of
the necessary powers and ends. It confuses, however, an implementation with an
abstract concept. (This confusion is not uncommon in computer science.) The
codensity monad is also regarded as the ‘real’ continuation monad. To see the
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relation to continuation-passing style, let us unroll the definitions of return and
join. For η = [id] (20b), we obtain

[id]A

= { definition of [−] (47) }
ΛZ ∶ C .

a
k ∈D(A, JZ ) . id Z ⋅ Id k

= { identity }
ΛZ ∶ C .

a
k ∈D(A, JZ ) . k ,

and for µ = [run ⋅M○run] (20c) we calculate

[run ⋅M○run]A

= { definition of [−] (47) }
ΛZ ∶ C .

a
k ∈D(A, JZ ) . run Z ⋅M (run Z ) ⋅M (M k)

= { M functor }
ΛZ ∶ C .

a
k ∈D(A, JZ ) . run Z ⋅M (run Z ⋅M k)

= { property of run (46) }
ΛZ ∶ C .

a
k ∈D(A, JZ ) . run Z ⋅M (π(k) ⋅ App Z )

= { property of run (46) }
ΛZ ∶ C .

a
k ∈D(A, JZ ) . π(π(k) ⋅ App Z ) ⋅ App Z .

To summarise, the codensity monad implemented in terms of powers and
ends is given by

CA = ∀Z . Π D (A, JZ ) . JZ ,

C f = ΛZ .
a

k . π(k ⋅ f ) ⋅ App Z ,

η = ΛZ .
a

k . k ,

µ = ΛZ .
a

k . π(π(k) ⋅ App Z ) ⋅ App Z ,

which is similar to the continuation monad K of Section 6.1, except for occur-
rences of type abstraction and type application. This is the abstract rendering
of the Haskell code for C from the introduction—note that in Haskell type ab-
straction and type application are implicit.

7 Examples

Let L ⊣ R be an adjunction.

C
≺

L

�
R

≻ D
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We have encountered two implementations of the codensity monad of R: the
standard implementation R○L and the implementation induced by the end for-
mula (27). Since right Kan extensions are unique up to isomorphism (see Sec-
tion 3), we have

R○L = R/1R ≅ R/2R = λA ∶ D . ∀Z ∶ C . Π D (A,RZ ) . RZ . (48)

The isomorphisms are [run1]2 and [run2]1 (again see Section 3).

In the following sections we look at a few instances of this isomorphism.
The list is by no means exhaustive, but it is indicative of the wide range of
applications—the reader is invited to explore further adjunctions.

7.1 Identity Monad

The simplest example of an adjunction is Id ⊣ Id, which induces the identity
monad.

C
≺

Id

�
Id

≻ C

The units of the adjunction are identities: ε1 = id and η1 = id . Furthermore, run
and shift are defined run1 = id and [α]1 = α.

Instantiating (48) to Id ⊣ Id yields

Id ≅ λA ∶ D . ∀Z ∶ C . Π D (A,Z ) . Z , (49)

which generalises one of the main examples in Wadler’s famous paper “Theorems
for free!” [34]. Wadler shows A ≅ ∀Z ∶ C . Π D (A,Z ) . Z . Equation (49) tells
us that this isomorphism is also natural in A. The isomorphisms [run1]2 and
[run2]1 specialise to

[run1]2 = [id]2 = η2 ,

[run2]1 = run2 .

One direction is given by the unit of the ‘continuation monad’; for the other
direction we simply run the continuation monad.

7.2 State Monad

The Haskell programmer’s favourite adjunction is currying: − ×X ⊣ (−)X .

C
≺
− ×X

�
(−)X

≻ C
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In Set, a function of two arguments can be treated as a function of the first
argument whose values are functions of the second argument. In general, we are
seeking the right adjoint of pairing with a fixed object X ∶ C .

C (A ×X ,B) ≅ C (A,BX ) .

The object BX is called the exponential of X and B . That this adjunction exists
is one of the requirements for cartesian closure [25]. In Set, BX is the set of
total functions from X to B .

The curry adjunction induces the state monad, where X ∶ C serves as the
state space. This instance of (48) reads

(− ×X )X ≅ λA ∶ C . ∀Z ∶ C . Π C (A,ZX ) . ZX (50)

On the left we have the standard implementation of the state monad using state
transformers. The end formula yields an implementation in continuation-passing
style. The continuation of type C (A,ZX ) ≅ C (A×X ,Z ) takes an element of the
return type A and an element of the state type X , the final state. The initial
state is passed to the exponential in the body of the power.

The Haskell rendering of the two implementations is fairly straightforward.
Here is the standard implementation

newtypeState1 a = In {out ∶ X → (a,X )} ,

and here is the CPS-based one

newtypeState2 a = CPS {call ∶ ∀ z . (a → (X → z)) → (X → z)} .

7.3 Free Monad of a Functor

One of the most important adjunctions for the algebra of programming is Free ⊣
U, which induces the so-called free monad of a functor. This adjunction makes a
particularly interesting example as it involves two different categories. Here are
the gory details:

Let F ∶ C → C be an endofunctor. An F-algebra is a pair ⟨A, a⟩ consisting
of an object A ∶ C (the carrier of the algebra) and an arrow a ∶ C (FA,A) (the
action of the algebra). An F-algebra homomorphism between algebras ⟨A, a⟩
and ⟨B , b⟩ is an arrow h ∶ C (A,B) such that h ⋅ a = b ⋅ Fh. Identity is an
F-algebra homomorphism and homomorphisms compose. Thus, the data defines
a category, called F-Alg(C ).

The category F-Alg(C ) has more structure than C . The forgetful or un-
derlying functor U ∶ F-Alg(C ) → C forgets about the additional structure:
U ⟨A, a⟩ = A and Uh = h. While the definition of the forgetful functor is de-
ceptively simple, it gives rise to an interesting concept via an adjunction.

F-Alg(C ) ≺
Free

�
U

≻ C
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The left adjoint Free maps an object A to the free F-algebra over A, written
⟨F∗ A, com⟩. In Set, the elements of F∗ A are terms built from constructors
determined by F and variables drawn from A. Think of the functor F as a gram-
mar describing the syntax of a language. The action com ∶ C (F (F∗ A),F∗ A)
constructs a composite term from an F-structure of subterms. There is also an
operation var ∶ C (A,F∗ A) for embedding a var iable into a term. This operation
is a further example of a universal arrow: for each F-algebra B and for each arrow
g ∶ C (A,UB) there exists an F-algebra homomorphism eval g ∶ F-Alg(FreeA,B)
(pronounce “evaluate with g”) such that

f = eval g ⇐⇒ U f ⋅ var = g , (51)

for all f ∶ F-Alg(FreeA,B). In words, the meaning of a term is uniquely deter-
mined by the meaning of the variables. The fact that eval g is a homomorphism
entails that the meaning function is compositional: the meaning of a composite
term is defined in terms of the meanings of its constituent parts.

The adjunction Free ⊣ U induces the free monad F∗ of the functor F. The
isomorphism (48) gives two implementations of the free monad.

F∗ ≅ λA ∶ C . ∀Z ∶ F-Alg(C ) . Π C (A,UZ ) . UZ (52)

The standard implementation represents terms as finite trees: the free algebra
F∗ A is isomorphic to µFA where FA X = A+FX [1]. The implementation based
on Kan extensions can be seen as the Church representation [26, 5] of terms. Note
that the variable Z ranges over F-algebras. The continuation of type C (A,UZ )
specifies the meaning of variables. Given such a meaning function a term can be
evaluated to an element of type UZ . (It is debatable whether the term ‘contin-
uation’ makes sense here—U/U is certainly a generalised continuation type.)

It is instructive to consider how the definitions translate into Haskell. The
implementation using trees is straightforward: the constructors var and com
are turned into constructors of a datatype (we are building on the isomorphism
F∗ A ≅ µFA here).

dataTerm1 a = Var a ∣ Com (F (Term1 a))

The Church representation is more interesting as we have to deal with the ques-
tion of how to model the variable Z , which ranges over F-algebras. One way to
achieve this is to constrain Z by a class context.

classAlgebra a where
algebra ∶ Fa → a

The Church representation then reads

newtypeTerm2 a = Abstr {apply ∶ ∀ z . (Algebra z) ⇒ (a → z) → z } .

The two implementations represent two extremes. For terms as trees, construct-
ing a term is easy, whereas evaluating a term is hard work. For the Church
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representation, it is the other way round. Evaluating a term is a breeze as, in
a sense, a term is an evaluator. Constructing a term is slightly harder, but not
that much. The reader is invited to spell out the details.

Initial and free algebras are closely related (see above). The so-called ex-
tended initial algebra semantics [11] is a simple consequence of (52).

µF

≅ { left adjoint preserve colimits: µF = U0 ≅ U (Free0) = F∗ 0 }
F∗ 0

≅ { (52) }
∀Z ∶ F-Alg(C ) . Π C (0,UZ ) . UZ

≅ { 0 is initial }
∀Z ∶ F-Alg(C ) . Π1 . UZ

≅ { Π1 . X ≅ X }
∀Z ∶ F-Alg(C ) . UZ

≅ { relation between ends and limits [27, Prop. IX.5.3] }
LimU

The calculation shows that a colimit, the initial algebra µF, is isomorphic to a
limit, the limit of the forgetful functor. (This is familiar from lattice theory: the
least element of a lattice is both the supremum of the empty set and the infimum
of the entire lattice.)

Remark 9. Arrows of type A→ LimU and natural transformations of type ∆A→̇
U are in one-to-one correspondence. (In other words, we have an adjunction
∆ ⊣ Lim.) Using the concept of a strong dinatural transformation, the naturality
property can be captured solely in terms of the underlying category C [11].
Whether a similar construction is also possible for ends is left for future work. ◻

7.4 List Monad

The Haskell programmer’s favourite data structure, the type of parametric lists,
arises out of an adjunction between Mon, the category of monoids and monoid
homomorphisms, and Set, the category of sets and total functions.

Mon
≺
Free

�
U

≻ Set

Now U is the underlying functor that forgets about the monoidal structure,
mapping a monoid to its carrier set. Its left adjoint Free maps a set A to the free
monoid on A, whose elements are finite sequences of elements of A.

The adjunction Free ⊣ U induces the list monad List. For this instance, the
isomorphism (48) can be simplified to

List ≅ λA ∶ Set . ∀Z ∶Mon . (A→ UZ ) → UZ . (53)
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The variable Z now ranges over monoids. An element of the end can be seen as
an evaluator: given a function of type A → UZ , which determines the meaning
of singleton lists, the list represented can be homomorphically evaluated to an
element of type UZ .

Turning to Haskell, the standard implementation corresponds to the familiar
datatype of lists.

dataList1 a = Nil ∣ Cons (a,List1 a)

For the Church representation we take a similar approach as in the previous
section: we introduce a class Monoid and constrain the universally quantified
variable by a class context.

classMonoid a where
ε ∶ a
(●) ∶ a → a → a

newtypeList2 a = Abstr {apply ∶ ∀ z . (Monoid z) ⇒ (a → z) → z }

Of course, in Haskell there is no guarantee that an instance of Monoid is actually
a monoid—this is a proof obligation for the programmer. We can turn the free
constructions into monoids as follows:

instanceMonoid (List1 a)where
ε = Nil

Nil ● y = y
Cons (a, x) ● y = Cons (a, x ● y)

instanceMonoid (List2 a)where
ε = Abstr (λk → ε)
x ● y = Abstr (λk → apply x k ● apply y k) .

The second instance is closely related to the Haskell code from the introduction:
the implementation of backtracking using a success and a failure continuation
simply specialises z to the monoid of endofunctions.

instanceMonoid (a → a)where
ε = id
x ● y = x ⋅ y

We can instantiate z to this monoid without loss of generality as every monoid
is isomorphic to a monoid of endofunctions, the so-called Cayley representation,
named after Arthur Cayley:

(A, ε, ●) ≅ ({(a ● −) ∶ A→ A ∣ a ∈A}, id , ⋅) .

This isomorphism is also the gist of Hughes’ efficient representation of lists [19].
To summarise, the CPS variant of the list monad combines Kan extensions

and Cayley representations—Dan explains the success and Art the failure con-
tinuation.
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8 Related Work

As mentioned in the introduction, all of the core results appear either explic-
itly or implicitly in Mac Lane’s textbook [27]. Specifically, Section X.7 of the
textbook introduces the notion of absolute Kan extensions—that L ⊣ R induces
−○R ⊣ −○L is implicit in the proof of Theorem X.7.2. Overall, our paper solves
Exercise X.7.3, which asks the reader to show that J/J is a monad and that R○L
is isomorphic to R/R.

Kan extension Kan extensions are named after Daniel Kan, who constructed
Set-valued extensions using limits and colimits in 1960. Kan extensions have
found a few applications in computer science: right Kan extensions have been
used to give a semantics to generalised folds for nested datatypes [4]; left Kan
extensions have been used to provide an initial algebra semantics for certain
“generalised algebraic datatypes” [22].

Codensity monad The origins of the ‘trick’, wrapping a CPS transformation
around a monad, seem to be unknown. The trick captured as a monad trans-
former was introduced by the author in 1996 [12]. Much later, Jaskelioff noted
that the transformer corresponds to a construction in category theory, the co-
density monad [21]. None of the papers that utilise the trick [13, 8, 33, 20, 28],
however, employ the isomorphism R○L ≅ R/R—all of them work with M/M in-
stead. In more detail:

Building on the work of Hughes [18], the author showed how to derive back-
tracking monad transformers that support computational effects such as the
Prolog cut and an operation for delimiting the effect of a cut [13]. Wand et al
[35] later identified a problem with our derivations, which built on fold-unfold
transformations [6]. Roughly speaking, the culprit is the lack of a sound induction
principle for local universal quantification. Wand et al proposed an alternative
approach based on logical relations. Their proof, however, uses a different CPS
monad with a fixed type O of observations, Ba = (a → (O → O)) → (O → O),
which is somewhat unsatisfactory.

Claessen [8] applied the trick to speed up his parallel parsing combinators.
Voigtländer [33] showed that the trick gives an asymptotic improvement for free
algebras and the operation of substitution. He sketched a proof of correctness
and conjectured that a formal proof might require sophisticated techniques in-
volving free theorems. This gap was later filled by Hutton et al [20] who proved
correctness by framing it as an instance of the so-called worker/wrapper trans-
formation. Their proof, however, is an indirect one as it only establishes the
equivalence of two functions from a common source into the two monads. Fi-
nally, a more advanced application involving indexed monads was recently given
by McBride [28].

Kan extensions and the codensity monad are also popular topics for blog
posts. Piponi (blog.sigfpe.com) expands on the codensity monad as “the
mother of all monads”, a catchy phrase due to Peter Hancock. Kmett (comonad.
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com/reader) has a series of posts on both topics, including a wealth of Haskell
code.

String diagram String diagrams were introduced by Penrose [31] as an alterna-
tive notation for “abstract tensor systems”. These diagrams are widely used for
monoidal categories—Selinger [32] surveys graphical languages for different types
of monoidal structures. (A monoidal category is a special case of a 2-category,
namely, one that has only a single object. Consequently, there is no need to label
or colour regions.)

9 Conclusion

Monads can be seen as abstract datatypes for computational effects. (This view
is admittedly a bit limited—consider the free monad of a functor, would you
want to regard substitution as a computational effect?) The take-home message
of this paper is that the right Kan extension of the functor R along R is a drop-in
replacement for the monad induced by the adjunction L ⊣ R. The paper stresses
the importance of adjunctions, a point already emphasised in a previous paper
by the author [14]. The bad news is that the construction, the implementation
of the codensity monad using ends and powers, does not lend itself easily to
a library implementation, at least not in today’s programming languages. A
generic implementation would require support for abstraction over categories.

For quite a while I have been experimenting with two-dimensional notation
for calculational proofs. I first tried traditional notation, the Poincaré dual of
string diagrams, but I never used it in anger as I found the diagrams difficult
to compose and to manipulate. The reason is that natural transformations, the
main focus of interest, are represented by regions, which are often difficult to lay
out in an aesthetically pleasing way. By contrast, string diagrams are fairly easy
to draw. Furthermore, the least interesting piece of information—which are the
categories involved?— can be easily suppressed. I hope to see string diagrams
more widely used for program calculation in the future.

Everything we have said nicely dualises: right Kan extensions dualise to left
Kan extensions and the codensity monad dualises to the density comonad. A
left Kan extension can be seen as a generalised existential type and the density
comonad corresponds to an abstract datatype or a simple object type—the type
of parametric streams is one of the prime examples. Quite clearly, the dual story
is interesting in its own right but this is a story to be told elsewhere.
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A Composition of functors and natural transformations

This appendix contains supplementary material. It is intended primarily as a ref-
erence, so that the reader can re-familiarise themselves with the category theory
that is utilised in this paper. Specifically, we introduce composition of functors
and natural transformations. We shall use the following entities to frame the dis-
cussion (F,G ∶ C → D are parallel functors, α ∶ F→ G is a natural transformation
between them etc).

F E D C B
N

L G
E

M

K

H

F
α

β

γ

δ

Here we use traditional two-dimensional notation. The reader is invited to turn
the diagram into its Poincaré dual, a string diagram.

Functors can be composed, written K○F. Rather intriguingly, the operation
K○−, post-composing a functor K, is itself functorial: the higher-order functor
K○− ∶ DC → E C maps the functor F to the functor K○F and the natural transfor-
mation α to the natural transformation K○α defined (K○α)A = K (αA). Post-
composition dualises to pre-composition: the higher-order functor −○E ∶ DC →
DB maps the functor F to the functor F○E and the natural transformation α to
the natural transformation α○E defined (α○E)A = α (EA). (The reader should
convince themselves that K○α ∶ K○F →̇ K○G and α○E ∶ F○E →̇ G○E are again
natural transformations.) Here are the functor laws spelled out.

K○idF = idK○F (54a)

K○(β ⋅ α) = (K○β) ⋅ (K○α) (54b)

idF○E = idF○E (54c)

(β ⋅ α)○E = (β○E) ⋅ (α○E) (54d)

Altogether, we have three different forms of composition: K○F, γ○F and K○α.
They are ‘pseudo-associative’ and have the functor Id as their neutral element.

γ○(F○E) = (γ○F)○E (55a)

K○(β○E) = (K○β)○E (55b)

N○(M○α) = (N○M)○α (55c)

Id○α = α (55d)

α○Id = α (55e)

This means that we can freely drop parentheses when composing compositions.
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Given two natural transformations α ∶ F→̇G and γ ∶ K→̇L, there are two ways
to turn a K○F into an L○G structure.

K○F
K○α

≻ K○G

L○F

γ○F

⋎
L○α ≻ L○G

γ○G

⋎

γ○α

≻

The diagram commutes since γ is natural:

((γ○G) ⋅ (K○α))X

= { definition of compositions }
γ (GX ) ⋅ K (αX )

= { γ is natural: Lh ⋅ γA = γB ⋅ Kh }
L (αX ) ⋅ γ (FX )

= { definition of compositions }
((L○α) ⋅ (γ○F))X .

The diagonal is called the horizontal composition of natural transformations,
denoted γ○α.

(γ○G) ⋅ (K○α) = γ○α = (L○α) ⋅ (γ○F) (56)

The definition witnesses the fact that functor composition E D ×DC → E C is a
bi-functor: (56) defines its action on arrows.
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