
Data Refinement in Intentional Programming

Qualifying Dissertation

Iván Sanabria-Piretti

Wolfson College
University of Oxford

United Kingdom

July 27, 1999

i

Abstract

Intentional Programming is a new paradigm in software engineering that allows
programming languages to be augmented in a highly flexible manner. Under this
paradigm, new independent constructs, called intentions, are used to represent domain-
specific abstractions and actions in the new language. Program realisation is achieved
when abstract intentions are automatically converted into more primitive constructs down
to an executable concrete program.

In this document, we argue that this conversion process, rather than being a one step
indivisible process, should be a multi-step activity where optimising transformations and
translations take place. With this aim, we review the contributions that higher order
attribute grammars, mechanised data refinement and data abstraction can provide to this
multi-step process. While the first one continually supplies updated context-sensitive
information, the last two provide optimising opportunities to a rule-based transformation
engine. In addition, we study their specification characteristics in order to identify
features that an Intentional Programming meta-language should have and to ensure at least
an equivalent expressive power. For this, we review the specification mechanisms offered
by several existing systems that are based on these formalisms. We also develop a case
study where two intentions and their transformations are specified in an aspect-oriented,
sub-task decomposition style using higher order attribute grammars.

In this case study, we discuss the semantic effect that a very simple construct can produce
when added in an existing programming language. In particular, we have found subtle
relationships between the new constructs and existing ones that need to be clearly
specified in order to avoid semantic ambiguities when combined. This suggests that
including new intentions require a semantic analysis of their interactions with existing
ones; which goes against our aspiration for intentions to be completely independent
building blocks.

Our initial research has also yielded several open questions that need deeper understanding
and study before an answer can be given. We plan to be able to answer them through the
next stages of our research; for this, a research plan is proposed.

ii

Acknowledgements

I would like to thank Microsoft Research for its generous financial support and Oxford
University for its ORS award. I would also like to thank Mike Spivey for suggesting the
key ideas about the case study and the detailed review of this final document; also Oege de
Moor for introducing me to attribute grammars and his constructive comments on an
earlier draft. The Comlab Programming Tools Group has contributed substantially
through our meeting discussing on the Polya system, the case study, and the SG and Eli
systems. Thanks also to Tony Hoare who read an earlier draft of the data refinement
section and to Eric van Wyk for his encouraging comments on almost every part of this
document. Aswin van der Berg kindly granted me access to his implementation of Polya
and his comments. William Waite and Uwe Kastens guided me through the initial steps
understanding the Eli system vision and using the actual system. Lex Augusteijn helped
getting started with Elegant and enriched my understanding through his comments.

iii

Contents

1 INTRODUCTION..1

2 INTENTIONAL PROGRAMMING ..4

2.1 A META-LANGUAGE FOR IP ..5

3 ATTRIBUTE GRAMMARS...7

3.1 DEFINITIONS...7
3.1.1 A functional implementation of attribute grammars ..8
3.1.2 Attribute grammars as aspect-oriented programs..10

3.2 HIGHER ORDER ATTRIBUTE GRAMMARS ...10
3.3 ATTRIBUTE COUPLED GRAMMARS ...11
3.4 SHORTCOMINGS OF AGS...11

4 CASE STUDY...13

4.1 THE P LANGUAGE GRAMMAR ..14
4.2 TRANSFORMATIONS..16

4.2.1 After Expression ...16
4.2.2 While and Loop statements...23

4.3 A HAG FOR OUR LANGUAGE P...23
4.3.1 The Code and NewFncDcls attributes..24
4.3.2 The Block structure and its attributes ..28
4.3.3 The Value Attribute ..30
4.3.4 The Type Attribute ..30

4.4 EXAMPLE..31
4.5 FINAL REMARKS...33

5 A REVIEW OF THE ELI SYSTEM ..35

5.1 COMPILER SPECIFICATION ..35
5.2 SYMBOLS AND RULES...36
5.3 DUAL USE OF ATTRIBUTES ..36
5.4 REMOTE DEPENDENCE..37
5.5 SYMBOL COMPUTATIONS..39
5.6 INHERITANCE..40
5.7 MODULES ...41
5.8 CUMULATIVE ATTRIBUTION..41
5.9 FINAL REMARKS...41

6 REVIEW OF OTHER SYSTEMS..43

6.1 AML ..43
6.2 ELEGANT ..44

7 DATA REFINEMENT AND PROGRAM TRANSFORMATIONS ...46

7.1 THE POLYA SYSTEM ...47
7.1.1 The Transforms ..48
7.1.2 Program Transformation ...50

7.2 DISTIL ...51
7.3 POLYA AND DISTIL..53

8 DISCUSSION ...54

9 FUTURE WORK ...59

iv

10 REFERENCES...54

11 APPENDIX ...66

11.1 APPENDIX 1: SEMANTIC DEFINITIONS FOR P USING SG ..66
11.2 APPENDIX 2: SCOPE ANALYSIS IN PASCAL USING ELI ..74

1

1 Introduction
Intentional Programming (IP) is a new paradigm in software engineering that allows
programming languages to be implemented in a highly extensible manner [3, 56, 58]. An
IP language-independent framework and programming environment has been under
development at Microsoft Research since 1991 [3].

A sibling research project "A Meta-language for IP" started in October 1998 at the Oxford
University Computing Laboratory. As its name suggests, its specific goal is to create a
meta-language for IP that allows the specification of intentions and their transformations,
abstracting the programmer from the order in which they may be applied over program
representation structures. In IP, transformations can be used for multiple purposes, for
instance program optimisation, program translation and even editing activities within an IP
environment [2, 47, 58]. The IP meta-language will hopefully contribute towards the IP
goal of having complete, industrial-strength languages implemented entirely as collections
of transformations, and will offer IP programmers a notation for effectively expressing
their intentions.

It would be ideal if we could convert an abstract program specification based on the IP
programmers' intentions into one of its optimised concrete representations in a single step
process. This is not easy to achieve, if possible at all. The transformation engine has to
arrange and control the application of a large number of small specific transformations and
translations without apparent order. But application order of transformations does matter
[3]. Optimising transformations can happen only if instances of the appropriate program
structures are present, and under certain circumstances they may occur in the program
representation as the result of the application of other transformations. Also, the quality of
the optimised code can depend on the order in which the optimisations are made. This
suggests that the transformation engine needs to apply every transformation or translation
at every moment until none can be applied any more, turning it into a lengthy process.
One could argue that more complex transformations and translations can reduce the
problem size, but the more complex they are the higher their specialisation toward very
particular implementation issues.

It is for this reason that we visualise the conversion process as a repetitive combination of
transformation and translation steps. At each step, intermediate program structures can be
automatically annotated and analysed, offering information about the current optimising
opportunities that probably would not be present at previous or later steps of the process.
The resulting program structure can then be translated to a more concrete representation;
i.e., to a different abstraction level, where the process would be applied again. In this
view, the conversion process can be divided into concern stages that could be considered
at distinct steps.

The chart in Figure 1 illustrates our general view of the process of converting from an
abstract program representation to a concrete program representation. While the angled
dotted line represents the ideal single step process, the stepped descent lines represent the
same activity as a series of transformation and translation steps. The dashed segments in
the latter indicate the occurrence of one or many steps in the process.

2

La
ng

ua
ge

 a
bs

tra
ct

io
n

le
ve

l
(c

ha
ng

ed
 b

y
tra

ns
la

tio
n

pr
oc

es
se

s)

Program transformation
(e.g., optimisation and refinement)

Figure 1. Our view of the conversion process.

On the one hand, program transformation in its purest form is a matter of term rewriting.
It takes an existing construct within the current program representation and maps it into
another construct or constructs of the same programming language, which is also known
as source-to-source transformation. This mapping is frequently used for program
optimisation [14], keeping a balance between abstraction (readability) and efficiency of
the program and data structure. Beside, it may consider mappings between different
constructs that could provide later optimising opportunities. On the other hand, program
translation maps expressions between two different programming languages for the
purpose of converting a program specification writing in one language into another.
Homomorphic relations may be used here as well as in program transformation, but with
the difference that they are established between two different languages. This is
extensively used in compiler construction [1], where an abstract program specification is
typically translated into a concrete specification through a multi-step conversion process.
The concrete final specification may well be executable under a given computer
architecture. Program translation may be specified using attribute grammars [43, 44], and
more recently higher-order attribute grammars [63, 64].

It is with this chart in mind that we will refer to program transformations as horizontal
transformations and to translations as vertical transformations when necessary. We will
also refer to these two kinds of transformations simply as transformations in a broader
sense, making reference to program transformations, program translations or both. The
occurrence of a single kind of transformation is also possible.

To this extent, we want the new meta-language to be able to express horizontal and
vertical transformations in an expressive, flexible, regular way. For this we study other
specification formalisms already in existence that we believe may contribute to enrich our
meta-language. They are mechanised data refinement and attribute grammars.

For the purpose of horizontal transformation, O. de Moor and G. Sittampalam are
currently working on program transformations using rewrite rules and on higher order

3

matching [14, 15]. On their view, a more efficient specification can be obtained by
successively applying these rules. As an extension to this work, we study mechanised data
refinement with two goals in mind: to increase transformation options and to allow
transformation layers. Mechanised data refinement can enable further construction of
efficient programs by transforming data representations and their operations [50, 53],
therefore offering subsequent optimisation paths. The equivalence preservation, which
data refinement establishes between various data structures and their algebraic operations,
guarantees that rewrite rules can safely replace existing data and control structures with
others while preserving the program meaning. Likewise, these data changes may render,
according to the user's desires, different levels of abstraction or layers when describing
computations performed by the program under transformation. Layers represent de-
coupling stages between data representations and algorithms, that allow reasoning about
them individually.

We study attribute grammars with two purposes in mind. Firstly, attribute grammars
allow the description of vertical transformations; they have many of the characteristics we
seek. They allow declarative specification of translation rules; the execution order of
these translation rules can be determined statically; and contextual information may affect
the final result of the local or global translations among others. Secondly, we consider
attribute grammars to be a good mechanism for computing useful context-sensitive
information and for updating tree annotations during horizontal transformations, which
may lead to improvements in the application of rewrite rules. We believe attribute
grammars are also able to compute basic program analysis information during
transformation.

Therefore, in this document we review attribute grammars and mechanised data
refinement from the IP perspective as a first step towards the definition of our meta-
language. We aim at the identification of the minimal set of features the meta-language
should provide as suitable notation for describing program translation and data
transformation rules.

In order to achieve this task, we review several systems that are based on the attribute
grammars and elaborate a case study based on the Synthesizer Generator (SG) [55] and the
Eli system [22]. The Eli system suggests a number of useful meta-language constructs for
modular compilers; some of which directly find their way into the area of aspect-oriented
compilers [13] as well. In addition, we study the way Polya [25] achieves mechanised
data refinement and the strategy that the DiSTiL [60] undertakes data abstraction.

The structure of this document is as follows. We first give a brief review of Intentional
Programming and what its meta-language should provide. Then we introduce attribute
grammars to build the basis for the subsequent two sections: the case study and the Eli
system review. It is through the case study that we review the SG specification facilities.
The case study also shows our approximation to the way an IP intention should be
implemented and deployed using attribute grammars. The Eli system suggests
considerable improvements from the viewpoint of basic attribute grammar specifications,
among them higher independence and modularity. In addition, a short review of the AML
and Elegant systems is presented. Then, mechanised data refinement is introduced
separately, where we also study the Polya system in detail and study the DiSTiL's data
abstraction machinery. Finally, we present our conclusions and present the future plan of
this research.

4

2 Intentional Programming
Intentional Programming (IP) allows programmers to exploit domain specific abstractions
and optimisations to enable higher software reuse and automation of software
development [56, 58]. In particular, the programmer can specify new abstractions that are
specific to his problem domain while being able to associate with each of them any
optimisation that may apply with such new abstractions.

While traditional programming languages may offer features for expressing domain
specific abstractions, IP goes a step further allowing the programmer to express his
knowledge of domain specific optimisations. The use of optimisations is vital in software
reuse. Without them, the only tool to achieve reuse is parametrisation, and this inevitably
introduces a performance overhead. However, to realise the potential of such
optimisations they have to be described in a compositional fashion, so that they can be
reused independently of the context in which they occur, and ensure they will "co-operate"
to produce a correct program.

Intentional Programming can be thought as a framework for implementing domain-
specific programming languages in a highly extensible manner with the help of a
language-independent programming environment [56, 57, 59]. Language independence is
achieved in IP by representing all source code (in whatever language) as an abstract
syntax tree (AST). Nodes of an AST are called intentions and correspond to productions
of the language. Examples of traditional intentions include if-statements, for-loops, type
declarations, assignment statements, etc. Thus libraries of intentions can be created for
representing programs in various programming languages. Plug-ins are used to share
these libraries or simply particular language features. Many intentions are themselves
language-independent; i.e., their semantic meaning (but not their syntax) is shared in many
languages. The if-statement, for example, with a general form of an if operator and a 3-
tuple argument <boolean-expression, then-statement, else-statement>, is a
standard intention in virtually all programming languages.

In an IP programming environment, the syntax and external representation of an intention
is user-controlled, allowing them to be used in different languages. This variability is
captured by parsing and unparsing methods that are associated with intentions. Parsing is
understood as the process of converting plain text into the AST representation. It allows
the reengineering of legacy code; i.e., the user can recover legacy code written in a non-
intentional way and intentionalise it by expressing it in terms of intentions. Editing
activities happen at the AST level, where the user is provided with convenient editing
tools. Unparsing is understood as the process of displaying an AST to the user for direct
manipulation, where it is more than a pretty-printing as the process is fully graphical. This
can allow domain-specific languages to express solutions in the problem-domain language
(like a combinatorial formula) rather than in a given solution-domain language [56, 60].

The extensibility of IP lies in its ability to define new intentions and to define enzymes.
New intentions express domain-specific programming constructs, which in fact
correspond to extending the language's set of available constructs, therefore extending its
grammar. New constructs have exactly the same status as those that originally make up
the programming language. A programmer would typically take an existing set of
intentions (such as C) as his starting point, and extend it while exploring a specific
problem domain. Next he compiles the transformation code associated with the new
intentions, which can then be used to build application programs. The process of
compiling by transformation is named reduction.

5

New intentions require the definition of xmethods, which define the behaviour of the
intention. Typically, the behaviour of a new intention will include:

• methods describing its transformation, which tell how the new abstractions can be
expressed in more primitive, existing intentions,

• knowledge about optimisations the programmer wants to encode; this involves
pattern recognition within the program tree structure of optimisation opportunities,

• ways the new intention should be laid out in program representations for different
programming languages,

• methods for describing how it is rendered on the screen, and

• other aspects of its behaviour such as its role in type checking (if any) and
debugging.

One of the current challenges in IP is for intentions to co-operate with other intentions in
order to produce a correct program, even considering that they represent highly
independent processes. Co-ordination problems are likely to occur when the behaviour of
an intention produces changes that affects the environment shared with other intentions;
therefore invalidating relevant contextual information for their ongoing execution.

Enzymes are transformations on ASTs that also contribute to the extensibility of IP. In the
current reduction engine, called R5 and still under development at Microsoft, enzymes can
be understood as functions that extend the current AST with other ASTs. Enzymes are
additive; i.e., they do not replace or substitute subtrees but only add subtrees to the
existing AST so that rollback can be possible. Enzymes are used to transform new
intentions into existing ones or straight into the engine's output language, called R-code.
In R5, their implementation is based on questions, and node and link creation facilities.
Each enzyme consists of one or more question handlers that can be asked within the local
scope of the AST node it is associated with. A question handler can obtain information
from other regions of the AST by asking questions and waiting for an answer [46]. We
have studied this interface through an enzyme specification example [8].

2.1 A meta-language for IP
There is no fundamental limitation to the extension approach to a programming language
mentioned above. But there are two essential elements required, a language extensibility
mechanism and a powerful meta-programming system that ensures independence between
its components.

For a minimal IP environment to support the extensibility and independence mechanisms,
it has to offer the user the following features:

• to view programs as abstract syntax trees where transformations can take place,

• to offer a completely unconstrained language for expressing transformations, so
that any computation for applying domain specific optimisations can be
conveniently and efficiently expressed,

• to have facilities for making intentions and their transformation as compositional
as possible. This means that new intentions can be added and reused with only
minimal knowledge of existing intentions and their semantics, in particular the
transformation order of intentions cannot be fully specified by the programmer.

6

While the current IP environment satisfies the first two points in its own way, the last two
points still require further research effort. This is precisely the observation that motivates
our project. The current IP abstract machine is designed for executing meta-programs; it
is similar to those evaluating attribute grammars [4]. It would also be a good idea that the
meta-language would be self-applicable, where the problem domain of program
transformation itself could profit by the programmer's expertise.

The use of an appropriate meta-language will contribute to attaining the IP goal of having
complete, industrial-strength languages implemented entirely as collections of enzymes.
For this, the meta-language has to offer notation facilities that allow the programmer to
abstract from implementation issues in IP and hopefully its evaluation model.
Specifically, it has to offer:

• A notation for describing transformations and their actions: the context information
required by a transformation should be as unconstrained as possible, so that
transformations can co-operate as independent components.

• A notation for specifying the application order of transformations: it could be that
this control information had to be given for each transformation separately,
ensuring its independence. When a transformation is added to the system, it will
co-ordinate its own interaction with existing transformations.

These notation features and their semantic model are still open questions that are being
addressed by the research group at Oxford. In an ideal scenario, an intention would
operate on a particular aspect of a given program with just the required contextual
information and anonymous interactions with other intentions if any. In addition, the
application order of intentions would not be established beforehand but by the context in
which they occur. Regarding data abstractions, it should also be able to allow
programmers to concentrate on the task of devising powerful data structure abstractions
without worrying about the infrastructure support.

7

3 Attribute Grammars

3.1 Definitions
Attribute grammars (AG) are a formalism for the specification of context dependent
computations and dependence on tree structures. AGs are described by an underlying
context-free grammar (CFG) and are based on a formal calculus introduced by Knuth [43,
44]. More recent overviews and applications can be found in [16, 33, 34].

The following definition of attribute grammars is taken, almost literally, from [66].

Definition 1 An attribute grammar is a quadruple AG = (G, A, R, B), where

G = (T, N, P, Z) is a reduced context-free grammar,

A = �
NTX

XA
∪∈

)(is a finite set of attributes,

R = �
Pp

pR
∈

)(is a finite set of attribute computations, and

B = �
Pp

pB
∈

)(is a finite set of plain computations and conditions.

∅≠∩)()(YAXA implies X = Y. For each occurrence of X in the derivation of the
sentence of L(G), at most one attribute computation is applicable for the computation of
each attribute)(XAa ∈ . For each application of a production p in the derivation of a
sentence of L(G), all computations of R(p) and B(p) are carried out. □

Elements of R have the form

,...).(...,:. bYfaX =

In this attribute rule, f is the name of a function, X and Y are non-terminals and X.a and Y.b
denote attributes. We assume that the functions used in these attribute rules are strict.
Attribute rules are associated with its productions. Associations to symbols of the CFG
describe results or effects of computations. Definitions and uses of attributes express
dependencies between computations.

Definition 2 For each PXXXp n ∈→ ...: 10 the set of defining occurrences of attributes
is)}((...):.|.{)(pRfaXaXpAF ii ∈== . An attribute X.a is called synthesised if there
exists a production χ→Xp : and X.a is in AF(p); it is inherited if there exists a
production νµXYq →: and)(. qAFaX ∈ . □

AS(X) is the set of synthesised attributes of X. AI(X) is the set of inherited attributes of
X.

The context-free grammar defines the structure of the tree being decorated. Each
production describes a context consisting of a node and its children (if any). Attribute
values decorate the nodes, attribute computations specify how those values are related, and
plain computations extract information for other processes.

The order in which computations are written down is irrelevant. Attribute computations
describe relationships between attributes, not an algorithm for computing the values of

8

those attributes. That is, an AG specification does not contain any explicit sequencing of
the computations apart from those functional dependencies. But, if certain formal
restrictions hold, an evaluator can be derived systematically from an AG specification; the
designer avoids the need to think about tree traversal strategies and ways to store values
used temporarily during the decoration of the tree.

Attribute grammars have shown themselves to be a useful formalism for specifying the
syntax and the static semantics of programming languages, as well as for implementing
syntax-directed editors, compilers, translator writing systems and compiler generators,
and, more generally, any application that has a strong syntactic basis. The large body of
literature on theoretical aspects, applications and systems based on attribute grammars
shows how active this research area currently is. A bibliographic sample is available in
[51].

3.1.1 A functional implementation of attribute grammars
Attribute grammars are used to specify the semantics of programming languages. They
specify the computation of attribute values attached to nodes in a structure tree. An
attribute grammar specification can be transformed into a compiler. A compiler based on
attribute grammars usually consists of two parts: the first parses the input and builds a
structure tree; the second part, the attribute evaluator, decorates the structure tree; i.e., it
evaluates attributes that are attached to the nodes of the tree. Traditionally, evaluation
walks the structure tree; during each visit to a node a subset of the attributes attached to
the node is evaluated.

An alternative way to structure a compiler based on attribute grammars is to let the first
part of the compiler construct the dependency graph of the structure tree of the input
program. The second part of the compiler will reduce the constructed graph. Nodes in the
graph correspond with attribute occurrences. A node that corresponds to an attribute a is
labelled with the semantic function defining the value of a. If attribute a directly depends
on attribute b there will be an arc from the node corresponding with a to the node
corresponding with b.

An attribute evaluation scheme that explicitly constructs the dependency graph and then
reduces this graph is called a 2-phase evaluation scheme. The first phase builds the graph.
The second reduces the graph.

In this approach attribute values are viewed as terms. A term is either a basic value or a
function applied to a list of terms. The basic values in the terms are the basic values in the
attribute grammar, like integer and characters. The function symbols in the terms are the
names of the semantic functions in the attribute grammar. An attribute evaluator must
compute the synthesised attributes of the root of the structure tree. The dependency graph
is a representation of these attributes.

As presented in [45], the 2-phase attribute evaluation scheme can be implemented in a
functional language with lazy evaluation and local definitions. A mapping can be defined
so that it maps an attribute grammar into a functional program. This program takes as
input a structure tree corresponding to the underlying context free grammar of the attribute
grammar. Trees can be represented as lists. Every node consists of a marker and another
lists representing the subtrees of the node. The marker in a node determines the applied
production rule.

9

Pattern matching can be used to distinguish between different productions with the same
left-hand side non-terminal. These program patterns are denotations of finite lists; the first
element is the marker, which is a constant; the other elements are identifiers. The use of
patterns in the function definitions is not essential. The different productions of a non-
terminal can also be distinguished in the body of the functions by using conditional
expressions.

Let us assume that an attribute grammar AG = (G, A, R, B) is given, and ∅=B . Assume,
without loss of generality, that for all X in N

}.,...,.{)(AI 10 −=
XkinhXinhXX

and

}.,...,.{)(AS 10 −=
XlsXsXX

So X has kX inherited and lX synthesised attributes.

A non-terminal N0 is translated into a function eval_N0. The first argument of eval_N0 is a
labelled tree. Production nNNNp ...: 10 → is translated into a definition for eval_N0:

),...,(...)...(0
1

0
0

00
010 00 −=

NN lkn ssinhinh,L,p,Leval_N

where BODY(p)

BODY(p) is the translation of R(p), the attribution rules for p. For every attribution rule,
defining a synthesised attribute of N0,

(...):.0 fsN j =

in R(p), BODY(p) contains a definition

(...):0 fs j = .

For every attribution rule, defining an inherited attribute of)1(njN j ≤≤ ,

(...):. finhN ij =

in R(p), BODY(p) contains a definition

(...): finh j
i = .

Occurrences of ij sN . and linhN .0 in f(…) are replaced by j
is and 0

linh respectively. For
every jN ,)1(nj ≤≤ , BODY(p) contains a definition

j
k

j
jj

j
l

j
jNjN

inhinhLeval_Nss 1010 ...),...,(−− =

The case ∅≠B is an easy extension of the ∅=B . The result of an eval function is
extended with a boolean value. This boolean value indicates whether all conditions in the
tree passed to this function yielded true.

Therefore, in this mapping the non-terminals of the grammar correspond to functions, the
productions to different parameter patterns and associated bodies, the inherited attributes
to parameters and the synthesised attributes to elements of the result value returned by
these functions, which may be functions as well. Such a mapping depends essentially on
the fact that the functional language is evaluated lazily. This makes it possible that an

10

input parameter given to a function may depend on the result value of that same function.
In functional implementations of AGs the seeming circularity is transformed away by
splitting the function into a number of functions corresponding to the repeated visits to
nodes. In this way some functional programs may be converted to a form which no longer
depends on lazy evaluation. For this, all parameters in the attribute grammar formalism
must correspond to strict parameters because of the absence of circularity.

Most functional languages that are lazily evaluated, however, allow circularities. In that
sense they may be considered to be more powerful than non-circular attribute grammars
[30]. More detailed discussion on the functional implementation of attribute grammars
can be found in [6, 13, 29, 52, 63].

3.1.2 Attribute grammars as aspect-oriented programs
In their pure form, the only way attribute grammars are decomposed is by productions.
Productions force the inclusion of all semantic attributes simultaneously, without the
possibility of breaking them into different concerns. This is, it is not possible to separate
out a single semantic aspect (such as the environment) across all productions, and then add
that as a separate entity to the code already written. Many specialised attribute grammar
systems offer decomposition by aspect, but at a syntactic level, not at a semantic one.

Aspect-oriented programming [41] offers a solution for problems of software modularity,
but still at a syntactic level only. It introduces a new software unit, called aspect, that
appears to provide a better handle on managing cross-cutting concerns. Like objects,
aspects are intended to be used in both design and implementation. During design the
concept of aspect facilitates thinking about cross-cutting concerns as well-defined entities.
During implementation, aspect-oriented programming languages make it possible to
program directly in terms of design aspects, just as object-oriented languages have made it
possible to program directly in terms of design objects.

In [13], aspect-oriented programming and functional programming are combined to
provide aspects with semantic content for compiler construction. Here, aspects are
composed as functions; therefore independent semantic units are available as first-class
building blocks that can be parameterised, manipulated and compiled independently.

From the point of view of attribute grammars, an aspect is understood as a set of
definitions and computations of one or more related attributes [13]. Examples of aspects
in an AG-based compiler are the environment, type and the code attributes; they may exit
across all production rules of the abstract syntax specification. This semantic view of an
attribute grammar is helpful when additional 'semantic layers' are to be added without
affecting exiting aspects.

3.2 Higher order attribute grammars
Higher order attribute grammars (HAGs) [64] are an extension of normal attribute
grammars in the sense that the distinction between the domain of parse-trees and the
domain of attributes has disappeared: parse trees may be computed in attributes and
grafted to the parse tree at various places. The term higher order is used because of the
analogy with higher order functions; a function can be the result or parameter of another
function.

11

In HAGs, abstract syntax trees (i.e., recursive data types) are promoted to "first class
citizens", where they can be the result of a semantic function, and they can be passed as
attributes. Moreover, in HAGs trees can be grafted into the current tree, and then be
attributed themselves, probably resulting in further trees being computed and inserted into
the original tree.

Trees used as a value and trees defined by attribution are known as non-terminal attributes
(NTAs). Hence, in the definition above computations in R(p) and B(p) can produce NTAs
as a result of their evaluation.

3.3 Attribute Coupled Grammars
Attribute coupled grammars [21] were introduced in an attempt to model the multi-pass
compilation process. In a multi-pass compiler compilation takes place in a fixed number of
steps, intermediate trees are computed as a synthesised attribute of trees computed earlier.
These attributes are then used in further attribute evaluation, by grafting them onto the tree
on which the attribute evaluator is working. A pictorial description of this process is
shown below.

Figure 2. The tree of a 4-pass compiler after evaluation.

This model can be considered as a limited application of HAGs, in the sense that they
allow a computed synthesised attribute of a grammar to be a tree that will be attributed
again. This boils down to a HAG with the restriction that an NTA may be only created at
the outermost level.

The Cornell Synthesizer Generator [55] and the Eli system [36, 67] offer full support for
ACGs through computed subtrees. A large example of the application of this multi-pass
mechanism can be found in [63] and [64].

3.4 Shortcomings of AGs
Attribute grammars have not come into general use and we may ask why this is, there are
several possible reasons. As a compiler specification method, AGs have proven
remarkably difficult to decompose into logical fragments [33], and consequently they have
not yet been accepted as a viable specification technique.

12

Another reason for their lack of popularity is the style in which they are normally written –
a style that hinders both modular decomposition and reuse of specifications. Moreover, it
is often disputed whether AGs are an adequate method for the solution of practical
problems. The main arguments presented against the use of AGs in practical
specifications are [12, 33, 39]:

• Some AG specifications are as large as or even larger than a manually developed
implementation for the same task (especially if the manual implementation uses a
modern programming language such as ML).

• The concept of locality in AGs requires much redundant information reducing the
comprehensibility of the specification.

• Large AGs lack a structure that improves comprehensibility and maintainability.

• The strict functional and declarative character of AGs discourages the use of
certain well-known efficient implementations, hence yielding less efficient
solutions.

Attribute grammars, despite their many attractions, are not even in widespread use in the
academic community. This may be due to the restrictions imposed by attribute definition
languages, which result in a lack of compositionality.

The first three arguments are true if the basic AG concepts are considered, and
specifications are written in a notion for exactly that base. Having these shortcomings
present, multiple AG systems have been proposed where each of these issues is directly
improved. Specifically, in our case study we will be referring to the way SG and Eli solve
these problems.

13

4 Case Study
In this section we present a HAG that transforms an input program in a way that depends
on contextual information. This example focuses on the potential side effects that specific
expressions can produce on the overall program structure when particular program
constructs (e.g., statements and expressions) are to be transformed.

In particular, this example supports our belief that local effects can produce global
transformations via attribute inheritance, synthesis and computation where attributes
establish dependencies between subtrees. For instance, global transformations can vary
from a simple substitution of the current subtree by an expanded one to the creation of
new function declarations and their corresponding function calls in expressions within
statements. In the latter case, we will see that more attributions are required in order to
propagate the desired effect along the appropriate branches of the working tree.

In this case study, we start from a small grammar with a minimal set of attributes (kernel)
that is then extended to support propagation of side-effects via new attributes and
computations. This will allow us to recognise the way the kernel should be tuned in order
to allow new programming elements in the grammar.

For the sake of comparison, this case study has been implemented using two attribute
grammar systems, namely the Synthesizer Generator (SG) [55] and the Eli system [22, 38,
39]. Both systems are known for their particular characteristics in domain-specific
applications. The SG is of interest to us because it merges the concepts of abstract-syntax
definition, syntax-directed translation and user-defined attribute types, and implements a
notation for factoring specifications into separate modules. The SG is strongly based on
the construction of language-based editors. The Eli system goes a step further from the
basic notation found in typical attribute grammar specifications, improving the abstraction
level with concepts of inheritance, ADTs, libraries and modularity that we consider very
appealing for our purposes.

As is typically the case when comparing development systems, an exhaustive one-to-one
comparison of all system features is not possible, but we will instead present features we
consider relevant for our purposes. In particular, we will focus our attention on the
notational conveniences these systems provide in order to express subtree dependency,
remote access specifications and modularity. By notational convenience we mean the
existence of programming constructs that relieve the user of specifying tedious mechanical
attribute manipulations and computations. These manipulations are typically used in AGs
to allow upward and downward reference to attributes found in other parts of the tree
structure. Other constructs can improve modularity and reuse. For a more comprehensive
overview of systems based on attribute grammars see [16].

The analysis of the AG evaluation methods used by SG and Eli are beyond the scope of
this study. An extensive survey of attribute evaluation methods can be found in [4] and
[20]. The quality of the output application produced by these systems size,
performance is not considered for analysis in this study either.

In the following sections we introduce the toy programming language used, we elaborate
on the two transformations of interest in this case study, and we explain a HAG
implementation that achieves these transformations.

14

4.1 The P Language Grammar
For the purpose of our Case study let us consider a small imperative block-structured
language, which we will call P. P will be the grammar of our input and output programs,
and corresponds to an extension of the language proposed in [55]. We will concentrate
our attention on the existing computations at the abstract representation level of P.
Besides, we will assume that the appropriate scanning, parsing and unparsing mechanisms
are in place; therefore they will not be discussed in this document.

Figure 3 shows the abstract grammar of P, which is composed by BNF production rules as
in SG. The start symbol is program.

program : Prog progName progBody .
progBody : ProgBody declList funcDeclList block .
declList : DeclListNil

| DeclListPair decl declList .
decl : Declaration variable type .
funcDeclList : FuncListNil

| FuncListPair funcDecl funcDeclList .
funcDecl : FuncDecl funcName type block .
block : Block stmtList .
stmtList : StmtListNil

| StmtListPair stmt stmtList .
stmt : EmptyStmt

| block
| Assign variable exp
| IfThenElse exp stmt stmt
| While exp stmt
| Loop block
| Return exp
| Break
| Continue
| Label labelName
| Goto labelName .

exp : EmptyExp
| IntConst integer
| True
| False
| Id variable
| Equal exp exp
| NotEqual exp exp
| Add exp exp
| Minus exp exp
| After stmtList exp
| FuncCall funcName .

type : EmptyType | Integer | Boolean .
variable : identifier .
progName : identifier .
funcName : identifier .
labelName : identifier .
identifier : string .

Figure 3. P abstract syntax grammar.

From this grammar it can be seen that any program in P has a name (progName) and a
program body (progBody). The program body represents the description of its algorithm;
it consists of definitions and a block of statements. Moreover, the progBody production
defines the semantic context where any program declaration and the actual statements

15

for which these declarations are visible exist. As usual, an environment attribute will
be used for representing such scope visibility.

A list of variable declarations (declList) and a list of function declarations
(funcDeclList) form the program declaration section. Both lists will be useful for
semantic analysis and type checking. In general, we represent lists as a set of two
productions: an empty list production and a list concatenation production. The use of
Kleene closure definitely would have made list definitions generic, clearer, and more
concise (e.g., declList : decl* or funcDeclList : funcDecl*). But in SG and Eli
non-terminal production rules require an operator-name, which actually builds the
production structure from the current parameters. Then we could declare list definitions as
declList : DeclList(decl*), where DeclList is the operator-name. This last
abstraction is possible only in Eli as its language pre-processor replaces it by two
automatically generated production rules. Operator-names in SG require a pre-defined
number of parameters, therefore the star notation is not provided and the corresponding
two production rules have to be provided explicitly. For example, in the case of declList
its production rules are specified by two operator-names DeclListPair and DeclListNil,
the first take two parameters, decl and declList, while the second function has no
parameters. This makes list concatenation cumbersome, because it will be specified
differently depending on the kind of elements being concatenated. SG overcomes this by
allowing an annotation that a production rule represents a list, then it allows the use of a
"generic concatenation operator" (::).
A feature in P is the occurrence of production rules that represent "emptyness" or the
absence of information; namely the terminal symbols DeclListNil, FuncListNil,
StmtListNil, EmptyStmt, EmptyExp and EmptyType. They are typically found as the
first production rule of the sequence of rules associated with a non-terminal symbol. Their
existence has to do directly with the way the SG displays a new "empty" program for
editing it corresponds to an empty instance of the corresponding non-terminal. When
an empty program is displayed, the user then edits this initial empty program by replacing
these symbols with other symbols. Empty symbols are also used for semantic consistency
during editing, and some are used later on in semantic and type analysis.

A block consists of a statement list (stmtList) and it primarily holds contextual
information for the different statements that it may contain. The true importance of this
construct only appears later when we discussed HAGs. The block production serves
several purposes depending on the context in which it is found in the grammar.
Specifically, a block can be either part of the progBody of a program or part of every
function body or part of any loop statement. In the first two cases, a block's information
is used to restrict the occurrence of return statements to function bodies a return
statement within the main program body is not allowed in P. In the third case, a block's
information is used to restrict the occurrence of break and continue statements to loop
statements. Furthermore, it offers labelling information that is useful when transforming
loop structures into a combination of conditionals and goto statements. A less interesting
use of block is found when considering the block production as a statement (stmt). Here,
a block simply represents a wrapper for a stmtList to be manipulated as a single
statement.

Notice the difference between the body of a while statement (a stmt) and the body of a
loop statement (a block). We have established it on purpose to ensure that loop
statements always have context information associated with its body.

16

A function in P does not contain a declaration part or parameters; i.e., functions do not
declare a new local scope. It only consists of a name, a block that describes its algorithm
and an explicit type. Functions can return values of any of the available types: Integer,
Boolean or EmptyType values. The third type, EmptyType, is used to represent the
absence of known type so far as mentioned before, which becomes useful during program
editing and type analysis.

As presented in this abstract grammar, a progName is an identifier, which in turn is a
string terminal symbol. This is also the case for function names (funcName), labels
(labelName) and variable names (variable). This string classification in P allows
domain separations. Entities may be defined both by the grammar and by the values
representing the terminal symbols: the grammar selects a particular kind of phrase, while
the instances of this phrase are differentiated by the values of their terminal symbols.

Finally, a variety of statements (stmt) and expressions (exp) are available in P. In the
case of statements, they correspond to classical control structures found on block-structure
programming languages, and have been selected accordingly to the transformations we are
interested to develop in the case study. For instance, a while statement can be
transformed into a loop statement with conditional, break and continue statements.
Moreover, a loop statement can be transformed into a conditional statement using goto
statements. The only unfamiliar statement that is worthwhile mentioning is the
EmptyStmt. It is used in the grammar to emphasise that a dummy statement is allowed.

Regarding expressions, the after expression (After) is undoubtedly the most interesting.
Structurally, it consists of a list of statements (stmtList) and an expression (exp), which
we will later refer as the side-effect and the value of the after expression respectively.
Semantically, the after expression reads as follows: expression exp can be evaluated
once after the list of statements stmtList has been executed. Notice that this expression
may be transformed into more basic imperative statements and expressions in several
ways. We will discuss the transformation options in the next section.

The evaluation order of expressions in P is after expressions first, then function calls,
addition and subtraction and finally comparisons. When more than one element with the
same order is executed on the same expression, a left to right traversal will establish the
order.

4.2 Transformations
Recall our interest in HAGs that transform input programs in a way that depends on
contextual information. Our discussion of transformations will be based mainly on the
semantics of the after expression, although we will also consider the productions
associated with the while and loop statements. The discussion of these examples will
help us understand the way intentions can be specified using HAGs and could possibly be
expressed in our future IP meta-language.

4.2.1 After Expression
Let us consider the after expression:

exp : …
| After stmtList exp
| … .

17

Recall its informal semantic definition again: expression exp (its value) can be executed
once after the list of statements stmtList (its side-effect) has been evaluated. In the
following example variable y will be assigned the value of x + 3 immediately after the
side-effect statement x := x + 1 has completed. A C/C++ programmer would understand it
as:

y := after (x := x + 1) (x + 3); ⇔ y := (x := x + 1, x + 3);
(i.e., y := (x++, x + 3);

Here, the comma (,) represents an expression list to be evaluated left-to-right, and the
value of the left expression, in this case the assignment statement x := x + 1, is
discarded. All side-effects from the evaluation of the left operand are completed before
beginning evaluation of the right operand [40]. But such a construct is not allowed in P,
because expressions do not allow statements as part of them ─ except for the after
expression itself. For this specific example an equivalent transformation in P is:

y := after (x := x + 1) (x + 3); ⇔ x := x + 1;
y := x + 3;

The type of an after expression is the type of its exp value, in this example Integer. If
no side-effect is specified within the after expression then no transformation is required.

The combination of the after expression with other constructs may lead us to conclude
that just one transformation may not be enough. For example, consider its combination
with a while statement and the following transformation:

while (after (n := n + 1) (n < 10)) do

begin

…

end;

⇔ n := n + 1;

while n < 10 do

begin

…;

n := n + 1;

end;

In this example, the ellipsis represents any statement within the body of the while
statement. In this case, the side-effect statement is involved in initialising and maintaining
the while statement invariant. Here, there are two places where the side-effect is
required: before the while statement itself and as the last statement of the while body.

After expressions in nested expressions

As expressions are defined recursively, an after expression can also have other after
expressions as part of its side-effect or value. In such cases, we propose that a left-to-right
traversal of the expression will determine the side-effects' evaluation order. The following
example presents such a case:

18

… after (y := z)
(after (a := b)

(after (y := a)
y)) …;

⇔ y := z;
… after (a := b)

(after (y := a)
y)

…;

⇔ y := z;
a := b;
y := a;
… y
…;

In this example, the ellipses represent the current statement where the expression appears.
Here, we have chosen to follow an outer-most transformation style. Through the outside-
in process, a nested sequence of after expressions can be represented as a sequence of
side-effect statements followed by the last value expression. We have chosen an outside-
in transformation order. This is, they may be represented as trees so that during tree
transformation side-effects move up the tree, leaving the value at the bottom. A traditional
evaluation order will determine which side-effect will move first up the tree. Therefore, if
we consider the tree representation of any arbitrary legal expression and a variable is
modified multiple times by side-effects of several after expressions, then the actual value
associated with this variable will be determined by the closest side-effect to the value
expression in the complete tree representation.

Notice in this example that using an inner-most transformation style would produce the
sequence of side-effect statements to be in reverse order. This shows that different
transformation orders may produce semantically different code.

Let us consider another expression:

…(after (x := x + 1) x) + (after (x := x * 2) x) …

Here the occurrence of more than one after expression shows the importance of the
evaluation order. If we apply a left-to-right evaluation order we obtain:

x := x + 1;
… x + after (x := x * 2) x) …

⇔ x := x + 1;
x := x * 2;
… x + x …

Notice the difference of this result when compared against the output of the same
expression but in right-to-left evaluation order:

x := x * 2;
… (after (x := x + 1) x) + x …

⇔ x := x * 2;
x := x + 1;
… x + x …

After expression in compound expressions

Now, consider the use of an after expression in a compound expression as in the
following assignment statement:

y := x + after (x := x + 1) (x + 3) + x ;

19

We identify several possible interpretations for this expression based on the side-effect
scope of the after expression. That is, they depend on the way we consider side-effects
should affect the entire expression it exists within. Obviously other interpretations are
possible by changing the semantics of the distinct constructs involved, in this case the
assignment statement and the + operator. Once an interpretation is selected, an appropriate
transformation can be given.

First Interpretation: Let's consider again the C/C++ interpretation again, using a left-to-
right evaluation order. According to the semantics given above, it would be understood
as:

y := x + (x := x + 1, x + 3) + x ;

Recall that comma represents an expression list. While the first occurrence of variable x
on this expression will not be affected by the side-effect of the after expression, the value
of its last occurrence, on the right, will certainly be. This would be represented in P as:

temp := x + 1 ;
y := x + (temp + 3) + temp ;
x := temp ;

Here, the context of the expressions found before the after expression value, (x + 3), is
preserved using a temporal variables, which may appear multiple times. In general, this
interpretation requires analysis of the side-effect statement list for the introduction of
temporary variables. Moreover, extra care is required to ensure that these new variables
do not alter the behaviour of the assignment statement containing the compound
expression. For instance consider the following case under this same interpretation: x :=

x + after (x := x + 1) (x + 3), here the temp variable does not need to be assigned
to variable x as done above.
As suggested, interpretations may consider the contribution that any other existent
construct provides; for instance, the associative property of the + operator produces
slightly different parsing trees for this expression, as shown in Figure 4. Nonetheless, the
same result is obtained when evaluating from left to right. Completely different results are
computed if the order in this expression is changed, for example
y := after (x := x + 1) (x + 3) + x + x ; or
y := + x + x + after (x := x + 1) (x + 3); .

20

:=

y

x := x + 1 x + 3

+

expr
list

x

x

+

:=

y

x := x + 1 x + 3

+

expr
listx

x

+

Right associative Left associative

Figure 4. Parsing options of statement
y := x + after (x := x + 1) (x + 3) + x ;

considering the associative properties of the + operator.

We may choose to drive away from this interpretation and consider the following ones.

Second Interpretation: The side-effect affects the entire context in which the after
expression appears as in our initial example. It can be understood as:

x := x + 1 ;
y := x + (x + 3) + x ;

Any other expression outside the after expression will have its context affected, as is the
case with the x variables outside the parenthesised expression. The parenthesis may
establish evaluation precedence, but it is not defined in P.

Third interpretation: The side-effect of the after expression is visible only within the
scope of its value expression, and in the context immediately after the composed
expression. This can be understood as:

temp := x + 1 ;
y := x + (temp + 3) + x ;
x := temp ;

Here, both x variables outside the after expression are not affected during the
computation of the value to be assigned to variable y, therefore preserving its original
value. Again, as in our first interpretation, it requires a deeper analysis of the side-effect
statement list because temporary variables need to be introduced.

After expressions as function calls

Another way of transforming an after expression is by converting it into a function. This
approach implies the replacement of the actual after expression by a function call

21

expression (funcCall) and the construction of the new function to be called. The side-
effect part of the after expression plus its value part compose the body of such function.
This transformation can be described in a general sense as follows:

… after side-effect
value …

⇔ Function afterFunc (formal_params): type;
begin

side-effect;
return (value);

end;
… FuncCall(afterFunc(actual_params)) …;

This is a more interesting transforming option from our point of view, because it reveals
the fact that a minor semantic feature in an expression can produce changes to the whole
program structure during transformation. In this case, every after expression will bring
about a new function declaration that is to be included in the list of function declarations
(funcDeclList) of the complete transformed program. We think an inconvenience of this
transformation strategy is the potential explosion of functions and their intrinsic overhead.

Using the same combined after expression and while statement example presented
before, the result of applying this transformation is rather different:

while (after (n := n + 1)
(n < 10)) do

begin
…

end;

⇔ Function
AfterFunc_01(var n: Integer):

boolean;
begin

n := n + 1;
return (n < 10);

end;

while funcCall(AfterFunc_01(n)) do
Begin

…
end;

In our basic example, we could also have chosen for function AfterFunc_01 not to use
parameters, because the use of global variables could produce the same behaviour. In fact
parameters are introduced here for explanatory reasons, because functions in P have no
parameters.

This alternative transformation shows the importance of considering other programming
language features during the semantic interpretation of after expressions, namely the
evaluation order of expressions (see page 16), and the passing of parameters by value or
by reference in function calls, which actually affects function definitions.

Let's make use again the interpretations we presented before (see page 19) and consider
the way they can be implemented using function definitions and function calls. The first
interpretation can be obtained by allowing functions to produce side-effects. For this,
variables modified in the side-effect part of the after expression have to be passed by
reference to the function. The use of global variables would also produce the same result,
but again we prefer to use parameters for explanatory purposes. The transformation of our
compound expression is:

22

y := x + FuncCall(

23

y := g(f(x)) ⇔ y := after
(temp := f(x))
g(temp)

⇔ temp := f(x);
y := g(temp);

Here it allows both function calls to be treated separately. Notice that this is a rather
different approach to after expressions.

4.2.2 While and Loop statements
In this case study we also consider a two-step transformation that can be applied to while
statements. The first step transforms a while statement into a loop statement with break
statements and optionally continue statements. Then a second step transforms this loop
statement into a condition statement where break and continue statements are
converted into goto statements. The following example shows this transformation.

While (n < 10) do
begin

a := a * n;
n := n + 1;

end;

⇔ loop
if (n < 10) then

begin
a := a * n;
n := n + 1;

end;
else

break;
end;

⇔ label_01:
if (n < 10) then

begin
a := a * n;
n := n + 1;

end;
else

goto label_02;
goto label_01;
label_02:

In particular, on the first-step transformation the while body (stmtList) is converted into
a block according to the loop grammar rule. Recall that a block has to be created in
order to keep different contextual information that supports semantic analysis and later
transformations. In this case, it contains information that restricts the use of break and
continue statements, as well as labelling information for potential inclusion of goto
statements. When the second transformation is applied, the block construct is no longer
used in the resulting code.

Although this transformation is simple, it gives us insight into the way intermediate
transformation steps lay down contextual information. Later transformations may use it or
make it available for those program structures that may eventually need it. The
transformation of break statements into goto statements is one such example. First the
break statement verifies if its presence within the structure is semantically correct (i.e., it
exists within a block of a loop statement), and second it retrieves labelling information
from its context in order to transform itself into a goto statement.

4.3 A HAG for our language P
Now that we have clearly specified the programming language used and the kind of
transformations under study, we elaborate on the attributes our HAG has and their
computations. This is a natural common development strategy found in the AG-based
compiler literature [31, 33, 39]; this is, attributes are typically defined in terms of the
application requirements. Consequently, in this section we will introduce the attributes
that decorate our HAG based on P.

24

The examples presented in this section are extracts of the actual HAG implementation of P
using the SG, available in Appendix 11.1, page 66; we will also refer to the Eli system
when differences need to be stated. The SG implementation is chosen because it is more
readable than the Eli implementation and requires fewer abstract concepts.

4.3.1 The Code and NewFncDcls attributes
The most interesting attributes in our case study are the Code and NewFncDcls attributes.
They are used directly in the construction of the transformed output program using
functions (see section 4.2.1, page 16). They contain computed subtrees that result from
the actual production rules they are attached to.

It is precisely the occurrence of subtrees as attribute values that classifies our AG as a
HAG. In general, each HAG production rule is able to compute as many different tree
representations as required, based on its actual components (their computed values or
representations) and the current contextual information. This explains the knitted
dependencies typically found within HAG tree structures.

Moreover, Code and NewFncDcls attributes are synthesised attributes; i.e., subtrees
computed at terminal and non-terminal symbols (or nodes in the tree representation) flow
up the tree, contributing to the total tree under construction. In the case of Code, the
complete resulting tree is found at the root production (attribute program.code); as for the
NewFncDcls attribute its complete tree is found at the progBody production rule (attribute
progBody.newFncDcls).
As we will see latter in this section, these attributes are associated with almost every
production rule in the grammar P. While NewFncDlcs is found only in production rules
that allow expressions or contain non-terminals that allow them (from where new function
declarations could be produced), Code is associated with every production rule without
exception.

When such a proliferation of computations occur in a attribute grammar, it is easy to see
that keeping attribute specifications as independent as possible becomes an important
strategy; this can improve modularity. SG and Eli provide their own mechanisms in order
to support this idea.

4.3.1.1 NewFncDcls
The synthesised attribute NewFncDcls has three specific goals: to create a function
declaration for every existing after expression, to collect any new function declarations
from the whole tree structure, and to include them in the function declaration part of the
program body.
The first goal is achieved by computing the function declaration structure based on an
after expression instance; recall that this is part of its transformation process. Such
computation is done as follows:

exp: …
| After

{ local funcName newFuncName;
local funcDecl newFunc;

newFuncName = FuncName(gensym("AfterFunc_",&($$)));
newFunc = FuncDecl(

25

newFuncName,
exp$2.type,
Block(AppendStTail

(stmtList.code,
Return(exp$2.value))));

exp$1.newFncDcls =
AppendFncDcl(AppendFncDclLst(stmtList.newFncDcls,

exp$2.newFncDcls),
newFunc); }

| …;

Here the dot notation is used to refer to an attribute of a locally visible production rule
instance. When there are multiple instances of the same production rule present, their
references are enumerated, for instance exp$1.newFncDcls and exp$2.newFncDcls.
When making reference to attributes of the LHS of the current production rule, the
following convention may be used: $$.<attribute-name>.

The actual construction of the new function (newFunc) is specified using a function
FuncDecl (recall SG calls this function operator-name). This operator requires as
arguments a new name (newFuncName), which is generated via a gensym function and
made available as a local variable for further reference when generating its transformed
code (refer to attribute value); a type, which is the actual type of the after expression;
and a function body. This function body is a Block consisting of the side-effect code
(stmtList.code) and a return statement as its last element. The value that is returned
by this last statement is the value of the after expression.
This computation also shows the way in which the new declaration is included in the
resulting list of new function declarations. Two user-defined functions are used:
AppendFncDclLst, which returns the list that results from merging two lists of type
fncDclList; and AppendFncDcl, which returns the list that results from appending a
given function declaration to the end of a given function declaration list. It is a
disadvantage not to have a generic list type. Notice that in the case of nested after
expressions, it considers the presence of extra function declarations that may be produced
within the side-effect statement list and the value expression.

The second goal of this attribute is the collection of these new function declarations. As
indicated before in this section, in order to collect them we require these declarations to be
passed up the tree, from the actual production instances where they are created (in this
case, after expression production rules) to the program body.
The standard mechanism attribute grammars use for data passing is called copy rules.
These are rules whose only purpose is to ensure local visibility of attributes that are
computed somewhere in the tree. Copy rules can broad-cast up and down the tree data.
These remote attributes are typically used when computing attributes that are semantically
dependent on the context. In the simplest case, by associating copy rules with every
possible production rule that may be found between two specific production rules in the
grammar, attribute values can be passed up or down the tree.

In the case of our attribute NewFncDcls, copy rules are present in almost every production
of our grammar (progBody, funcDeclList, funcDecl, block, stmtList, stmt and exp).
Appendix 11.1, page 66, presents its complete specification. While copy rules are
inevitable in SG, Eli provides abstraction mechanisms that relieve the user from specifying
them (see section 5.4 below, page 37). A common copy rule is:

26

block : Block { block.newFncDcls = stmtList.newFncDcls; };

This is a straightforward copy rule found in the block production rule: the newFncDcls of
a block (here it could have also been referred as $$.newFncDcls) is the newFncDcls
value of its statement list. Other copy rules in P do a little more in some cases; they get
lists of declarations and merge them into a single list to be passed up the tree. This is
typically found in upward copying, where multiple occurrences of the same value are
likely to be obtained.

exp : …
| Equal, NotEqual, Add, Minus

{ $$.newFncDcls =
AppendFncDclLst(exp$2.newFncDcls,

exp$3.newFncDcls); }
| …;

A code reuse facility is exercised here: expressions as Equal, NotEqual, Add and Minus
are identical in their production structure and therefore could share the specification of
(ultimately all) their attribute computations (this is a very useful facility found in SG,
whereas in Eli it is available through inheritance mechanisms). For each of these
expressions, the newFncDcls value corresponds to the union of the newFncDcls of their
corresponding sub-expressions (here referred as exp$2 and exp$3).
Once copy rules in a HAG are in place for a particular purpose, for instance our task of
collecting function declarations, extending it in order to deal with new programming
constructs requires minimum modification. A more powerful idea then is to be able to
collect elements some type from anywhere in the tree without creating copy rules. This is
precisely one of the abstraction facilities the Eli system offer (section 5.4 below, page 37).

Finally, the third goal of attribute newFncDcls is to ensure that collected function
declarations are included in the function declaration part of the program body (progBody).
From the progBody production rule we can see that new functions can result out of the
main block and any function originally defined in the program (funcDeclList). This is
done as follows:

progBody: ProgBody { local funcDeclList initialFuncDecls;
initialFuncDecls = funcDeclList;
$$.newFncDcls =

AppendFncDclLst(
AppendFncDclLst(block.newFncDcls,

funcDeclList.newFncDcls),
initialFuncDecls); };

Here, three lists are merged using function AppendFncDclLst. Notice also the definition
of variable initialFuncDecls. It contains the initial set of declared functions.
Moreover, it is local to the actual progBody and hence visible through remote reference
for type checking purposes (see section 4.3.4 below, page 30).

27

4.3.1.2 Code
The synthesised attribute code has two specific goals: to carry out transformations on
statements, and to create a transformed representation of the current program tree
structure.

Notice that a new program representation may correspond to another valid representation
within the same grammar or an entirely different one. While our example is of the former
case, because we are interested in source-to-source transformations within the same
language, the latter case is typically found on attribute-based compilers where the goal is
the translation; i.e., the mapping of expressions between two different languages. Recall
here our interest in using attribute grammars, but not exclusively, in both horizontal and
vertical transformations.

As seen through out our discussion, there are certainly strong dependencies between
attributes in AGs so that computations (and transformations in our case) can be carried
out. The transformation of statements into code is another one of these cases. The
following code computations illustrate this dependence:

stmt : …
| While { $$.code = Loop(StToBlck(

IfThenElse(exp.value,
stmt$2.code,
Break))); }

| Loop { $$.code = StLstToSt(
Label(block.initialLabel) ::
BlckToSt(block.code) ::
Goto(block.initialLabel) ::
Label(block.finalLabel) ::
StmtListNil); }

| Return { $$.code = Return(exp.value); }

| Break { $$.code = ({block.brkCntAllow} == "YES") ?
Goto({block.finalLabel}) :
Break; }

| Continue { $$.code = ({block.brkCntAllow} == "YES") ?
Goto({block.initialLabel}):
Continue; }

| …
;

Recall our discussion on transformations presented in section 4.2.2, page 23; these
computations are an example for their straightforward specification.

In our case, every production rule has the synthesised attribute code, whose type is
identical to the type of the production it is attached to. Attributes within curly brackets
denote upward remote reference; e.g., {block.initialLabel} stands for a reference to
the next enclosing attribute initialLabel of rule block that exists up the tree. Upward
remote attribute reference is a very helpful mechanism for our purposes. It gives to
possibility to refer to certain attributes of other productions that necessarily occur above
any instance of the current production p in a term, without the explicit declaration of copy
rules. By "above", we mean "between any instance of p and the root of the term." This is

28

the only remote mechanism found in SG, while Eli offers other useful mechanisms as well
(see section 5.4). In functional programming this issue is trivial [12].

StToBlck and StLstToSt are user-defined functions; they carry out the conversion of a
statement into a block and a statement list into a single statement respectively. List
computations are also syntactically simplified when using "::" for concatenation.

The second goal of attribute code is to compute the complete transformed program
representation. This is the reason why the synthesised attribute code is associated with
every production rule of the grammar, including terminal and non-terminal symbols. In
every case, code will refer to the actual computed subtree for that production it is attached
to; hence the complete tree will result from the root production (program.code).

program : Prog { $$.code = Prog(progName.code,
progBody.code);};

progBody : ProgBody { $$.code =
ProgBody(

declList.code,
AppendFncDclLst(

funcDeclList.code,
AppendFncDclLst(block.newFncDcls,

funcDeclList.newFncDcls)),
block.code); }

funcDeclList: FuncListNil { $$.code = FuncListNil; }
| FuncListPair { $$.code = (funcDecl.code ::

funcDeclList$2.code); };

funcDecl : FuncDecl { $$.code = FuncDecl(funcName.code,
type.code,
block.code); };

The code attribute computation is reminiscent of a recursive descent visit to the tree, but
remember that these specifications do not establish evaluation order.

Recall the structure of the production rules program, funcDeclList and funcDecl from
the abstract syntax grammar of P (Figure 3, page 14). In the case of program, its actual
code attribute results from the construction of a new program node via the function Prog,
where its actual parameters are the synthesised code subtrees of its components:
progName.code and progBody.code. Notice that funcDeclList and funcDecl follow
the same building pattern, where in the former production rule the recursive definition is
used. So, the funcListPair function constructs a funcDeclList using the
funcDecl.code attribute and the funcDeclList.code attribute which represents the rest
of the list (the postfix "$2" in funcDeclList$2.code indicates that it is referring to the
second funcDeclList occurrence in that specific production rule).

4.3.2 The Block structure and its attributes
As already mentioned when presenting our working grammar, the primary goal of the
block production rule is to hold contextual information for different purposes. In our
HAG, this is achieved by its four attributes, namely initialLabel, finalLabel,

29

returnAllow and brkCntAllow. Moreover, they will be relevant depending on the
context block used within the grammar.
Notice that for all these cases the immediate outer context is the one establishing the
information the inner context is constrained by. This is always the case as we have
explained where referring to copy rules.

The first two attributes, initialLabel and finalLabel, correspond to the unique
labelling information needed when transforming while structures into a combination of
condition and goto statements. In addition, they are also used when transforming break
and continue statements while computing the code attribute of statements. The
following specification shows that finalLabel and initialLabel contain relevant
information within the context of a loop statement. This statement defines the label's
context.

progBody : ProgBody { block.initialLabel = LabelNameNull;} ;
funcDecl : FuncDecl { block.initialLabel = LabelNameNull;} ;
stmt : Loop { block.initialLabel =

LabelName(gensym("LpInitLbl_",&($$)));};

progBody : ProgBody { block.finalLabel = LabelNameNull; } ;
funcDecl : FuncDecl { block.finalLabel = LabelNameNull; } ;
stmt : Loop { block.finalLabel =

LabelName(gensym("LpFinalLbl_",&($$)));};

Blocks associated directly with the program body and function declarations have no
relevant information in these attributes, but a loop statement does. When a label name is
required, then one on generated.

The last two attributes, returnAllow and brkCntAllow, are used to restrict the occurrence
of return, break and continue statements.

progBody : ProgBody { block.returnAllow = "NO"; } ;
funcDecl : FuncDecl { block.returnAllow = "YES"; } ;
stmt : Loop { block.returnAllow = {block.returnAllow}; };

progBody : ProgBody { block.brkCntAllow = "NO"; } ;
funcDecl : FuncDecl { block.brkCntAllow = "NO"; } ;
stmt : Loop { block.brkCntAllow = "YES"; } ;

Notice that, in the case of a loop statement, the value to assign to its block's returnAllow
attribute is obtained from the current context. For this, remote reference is used.

In both cases, block information is used to restrict the occurrence of specific statements
within their scope. For instance a return statement within the main program body has no
semantic meaning in P, presenting a semantic error; while the same situation will happen
when continue or break statement exists out to a loop body.

30

4.3.3 The Value Attribute
The attribute value serves the same purpose of attribute code except for the fact that it
only deals with expressions. This separation is intentionally made for the didactic
purposes of our case study, so the value of after expressions is clearly distinguished
from its side-effect.

exp : …
| True { exp.value = True; }
| False { exp.value = False; }
| Id { exp.value = Id(variable); }
| Equal { exp$1.value = Equal(exp$2.value,exp$3.value);}
| …
| After { exp$1.value = FuncCall(newFuncName); }
| FuncCall { exp$1.value = FuncCall(funcName); } ;

When computing the value of an after expression a function call (FuncCall) is issued.
This function corresponds to the one defined when transforming the current after
expression. For the rest of the expressions, the value attribute corresponds to copy of the
same expression.

4.3.4 The Type Attribute
The attribute type establishes a basic type checking mechanism in P. Essentially, it
enforces every expression, variable and function name to have a type.

As the following specification shows, some expressions have a fixed type associated,
while others require that it be computed. Furthermore, two global lists specified in the
progBody production rule are used as type lookup tables: env for variable types and
initialFuncDecls function types. Two user-defined functions are used for table lookup
activities: LookupFuncType and LookupDeclType.

On the one hand, env contains all variable declarations in a program. It is defined at the
progBody production rule, and its is typically used via remote reference. On the other
hand, initialFuncDecls contains all function declarations originally present in a
program.

exp : EmptyExp { exp.type = EmptyType; }
| IntConst { exp.type = IntType; }
| True, False { exp.type = BoolType; }
| Id { exp.type = variable.type; }
| Equal,

NotEqual { exp$1.type = BoolType; }
| Add, Minus { exp$1.type = IntType; }
| After { exp$1.type = exp$2.type; }
| FuncCall { exp$1.type =

funcName.type == EmptyType ?
LookupFuncType(funcName,

{ProgBody.initialFuncDecls}) :
funcName.type; } ;

variable: VariableNull{ variable.type = EmptyType; }
| Variable { variable.type =

LookupDeclType(variable,{ProgBody.env});};

31

funcName: FuncNameNull{ funcName.type = EmptyType; }
| FuncName { funcName.type =

LookupFuncType(
funcName,
{ProgBody.initialFuncDecls}); }

4.4 Example
Let's see our transformations at work. For this, we make use of a simple algorithm that
sums the first fifty square integers:

program sumSquares;
var

a : integer;
b : integer;
n : integer;
temp : integer;
misc_counter : integer;

function SquareOfA(): integer;
begin

misc_counter := (0 - 1);
temp := 0;
while (After (misc_counter := (misc_counter + 1))

(misc_counter <> a)) do
temp := (temp + a);

Return temp
end;

begin
a := (After b := 0 => (After n := 50 => 0));
while (After a := (a + 1) => (b <> 0)) do

b := (b + SquareOfA)
end.

On the first transformation step, the after expression and the while statement are
transformed. The SG allows two view individual transformation steps: the abstract syntax
tree, which is used as the starting point for the attribution, is computed as a synthesised
attribute of the parse tree. Hence, by transforming the attributed tree obtained from this
first transformation step the resulting tree second transformation step is computed.

32

First Transformation Step Second Transformation Step

Program sumSquares;
Var
a : integer;
b : integer;
n : integer;
temp : integer;
misc_counter : integer;

function SquareOfA(): integer;
begin
misc_counter := (0 - 1);
temp := 0;
loop
if AfterFunc_39AA0 then
temp := (temp + a)

else
Break;

Return temp
end;

function AfterFunc_3AO60(): integer;
begin
n := 50;
Return 0

end;

function AfterFunc_39BU0(): integer;
begin
b := 0;
Return AfterFunc_3AO60

end;

function AfterFunc_3AOI0(): boolean;
begin
a := (a + 1);
Return (b <> 0)

end;

function AfterFunc_39AA0(): boolean;
begin
misc_counter := (misc_counter + 1);
Return (misc_counter <> a)

end;

begin
a := AfterFunc_39BU0;
loop
if AfterFunc_3AOI0 then
b := (b + SquareOfA)

else
Break

end.

program sumSquares;
var
a : integer;
b : integer;
n : integer;
temp : integer;
misc_counter : integer;

function SquareOfA(): integer;
begin
misc_counter := (0 - 1);
temp := 0;
begin
LpInitLbl_3CA7G :
if AfterFunc_39AA0 then
temp := (temp + a)

else
Goto LpFinalLbl_3CA7G;

Goto LpInitLbl_3CA7G;
LpFinalLbl_3CA7G :

end;
Return temp

end;

function AfterFunc_3AO60(): integer;
begin
n := 50;
Return 0

end;

function AfterFunc_39BU0(): integer;
begin
b := 0;
Return AfterFunc_3AO60

end;

function AfterFunc_3AOI0(): boolean;
begin
a := (a + 1);
Return (b <> 0)

end;

function AfterFunc_39AA0(): boolean;
begin
misc_counter := (misc_counter + 1);
Return (misc_counter <> a)

end;

begin
a := AfterFunc_39BU0;
LpInitLbl_3CMDG :
if AfterFunc_3AOI0 then
b := (b + SquareOfA)

else
Goto LpFinalLbl_3CMDG;

Goto LpInitLbl_3CMDG;
LpFinalLbl_3CMDG :

end.

33

4.5 Final Remarks

Modularity and decomposition model: We have shown the way SG supports modular
specifications. This is also allowed in Eli, as it will be discussed in the next section.
Moreover, the decomposition model exercised in SG and Eli is very appealing to the
strategies IP and aspect-oriented programming (AOP) are aimed to [13, 41]. This is, a
solution rather than staying well localised within a production rule tends to "cross-cut" the
grammar structure and hence their computations.

This modular style is coherent with the aspect-oriented specification of compilers as
proposed by [12, 13]; i.e., it is feasible to specify and treat modularly the different
programming language aspects of a compiler specification. But there is an important
difference. De Moor's approach has a higher-abstraction level because aspects are
described as functions that code attribute computations. Each function contributes
partially to the definition of production rules. Then, a production rule is completely
defined by the functional composition of the set of functions that describe it. This
contrasts with the SG and Eli approach, where the complete specification of a production
rule corresponds directly to the syntactic grouping of its attribute computations; here no
activity at the semantic level occur whatsoever. These attribute computations may be
found through out the AG specification.

Specification size: Copy rules make standard attribute grammar specifications to grow
with a lot of simple production rules, reducing its readability and maintainability. We
could have also produced a smaller specification if alternative mechanisms were used for
attribute passing, for instance dictionaries. As known, dictionaries are typically used to
speed up referencing in compilers, but it demands external elements from attribute
grammars. We have avoided making use of alternative mechanisms, because of our
interest in recognising the way a small attribute grammar (kernel) is modified when
including new extensions.

A minimal set of user-defined functions was required for this case study (see end of
section 11.1, page 71). They basically abstract manipulation and creation of program
constructs.

This drawback is solidly addressed in Eli. Eli remote reference constructs eliminate the
need to specify copy rules, reducing the actual specification size and more importantly
introducing a level of attribute independence from the grammar structure.

Production rule sub-tasks and intentions: The implementation of a new programming
construct may involve carrying out several sub-tasks. This is clearly shown when
transforming after expressions into function definitions and function calls in this case
study. For instance, the following general sub-tasks are required for this transformation:

1. Program Body: to collect new function declarations from any block.

2. Program Body: to add new function declarations to the existing declaration part if
already there, otherwise create one.

3. Expression: to create a function whose structure is based on the expression's side
effect.

4. Expression: to rewrite itself as a function call whose name is locally available.

34

These sub-tasks depend on the transformation strategy selected and its semantic
interpretation; i.e., a completely different set of sub-task could be necessary if a distinct
interpretation were chosen. In our case, each of these sub-tasks is implemented in an
aspect-oriented style, but we still can not confirm this is true for every case; what we can
confirm is that the more independent sub-tasks are, the more applicable this style is.

Interestingly, we do not find this sub-task decomposition estranger to IP. Indeed, this
example presents an approach we may think of when specifying an intention in IP and its
decomposition. Each of these sub-tasks can represent simpler intentions, which we might
call sub-intentions, and that produce the expected global effect when combined properly.

It is our impression these sub-tasks seem to have more clearly defined their interactions
and contributions than the intention, and perhaps intentions, they contribute to. But this
still is an open question for us. Intentions' nature undoubtedly tend to be this way, and,
even more, they need to be able to interact correctly with other intentions that presumably
do not exist yet.

Our sub-task decomposition has instinctively been presented in the exact evaluation order
we need them to occur, although attribute grammar evaluators can deduce such
interdependence from the existing attribute computations and establish an evaluation
order.

Impact to changes when introducing a new construct: Just including a new
programming construct can produce a reasonable impact in the grammar computations as
shown in our discussion. The inclusion of after expression, characterised by its side-
effect, has introduced new attributes and attribute computations in most production rules.

But more importantly, the new construct has led us into the analysis of possible semantic
interpretations the new construct might have when combined with other existing
constructs. Their relation can be very subtle and perhaps indirect. Furthermore, their
relation may be evident only when a third construct is present, making this analysis
remarkably complex.

We certainly want to move away from the idea that introducing a new construct, in the
form of an intention, requires thinking about every conceivable interaction with any other
existing element in the programming language. What needs to be done then when new
constructs are included? So far, we see new constructs can not be completely independent
entities.

This fact may represent a problem for the IP enterprise, as we have shown that a harmless
construct, as the after expression is, requires carrying out careful analysis on its
interaction and transformation strategy when composed with other existing constructs in
the language.

35

5 A review of the Eli system
The Eli system [22, 32, 38, 39] is the result of a joint project held between the Compiler
and Programming Laguange Group at University of Paderborn, Germany, and the
Compiler Tools Group at University of Colorado, USA. It is a pioneering effort that
shows that a combination of notational concepts can be use to create reusable attribution
modules. A set of solutions for standard language implementation programs can be
provided as a library of such modules. That library would simplify both definition and
implementation of programming languages because an attribution module is a formal
description of a relation from which a program fragment establishing that relation can be
generated. Eli's emphasis is on reusability of specification modules rather than on
modular decomposition of the generated implementation. Moreover, the Eli philosophy is
to extend grammar specifications by providing inheritance of computational concepts as
understood in object oriented programming.

Eli goal is clear and straightforward: to reduce the cost of producing compilers of
language processors (standard or special-purpose programming languages). The system
provides solutions common to all compilers, allowing the user to focus his attention on the
requirements and design decisions that are unique to the language in hand.

In this section we present the particular features that distinguish Eli from other AG
systems.

5.1 Compiler specification
Eli accepts descriptions of those requirements and design decisions, and combines them
with its understanding of compiler construction problems to produce the corresponding
compiler. Requirements and design decisions can be thought of as specifications of
instances of subproblems or the language translation problem.

There are basic ways in which the user might specify an instance of a subproblem: by
analogy ("this problem is the same as problem X"), by description ("this is a problem of
class Y, and is characterised as follows …") and by solution ("here is a program to solve
this problem"). The user must have sufficient understanding of the subproblem to
recognise the most appropriate specification to use.

To support specification by analogy, Eli provides a library of solutions to common
compiler subproblems. For example, consider a Pascal-alike language where a name is
defined in a single procedure. If the same name is defined in a nested procedure, the outer
definition is "hidden" within the inner procedure. This behaviour is common to any
programming languages, and a solution for the problem of associating the definition of a
name with each use of that name can be solved by analogy by instantiating a module from
Eli's library:

$/Name/AlgScope.gnrc :inst

Similarly, other common problems like error reporting, string concatenation, symbol
occurrence counting, optional identifiers generating, and others. Most modules solve a
rather small task.
To support specification by description, Eli provides a set of notations for characterising
common compiler subproblems. The input language grammar may be specified in such a
notation; it is used to specify the phrase structure and thus characterise the syntax analysis

36

subproblem of that language. Another example is the notation used for the specification of
tree computations and remote dependencies.

To support specification by solution, Eli accepts arbitrary C code that solves a unique
compiler subproblem, and incorporates it into the generated translator. The user must take
full control over the C interface and implementation (header and implementation files).

Specification by analogy and description are two different forms of reuse: a specification
by analogy reuses a particular solution, while a specification by description reuses a
problem-solving method.

5.2 Symbols and Rules
Recall the formal description of an attribute grammar presented in section 3.2, page 10. In
Eli, SYMBOL constructs are used to specify the types of attributes in A(X). Each RULE
construct corresponds to one production of the reduced context-free grammar. The
elements of R(p) and B(p) are given between the keywords COMPUTE and END. Again, the
order in which the computations are written down is totally irrelevant. Attribute
computations describe relationships among attributes, not an algorithm for computing the
values of those values.

5.3 Dual use of attributes
Based on the generalisation that results of computations in B(p) are not restricted only
boolean values, on this calculus each attribute effectively represents a postcondition
reached after completion of the attribute computation of R defining that attribute.
Attributes used in a computation of R or B effectively represent preconditions for
beginning that computation. It the dependence relationships satisfy certain constraints, it
is possible to mechanically derive a complete computation algorithm from them [66].

With this approach, there are two views of attributes:

1. The approach found in most treatments of attribute grammars: use of attributes
solely for the propagation of values. They demand that functions appearing in
computations on R and B have no side effects, because such side effects cannot be
reflected in the attribute values.

2. By considering attributes to represent pre and postconditions, however, side effects
in component functions are easily accounted for.

The use of pre and postcondition terminology has nothing to do with its usual notion as
presented in [23]

The following example, taken from [35], specifies how to print expressions in postfix
notation, e. g. 1 2 3 * + for the given expression 1 + 2 * 3. It demonstrates how
computations that yield an effect rather than a value are specified to depend on each other.

RULE: Root ::= Expr COMPUTE
Expr.print = "yes";
printf ("\n") DEPENDS_ON Expr.printed;

END;

37

RULE: Expr ::= Number COMPUTE
Expr.printed = printf ("%d ", Number) DEPENDS_ON Expr.print;

END;
RULE: Opr ::= '+' COMPUTE

Opr.printed = printf ("+ ") DEPENDS_ON Opr.print;
END;
RULE: Opr ::= '*' COMPUTE

Opr.printed = printf ("* ") DEPENDS_ON Opr.print;
END;
RULE: Expr ::= Expr Opr Expr COMPUTE

Expr[2].print = Expr[1].print;
Expr[3].print = Expr[2].printed;
Opr.print = Expr[3].printed;
Expr[1].printed = Opr.printed;

END;

5.4 Remote dependence
The principle of locality commonly found in attribute grammars is extended: all of the
preconditions and the postcondition for a computation must appear within the context of a
single node and its children. But sometimes one of the preconditions for a computation
may be established by another computation that is far away in the tree. Eli authors
visualise this extension as a calculus. The calculus requires such a precondition to be
established locally by computations provided in the intermediate contexts. This is the
source of huge number of “copy rules” in attribute grammars formulated using only the
notation of the underlying calculus.)

In most cases, remote dependence follows one of the tree simple patterns:

1. A computation at the root of a subtree containing the local context establishes the
precondition.

2. The precondition is the union of the postconditions for some set of computations at
nodes that are descendants of the subtree rooted in the local context.

3. The dependence involves an invariant for some iterative computation visiting
nodes in (depth-first) left-to-right order.

Each of the tree patterns are directly formulated by an attribute grammar specification
construct, which later can be transformed into the notation of the underlying calculus by
generating all the intermediate computations mechanically.

Direct formulation of remote dependence reduces the size of an attribute grammar, but a
more important characteristic is that it abstracts them from the intermediate tree structure.
It is invariant with respect to modifications of that structure.

The SG only offers a remote dependence mechanism similar to first computing facility
presented bellow. Please refer to page 20 for a discussion on SG's.

Precondition at the root of a subtree

As an example of a computation whose precondition is a computation at the root of a
subtree containing the local context, consider the lexical nesting depth of a block. The
precondition for computation of the nesting depth is that a value be available for the

38

nesting depth of the immediately enclosing block. If we assume that a block is one form
of a statement, then this relationship might be expressed by the following attribute
grammar rules:

RULE Program: Root ::= Block COMPUTE
Block.Depth = 0;

END;

RULE Inner: Statement ::= Block COMPUTE
Block.Depth = ADD(INCLUDING Block.Depth, 1);

END;

If the single attribute name in this example is replaced by a parenthesised list, the
precondition it the first element of that list encountered when walking up the tree from the
current node.

Precondition is the union of the postconditions

As an example of a precondition that is the union of the postconditions for some set of
computations at descendant nodes is illustrated by the problem of determining the cost of
each statement in a program. Suppose that each operator has an associated cost, and that
the cost of a statement is the sum of the costs of its component operators.

RULE Calculation: Statement ::= Expression COMPUTE
Statement.Cost = CONSTITUENTS Operator.Cost

WITH (int, ADD, IDENTICAL, ZERO);
END;

In this example, CONSTITUENTS must yield a value: the sum of the operator costs. The
WITH clause specifies the type of the "union" value (int) and names three user-defined
functions used in its computation. The first (ADD) combines two "union" values to yield a
"union" value, the second (IDENTICAL) creates a "union" value from an Operator.Cost
value, and the third (ZERO) creates a "union" value from nothing.

Left-to-right iteration

An invariant for a left-to-right iteration is illustrated by the computation of enumerated
constant values in Pascal. Pascal enumeration constants are defined by a list of identifiers,
and the value represented by each identifier in the list is just the number of identifiers
preceding it. Thus the first identifier represents 0 because there are no identifiers to its
left, the second represents 1, and so on.

CHAIN Count: int;
RULE Enumeration: Type ::= '(' EnumConstList ')' COMPUTE

CHAINSTART EnumConsList.Count = 0;
END;
RULE ConsListElt: EnumConst ::= Identifier COMPUTE

EnumConst = ADD(EnumConst.Count, 1);
END;

39

Here, variable Count is a special kind of attribute called a "chained attribute" and
describes an invariant. The invariant is established initially by a CHAINSTART directive at
the root of some subtree. Computations updating the invariant may be associated with any
node in that subtree.

The following example illustrates this new use of attributes. Here attribute Objects
asserts that all visible names have their properties defined.

CHAIN Objects: VOID;

SYMBOL StandardBlock COMPUTE
CHAINSTART HEAD.Objects=StandardIdProperties()

DEPENDS_ON THIS.Env;
END;

The meta-variable THIS is used to make reference to the actual node where the
computation is performed.

5.5 Symbol computations
A symbol can have computations associated with it rather than to each of the different
contexts in which the symbol appears. This is possible if the attribute of a symbol has the
following properties:

1. It only depends on attributes of a single symbol or on remote attributes.

2. It should be applied at (almost) every instance of that symbol in the tree. (In this
second property, overridden rule may vary which computations visible on a
symbol)

An example of the kind of factorisation possible through Symbols is the Depth
computation:

RULE Program: Root ::= Block COMPUTE
Block.Depth = 0;

END;

RULE Inner: Statement ::= Block COMPUTE
Block.Depth = ADD(INCLUDING Block.Depth, 1);

END;

RULE Proc: Body ::= Block COMPUTE
Block.Depth = ADD(INCLUDING Block.Depth, 1);

END;

It would then pay to associate the nesting depth increment with the symbol Block instead
of each context in which a block appears. In this way, the computation presented in rules
Inner and Proc are factorised in a symbol computation:

40

SYMBOL Block COMPUTE
INH.Depth = ADD(INCLUDING Block.Depth, 1);

END;

Here the keyword INH indicates that Depth is an inherited attribute and that its
computation has to be associated with each context having Block on the right-hand side.
In the case of the computation of a synthesised attribute, for instance Block.s, it would
be denoted SYNT.s and would be associated with each context having Block on the left-
hand side. A plain computation is associated with each context having its symbol on the
left-hand side. There can be several plain computations and attribute computations of
either class in a single symbol attribution.

A more complex example follows, where a TypeNameUse symbol verifies it is correctly
defined:

SYMBOL TypeNameUse: Type: DefTableKey;

SYMBOL TypeNameUse COMPUTE
SYNT.Type=

IF(EQ(GetKind(THIS.Key,Undefined),Typex),THIS.Key,NoKey)
DEPENDS_ON THIS.VisibleTypeProperties;

IF(NE(GetKind(THIS.Key,Typex),Typex),
message(ERROR,"Must be a type name",0,COORDREF))

DEPENDS_ON THIS.VisibleTypeProperties;
END;

Another example is the general type checking on expressions:

SYMBOL Expression COMPUTE
IF(AND(

AND(NE(THIS.Type,THIS.ExpectedType),NE(THIS.Type,NoKey)),
NE(NoKey,THIS.ExpectedType)),
message(

ERROR,
"Type yielded is not compatible with the context",
0,
COORDREF));

END;

5.6 Inheritance
Several syntactic constructs of a language often share some set of semantic properties.
Inheritance allows specifying computations independently from the symbols used in a
particular language definition. It abstracts the semantic concept.

Consider the block nesting depth example again. To simplify the description of the
semantic property, we might introduce an additional symbol, Contour, representing it:

SYMBOL Contour COMPUTE
INH.Depth = ADD(INCLUDING Contour.Depth, 1);

END;

41

Note that this computation is completely independent of the symbols used in a particular
language definition to denote constructs associated with the distinct activation records.

An abstract computation can be inherited by some set of symbols representing nodes in the
tree:

SYMBOL Block INHERITS Contour END;
SYMBOL Procedure INHERITS Contour END;

Each symbol may also inherit computations from several other symbols, possibly through
several levels of inheritance.

5.7 Modules
An attribution module embodies a set of related computations defined on a tree. In order
to be useful, these computations must be mapped onto appropriate contexts in a specific
tree that describes the abstract syntax of a program in the desired programming language.
The module is reusable if this mapping is possible for a variety of programming
languages.

Any technique for constructing reusable attribution modules must therefore be able to
abstract the essential structural relationships among the computations, separating them
from structural details that are relevant for those computations. Moreover, it must be able
to associate the computations with symbols or productions that represent appropriate
programming language constructs.

5.8 Cumulative attribution
Cumulative attribution is a simple and effective notational technique for decomposition of
large attribute grammar specifications: the user is allowed to write an arbitrary number of
rules with the same production. Since each context in a tree is uniquely defined by a
single production in a reduced context-free grammar, the total set of computations for that
context is the union of the sets of computations described by each rule with that
production.

This makes it possible to decompose a specification into components, each covering one
aspect of the total problem. This is very appealing to the aspect oriented-programming
approach [41].

Moreover, physical decomposition of an attribute grammar can be easily achieved by
storing each component in a distinct file.

5.9 Final Remarks

AG-based new paradigm? Eli authors claim Eli to be an example of a new paradigm.
They based this assertion on the features we already discussed: the use of attributes as pre-
and postconditions, patterns of remote dependence, symbol computations, inheritance and
cumulative attributions [39].

42

We believe this is overstated, but we certainly agree that Eli brings a very valuable and
pioneering contribution the future use of AG as a specification mechanism.

Reuse: From our point of view, the Eli's main characteristic is the capability to define
attribution modules that can be reused in a variety of applications. Eli’s modularity
typically abstracts small aspects of a task, which are possible by combining the ideas of
abstract remote attribute access and inheritance. This feature makes a strong difference
when comparing it against other AG systems [19].

Specification Size: Eli remote reference constructs eliminate the need of specifying copy
rules. This reduces the actual specification size and more importantly introducing a level
of attribute independence from the grammar structure if compared with SG for instance.

The size contraction results out the specification of anonymous relationships declared
through the Eli meta-language constructs INCLUDING, CONSTITUENTS and CHAINSTART
among others.

Symbols and Inheritance: SYMBOL computations are also an interesting feature in Eli,
because they can compute transformed versions of its associated symbol. This is similar
to the IP view that transformations may be regarded as processes that are automatically
associated with programming language constructs, and their use can annotate a syntax tree
with its appropriate transformations.

Appendix 11.2, page 74, shows how scope analysis is established in a Pascal compiler
using Eli [65]. In the general sense, it consists of the instantiation of generic modules and
the creation of the appropriate set of symbols, which inherits behaviours from these
modules. We have taken this Pascal implementation and bring it a step further by adding
the after expression, while statement and loop statement transformations to it.
Incremental evaluation: Eli has been conceived as a set of tools for compiler
construction. Therefore, it does not offer an incremental attribute update mechanism as
found in SG. While editing in SG, users can modify the current tree structure and
attributes are incrementally updated accordingly.

Nevertheless, we have also experienced difficulties using Eli. When dealing with tree
manipulation and construction, it becomes extremely laborious because of the use of C
code and the occurrence of obscure error messages. We could use macros to avoid the
former, but it would not improve on the latter. Also, we believe that the collection of tools
and little specific-oriented languages provided by the system reduces substantially its
regularity and readability, allowing space for confusion.

43

6 Review of other systems

6.1 AML
AML (Attribution in ML) is an attribute grammar toolkit for building compilers and user
interfaces [18]. It is a spiritual heir to the SG [55], particularly concerned about efficient
incremental evaluation techniques, and the Pegasus project at AT&T Bell Laboratories
[54], which emphasises on providing a high-level foundation for interactive systems.
AML is built on the evaluation technology of the SG, while using a higher-level
foundation for the implementation.

AML has an interesting design approach: the specification language is an extension in the
implementation language (SML in this case) for writing attribute rules. In addition, SML
is also used for specifying auxiliary types and functions. Starting from an AML
specification, the system generates a collection of SML modules that implement the
specification and support code. These are then combined with additional grammar-
independent modules to construct a complete system.

AML design guidelines are gathered into six points [18]:

• Easy interaction between ML and AML. It should be straightforward to feed
attributed trees into AML code, and likewise to attribute the results of AML
computations. This will provide a simple connection between the attribute
evaluator and any other component of the system.

• Minimal extension of ML. Unnecessary new keywords should be avoided without
sacrificing the expressive power. The size of the extension will depend on the
level of abstraction of the specification language constructs.

• Declarative specifications through higher level constructs. They will improve the
specification quality without loss of generality. The declarative character, and the
formal properties of AGs should be investigated. The expressive power can reduce
the size of AGs drastically by elimination of redundancy. These constructs can be
systematically transformed or expanded into the basic AG concepts.

• AML should remain independent from the evaluation method selected for its
implementation. This would support experimentation using the different classes of
attribute grammars and potential extensions.

• Attribute grammars can be large, so it is important to support modular
specifications and to supply a mechanism to reduce redundancy. This will require
further analysis about scope rules.

• Strongly typed language. AML will take advantage of ML’s polymorphic type
checking system as a necessary condition for programming safety. Type and
function definitions will be based on the ML formalisms, including user-defined
ones.

Besides, AML supports local attributes and syntactic references to them, but does not offer
remote reference mechanisms. An AML specification consists of a collection of related
declarations; in many ways, it is similar to an SML structure definition. It has the form

44

Grammar name = struct declarations end

Where name is the name of the grammar being specified. The rest of an AML
specification is based on six kinds of declarations:

• Termtype declarations defining terminal symbols.

• Prodtype declarations defining non-terminals and their productions.

• Root declarations defining root non-terminals.

• Attribute declarations defining attributes.

• Attribution declarations defining semantic rules.

• SML top-level declarations that are used to define auxiliary types and functions.

The implementation of the AML compiler is done in a modular fashion, allowing easy
experimentation with different classes of grammars and different evaluation techniques.

In our experience of declaring medium size attribute grammars using exclusively these
specification elements in AML, the user will rapidly recognise the need of higher
abstraction mechanisms and reuse that could simplify the activity. Nevertheless, we
consider AML to describe what the base line of a kernel for an AG specification language
should be. It would be interesting to add new features similar to Eli's to AML.

6.2 Elegant
Elegant is a compiler generator system developed at Philips Research Laboratories
Eindhoven [5, 6, 7, 28] from 1987 to 1996. It has been used within Philips for the
construction of several dozens of compilers, including the system itself. Elegant stands for
Exploiting Lazy Evaluation for the Grammar Attributes of Non-Terminals.

As its name suggests, the system offers the ability to specify a compiler by means of
attribute grammars. It allows attribute grammars to be pseudo circular; i.e., attribute
functions exploit their non-strictness by allowing their computation from seemingly
circular definitions as in [29]. The result is a powerful, yet very efficient, programming
language which allows programming and compiler construction at a high level of
abstraction.

In his thesis [6], Augusteijn claims that, even though attribute grammars have a long story,
very few compiler generators have been constructed that exploit their full power. Most

45

Elegant shows that lazy evaluation allows compiler writers to ignore a separation into
passes, and to focus on the logical structure of their compiler instead. This is also a
feature of attribute grammars, which can be viewed as a particular style of lazy functional
program. But we believe a separation into passes may be a logical structure that makes the
compiler easier to understand. Compilers written in attribute grammar style are typically
structured by production - it is hard to structure them by semantic aspect, such as
“environment” and “lexical level”, and it is certainly not possible to view these aspects as
separate units of compilation.

During the years Elegant has developed into a powerful compiler generator system and a
complete programming language which smoothly combines features from functional
languages (polymorphism, higher orderness, laziness, comprehension) with imperative
features (state, destructive update).

But there is an objection against attribute grammars as functional programs: the resulting
programs are highly convoluted, and even less modular than standard attribute grammars
[12]. Elegant certainly suffers from this problem. Essentially, all attribute definitions
have to be grouped by production. It is thus not possible to group all definitions for a
single attribute in one place, and then specify how each rule contributes to the behaviour
of a production. One cannot use the same set of attribute rules, and make them contribute
to different productions.

46

7 Data Refinement and Program Transformations

The idea of making software development an engineering discipline is one of the strongest
motivations found in every new software engineering methodology. The development
process of these methodologies shows the way ad hoc techniques are replaced by proposed
uniform and more coherent approaches that can ensure software quality and correctness.

Following a typical top-down development, where programs are created to satisfy the
user’s intended requirements and their specifications, a remarkable research effort is
taking place in formalising, controlling and verifying the program construction process.
Thus, most frameworks for the development of correct software are based on some notion
of refinement [27, 48, 68]; i.e., a development step with some formal justification of its
correctness. There are various ways of formal justification: correctness may be
established by verification of explicit proof obligations that arise from the semantics of the
development step; in fact, the derived unit may be conceived independently and the
relation of refinement added as a separate step. This approach is sometimes referred to as
the a-posteriori verification or the “invent-and-verify” approach. Another way of formal
justification is to have a notion of pre-conceived formal development step, for which
correctness-preservation is intrinsic. The correctness of a schematic development step is
proved a-priori, but in general, it is required that the applicability of the instantiated
development step is verified as a precondition and justification for its application. In both
approaches the developer has to have expertise in choosing the right development step and
creativity to come up with solutions.

The idea of applicability preconditions of correct refinements is the following, where we
focus on the data refinement, but without forgetting the importance of the algorithmic
refinement. Consider two blocks

B1: begin var v1 := e1; S1 end
and

B2: begin var v2 := e2; S2 end
Block B2 is a refinement of B1 if replacement of B1 in a correct program by B2 leaves a
program correct. Thus B2 is a refinement of B1 if

wp(B2,R) => wp(B1,R)(for all predicates of R).

The variables in list v1 are often called abstract variables while those in v2 are concrete
variables. This terminology comes from the uses made of such refinements. For example,
v1 could be a variable of type set(integer) and v2 could be a variable of some concrete data
type that implements sets of integers; the data refinement is being used to replace an
abstract variable by its implementation.

Proving that B2 is a refinement of B1 is usually split into two tasks. First, requirements are
placed on the initialising expressions e1 and e2. Secondly, requirements are placed on S1
and S2. If B1 and B2 satisfy the requirements, one says that B2 is a data refinement of B1,
or that B2 data-refines B1 [27, 48].

A good representation element for these refining tasks is the transformation. So, the
concrete target is constructed by successive transformations of its abstract representation

47

and the correctness proof obligations are verified at each transformation rule; this
represents the development step of a program development by transformation
methodology. The usefulness of the transformational approach boils down to the
successful formalisation of software development knowledge in the form of correct
transformation rules, application techniques and the adequate system support.

In the following sections, we report on two systems, Polya [26] and DiSTiL [60], each
providing a different approach towards data refinement and data abstraction.

7.1 The Polya System
Polya presents a very pure approach to the use of transformations [17, 25, 26, 62]. Its
main goal is to allow automatic data refinement through the use of co-ordinate
transformations, which are described by transforms (the definition is given in the
following section, page 48).

Polya’s motivation is to use theoretical results effectively on complex data structures in
the software industry. By empowering the transformation from algorithmic developments
to implementation, state-of-the-art algorithms and data structures can easily turn into
useful tools faster and requiring less debugging actions. Current program abstractions,
like procedures, modules, and classes, are not sufficient to provide for a smooth
implementation transition because they force the programmer to use constructs that are not
at a suitable level of abstraction. Thus, Polya stresses that programmers should be able to
write in the standard language of the application domain; i.e., the best abstraction is the
application domain language itself.

The following example illustrates the problem. Consider the use of an ordered set S that
may be implemented as a heap, and the operation S := S –{max(S)} which deletes the
maximal element from S. An abstract interface for sets will provide an ad hoc set
operation like delete_max, thus forcing programmers to write S.delete_max() instead of
what is more natural and direct, S := S –{max(S)}. Furthermore, if for some reason a
different implementation is needed for S, for instance one in which delete_max is not a
primitive operation and therefore is not implemented directly, this statement must be
rewritten in another form.

In order to remove abstraction problems, once the programmer writes the algorithmic
abstraction under Polya, an automatic mechanism would carry out one or more
transformation steps on this specification to produce a concrete program. In general, this
concrete program is equivalent to the abstract representation, due to the fact that
equivalence preservation is kept through all the transformation process.

Polya [62] offers the following abstraction mechanisms:

1. The programmer may define the notation of the domain, totally independent of any
implementation, and write programs in that notation. This notation represents domain-
specific abstract data types, which closely fit the manner of thought in the domain and
allow easier reasoning and proof of correctness.

2. Transformation rules are used as refinement mechanisms between abstract and
concrete representations of types and their operations. Therefore, the interface
between abstract algorithms and concrete programs are defined by transformations,
which represent patterns of usage and are aggregated in transforms. Each transform
specifies the representation of expressions of a given type. For example, one

48

transformation rule could recognise the pattern S := S –{max(S)} and transform it into
code to remove the root from the heap.

3. The programmer may use transform directives to direct how each variable of a
program should be implemented via transforms. Hence, different variables of the
same type may be implemented differently according to directives and still preserve
equivalence. For example, the variable S in a program could have a transform
associated that represents sets as lists through the use a directive implement S using
Set_List.

4. A calculus of transform directives allows a flexible composition of implementations;
i.e., transforms can be specialised and composed to realise implementations for
complex data structures. For example, the implementation of a set of integers as a
static array of size k of infinite-precision integers can be directed as

implement S using (Set_HeapList(max); Set_StaticArray(k))[Int_InfPrec]

Here, transform Set_HeapList(max) implements a set as a list that implements the
heap, using function max to order the elements; transform Set_StaticArray(k) then
implements a set as an static array of size k. Int_InfPrec implements the integer
elements of S as infinite precision integers.

5. The program transformation approach is used to implement domain specific data
structures as target data structures. These target data structures are provided by a
given language, such as C++, ML or Java.

7.1.1 The Transforms
The transformational element used in Polya is the transform. A transform describes how
to change syntactically a variable or expression of one type (the source type) within a
program into a variable or expression of another type (the representation type). For
example, a transform could describe the replacement of a variable S of source type set(int)
by a variable of representation type list(int), where the set is being implemented as a list.
Or, S could be replaced by a variable of type

record A : array(int),size : int end
where the set is being implemented in an array. Notice also that, depending on the
transforms given and the directives, a set may be transformed into a list and this list could
then be implemented as a fixed-size array. Thus, the refinement process towards a
concrete representation or implementation may well take several transformation steps.
However, there is no intrinsic need for the representation type to be “more concrete”, and
it could even remain at the same level of abstraction.

A transform can be a partial implementation of an abstract data type [24], a data
refinement of a piece of code [48, 49], or a general transformation like the transformation
of a dummy variable in a loop for efficiency purposes [42]. This can be understood from
the transform's basic form:

transform id : type into type
coupling invariant : coupling_invariant

transform_rule_list
end

49

A basic transform consists of an identifier id (the name of the transform), the source and
target types of the transform, the coupling invariant and a list of transform rules.

The list of transform rules contains rules of the from:

[LHS_pattern] tr_exp = RHS_pattern
Here, tr_exp is a transform expression denoting the representation defined by the rule and
LHS_pattern is any expression or statement that pattern-matches tr_exp. Any
LHS_pattern is a RHS_pattern where pattern variables resulting from LHS_pattern can
occurred.

For each transform, a coupling invariant is a predicate that defines the relation between
source expressions, x, and their representations, [x]T, where x corresponds to a matched
variable obtained from a LHS_pattern and [x]T denotes the result of the transformation of
x under transform T. Even though the coupling invariant has no bearing on the
transformation process, the author of a transform uses it to prove the correctness of each
transform rule. For example, for a variable v:complex that is represented by

u: record re, im:real end

the coupling invariant is v = u.re + i ⋅ u.im. Note that a representation of an expression is
defined only when transform T transforms a single variable to another single variable.

An example of a basic transform follows:

transform BN : boolean into natural
coupling invariant : x ≡ [x]BN > 0

[true]BN = 1
[false]BN = 0
[x ∨ y]BN = [x]BN + [y]BN
[x ∧ y]BN = [x]BN * [y]BN
[¬x]BN = 1 – sgn([x]BN)
[x] ID = [x]BN > 0

end

Transform BN allows representing boolean values as natural numbers. For example,
consider the transformation of the boolean expression (a ∨ b) ∧ (c ∨ d):

(a ∨ b) ∧ (c ∨ d) ≡
[(a ∨ b) ∧ (c ∨ d)]ID ≡
[(a ∨ b) ∧ (c ∨ d)]BN > 0 ≡
[(a ∨ b)]BN * [(c ∨ d)]BN > 0 ≡
([a]BN + [b]BN) * ([c]BN + [d]BN) > 0 ≡

Now, let us assume boolean variables a, b, c and d are true:

([true]BN + [true]BN) * ([true]BN + [true]BN) > 0 ≡
(1 + 1) * (1 + 1) > 0 ≡
2 * 2 > 0 ≡
4 > 0

Thus, it can be seen that the rule [true]BN = 1 states that 1 is BN-presentation of true. The
rule [x ∨ y] BN = [x]BN + [y]BN is a BN-rule containing LHS_pattern x ∨ y that, in the case
of (a ∨ b), maps x to a and y to b, (x a, y b), and RHS_pattern [x]BN + [y]BN with the

50

representations of [a]BN and [b]BN. The coupling invariant x ≡ [x]BN > 0 then states that
the BN-representation of x is positive iff x has the value true. Every rule of BN maintains
this invariant.

The last rule of transform BN shows that the identity transform ID does also conform to
the invariant. Its contribution is that converts any boolean variable from its original form
to the new representation reserving the same behaviour.

A transform can be composed with other transforms to allow the representation of
complex abstract data types [62]. Any transform can be understood as the definition of a
function from T1 →→→→ T2, it takes arguments represented by T1 and produces results
represented by T2. The concatenation of transforms produces a composition (T1; T2).
Thus, a transform expression (tr_exp) denotes one of the following: a basic transform
identifier id, the identity transform identifier (ID), a function transform, or a composition
of two transform expressions.

tr_exp ::= id | ID | tr_exp →→→→ tr_exp | tr_exp; tr_exp
These transforms satisfy the following rules, where T, T1, T2, T3 and T4 are transform
expressions:

T; ID = T
ID; T = T
(T1; T2); T3 = T1; (T2; T3)

(T1 →→→→ T2); (T3 →→→→ T4) = (T1; T3) → (T2; T4)

The first two laws state that the identity transform is an identity of ;. The other two laws
state that ; is associative and that ; is distributive over →→→→.

7.1.2 Program Transformation
Once a set of transforms, transform directives and the above rules are given, the general
transformation process from a program P to an equivalent program P’ is achieved by
replacing each identifier of P by a representation identifier given by a transform
expression. For instance, the transform directive

implement S using Set_List
replaces identifier S by a new identifier denoting its Set_List-representation. A set of
transform directives forms a mapping called a transform environment. A transform
environment binds all free identifiers of a given expression to a transform expression.

The substitution of identifiers follows an applicative order; i.e., transformations and
transform directives are applied by performing a bottom-up traversal of the abstract tree.
At each leaf of the tree, transform directives are used to construct the representation of the
node. As each node is visited, the representations and transformation of that node are
constructed. If no transform is mapped to an identifier, then no transformation is applied.
On the other hand, it may be possible to construct more than one transformation for the
program. In such cases, heuristic methods, controlled by the user, can be employed to
construct an appropriate transformation; they could be based on the cost of operations
involved in a replacement or the relative order of a pattern with respect to other patterns
[17].

51

7.2 DiSTiL
DiSTiL is a software generator that implements a declarative domain-specific language
(DSL) for container data structures [60]. Its motivation is that data structures should not
have ad hoc interfaces. Instead they should provide a stable, homogeneous, well-designed
interface that insulates applications from changes to data structure implementations.
DiSTiL implementation is the first available transformation library for IP.

DiSTiL's authors consider it to be a representative of a new approach to domain-specific
language implementation, because of its emphasis on the declarative specification of
domain-specific constructs through component composition. DiSTiL follows the
GenVoca methodology [11], where the integral part is to identify the fundamental building
blocks of software construction for a target domain. These components actually define
program transformations that convert domain-specific language constructs into their host
language implementation. The claimed advantage of this approach is scalability.

As a transformation library, DiSTiL deals extensively with manipulation of code
fragments. Programming languages usually determine the meaning of identifiers using
their position in a program. Generated programs, however, are usually composed from
small fragments, and it is typically the case that we are unaware of the final position and
scope of a fragment in the generated code. To deal with this problem, a generation
scoping mechanism is provided: a basic meta-programming system for IP in which
DiSTiL components are expressed [61]. The system consists of code template operators,
similar to the backquote and comma operators in the LISP language, that are instantiated
accordingly to the context where they are used. Generation scoping is a general-purpose
facility oriented towards large-scale code generation and was not designed to support only
DiSTiL. This facility is meant to be an answer to the ambiguity problems typically found
in macro-expansion methods and the environment in which generated variable references
are resolved.

DiSTiL language extends the C programming language with declarative statements and
operations on data structures. These statements isolate the actual data structure
implementation from the application itself, thereby allowing radically different
implementations of data structures to be evaluated without requiring modifications to the
application's source code [10].

All data structures in DiSTiL are modelled using containers and cursors (iterators). These
two facets explicitly de-couple the notion of element storage from that of element access.
The cursor-container pair provides the only interface the user has to a data-structure.
When viewing a data structure as a collection of elements, the most important operation
that can be defined is that of a selection. A selection gives the user a way to define a
subset of a collection according to a certain selection criterion and a retrieval order if
necessary. This is achieved by assigning selection predicates to cursors. These predicates
describe arbitrary relations as understood in relational model front-ends and databases, but
in addition DiSTiL couples these abstractions with component technologies to generate
vast families of efficient implementations. The following example, taken from [60] shows
the basic use of cursors and containers for a phonebook:

// C struct declaration
Typedef struct {

char [8] phone;
char [31] name;

} phonebook_record ;

52

// abbreviated container declaration
Container (phonebook_record) cont1;

// cursor declaration
Cursor (cont1, phone == "283512") curs1;

// cursor declaration
Cursor (cont1, name > "Am" && name < "An") curs2;

They offer a regular interface independent of the final implementation. Containers can be
opened and closed, and they can return their current number of elements or tell if they are
full. Cursor operations allow actions such as: insert, update, delete, goto_first,
goto_next, goto_prev, goto_nth, is_legal, foreach, getrec and ref. The foreach
construct is used to iterate over elements in a cursor. The element at the current cursor
position can be examined, updated or deleted using standard cursor operations. For
example:

// for each selection entry
foreach(curs1) {

//print name
printf("$s", ref(curs1, name));

//change phone number
update(curs1, phone, "283513");

}

The actual data structure of the phonebook can be implemented in different ways. For
example, it could be implemented as an ordered linked list, a binary tree, a hash-table, or
any other structure or combination of structures. Nevertheless, the above program
fragment would remain the same across all different implementations.

DiSTiL allows the user to define the features of the data structures to use and declare how
their implementations are to be generated when necessary. For this, type equations are
used. In the following example shows how the phonebook can be implemented as a hash
table (Hash) in conjunction with a red-black tree (Tree) with elements that are allocated
when needed (Malloc) from main memory (Transient).

// type equation specification
typeq (phonebook_record,

Hash(Tree(Malloc(Transient)))) type1;

// container declaration
Container (type1, (Hash(phone), Tree(name))) cont1;

The container declaration specifies that the hash table is organised by phone number (for
fast lookups by phone) while the red-black tree has the name field as its key (for fast
retrieval of alphabetically ordered names). The type specification is independent of its
container and cursor use, altering the type equation will not affect them and will only
require compilation.

If no type equation is specified, DiSTiL can statically determine an efficient way by
analysing the predicate, estimating the cost of the retrieval using each available index and
selecting the data structure data offer the lowest cost. If the composition describing our

53

data structure changes, DiSTiL will re-evaluate the cursor predicate and choose an
appropriate way to implement its operations in the new layout without requiring any
programmer intervention.

When a DiSTiL program is "compiled", the declarative data structure specifications are
replaced by their C implementation, which is specified by a composition of DiSTiL
components. Notice that cursor actions are specified declaratively instead of
operationally. The system transforms specifications into efficient code using its
knowledge of the characteristics of the given data structure.

Cursors and containers can be composed arbitrarily. Thus we can have a data structure
storing cursors, or containers, or containers of containers, etc. A composition and the
operations performed on it can be validated to ensure that they are meaningful. This is the
role of the design rule checker of DiSTiL. The checker works based on explicitly encode
boolean attributes associated with DiSTiL components, which correspond to higher-level
knowledge about their properties. This information may be used to express domain-
specific properties like "this component does not leave the cursor in a valid position after
deletion" or "this component keeps track of the data structure size". Compositions are
checked in two ways: the system ensures that all their components can co-exist and that
they support all operations performed on the particular composition. This is possible
because attributes associated with components are at a much higher level than regular
static information (types) in programming languages. As a consequence, the checking
mechanism can provide more informative, comprehensive and accurate error messages
[10].

7.3 Polya and DiSTiL
Even though DiSTiL and Polya have different approaches to the control and
transformation of data structures in programs, they share particular common goals. In the
general sense, both provide data abstractions and program transformation mechanisms for
the user to concentrate his attention on domain-specific problems and their algorithms.
This improves reasoning about domain-specific problems, as they are kept independent
from any data implementation option.

Also, they allow the user to direct the data selection process during the generation of the
target code or a transformation process between abstract levels of the specification.
Certainly, each system represents an alternative mechanism for code reuse and
maintenance.

There are several differences between them. One the one hand, Polya provides higher
level abstraction mechanisms to represent programs; this simplifies code generation for
multiple target languages. Furthermore, Polya is a transformation system where not only
abstract-to-concrete transformations can be applied, but also abstract-to-abstract
transformations. This means that transformations are not necessarily target-code oriented
but that further manipulation of specifications can be made at different transformation
stages when appropriate. On the other hand, data components in DiSTiL have domain-
specific properties that ensure that components can co-exist and that they support all
operations performed on the particular composition.

54

8 Discussion

Attribute Grammars and Intentional Programming
We have discussed how attribute grammars allow the description of horizontal and vertical
program transformations, and surveyed several AG-based systems, exploring their
specification features. In general, their declarative specification of transformations is
characterised by the description of what instead of how, which is a very desirable property
to have in our IP meta-language. This property is supported by the fact that application
order of transformations does not need to be specified explicitly, as the evaluation engine
determines it based on attribute computation dependence. This can be understood as a
pre-processing activity. In addition to its features, the resemblance between attribute
grammars and intentions in IP motives their study.

Some similarities and differences between attribute grammars and intentions in IP are
presented below.

• Strong dependence on the AST structure. AST node computations in AG's and IP are
based on this structure, its semantic dependencies and "virtual links" shared with other
sections of the tree.

Even so, we believe tree structure dependence needs to be reduced, or at least hidden
from the programmer somehow, through the meta-language interface in order to allow
reuse and modularity of tree elements and their computations. A good example and
pioneering approach to solve this dependence problem is found in Eli's meta-language
constructs. They de-couple attribute computations from the actual tree layout;
allowing the abstract syntax to be extended with minimal modification, if any, of
existing computations and specially their remote reference to non-local information.

Particularly, the Eli's SYMBOL construct is of special interest. It allows computations to
be implicitly associated with individual grammar symbols of the language rather than
with productions to which they contribute. Therefore, SYMBOL computations can have
its default behaviour "directly attached" to its corresponding symbol; such behaviour
could involve providing different transformed versions of it. This is similar to the IP
view that transformations may be regarded as processes that are automatically
associated with programming language constructs, and their use can annotate a syntax
tree with its appropriate transformations.

• Attribute definition rules and IP question handlers are similar in their goals. They
carry useful context-sensitive information necessary for AST node computations.
Both have local visibility; i.e., its scope boundaries are delimited by the tree node
context where they are defined. In the case of attribute grammars, direct subtrees and
their attributes are also visible in the local context.

But, while attributes actually contain such information, question handlers are the
mechanism used to obtain it. A question handler will try to answer its question
according to local information, if unable, it will delegate it to another "known"
question handler only reachable through the links its current node has. Once a
question handler forwards its question to a second question handler, the second one
will try answering it according to its context, otherwise will forward it again, thus
forming a "forwarding chain". Under this forwarding mechanism, question handlers

55

that have delegated a question on others will wait for their answer, but it may happen
that an answer might never be given.

Moreover, under the current reduction engine, R5, a given answer can be "invalidated"
later on, meaning that the context under which the answer was originally supplied has
changed. Such invalidation forces to reverse the reduction process back to the point
where that answer was first required and try again with another transformation order.
In order to be able to do that, an existing rollback mechanism is used together with this
additive reduction engine, where its key point is based on the fact that non-destructive
operations are applied on the tree structure during transformation.

In attribute grammars, re-computation of attribute values is a typical activity in editing
environments; e.g., syntax-directed editors. Here, upon tree modification cause by the
user, affected tree nodes re-compute their context-dependent values according to
change-propagation strategies. See [37, 55] for more detail on incremental attribute
update algorithms. In attribute grammars an IP rollback mechanism it not necessary,
as evaluation order is predefined.

• Attribute values can also be understood as answers to general questions. As a special
case, attributes can mimic binary questions and answers. For this, a boolean attribute
value serves the purpose and allows control flow to be diverted upon its value. For
example, review error message handling in our case study (page 70).

But attributes can be used for other purposes. Eli shows attributes being used as the
typical standard value passing mechanism and as preconditions to other computations.
In the latter, attributes are used to help ensure side-effects have already occurred
before other computations take place.

We still need to confirm whether attributes and their evaluation strategies can carry out
more complex tasks achieved by question handlers.

• A single attribute can be associated with the computation of one or more aspects of a
program representation, for example the type, the code or the environment. Similarly,
an intention makes use of xmethods to render its role and contribute in computing
these different aspects.

As our case study shows, intentions can be mapped into productions and their attribute
computations. A single intention can be represented as a set of attribute computations
that exist in different production rules of the grammar. They can be understood as
aspects or areas of concern an AG-based compiler has to deal with.

Case study: lessons learned
The case study has shown the way context-sensitive information is propagated through a
program representation structure using higher order attribute grammars. During
transformation, it allows global changes to be effectively produced by local properties, as
illustrated in the after expression transformation. Similarly, local changes can be
produced by global properties, as the information contained in a block statement has
shown.

In addition, we have exercised an aspect-oriented style in the specifications of this case
study. This is, all necessary computations associated with a particular attribute are
expressed together in a single place crossing the production rule boundaries. In our
experience, the use of this style and a sub-task decomposition approach show that more

56

control and maintainability of the specification is obtained when compared to the pure
attribute grammar specification style. This is relevant when specifying a significant
number of sub-tasks over a large grammar structure.

We have rendered the after expression intention using attribute grammars. It transforms
itself into simpler existing constructs. For this, the actual semantic sub-tasks that carry out
the intention were identified and then each of them was expressed individually in the AG
specification (see page 33). However, we have shown that there may be multiple
transformations for a single interpretation; this is particularly true when studying the new
construct's interpretation under different contexts, where undoubtedly some of them will
be harder to specify than others. Therefore, it is sensible to analyse the dependence levels
these sub-tasks implicitly have.

We believe the simple and "harmless" transformations discussed and implemented in our
case study have yielded relevant points that need attention when extending programming
languages in IP. The mapping of new constructs into exiting ones required deeper
understanding than what we initially would have thought. In an early attempt to introduce
a new construct, we assumed and analysed a simple transformation and a single
interpretation. However, it seems to us that such analysis needs to go beyond the actual
scope of the new construct itself and get into its interactions with existing constructs and
other predefined "properties" of the language, e.g., operators' precedence, scope,
parameter passing mechanisms and evaluation order. Which is the inclusion strategy to
follow when other new constructs are added? Would it be that these predefined properties
are also intentional elements with which new intentions simply need to interact? How to
make this interaction as anonymous as possible?

Our initial approach was for these constructs to be completely independent, so that they
would be understood as "pure" intentions and would be used as basic building blocks for

57

place, an incremental attribute evaluation ensures changes are propagated and values are
consistently updated through out the tree structure.

We believe context-sensitive information will lead to improvements in program re-writing
using rule-based transformations with pattern matching. In our view, term rewriting
benefits from this information, as the transformation engine will be able to "select"
optimising transformation paths depending on its context (e.g., type). Then on each
rewriting step, an incremental attribute evaluator will re-compute and update the context,
offering consistent information to the next rewriting step. Moreover, additional
information can be obtained from a control flow or data flow analysis.

We plan to study in depth how to integrate coherently this mechanism with the rule
rewriting system under development by de Moor and Sittampalam.

Mechanised data refinement, data abstraction and transformations
Regarding mechanised data refinement, Polya shows an interesting and elegant approach
to the transformation of complex data structures. Such transformations are intended to
simplify the specification and compilation of domain specific languages. Polya and IP
share a very similar goal: the best abstraction of an application is its specification
expressed in the right domain specific language. With this view, programmers should be
allowed to write more natural and direct specifications instead of forcing them to use or to
implement their own ad hoc interfaces in a standard programming language.

Transforms, as understood in Polya, allow an interesting declarative specification of a
single datatype transformation step, and demonstrate how they can be composed into more
sophisticated, multi-step transformations. We visualise transforms as a form of "groups of
intentions" whose goal is precisely to provide a data refinement strategy for a particular
datatype. Such group would essentially be the union of other intentions in charge of each
of the given transformation rules ― perhaps extra information would be required to co-
ordinate their application. We also believe transforms may have a direct mapping into
rewrite rules using pattern matching, where contextual information will let coupling
invariants to be verified and enforced ensuring the equivalence preservation through the
automatic process. Here again, attribute grammars are a good candidate for the job. We
want to study closer both approaches and have more concrete view of these potential
higher level intentions.

DiSTiL presents data abstraction in the form of a regular, declarative data-accessing
interface that can simplify algorithmic obscurities in program specifications. Here, data
abstractions are coupled with families of efficient implementations, which are selected
depending on the usage and cost of that data representation in the current program and its
interaction of other data abstractions. In DiSTiL, as well as in Polya, the user is allowed
to introduce his judgement and directly select the implementation of specific data
abstractions.

We believe horizontal program transformations can take advantage of the different data
abstraction levels that data abstractions can introduce, because it would allow reasoning
about data representations and algorithms, possibly individually, at distinct moments of
the transformation process. Our next step in this direction will be focused in the
intentional representation of data refinement and data abstractions, and the way it will
offer control over the implementation exposure of datatypes and their associated
operations. This are still a source of open questions for us, as we need to conciliate them
with our multi-step transformation process.

58

On defining our meta-language
We review attribute grammars and mechanised data refinement from the IP perspective as
a first step towards the definition of our meta-language. As a team, we aim at the
identification of the minimal set of features the meta-language should provide as suitable
notation for describing intentions and their program transformations.

With the same goal in mind, Sufrin and Backhouse [9] are currently conducting an
experimental research approach by "intentionalising" WordPad. This will allow
determining the kind of intentions that need to be described for such kind of applications
and the meta-language features that are necessary for it. Preliminarily, they consider an
intentional framework will be required for the specification of user interface intentions.

As a general conclusion, we have found interesting features in the reviewed systems that
may benefit our meta-language and provide potential design guidelines that are worth
consideration. In particular, the Eli's inheritance mechanism allows reusability and
modularity to be introduced in attribute grammars. These three features substantially
increase the specification abstraction level and we believe they reduce specification size in
general. Its modularity is also used to produce abstract data types, thus providing a data
and implementation-hidden mechanism. Eli also provides remote referencing facilities
(e.g., CHAIN, INCLUDING and CONSTITUTES) whose main contribution is to allow
specifications to have a degree of independence from the actual grammar structure.
Remote references are indeed a key element for reusability.

Regarding the specification style, we have written aspect-oriented specifications in our
case study and recognised its contribution in helping to focus the programmer's attention
on individual concerns one at the time.

We also believe it is reasonable to think that data abstraction and refinement as explicit
representations are important in our meta-language because of the strong orientation
towards imperative programs as target languages.

Finally, a very important feature that our meta-language must not omit is to allow users to
extend their programming languages and the meta-language itself by defining new
constructs and their behaviour. For this, it has to allow new grammar rules for new
programming constructs to be included.

59

9 Future Work

This initial study proposes several areas that we consider require more understanding, and
where a satisfactory solution could offer valuable contributions to the IP paradigm, its
meta-language and its realisation.

Goal
The main goal of my research is to provide more understanding on the meta-specification,
interaction and transformation of intentions for the purpose of data refinement in IP. It
will be firmly based on convincing motivating examples.

Tentative tasks
To achieve the main goal, we are going to pursue two tentative tasks. We hope they will
provide enough understanding to satisfy most of the cast doubts on our discussion section.

Firstly, we are going to offer a representation mechanism for the description of data
refinement intentions in IP. We visualise the data refinement as modular "groups of
intentions", where several closely related intentions may be specified together so that a
common goal could be reached. Moreover, we consider they will help to identify different
stages in our multi-step conversion, and allow a potential classification of the reasoning
levels we can apply at each step.

These intentions will have to provide extra information, apart from purely refinement
specifications, to ensure equivalence preservation is maintained. Our impression is that
data about intentions' "co-existence" and "co-ordination" could be necessary as part of this
extra information. Such data would provide the intention's algebraic properties such that
composition and, hopefully, calculation of optimisations were applicable. We expect to be
able to express this information in the most intentional way possible, ultimately as
intentions.

If we succeed in the meta-specification of data refinement, we believe the same
mechanism will be applicable to the specification of data abstractions in a very similar
way. This is based on our understanding that transformations in data refinement and data
abstraction mainly differ on the level of implementation exposure about a datatype they
provide.

Secondly, we want to provide updated context-sensitive information during the conversion
process and certainly when applying data refinement intentions on imperative programs.
We believe that this information will lead to more code improvements and successful
optimising opportunities for the rule-based transformation engine to operate during
horizontal transformations. We hope to be able to validate it through a prototype and
concrete examples. In addition, it will be the means to study the subtle interactions
between intentions and the effects their individual transformations produce over the global
context.

To achieve this, we consider higher order attribute grammars to be an appropriate
mechanism for our purposes, not only for what we have already stated in this document,

60

but also because of their incremental evaluation strategies. Here, our meta-specification of
intentions will have to allow the compilation of attribute computations in order to build the
attribute grammar infrastructure. This will definitely provide substantial insights about the
meta-language features that data refinement requires and its evaluation strategy. Then, we
will integrate our prototyped mechanism with Ganesh Sittampalam's pattern matching and
transformation system. In case further context-sensitive information is necessary, we plan
to study the contribution control flow and data flow analysis could bring to the conversion
process of imperative programs.

Activity Plan
The following activity plan is proposed to achieve our main goal during the following two
years:

1. Microsoft Internship (2 months): during this period I will be in closer contact with the
current IP implementation. There, I plan to study the way data refinement can be
realise in this implementation.

2. Data refinement as intentions (3 months): during this time I will focus my research in
discovering the most appropriate way to describe mechanised data refinement
intentionally, including the minimum infrastructure for its realisation.

3. Study of Ganesh Sittampalam's rule-based transformation system and pattern-matching
mechanism. (1 month)

4. Context-sensitive information available during the application of rule-based
transformations and its integration with the rule-based transformation system. (1
month)

5. Reading of related topics: Among them aspect-oriented programming, exploration of
code improving transformations, algebraic specifications in TICS, control flow and
data flow analysis tools.

6. Prototype specification and construction (12 months): It will mainly consider the
following specific points:

• Specification of data refinement intentions.

• Continuously updated context sensitive information.

• Integration with rule-based transformation system and pattern-matching
mechanism.

• Identification of interesting rule-based transformations on imperative
programming.

7. Conference paper (1 month)

8. Thesis writing (5 months)

In addition, we plan to participate on one or two scientific conferences closely related to
our research interests.

61

10 References

[1] A. V. Aho, R. Sethi and J. D. Ullman. Compilers : principles, techniques, and tools.
Addison-Wesley, Reading, Mass ; Wokingham, 1986.

[2] W. Aitken. Personal communication during his visit to the OUCL, February 1999.

[3] W. Aitken, B. Dickens, P. Kwiatkowski, O. de Moor, D. Richter and C. Simonyi.
Transformation in Intentional Programming. In J. Poulin, ed. Procs. 5th International
Conference on Software Re-Use, IEEE Press, 1998. Available from URL:
http://www.research.microsoft.com/ip/.

[4] H. Alblas. Attribute Evaluation Methods. In H. Alblas and B. Melichar, eds., Attribute
Grammars, Applications and Systems, vol. 545 of Lecture Notes in Computer Science,
pages 48-113, International Summer School SAGA, Prague, Czechoslovakia :
proceedings, Springer-Verlag, 1991.

[5] L. Augusteijn. The Elegant Compiler Generator System. In P. Deransart and M. Jourdan,
eds., Attribute Grammars and Their Applications, vol. 461 of Lecture Notes in Computer
Science, pages 238-254, International Conference WAGA, Paris, France : proceedings,
Springer-Verlag, 1990.

[6] L. Augusteijn. Functionl Programming, Program Transformations and Compiler
Construction. PhD thesis, Eindhoven University of Technology, The Netherlands, 1993.
See also: http://www.research.philips.com/generalinfo/special/elegant/elegant.html.

[7] L. Augusteijn, P. Jansen and H. Munk. The Elegant Compiler Generator Tool Set,
Release 7.0. Philips Research Laboratories, The Netherlands, 1996.

[8] K. Backhouse, I. Sanabria-Piretti and G. Sittampalam. Using the R5 Reduction Engine,
Oxford University Computing Laboratory, Oxford, Technical Report April 1999.
Available from URL:
http://www.comlab.ox.ac.uk/oucl/groups/progtools/publications.htm.

[9] K. Backhouse and B. Sufrin. Intentions in WordPad. 1999, pages 22. Unpublished paper.
Available from URL:
http://www.comlab.ox.ac.uk/oucl/groups/progtools/publications.htm.

[10] D. Batory and B. J. Geraci. Validating Component Compositions in Software System
Generators. In Sitaraman. M, ed. Fourth International Conference On Software Reuse,
proceedings, pages 72-81, Orlando, FL, 1996.

[11] D. Batory and S. O'Malley. The design and implementation of hierarchical software
systems with reusable components. ACM Transactions on Software Engineering and
Methodology, vol. 1(4), pages 355-398, 1992.

[12] O. de Moor. First-class attribute grammars. February 1999, pages 27. Unpublished
paper. Available from URL:
http://www.comlab.ox.ac.uk/oucl/groups/progtools/publications.htm.

[13] O. de Moor, S. Peyton-Jones and E. Van Wyk. Aspect-Oriented Compilers. 1999, pages
13. Unpublished paper. Available from URL:
http://www.comlab.ox.ac.uk/oucl/groups/progtools/publications.htm.

[14] O. de Moor and G. Sittampalam. Generic Program Transformation. Procs. 3rd
International Summer School on Advanced Functional Programming, pages 34, Portugal,
Springer Verlag, 1998. Available from URL:
http://www.comlab.ox.ac.uk/oucl/groups/progtools/publications.htm.

62

[15] O. de Moor and G. Sittampalam. Higher-order matching for program transformation.
1999, pages 27. Unpublished paper. Available from URL:
http://www.comlab.ox.ac.uk/oucl/groups/progtools/publications.htm.

[16] P. Deransart, M. Jourdan and B. Lorho. Attribute grammars : definitions, systems and
bibliography. Springer-Verlag, Berlin; London, 1988.

[17] S. Efremidis. On Program Transformations. PhD. thesis, Cornell University, 1994.

[18] S. Efremidis, K. Mughal, L. Søraas and J. Reppy. AML: Attribute Grammars in ML.
Nordic Journal of Computing(January), 1997. Available from URL:
ftp://ftp.ii.uib.no/pub/aml/jc-aml-paper.ps.Z.

[19] Eli-Developer-Group. Personal communication, February - April 1999. Accessible
through Eli WWW site at: http://www.uni-
paderborn.de/fachbereich/AG/agkastens/eli_homeE.html.

[20] J. Engelfriet. Attribute Grammars - Attribute Evaluation Methods. In B. Lorho, ed.
Methods and Tools For Compiler Construction an Advanced Course, pages 103-138,
Advanced course on methods and tools for compiler construction, Inst Natl Rech
informatique & Automatique, Le Chesney, France, 1984.

[21] H. Ganzinger and R. Giegerich. Attribute Coupled Grammars. Sigplan Notices, pages
157-170, Assoc for Computing Machinery Special Interest Group in Programming
Languages 84 Symp on Compiler Construction, Papers Presented, Montreal, Quebec,
Canada, 17 - 22 June, 1984.

[22] R. W. Gray, V. P. Heuring, S. P. Levi, A. M. Sloane and W. M. Waite. Eli: A Complete,
Flexible, Compiler Construction System. Communications of the ACM, vol. 35(2), pages
121-131, 1992.

[23] D. Gries. The science of programming. Springer-Verlag, New York, 1981.

[24] D. Gries and J. Prins. A New Notion of Encapsulation. Proceedings of the ACM Sigplan
85 Symposium On Language Issues in Programming Environments, pages 131-139, Symp
on Language Issues in Programming Environments, Seattle, WA, 25 - 28 June, 1985.

[25] D. Gries and D. Volpano. The Definition of Polya, Department of Computer Science,
Cornell University, Technical Report 1992.

[26] D. Gries and D. Volpano. The transform - a new language construct. Structured
Programming, vol. 11, pages 1 - 10, 1990.

[27] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica, vol. 1,
pages 271-281, 1972.

[28] P. Jansen, L. Augusteijn and H. Munk. Introduction the Elegant. Philips Research
Laboratories, The Netherlands, 1996.

[29] T. Johnsson. Attribute grammars as a functional programming paradigm. In K. G., ed.
3rd Conf. on Functional Programming Languages and Computer Architecture, vol. 274 of
Lecture Notes in Computer Science, pages 154-173, Portland, Springer-Verlag, 1987.
Available from URL: http://www.cs.chalmers.se/~johnsson/.

[30] M. Jourdan. Strongly non-circular attribute grammars and their recursive evaluation.
ACM SIGPLAN '84 Symp. on Compiler Construction, pages 81-93, Montreal, ACM Press,
1984.

[31] M. Jourdan, D. Parigot, C. Julie, O. Durin and C. LeBellec. Design, implementation and
evaluation of the FNC-2 attribute grammar system. SIGPLAN Notices (ACM Special
Interest Group on Programming Languages), vol. 25(6.), pages 209-222, 1990.

[32] A. Kastens. Eli: Compiler Construction Made Easy. Compiler and Programming
Language Group, University of Paderborn, May 1999. Joint Project University of

63

Colorado at Boulder, University of Paderborn and James Cook University. On the World
Wide Web at URL: http://www.uni-
paderborn.de/fachbereich/AG/agkastens/eli_homeE.html.

[33] U. Kastens. Attribute Grammars as a Specification Method. In H. Alblas and B.
Melichar, eds., International Summer School on Attribute Grammars, Applications and
Systems : SAGA, vol. 545 of Lecture Notes in Computer Science, pages 16-47, Prague,
Czechoslovakia, June 4-13 : proceedings, Springer-Verlag, 1991.

[34] U. Kastens. Attribute Grammars in a Compiler Construction Environment. In H. Alblas
and B. Melichar, eds., International Summer School on Attribute Grammars, Applications
and Systems : SAGA, vol. 545 of Lecture Notes in Computer Science, pages 380-400,
Prague, Czechoslovakia, June 4-13 : proceedings, Springer-Verlag, 1991.

[35] U. Kastens. LIDO - Computations in Trees, Compiler and Programming Language Group,
University of Paderborn, Paderdon, Germany, Reference Manual, Revision 4.10, 1997.
Available from URL: http://www.uni-
paderborn.de/fachbereich/AG/agkastens/eli_homeE.html.

[36] U. Kastens. LIDO - Reference Manual, Compiler and Programming Language Group,
University of Paderborn, Paderdon, Germany, Reference Manual, Revision 4.21, 1997.
Available from URL: http://www.uni-
paderborn.de/fachbereich/AG/agkastens/eli_homeE.html.

[37] U. Kastens. Ordered Attributed Grammars. Acta Informatica, vol. 13(3), pages 229-256,
1980.

[38] U. Kastens, P. Pfahler and M. Jung. The Eli system. In K. Koskimies, ed. 7th
International Conference on Compiler Construction (CC 98) at the Joint European
Conferences on Theory and Practice of Software (ETAPS 98), pages 294-297, Lisbon,
Portugal, 28 Mar - 4 April, 1998.

[39] U. Kastens and W. M. Waite. Modularity and Reusability in Attribute Grammars. Acta
Informatica, vol. 31, pages 601-627, 1994.

[40] B. W. Kernighan and D. M. Ritchie. The C programming language. Prentice-Hall,
Englewood Cliffs, 1988.

[41] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. M. Loingtier and J. Irwin.
Aspect-Oriented Programming. In M. Aksit and S. Matsuoka, eds., 11th European
Conference on Object-Oriented Programming (ECOOP 97), vol. 1241 of Lecture Notes in
Computer Science, pages 220-242, Jyvaskyla, Finland, Springer-Verlag, 1997. Available
from URL: http://www.parc.xerox.com/spl/projects/aop/.

[42] D. E. Knuth. The art of computer programming. Addison-Wesley Pub. Co., Reading,
Mass., 1973.

[43] D. E. Knuth. Semantics of Context-Free Grammars. Mathematical Systems Theory, vol.
2(2), pages 127-145, 1968.

[44] D. E. Knuth. Semantics of Context-Free Grammars (correction). Mathematical Systems
Theory, vol. 5(1), pages 95-96, 1971.

[45] M. Kuiper and S. D. Swierstra. Using attribute grammars to derive efficient functional
programs. CSN'87: Computing Science in the Nertherlands, SION, 1987. Available from
URL: ftp://ftp.cs.ruu.nl/pub/RUU/CS/techreps/CS-1986/1986-16.ps.gz.

[46] P. Kwiatkowski. Intentional Programming R5 Engine. Seminar presented at Oxford
University, November 1998. Power Point presentation.

[47] Microsoft-IP-Development-Team. Electronic communication, January-June 1999.

64

[48] C. Morgan and P. H. B. Gardiner. Data refinement by calculation. Acta Informatica, vol.
27, pages 481- 503, 1990.

[49] J. M. Morris. The laws of data refinement. Acta Informatica, vol. 26, pages 481 - 503,
1989.

[50] R. Paige. Future Directions in Program Transformation. ACM Computing Surveys, vol.
28(4es), 1996. Available from URL:
http://www.acm.org/pubs/citations/journals/surveys/1996-28-4es/a170-paige/.

[51] D. Parigot. Bibliography on Attribute Grammars. Parigot, Didier, June 1999. On the
World Wide Web at URL: http://www-rocq.inria.fr/oscar/www/fnc2/AG.html.

[52] D. Parigot, E. Duris, G. Roussel and M. Jourdan. Attribute grammars: a declarative
functional language, INRIA, Rapport de Recherche, 2662, October 1995.

[53] A. Pettorossi and M. Proietti. Future directions in program transformation. ACM
Computing Surveys, vol. 28(4es), 1996. Available from URL:
http://www.acm.org/pubs/citations/journals/surveys/1996-28-4es/a171-pettorossi/.

[54] J. H. Reppy and E. R. Gansner. A Foundation For Programming Environments. Sigplan
Notices, pages 218-227, 2nd Software Engineering Symp on Practical Software
Development Environments of the Assoc for Computing Machinery Inc, Palo Alto, CA,
1987.

[55] T. W. Reps and T. Teitelbaum. The Synthesizer Generator : a System for Constructing
Language-based Editors. Springer-Verlag, New York, 1989.

[56] C. Simonyi. The Death of Computer Languages - The Birth of Intentional Programming,
Microsoft Research, Presentation at IFIP WG 2.1 on Algorithmic Languages and Calculi,
Technical Report, MSR-TR-95-52, September 1995. Available from URL:
http://www.advtech.microsoft.com/pubs/msr-bib.htm.

[57] C. Simonyi. The Future is Intentional. IEEE Computer(May), 1999. Available from
URL: http://www.research.microsoft.com/ip/.

[58] C. Simonyi. Intentional Programming - Innovations in the Legacy Age 1996. On the
World Wide Web at URL: http://www.research.microsoft.com/research/ip.

[59] C. Simonyi. Invited talk given at Carnegie Mellon University, April 1999. Available
from URL: http://www.research.microsoft.com/ip/.

[60] Y. Smaragdakis and D. Batory. DiSTiL: a transformation library for data structures.
Proceedings of the Conference On Domain-Specific Languages, pages 257-269, Santa
Barbara, CA, Usenix Association, 1997. Available from URL:
http://www.cs.utexas.edu/users/smaragd/research.html.

[61] Y. Smaragdakis and D. Batory. Scoping Constructs for Program Generators, Department
of Computer Sciences, University of Texas, Austin, Technical Report, TR-96-37, 1996.
Available from URL: http://www.cs.utexas.edu/users/smaragd/research.html.

[62] A. van der Berg. Data Abstraction by Program Transformation in a Higher-Order
Attribute-Grammar Framework. PhD thesis, Cornell University, 1997. Available from
URL: http://www.cs.cornell.edu/home/aswin/.

[63] H. Vogt. Higher Order Attribute Grammars. PhD thesis, Utrech University, 1993.
Available from URL: http://www.serc.nl/.

[64] H. Vogt, S. D. Swierstra and M. F. Kuiper. Higher Order Attribute Grammars. ACM
SIGPLAN '89 Conference on Programming Language Design and Implementation, pages
131-145, Portland, Oregon, June, 1989.

[65] W. M. Waite. A Complete Specification of a Simple Compiler. Department of Electrical
and Computer Engineering, University of Colorado at Boulder, March 1997. An

65

implementation of the Pascal- language. On the World Wide Web at URL:
ftp://ftp.cs.colorado.edu/pub/cs/distribs/eli/Examples/.

[66] W. M. Waite and G. Goos. Compiler Construction. Springer-Verlag, New York, 1984.

[67] W. M. Waite and U. Kastens. Personal communication, February - April 1999.

[68] N. Wirth. Program development by step-wise refinement. Communications of the ACM,
vol. 14, pages 221-227, 1971.

66

11 Appendix

11.1 Appendix 1: Semantic definitions for P using SG
The following is the complete definition of the HAG written in SG. The example's
structure is based on [55], and it has been extended for the purposes of the case study
presented in Section 4, page 13.

/*--
* SEMANTIC DEFINITIONS
* OF THE HAG FOR THE P PROGRAMMING LANGUAGE
--/

/*--
* Semantic Root node ProgBody. A local variable env is defined.
--/

progBody: ProgBody { local declList env;
env = declList; }

;

/*--
* TYPE Attribute
--/

exp, variable, funcName { synthesized type type; };

exp : EmptyExp { exp.type = EmptyType; }
| IntConst { exp.type = IntType; }
| True, False { exp.type = BoolType; }
| Id { exp.type = variable.type; }
| Equal, NotEqual { exp$1.type = BoolType; }
| Add, Minus { exp$1.type = IntType; }
| After { exp$1.type = exp$2.type; }
| FuncCall { exp$1.type = funcName.type == EmptyType ?

LookupFuncType(funcName,
{ProgBody.initialFuncDecls}) :

funcName.type; }
;

variable: VariableNull { variable.type = EmptyType; }
| Variable { variable.type =

LookupDeclType(variable, {ProgBody.env}); }
;

funcName: FuncNameNull { funcName.type = EmptyType; }
| FuncName { funcName.type =

LookupFuncType(
funcName,
{ProgBody.initialFuncDecls}); }

;

/*--
* VALUE Attribute
* Every expression has a value. In most cases, it contains a computed copy
* of its associated expression. In the case of an After expression, a
* funcCall is created.
--/

exp { synthesized exp value; };

exp : EmptyExp { exp.value = EmptyExp; }
| IntConst { exp.value = IntConst(INTEGER); }
| True { exp.value = True; }
| False { exp.value = False; }

67

| Id { exp.value = Id(variable); }
| Equal { exp$1.value = Equal(exp$2.value, exp$3.value); }
| NotEqual { exp$1.value = NotEqual(exp$2.value, exp$3.value); }
| Add { exp$1.value = Add(exp$2.value, exp$3.value); }
| Minus { exp$1.value = Minus(exp$2.value, exp$3.value); }
| After { local funcName newFuncName;

exp$1.value = FuncCall(newFuncName); }
| FuncCall { exp$1.value = FuncCall(funcName); }
;

/*---
* NEWFNCDCLS ATTR
* In most cases, the equations for this attribute correspond to
* 'group and pass up to the tree' rules.
* The most interesting equation is found on the After expression,
* where the newFncDcls is extended with a new funcDecl.
--/

progBody, funcDeclList,
funcDecl, block, stmtList,
stmt, exp { synthesized funcDeclList newFncDcls; };

/* this CODE attribute is defined here of compilation purposes */
stmtList { synthesized stmtList code; };

progBody: ProgBody {local funcDeclList initialFuncDecls;

initialFuncDecls = funcDeclList;
$$.newFncDcls =

AppendFncDclLst(
AppendFncDclLst(block.newFncDcls,

funcDeclList.newFncDcls),
initialFuncDecls); }

;

funcDeclList: FuncListNil { $$.newFncDcls = FuncListNil; }
| FuncListPair { $$.newFncDcls =

AppendFncDclLst(funcDecl.newFncDcls,
funcDeclList$2.newFncDcls); }

;
funcDecl: FuncDecl { $$.newFncDcls = block.newFncDcls; }

;

block : Block { $$.newFncDcls = stmtList.newFncDcls; }
;

stmtList: StmtListNil { $$.newFncDcls = FuncListNil; }
| StmtListPair { $$.newFncDcls =

AppendFncDclLst(stmt.newFncDcls,
stmtList$2.newFncDcls); }

;
stmt : EmptyStmt { $$.newFncDcls = FuncListNil; }

| Assign { $$.newFncDcls = exp.newFncDcls; }

| IfThenElse { $$.newFncDcls =
AppendFncDclLst(exp.newFncDcls,
AppendFncDclLst(stmt$2.newFncDcls,

stmt$3.newFncDcls)); }
| While { $$.newFncDcls =

AppendFncDclLst(exp.newFncDcls,
stmt$2.newFncDcls); }

| Loop { $$.newFncDcls = block.newFncDcls ; }
| Compound { $$.newFncDcls = stmtList.newFncDcls;}
| Return { $$.newFncDcls = exp.newFncDcls; }
| Break, Continue,

Label, Goto { $$.newFncDcls = FuncListNil; }

68

;
exp : EmptyExp, IntConst,

True, False, Id { $$.newFncDcls = FuncListNil; }

| Equal,NotEqual,
Add, Minus { $$.newFncDcls =

AppendFncDclLst(exp$2.newFncDcls,
exp$3.newFncDcls); }

/* After expression builds a new function declaration and appends it to
* NEWFNCDCLS attribute. */

| After
{ /*local funcName newFuncName;*/

local funcDecl newFunc;

newFuncName = FuncName(gensym("AfterFunc_",&($$)));
newFunc =

FuncDecl(newFuncName,
exp$2.type,
Block(AppendStTail(stmtList.code,

Return(exp$2.value))));

exp$1.newFncDcls =
AppendFncDcl(

AppendFncDclLst(stmtList.newFncDcls,
exp$2.newFncDcls),

newFunc); }

| FuncCall {exp$1.newFncDcls = FuncListNil; }
;

/*---
* RETURNALLOW Attribute
* This attribute is used to allow Return stmts depending on the context.
* The Return stmt is NOT allowed in the block part of a Program
* production rule, while it IS allowed in the block part of functions.
* This attribute is remotely referred by error reporting functions.
---/

block {inherited STR returnAllow; };

progBody : ProgBody {block.returnAllow = "NO"; }
;

funcDecl : FuncDecl {block.returnAllow = "YES"; }
;

stmt : Loop {block.returnAllow = {block.returnAllow}; }
;

/*--
* BRKCNTALLOW Attribute
* Break and Continue stmts are allowed only in the body of a loop
* stmt.
* This attribute is remotely referred by error reporting functions.
--/

block {inherited STR brkCntAllow; };

progBody : ProgBody {block.brkCntAllow = "NO"; }
;

funcDecl : FuncDecl {block.brkCntAllow = "NO"; }
;

stmt : Loop { block.brkCntAllow = "YES"; }
;

/*--
* INITIALLABEL, FINALLABEL Attributes

69

* Any Break, Continue or Goto stmt within a Loop stmt need to refer
* these two labels in order to compute its transformed 'code'. Each
* of this statements uses upward remote reference to the closest block
* instance. See the specification for Loop.code.
--/

block { inherited labelName initialLabel; };

progBody : ProgBody {block.initialLabel = LabelNameNull;}
;

funcDecl : FuncDecl {block.initialLabel = LabelNameNull;}
;

stmt : Loop { block.initialLabel = LabelName(gensym("LpInitLbl_",
&($$))); }

;

block { inherited labelName finalLabel; };

progBody : ProgBody { block.finalLabel = LabelNameNull; }
;

funcDecl : FuncDecl { block.finalLabel = LabelNameNull; }
;

stmt : Loop { block.finalLabel = LabelName(gensym("LpFinalLbl_",
&($$))); }

;

/*--
* CODE Attribute
* In most cases, a copy of the original tree structure is created and
* returned. In other cases, a transformed tree is computed and returned.
--/

program { synthesized program code; };
progBody { synthesized progBody code; };
funcDeclList { synthesized funcDeclList code; };
funcDecl { synthesized funcDecl code; };
block { synthesized block code; };
declList { synthesized declList code; };
decl { synthesized decl code; };
type { synthesized type code; };
variable { synthesized variable code; };
labelName { synthesized labelName code; };
progName { synthesized progName code; };
funcName { synthesized funcName code; };
/*stmtList { synthesized stmtList code; }; */
stmt { synthesized stmt code; };

program : Prog { $$.code =
Prog(progName.code, progBody.code);}

;
progBody : ProgBody { $$.code =

ProgBody(declList.code,
AppendFncDclLst(funcDeclList.code,

AppendFncDclLst(block.newFncDcls,
funcDeclList.newFncDcls)),

block.code); }
;

declList : DeclListNil { $$.code = DeclListNil;}
| DeclListPair { $$.code = (decl.code :: declList$2.code); }
;

decl : Declaration { $$.code = Declaration(variable.code,
type.code); }

;
type : EmptyType { $$.code = EmptyType;}

| IntType { $$.code = IntType;}
| BoolType { $$.code = BoolType;}
;

70

variable: VariableNull { $$.code = VariableNull; }
| Variable { $$.code = Variable(IDENTIFIER); }
;

labelName: LabelNameNull { $$.code = LabelNameNull; }
| LabelName { $$.code = LabelName(IDENTIFIER); }
;

progName: ProgNameNull { $$.code = ProgNameNull; }
| ProgName { $$.code = ProgName(IDENTIFIER); }
;

funcName: FuncNameNull { $$.code = FuncNameNull; }
| FuncName { $$.code = FuncName(IDENTIFIER); }
;

funcDeclList: FuncListNil { $$.code = FuncListNil; }
| FuncListPair { $$.code =

(funcDecl.code :: funcDeclList$2.code); }
;

funcDecl : FuncDecl { $$.code = FuncDecl(funcName.code,
type.code,
block.code); }

;
block : Block { $$.code = Block(stmtList.code); }

;
stmtList : StmtListNil { $$.code = StmtListNil; }

| StmtListPair { $$.code = AppendStHead(stmt.code,
stmtList$2.code); }

;
stmt : EmptyStmt { $$.code = EmptyStmt; }

| Assign { $$.code = Assign(variable.code,
exp.value); }

| IfThenElse
{ $$.code = IfThenElse(exp.value,

stmt$2.code,
stmt$3.code); }

| While
{ $$.code = Loop(StToBlck(

IfThenElse(exp.value,
stmt$2.code,
Break))); }

| Loop { $$.code = StLstToSt
(Label(block.initialLabel) ::
BlckToSt(block.code) ::
Goto(block.initialLabel) ::
Label(block.finalLabel) ::
StmtListNil); }

| Compound { $$.code = StLstToSt(stmtList.code);}
| Return { $$.code = Return(exp.value); }
| Break { $$.code = ({block.brkCntAllow} == "YES") ?

Goto({block.finalLabel}) :
Break; }

| Continue { $$.code =
({block.brkCntAllow} == "YES") ?

Goto({block.initialLabel}) :
Continue; }

| Label { $$.code = Label(labelName); }
| Goto { $$.code = Goto(labelName); }
;

/*---
* Rules defining error messages in attribute computations.
---/

decl : Declaration {
local STR error;
error = (variable != VariableNull

&& NumberOfDecls(variable, {ProgBody.env}) > 1)

71

? " { MULTIPLY DECLARED }" : "";
}

;
stmt : Assign {

local STR assignError;
local STR error;
assignError = IncompatibleTypes(variable.type, exp.type)

? " { INCOMPATIBLE TYPES IN := }" : "";
error = (variable == VariableNull ||

IsDeclDeclared(variable, {ProgBody.env}))
? "" : " { NOT DECLARED }";

}
| IfThenElse, While {

local STR typeError;
typeError = IncompatibleTypes(exp.type, BoolType)

? " { BOOLEAN EXPRESSION NEEDED }" : "";
}

| Return {
local STR error;
error = ({block.returnAllow} == "YES")?

"" : " { RETURN STMT NOT ALLOWED IN THIS CONTEXT } ";
}

| Break, Continue {
local STR error;
error = ({block.brkCntAllow} == "YES")?

"" :
" { BREAK/CONTINUE STMT MUST BE IN A LOOP STMT } ";

}
;

exp : Id {
local STR error;
error = (variable == VariableNull ||

IsDeclDeclared(variable, {ProgBody.env}))
? "" : " { NOT DECLARED }";

}
| Equal, NotEqual {

local STR error;
error = IncompatibleTypes(exp$2.type, exp$3.type)

? "{ INCOMPATIBLE TYPES } " : "";
}

| Add, Minus {
local STR leftError;
local STR rightError;
leftError = IncompatibleTypes(exp$2.type, IntType)

? " { INT EXPRESSION NEEDED }" : "";
rightError = IncompatibleTypes(exp$3.type, IntType)

? "{ INT EXPRESSION NEEDED } " : "";
}

| After {
local STR stmtError;
stmtError = (stmtList != (EmptyStmt :: StmtListNil))

? "" : " { STATEMENT NEEDED }";
}

| FuncCall {
local STR error;
error = IsFuncDeclared(funcName, {progBody.newFncDcls})

? "" : " { FUNCTION NOT DECLARED } ";
}

;

/*--
* Functions that abstract stmt and stmtList construction
--- --/

stmtList StToStLst(stmt st) {
with (st) (

Compound(x): x,

72

EmptyStmt : StmtListNil,
default : (st :: StmtListNil)

)
};

stmt StLstToSt(stmtList stLst) {
with (stLst) (

StmtListNil : EmptyStmt,
StmtListPair(EmptyStmt,aStLst) : StLstToSt(aStLst),
StmtListPair(aSt,StmtListNil) : aSt,
StmtListPair(aSt, aStLst) : Compound(

AppendStHead(aSt, aStLst))
)

};

stmtList AppendStHead(stmt st, stmtList stLst) {
with (stLst) (

StmtListNil : StToStLst(st),
StmtListPair(Compound(aStLst),

StmtListNil) : AppendStHead(st, aStLst),
StmtListPair(aSt, StmtListNil) : (st :: aSt :: StmtListNil),
StmtListPair(aSt, aStLst) : (st :: aSt :: aStLst)

)
};

stmtList AppendStTail(stmtList stLst, stmt st) {
with (stLst) (

StmtListNil : StToStLst(st),
StmtListPair(Compound(aStLst),

StmtListNil) : AppendStTail(aStLst, st),
StmtListPair(aSt, StmtListNil) : (aSt :: st :: StmtListNil),
StmtListPair(aSt, aStLst) : (aSt ::

AppendStTail(aStLst, st))
)

};

block StToBlck(stmt st) { Block(StToStLst(st)) };

stmt BlckToSt(block blck) {
with (blck) (Block(stLst): StLstToSt(stLst)) };

stmtList AppendStLst(stmtList stLst1, stmtList stLst2) {
with (stLst1) (

StmtListNil : stLst2,
StmtListPair(Compound(aStLst),StmtListNil)

: AppendStLst(aStLst,stLst2),
StmtListPair(aSt, StmtListNil) : (aSt :: stLst2),
StmtListPair(aSt, aStLst) :

(aSt :: AppendStLst(aStLst,stLst2))
)

};

funcDeclList AppendFncDcl(funcDeclList fdLst, funcDecl fd) {
with (fdLst) (

FuncListNil : (fd :: FuncListNil),
FuncListPair(afd, FuncListNil): (afd :: fd :: FuncListNil),
FuncListPair(afd, afdLst) : (afd :: AppendFncDcl(afdLst, fd))

)
};

funcDeclList AppendFncDclLst(funcDeclList fdLst1, funcDeclList fdLst2) {
with (fdLst1) (

FuncListNil : fdLst2,
FuncListPair(afd, FuncListNil) : (afd :: fdLst2),
FuncListPair(afd, afdLst) :

(afd :: AppendFncDclLst(afdLst, fdLst2))

73

)
};

/*--
/* Function declarations that define the auxiliary functions
/* LookupType, LookupFuncType, IsDeclared, FuncIsDeclared,
/* NumberOfDecls, and IncompatibleTypes.
---/

/* Determine the first type bound to i in e, or EmptyType if there is none. */

type LookupDeclType(variable i, declList e) {
with (e) (

DeclListNil: EmptyType,
DeclListPair(Declaration(id, t), dl):

(i == id) ? t : LookupDeclType(i, dl)
)

};

type LookupFuncType(funcName i, funcDeclList e) {
with (e) (

FuncListNil: EmptyType,
FuncListPair(FuncDecl(id, t, b), dl):

(i == id) ? t : LookupFuncType(i, dl)
)

};

/*--*/
/* Return true iff there exists a type bound to i in e. */

BOOL IsDeclDeclared(variable i, declList e) {
with (e) (

DeclListNil: false,
DeclListPair(Declaration(id, t), dl):

(i == id) ? true : IsDeclDeclared(i, dl)
)

};

BOOL IsFuncDeclared(funcName i, funcDeclList e) {
with (e) (

FuncListNil: false,
FuncListPair(FuncDecl(id, t, b), dl):

(i == id) ? true : IsFuncDeclared(i, dl)
)

};

/*--*/
/* Determine the number of types bound to i in e. */
INT NumberOfDecls(variable i, declList e) {

with (e) (
DeclListNil: 0,
DeclListPair(Declaration(id, *), dl):

((i == id) ? 1 : 0) + NumberOfDecls(i, dl)
)

};

/* Determine the number of types bound to i in e. */
INT NumberOfFuncDecls(funcName i, funcDeclList e) {

with (e) (
FuncListNil: 0,
FuncListPair(FuncDecl(id, t, b), dl):

((i == id) ? 1 : 0) + NumberOfFuncDecls(i, dl)
)

};

/* Return true iff neither t1 nor t2 is EmptyType and t1 is not equal to t2. */
BOOL IncompatibleTypes(type t1, type t2) {

74

(t1 != EmptyType) && (t2 != EmptyType) && (t1 != t2)
};

11.2 Appendix 2: Scope analysis in Pascal using Eli
This appendix shows how scope analysis is established in a Pascal compiler using Eli. In
the general sense, it consists of the instantiation of generic modules and the creation of the
appropriate set of symbols, which inherits behaviours from these modules.

~O~<scope.con~>~{ StandardBlock: Program . ~}

~O~<scope.lido~>~{
ATTR Key: DefTableKey;
SYMBOL Block INHERITS RangeScope END;

ATTR Sym: int;
SYMBOL NameOccurrence COMPUTE SYNT.Sym=TERM; END;

SYMBOL NameDef INHERITS IdDefScope, NameOccurrence END;
SYMBOL NameUse INHERITS IdUseEnv, NameOccurrence END;

SYMBOL Block INHERITS RangeUnique END;
SYMBOL NameDef INHERITS Unique END;

SYMBOL NameUse COMPUTE
IF(EQ(THIS.Key,NoKey),

message(ERROR,"Undefined identifier",0,COORDREF));
END;

SYMBOL StandardBlock: Env: Environment;

SYMBOL StandardBlock INHERITS RootScope COMPUTE
SYNT.Env = StandardEnv(NewEnv());

END;

SYMBOL Program INHERITS Block END;
SYMBOL ProcedureBlock INHERITS Block END;
SYMBOL FunctionBlock INHERITS Block END;

SYMBOL ConstantNameDef INHERITS NameDef END;
SYMBOL TypeNameDef INHERITS NameDef END;
SYMBOL VariableNameDef INHERITS NameDef END;
SYMBOL ProcedureNameDef INHERITS NameDef END;
SYMBOL FunctionNameDef INHERITS NameDef END;
SYMBOL ParameterNameDef INHERITS NameDef END;

SYMBOL ConstantNameUse INHERITS NameUse END;
SYMBOL TypeNameUse INHERITS NameUse END;
SYMBOL VariableNameUse INHERITS NameUse END;
SYMBOL ProcedureNameUse INHERITS NameUse END;
SYMBOL FunctionNameUse INHERITS NameUse END;
SYMBOL ParameterNameUse INHERITS NameUse END;
~}

~O~<scope.specs~>~{
$/Name/AlgScope.gnrc :inst
$/Prop/Unique.gnrc :inst
~}

75

	Abstract
	Acknowledgements
	Contents
	Introduction
	Intentional Programming
	A meta-language for IP

	Attribute Grammars
	Definitions
	A functional implementation of attribute grammars
	Attribute grammars as aspect-oriented programs

	Higher order attribute grammars
	Attribute Coupled Grammars
	Shortcomings of AGs

	Case Study
	The P Language Grammar
	Transformations
	After Expression
	While and Loop statements

	A HAG for our language P
	The Code and NewFncDcls attributes
	NewFncDcls
	Code

	The Block structure and its attributes
	The Value Attribute
	The Type Attribute

	Example
	Final Remarks

	A review of the Eli system
	Compiler specification
	Symbols and Rules
	Dual use of attributes
	Remote dependence
	Symbol computations
	Inheritance
	Modules
	Cumulative attribution
	Final Remarks

	Review of other systems
	AML
	Elegant

	Data Refinement and Program Transformations
	The Polya System
	The Transforms
	Program Transformation

	DiSTiL
	Polya and DiSTiL

	Discussion
	Future Work
	References
	Appendix
	Appendix 1: Semantic definitions for P using SG
	Appendix 2: Scope analysis in Pascal using Eli

